In session “Web Services and Grid Computing,” Proceedings of the Conference on Systemics, Cybernetics and

Informatics, Orlando, FL, July 2002.

QoS for Service-oriented Middleware

Amit Sheth, Jorge Cardoso, John Miller and Krys Kochut
Large Scale Distributed Information Systems Lab
Computer Science, University of Georgia
{amit,anton,jam,kochut} @cs.uga.edu, http://Isdis.cs.uga.edu

Myong Kang
Mitretek Systems, Center for Information Systems
myong.kang@mitretek.org

Abstract

We propose a Service-oriented Middleware (SoM) that
provides an upper level of middleware over rapidly
emerging Web Services-based middleware to make it
easier to develop complex multi-organizational business
applications. Our approach primarily builds upon our
experience in building distributed workflow management
for multi-organizational processes. Effective and efficient
Quality of Service (QoS) management is a critical
component of SoM allowing it to guarantee the
satisfaction and fulfillment of user and application
requirements. This paper reviews a QoS model that also
supports ability to automatically compute QoS based on
QoS specification of component web Services.

Keywords: Quality of Service, Web Service QoS, Process
QoS, multi-organizational workflows, Service oriented
Middleware

1 Introduction

Open Grid Service Architecture (OGSA) has presented a
vision of an integrated approach to supporting both e-
science and e-business (Foster, Kesselman et al. 2002).
Related to this is the move towards convergence of
formerly distinct communities (Web, Grid and P2P)
leading to integrated Internet distributed computing (Hey
2001; Gilmore 2002; Milenkovic 2002). As with most
past technological evolution in software architectures, we
expect to see a layered approach to achieving the above
vision. We propose a Service-oriented Middleware (SoM)
that takes a step in this direction by building upon the
progress in Grid middleware and rapidly emerging Web
Services developed to support business applications. Our
objective is to address key outstanding issues such as
making it easier to build complex applications defined as
processes by composing Web Services, and their
management (including orchestration).

Processes based on Web Services are inherently more
complicated compared to workflow processes because the
scale and heterogeneity is expected to be much greater.
Scale will be related to the number of potentially relevant
Web service providers that may perform similar jobs and
register with multiple registries. Heterogeneity will result
from their independent development and modification by
providers, resulting in both functional differences such as

modeling, and operational differences, even if standards
are used.

Through SoM, we aim to provide a higher-level
middleware that makes it much easier to build complex
applications with the scope of OGSA. The particular
classes of middleware services we address as identified in
(Chuang, DeFanti et al. 2001) are support for end-to-end
QoS objectives, security and robustness. Within the
classification of Grid middleware, Grid development
environments and tools, and Grid applications and portals
(Thomas, Mock et al. 2000), our work primarily belongs
to the middle tier.

The services offered by an OGSA needs to include an
effective and efficient QoS management, to guarantee the
satisfaction and fulfillment of users requirements. For
example, when an OGSA is chosen to support e-
commerce processes, the architecture must understand the
binding agreement or contract between the supplier and
customer, specifying QoS items such as products or
services to be delivered, deadlines, quality of products,
and cost of service. The management of such QoS
requirements directly impacts success of organizations
participating in e-commerce. Products and services must
be available to customers with well-defined specifications
to fulfill customer expectation and achieve customer
satisfaction.

The OGSA must accept the specification, as well as be
able to estimate, monitor, and control the QoS of running
applications. QoS can play important role in dynamic
scheduling and evolution during enactment (or
orchestration) of a process defined as a composition of
multiple Web Services. To achieve these objectives the
first step is to develop an adequate QoS model for
processes. While QoS models have been deployed for
various domains, such as networking, multimedia, and
middleware, no model has been created for processes. We
have investigated adjacent work to decide which
dimensions would be relevant to compose a valid and
usable QoS model for processes. Based on previous
studies and our experience in the workflow domain we
have constructed a model composed of the following
dimensions: time, cost, fidelity, and reliability.

One of the most interesting and important features of the
model is that the end-to-end QoS of a composite service
or process can be synthesized from the QoS properties of

http://lsdis.cs.uga.edu/

In session “Web Services and Grid Computing,” Proceedings of the Conference on Systemics, Cybernetics and

Informatics, Orlando, FL, July 2002.

its components. The QoS properties are a combination of
a priori estimates from designers as well as estimates
computed from prior executions, with the historical data
playing a larger role as more data is collected.
Synthesizing aggregate estimates requires several
problems to be solved, among them the determination of
branching probabilities from branching conditions and
dealing with correlation between individual services. A
QoS model with the properties described here has been
prototyped as part of the METEOR workflow
management system.

2 Background and Relevant Work

First we review recent commercial moves toward service-
based architectures and solutions. Then we review our
most relevant work in workflow management and
semantic interoperability which form the basis of our
approach to developing the proposed SoM and its tools.
For brevity, we do not review the relevant specifications
and standards such as XML, RDF, Web Services (IBM;
Graham, Simenov et al. 2002), (including SOAP (SOAP
2002), UDDI (UDDI 2002), WSDL (WSDL 2001)
XLANG (Thatte 2001), WSFL (WSFL 2002)), that are the
basis of component-based middleware are relevant to
OGSA and are also the basis of SoM

Service-based Infrastructure and Solutions

The commercial world is moving to service-based

infrastructure and solutions. Example of commercial

systems and research work based on the service paradigm:

= Propel Platform Development Team (Carey and
Team 2001) focuses on a scalable infrastructure for
advanced e-services. The Propel team and Anil Nori
et al. (Nori, Venketraman et al. 2001) discuss
requirements for a comprehensive e-service platform
and how the developed system architectures meet
them.

= Fabio Casati and Ming-Chien Shan from HP Labs
(Casati, Lee et al. 2001)and BizTalk Server 2000 by
Bimal Mehta et al. (Metha, Levy et al. 2001) focus
on the process-oriented dimension of e-services and
discuss how workflow technology contributes to
current solutions.

= Vassilis Christophides (Christophides, Hull et al.
2001) from Bell Labs is studying workflow
mediation using the XML-based vortex architecture.

= Bell Labs work and the WISE approach by Amaia
Lazcano et al. (Lazcano, Schuldt et al. 2001)
emphasize process based e-commerce. In their
papers, they review ongoing research efforts toward
more flexible, interoperable, and highly dependable
workflows in an e-service environment.

= The CrossFlow (Grefen, Aberer et al. 2001) is a
multi-national research project on cooperation in
virtual enterprises. They use a contract mechanism
for the service outsourcing and integration.

= Kraiss, et al. (Kraiss, Schoen et al. 2001) discuss the
importance of performance guarantees in a banking
environment and a mathematical approach for
appropriate system configuration.

= Sheth, et al. (Sheth, Aalst et al. 1999) discuss three
evolving architectures for multi-organizational
processes in the increasingly networked economy.

Additional examples include work by .NET, TIBCO

(TIBCO 2002), IBM (IBM), Bowstreet, and many others.

QoS

Recent work, much of it funded by DARPA-ITO through
the Quorum program, is extending QoS concepts and
mechanisms to higher semantic levels to allow the
definition, measurement, and control of the quality of
service delivered by services and complete applications
(Frlund and Koistinen 1998). However, little work has
been done in terms of QoS of pluggable components that
we propose.

Workflow Process Management

Recently, the need for constructing processes across
multiple domains using existing applications has received
much attention in the context of business-to-business
applications (Sheth, Aalst et al. 1999). OGSA has also
recognized the need for workflow (Foster, Kesselman et
al. 2002). Even though there are many efforts to facilitate
such needs, such as enterprise application integration
(EAI) and cross-organizational workflow management
system (WfMS) (Grefen, Aberer et al. 2001), it is not easy
to build complex application, and there is little work that
support QoS for end-to-end processes created by
composing or coordinating individual applications or Web
Services.

The METEOR project at the Large Scale Distributed
Information systems (LSDIS) Lab in the Computer
Science Department of the University of Georgia, has
been, perhaps, the largest academic effort (with
substantial industrial collaboration). This project has
spanned the complete phase of research, prototyping and
industrial trials, technology licensing and
commercialization of a comprehensive workflow
management system. METEOR’s architecture includes
design tools, monitoring tools, workflow repository, and
enactment systems. Due to different needs in
organizations we have developed two enactment service:
OrbWork (Kochut, Sheth et al. 1999) and WebWork
(Miller, Palaniswami et al. 1997; Miller, Cardoso et al.
2002). OrbWork is a CORBA and Java based system
oriented to support mission-critical applications requiring
high scalability and robustness. It is fully distributed and
scalable. Since LSDIS has used Java as the language for
its development, the system is portable across platforms. It
supports interoperability standards such as jFLOW
(JFLOW 1998) and SWAP. Recent enhancements include
support for dynamic changes at the instance level
(Kochut, Sheth et al. 1999), repository to support process
reuse, and an exception handling mechanism (Luo 2000)
that is part of the adaptation module. A collaboration with
NRL resulted in a extended METEOR system called
SALSA to build a multilevel secure (MLS) workflow
management system (Kang, Froscher et al. 1999; Kang,
Park et al. 2001).

In session “Web Services and Grid Computing,” Proceedings of the Conference on Systemics, Cybernetics and

Informatics, Orlando, FL, July 2002.

3 Specification of Web Service and Process
QoS

Processes are composed of multiple Web services.
Selection of services can occur either design time or run
time. In either case, matching and ranking functions are
used to select one or more suitable services. The service
should provide the appropriate functionality as well as
meet QoS requirements.

3.1 SoM QoS Requirements

The research and development of mechanisms to specify
QoS and allow an effective and efficient QoS
management are our main objectives for the SoM
architecture. ~We have identified four important and
complementary areas that we are currently investigating:
specification, estimation algorithms and methods,
monitoring tools, and mechanisms to control the QoS.
Only the development of integrated solutions composed of
those four modules can result in a sophisticated quality
management framework. = The objectives and
functionalities of each module include the following:

= A QoS model must be developed to allow for the
specification of workflow QoS metrics. This model
allows suppliers to specify the duration, quality, cost,
fidelity, efc., of the services and products to be
delivered. Specifications can be set at design-time,
when designers build workflow applications, or they
can be adjusted at run-time.

= Algorithms and methods must be developed to
estimate the QoS of a workflow both before instances
are started and during instance execution. The
estimation of QoS before instantiation allows
suppliers to ensure that the workflow processes to be
executed will indeed exhibit the QoS requested by
customers. The analysis of QoS during instance
execution allows the SoM infrastructure to constantly
compute QoS metrics and register any deviations
from the initial requirements.

= Tools must be available to monitor the QoS of
running applications. Users and managers need to
receive information about the QoS status and
possible deviations from the desired metrics that
might occur. The use of QoS monitoring tools can
automatically detect this variation in fidelity and
automatically notify interested users.

= Mechanisms must be available which control the
QoS of applications. Control is necessary when
applications do not behave according to initial
requirements. Let us consider the following example:
workflow instances are running correctly and the
QoS specifications are being followed when a task
fails. As a consequence, QoS specifications of time
are no longer satisfied, and the SoM infrastructure
raises a warning, an alert, or an exception. The faulty
task needs to be replaced by an equivalent task to
restore the soundness of the system. This
replacement can be accomplished by applying
dynamic changes to the instances, either manually or
automatically (Cardoso, Luo et al. 2001).

3.2 QoS Model

QoS is typically decomposed into several dimensions.
For business processes, (Stalk and Hout 1990) and
(Rommel 1995) investigated the features with which
successful companies assert themselves in the competitive
world markets. Their results indicated that success is
related to the capability to compete with other
organizations, and it is based upon three essential pillars:
time, cost, and quality. These three dimensions have been
a major concern for organizations. (Garvin 1988)
associates eight dimensions with quality, including
performance and reliability. Software systems quality of
service has been extensively studied. Major contribution
can be found in networking (Georgiadis, Guerin et al.
1996)., eal-time applications (Clark, Shenker et al. 1992)
and middleware areas (Hiltunen, Schlichting et al. 2000)
(Zinky, Bakken et al. 1997). For middleware systems,
(Frlund and Koistinen 1998) present a set of practical
dimensions for distributed object systems reliability and
performance, which include TTR (time to repair), TTF
(time to failure), availability, failure masking, and server
failure. For data networks, the QoS generally focuses on
domain specific dimensions such as bandwidth, latency,
jitter, and loss (Nahrstedt and Smith 1996). Based on
previous studies, and our experience in the workflow and
process domains we construct a QoS model composed of
the following dimensions: time, cost, reliability, and
fidelity. We will use these four dimensions and develop a
QoS framework suitable for Grid/Web services.

In order to be more precise, we provide our definitions of
the four dimensions. (1) For a Web service, the response
time can be defined as the time that elapses between
service requests arrival and the completion of that service
request. Response time is the sum of waiting time and
actual processing time. (2) Cost represents the cost
associated with the execution of Grid/Web services. It is a
fundamental issue for organizations that wish to reduce
their expenditures with internal processes and service cost.
(3) Reliability corresponds to the likelihood that a service
will perform for its users when the user demands it and it
is a function of failure rate. Reliability is given as the
ratio of successful executions/scheduled executions. (4)
Fidelity reflects how well a product is being produced or
how well a service is being rendered. Fidelity is treated as
a vector composed of fidelity attributes. Each fidelity
attribute refers to a property or characteristic of the
product being created, transformed, or analyzed. Fidelity
attributes are used to determine how well services are
meeting user specifications.

3.3 Creation of QoS Estimates

Determining useful estimates for the QoS properties of a
Web service can be a challenging task. A combination of
a priori estimates from designers as well as estimates
computed from prior executions will be used, with the
historical data playing a larger role as more data is
collected. Additional complexities are due to the fact that
QoS is parametric. For example, the response time of a
service that takes an XML document as input will depend
on the size of the document. Estimates for composite
Web services can be developed in two ways: (a) estimates

In session “Web Services and Grid Computing,” Proceedings of the Conference on Systemics, Cybernetics and

Informatics, Orlando, FL, July 2002.

for the entire composite service can be created just like
they are for ordinary/atomic services (i.e., a priori
estimates refined as execution monitoring data is
collected), (b) the QoS properties can be synthesized from
the QoS properties of the component services making up
the composite service. Synthesizing aggregate estimates
requires several problems to be solved, among them (1)
determination of branching probabilities from branching
conditions and (2) dealing with correlation between
individual services.

A web service runtime behavior specification is composed
of two classes of information: basic and distributional.
The basic class associates with each service QoS
dimension the minimum value, average value, and
maximum value the dimension can take. For example, the
cost dimension corresponds to the minimum, average, and
maximum cost associated with the execution of a task.
The second class, the distributional class, corresponds to
the specification of a constant or of a distribution function
(such as Exponential, Lognormal, Normal, Rayleigh,
Time-Independent, Weibull, and Uniform) which
statistically describes task behavior at runtime. The values
specified in the basic class are typically employed by
mathematical methods in order to compute process QoS
metrics, while the distributional class information is used
by simulation systems to compute workflow QoS. To
devise values for the two classes, appropriate function are
applied to derive the QoS metrics for individual services
(Cardoso, Miller et al. 2002).

3.4 Computing Process QoS

Comprehensive solutions to the difficult problems
encountered in synthesizing QoS for composite services
are discussed in detail (Cardoso, Luo et al. 2001; Cardoso,
Miller et al. 2002). The latter paper presents a
mathematical model and a network reduction algorithm
for computing aggregate QoS properties step-by-step. At
each step, a reduction rule is applied to shrink a process
network. This is continued until only one node is left in
the network. The set of reduction rules that can be applied
to a composite service (network) corresponds to the set of
inverse operation that can be used to construct a network
of services. To compute QoS metrics, we use a set of six
distinct reduction systems: (1) sequential system, (2)
parallel system, (3) conditional system, (4) fault-tolerant
system, (5) loop system, and (6) network system. As an
illustration, we will show how reduction works for a
sequence of services.

(a) (b)

Figure 1 - Sequential system reduction

Reduction of a Sequential System. Two sequential
service tasks #; and # are reduced to a single task #;. In this
reduction the incoming transitions of # and outgoing
transition of tasks ¢ are transferred to task ;.

In a sequential system p; = 1. This reduction can only be
applied if the following two rules are satisfied: a) # is not a
xor/and split and b) ¢ is not a xor/and join. These rules
prevent this reduction to be applied in a parallel,
conditional, and loop systems. To compute the QoS of the
reduction the following formulae are applied:

Time : T(z;) = T(z) + T(%)
Cost: Clty)= C(1) + C(1)
Reliability: R(#;) = R() * R()

While mathematical methods can be effectively used,
another alternative is to utilize simulation analysis (Miller,
Cardoso et al. 2002). Simulation can play an important
role in fine-tuning tuning the QoS metrics of workflows,
by exploring “what-if" questions. When the need to adapt
or to change a workflow is detected, deciding what
changes to carry out can be very difficult. Before a change
is actually made, its possible effects can be explored with
simulation. To facilitate rapid feedback, the workflow
system and the simulation system need to interoperate. In
particular, workflow specification documents need to be
translated into simulation model specification documents
so that the new model can be executed/animated on-the-
fly. In our project, these capabilities involve a loosely-
coupled integration of the METEOR W{MS and the JSIM
simulation system (Nair, Miller et al. 1996; Miller, Nair et
al. 1997; Miller, Seila et al. 2000). The simulation model
is displayed graphically and then executed/animated.
Statistical results are collected and displayed, indicating
workflows QoS.

3.5 System Inplementation

To enable SoM to support an efficient QoS management
several enhancements need to be made to the middleware
infrastructure. The enhancements include the development
and support of a comprehensive QoS model and the
implementation of methodologies (a mathematical model
and simulation) to compute and predict QoS. We have
developed a stochastic workflow reduction algorithm
(SWR) for the step-by-step computation of QoS metrics.
Our work has been carried out for the METEOR system to
allow the specification, computation, and management of
QoS. The support of QoS requires the modification and
extension of several workflow system components, and
the development of additional modules. While the
implementation was made for the METEOR system, and
the development was based on a specific conceptual
model, the main ideas can be applied to the vast majority
of workflow systems available (Aalst, Barros et al. 2002).

The support of QoS management requires the
modification and extension of most of workflow system
components. This includes the enactment system, the
workflow builder (or designer), the monitor, the code
generator, the repository, the workflow model, and the
task model. Additionally, new components need to be
implemented, such as a QoS estimator module to create
QoS estimates for tasks and probabilities for transitions.
The monitor needs an additional interface so that runtime

In session “Web Services and Grid Computing,” Proceedings of the Conference on Systemics, Cybernetics and

Informatics, Orlando, FL, July 2002.

tasks QoS metrics are propagated and logged into a
database for data processing purposes.

4 Future Work

Specification of Process QoS

Descriptions of QoS for Grid/Web services need to be
stored in a fashion suitable for automatic processing. In
other words, QoS information should be stored with
functional descriptions of services in
registries/repositories. As suggested by (Foster, Roy et al.
2001), we are working on defining and using an extended
Web Services Description Language (WSDL) to describe
services. Similarly, an extended Web Services Flow
Language (WSFL) will be used for composite services
built out of simpler services.

The extended WSDL should provide additional
information prescribed by the OGSA. These include
discovery, soft state destruction, explicit destruction,
notification source, notification sink, registry, factory,
factory primary key, handle mapper, and manageability
(Foster, Kesselman et al. 2001). We assume that such
descriptions must be provided for a service to be
considered a Grid service. We will take a WSDL with
extensions for OGSA, and augment it with our additional
QoS information with security to form a WDSL+QoS
description. ~ These descriptions will be stored in
repositories (Arpinar, Miller et al. 2001) that are upward
compatible with UDDI registries. Such repositories will
allow Grid services be located through advanced
query/search mechanisms.

SPC Engine

eduler
Service Service Service Service
Agent Agent Agent Agent

Web Services v

'TY X XK

Figure 2: SPC Engine based on METEOR system

We also wish to be able to save descriptions of composite
Grid services made up of component services. For this
will propose to use WSFL+QoS. This specification will
indicate the process logic for a composite service. The
information is created with our SoM application builder
and again stored in the repository. Figure above shows
SoM Process Control (SPC) engine, which will be
build upon the METEOR architecture. It will be
responsible for executing the designed SoM
applications.

As we extend WSFL, we will keep track of progress of its
competition, namely XLANG (Thatte 2001) from
Microsoft and DAML-S from DARPA. In particular,
DAML-S (DAML-S 2001) currently includes constructs
to specify QoS parameters, such as quality guarantees,
quality rating, and degree of quality. While DAML-S has
identified specification for Web service and business
processes as a key specification component, the QoS
model adopted should be significantly improved to supply
a more complete solution.

Maintainability

The QoS model presented in this paper can be extended in
two additional dimensions which are useful for SoM
applications with stronger requirements. The first
dimension is maintainability. Maintainability corresponds
to the mean time necessary to repair failures; it is the

In session “Web Services and Grid Computing,” Proceedings of the Conference on Systemics, Cybernetics and

Informatics, Orlando, FL, July 2002.

average time spent to maintain applications in a condition
where they can perform their intended function.
Maintenance actions mainly involve the correction of
failures during application execution. SoM infrastructures
record the period of time necessary for a faulty node to be
repaired. The time spent to repair a component depends on
the type of error that has occurred. To increase
maintainability, advanced mechanisms have been
developed to allow workflow infrastructures to
automatically recover from errors. Luo er al. (2000)
describe the architecture and implementation of an
exception-handling mechanism. The system detects and
propagates exceptions which occur during instances
execution to an exception-handling module. The system,
based on case-based reasoning theory, derives exception
handlers to repair damaged workflows (Luo, Sheth et al.
1998). The system has the ability to adapt itself over time.
The knowledge acquired in past experiences is used in the
resolution of new problems.

Security

The second dimension that can be included is the frust
dimension. The use of workflow systems to coordinate
and manage Web-services compels the development of
techniques to appraise the global security level of
applications specifications and the trust level of the
outcome of the overall application. Applications face
several security problems, and dedicated mechanisms are
needed to increase the level of security. Major problems
include the distributed nature of SoM applications, the use
of non-secure networks (i.e. the Internet), the use of Web
servers to access SoM data, and the potential multi-
organizational span of SoM. Systems security level is
assessed through the existence of security mechanisms
(such as authentication, access control, labels, audits,
system integrity, security policy, etc.) and through the use
of development techniques (such as formal specifications,
formal proofs, tests, etc.). The importance of developing
secure middleware systems has been recognized, and
prototypes combining middleware and = security
technology have already been developed. We have
extended workflow technology with the implementation
of two security modules. The first one (Miller, Fan et al.
1999) and (Fan 1999) describes a workflow security
architecture which targets the five security services
(authentication, access control, data confidentiality, data
integrity, and non-repudiation) recommended by the
International Standards Organization for network-based
information systems. The second one (Kang, Froscher et
al. 1999) describes a multilevel secure (MLS) workflow
system to enable distributed users and workflow
applications to cooperate across classification levels. MLS
workflow systems allow users to program multilevel
mission logic, to securely coordinate distributed tasks, and
to monitor the progress of the workflow across
classification levels.

5 References

Aalst, W. M. P. v. d., A. P. Barros, A. H. M. t.
Hofstede and B. Kiepuszeski (2002).

Workflow patterns homepage,
http://tmitwww.tm.tue.nl/research/patterns.

Arpinar, 1. B., J. A. Miller and A. P. Sheth (2001).
An efficient Data Extraction and Storage
Utility for XML Documents. Proc. Of 39th
Annual ACM Southeast Conference,
Athens, GA.

Cardoso, J., Z. Luo, J. Miller, A. Sheth and K.
Kochut (2001). Survivability Architecture
for Workflow Management Systems.
Proceedings of the 39th Annual ACM
Southeast Conference, Athens, GA.

Cardoso, J., J. Miller and A. Sheth (2002). A
Quality of Service Model for Workflow
Processes. Athens, GA, LSDIS Lab,
Department of Computer Science,
University of Georgia.

Carey, M. and P. P. Team (2001). "Towards a
Scalable Infrastructure for Advanced E-
Services." Data Engineering Bulletin 24(1).

Casati, F., S.-M. Lee and Q. Su (2001). "Definition,
Execution, Analysis, and Optimization of
Composite E-Services." Data Engineering
Journal 24(1).

Christophides, V., R. Hull, A. Kumar and J. Simeon
(2001). "Workflow Mediation using
VorteXML." Data Engineering Bulletin
24(1).

Chuang, J., T. DeFanti, 1. Foster, K. Klingenstein,
D. Messerschmitt and D. Schmidt (2001).
White paper on an NSF ANIR Middleware
Initiative.

Clark, D., S. Shenker and L. Zhang (1992).
Supporting Real-Time Applications in an
Integrated Services Packet Network:
Architecture and Mechanism. Proceedings
of ACM SIGCOMM.

DAML-S (2001). Technical Overview - a white
paper describing the key elements of
DAML-S.

Fan, M. (1999). Security for the METEOR
Workflow Management System.
Department of Computer Science. Athens,
GA, University of Georgia.

Foster, 1., C. Kesselman, J. M. Nick and S. Tuecke
(2002). The Physiology of the Grid: An
Open Grid Services Architecture for
Distributed Systems Integration.

Foster, I., C. Kesselman and S. Tuecke (2001). "The
Anatomy of the Grid: Enabling Scalable
Virtual Organizations." International J.
Supercomputer Applications 15(3).

Foster, I., A. Roy, V. Sander and L. Winkler (2001).
End-to-End Quality of Service for High-
End Applications.

http://tmitwww.tm.tue.nl/research/patterns
ftp://ftp.omg.org/pub/docs/bom/98-06-07.pdf
ftp://ftp.omg.org/pub/docs/bom/98-06-07.pdf

In session “Web Services and Grid Computing,” Proceedings of the Conference on Systemics, Cybernetics and

Informatics, Orlando, FL, July 2002.

Frlund, S. and J. Koistinen (1998). "Quality-of-
Service Specification in Distributed Object
Systems." Distributed Systems Engineering
Journal 5(4).

Garvin, D. (1988). Managing Quality: The strategic
and Competitive Edge. Free Press, NY.

Georgiadis, L., R. Guerin, V. Peris and K. Sivarajan
(1996). Efficient network QoS provisioning
based on per node traffic shaping. IEEE
ACM Transactions on Networking.

Gilmore, S. (2002). Grid Will Hunting. InfoWorld.

Graham, S., S. Simenov, T. boubez, D. Davis, G.
Daniels, Nakamura and R. Neyama (2002).
Building Web Services with Java: Making
Sense of XML, SOAP, WSDL. and UDDI,
SAMS.

Grefen, P., K. Aberer, H. Ludwig and Y. Hoffner
(2001). "CrossFlow: Cross-Organizational
Workflow Management for Service
Outsourcing in Dynamic Virtual
Enterprises." Data Engineering Bulletin
Special Issue on Infrastructure for
Advanced E-Services 24(1).

Hey, T. (2001). e-Science, e-Business and the Grid.
Next Generation HPC Systems and the
Grid. Edinburgh, UK.

Hiltunen, M. A., R. D. Schlichting, C. A. Ugarte and
G. T. Wong. (2000). Survivability through
Customization and Adaptability: The
Cactus Approach. DARPA Information
Survivability Conference and Exposition
(DISCEX 2000).

IBM IBM developerWorks Web Services Zone.

JFLOW (1998). OMG BODTF RFP #2 Submission,
Workflow Management Facility, Revised
Submission, ftp://ftp.omg.org/pub/docs/bom
/98-06-07.pdf.

Kang, M. H,, J. N. Froscher, A. P. Sheth, K. J.
Kochut and J. A. Miller (1999). A
Multilevel Secure Workflow Management
System. Proc. of the 11th Conference on
Advanced Information Systems
Engineering, Heidelberg, Germany.

Kang, M. H,, J. S. Park and J. N. Froscher (2001).
Access Control Mechanisms for Inter-
organizational Workflows. Proceedings of
6th ACM Symposium on Access Control
Models and Technologies, Chantilly, VA.

Kochut, K., A. Sheth and J. A. Miller (1999).
"Optimizing Workflow." Component
Strategies 1(9): 45-57.

Kraiss, A., F. Schoen and e. al. (2001). "Towards
Response Time Guarantees for e-Service

Middleware." Data Engineering Bulletin
24(1).

Lazcano, A., H. Schuldt, G. Alongo and H. Schek
(2001). "Special Issue on Infrastructure for
Advanced E-Services." Data Engineering
Bulletin 24(1).

Luo, Z. (2000). Knowledge Sharing, Coordinated
Exception Handling, and Intelligent
Problem Solving to Support Cross-
Organizational Business Processes.
Department of Computer Science. Athens,
GA, University of Georgia.

Luo, Z., A. P. Sheth, J. A. Miller and K. J. Kochut
(1998). Defeasible Workflow, its
Computation, and Exception Handling.
Proceedings of 1998 Computer-Supported
Cooperative Work (CSCW 1998), Towards
Adaptive Workflow Systems Workshop,
Seattle, WA.

Metha, B., M. Levy, G. Meredith, T. Andrews, B.
Beckman, J. Klein and A. Mital (2001).
"BizTalk Server 2000 Business Process
Orchestration." Data Engineering Bulletin
24(1).

Milenkovic, M. (2002). Peer-to-Peer: Through the
Looking Glass, GGF4, February 2002.

Miller, J. A., J. S. Cardoso and G. Silver (2002).
Using Simulation to Facilitate Effective
Workflow Adaptation. Proceedings of the
35th Annual Simulation Symposium
(ANSS'02), San Diego, California.

Miller, J. A., M. Fan, S. Wu, 1. B. Arpinar, A. P.
Sheth and K. J. Kochut (1999). Security for
the METEOR Workflow Management
System. Athens, GA, Dept of Computer
Science, University of Georgia: 33.

Miller, J. A., R. Nair, Z. Zhang and H. Zhao (1997).
JSIM: A Java-Based Simulation and
Animation Environment. Proceedings of
the 30th Annual Simulation Symposium,
Atlanta, GA.

Miller, J. A., D. Palaniswami, A. P. Sheth, K. J.
Kochut and H. Singh (1997). "WebWork:
METEOR's Web-based Workflow
Management System." Journal of
Intelligence Information Management
Systems: 185-215.

Miller, J. A., A. F. Seila and X. Xiang (2000). "The
JSIM Web-Based Simulation
Environment." Future Generation
Computer Systems: Special Issue on Web-
Based Modeling and Simulation 17(2):
119-133.

Nahrstedt, K. and J. M. Smith (1996). "Design,
Implementation and Experiences of the
OMEGA End-point Architecture." IEEE

In session “Web Services and Grid Computing,” Proceedings of the Conference on Systemics, Cybernetics and
Informatics, Orlando, FL, July 2002.

JSAC 14(7): 1263-1279.

Nair, R., J. A. Miller and Z. Zhang (1996). A Java-
Based Query Driven Simulation
Environment. Proceedings of the 1996
Winter Simulation Conference, Colorado,
CA.

Nori, A., C. Venketraman and R. Jain (2001).
"Defining the Next Generation e-Business
Platform: A Discussion of the Asera
eBusiness Platform." Data Engineering
Bulletin 24(1).

Rommel, G. (1995). Simplicity wins: how
Germany's mid-sized industrial companies
succeed. Boston, Mass, Harvard Business
School Press.

Sheth, A. P., W. v. d. Aalst and I. B. Arpinar (1999).
"Processes driving the networked
economy." IEEE Concurrency: 18-31.

SOAP (2002). Simple Object Access Protocol.

Stalk, G. and T. M. Hout (1990). Competing against
time: how timebased competition is
reshaping global markets. New York, Free
Press.

Thatte, S. (2001). XLANG: Web Services for
Business Process Design, Microsoft, Inc.

Thomas, M., S. Mock and J. Boisseau (2000).
Development of Web Toolkits for
Computational Science Portals: The
NPACI HotPage. Ninth IEEE Intl Symp on
High Performance Distributed Computing
(HPDC'00), Pittsburgh, PA.

TIBCO, I. (2002). TIBCO and Web Services
(Technical White Paper).

UDDI (2002). Universal Description, Discovery,
and Integration.

WSDL (2001). W3C Web Services Description
Language.

WSFL (2002). WSFL, IBM.

Zinky, J., D. Bakken and R. Schantz (1997).
"Architectural Support for Quality of
Service for CORBA Objects." Theory and
Practice of Object Systems 3(1).

	Abstract
	Introduction
	Background and Relevant Work
	Specification of Web Service and Process QoS
	SoM QoS Requirements
	QoS Model
	Creation of QoS Estimates
	Computing Process QoS
	System Inplementation

	Future Work
	References

