
QoS Integration in Web Services

M. Tian, A. Gramm, M. Nabulsi, H. Ritter, J. Schiller, T. Voigt
Freie Universität Berlin, Institut für Informatik

Takustr. 9, D-14195 Berlin, Germany
{tian, gramm, nabulsi, hritter, schiller, voigt}@inf.fu-berlin.de

Abstract: With the growing popularity of Web services, a general QoS support for
Web services will play an important role for the success of this emerging
technology. Unfortunately, current Web service environments do not offer
comprehensive QoS support. In this paper, we present an approach that does not
only enable the QoS integration in Web services, but also the selection of
appropriate services based on QoS requirements regarding server and network
performance as well as the mapping of QoS requirements onto the underlying QoS
aware network at runtime.

1 Introduction
Today, research activities in applications, Web services, and communication networks
are running in many aspects widely independent from each other. In most cases,
researchers of applications and Web service technologies assume that existing
communication infrastructures provide reliable communication. Furthermore,
researchers in middleware, Web services, and applications are not very considerate of
the resources provided by the underlying networks. On the other hand, research activities
in certain communication architectures and protocols are performed with less attention to
requirements of actual applications. Therefore, most applications cannot actively
consume the Quality of Service (QoS) that may be supported in the communication
networks, and on the other hand common network technologies do not support

application-dependent requirements.

The demand on highly reliable and
highly available Web services
increases as more and more
companies and customers rely on
them to satisfy business and personal
needs [MA02]. The growing variety
of customers requires a diverse range
of QoS support. The QoS a service
provider delivers will become a
decisive criterion when services with
the same functionalities are available
at customers’ choice.

Nowadays, we have sophisticated
technologies and research results
regarding QoS support in different
domains. They are for example

metric

metric

communication pattern

cooperation pattern

Applications, web services,
middleware

transmission technology

technical parameter

content attributes / parameter

P2P networks, web services,
data bases, middleware

key words, categories,
names

semantic distance,
similarity, identity

reliable unicast

multicast to x neighbors,
TTL=y

technical distance

topology, delay,
dynamics, layer 3 routing,
interference, bandwidth

ad-hoc networks, mobile &
wireless networks

Examples

Figure 1 Mapping of applications and services onto
communication technology

DiffServ and IntServ for the network layer QoS support, demand-based QoS support
through an adaptive end system [Ri01]; QoS aware middleware [Na01], service
differentiation in overloaded servers [Vo01]. Most recent efforts on QoS support in Web
services are for example IBM’s Web Services Level Agreement (WSLA) [Da02] and
HP’s Web Service Management Language (WSML) [Sa02]. These two languages have
been developed to specify Service Level Agreements for Web Services. Electronic
contracts are negotiated individually and then surveyed by a monitoring engine. Service
offerings defined in the Web Service Offerings Language (WSOL) [To03] provide
different predefined classes of service for clients to choose from.

However, most of these approaches neither support the mapping of QoS requirements
from higher layers onto the underlying network layer in terms of the Internet model nor
considerate the server performance. Figure 1 gives examples for parameters on different
layers when mapping applications and services onto certain transmission technologies or
when pushing performance parameters from transmission technologies up to
applications, respectively. The communication and cooperation between different layers
allows an efficient utilization of the underlying network resources as well as a better
support of application-dependent requirements.

In this paper, we introduce our current effort tackling the gap between the Web service
layer and network layer, as Figure 1 illustrates. We have been developing an architecture
that allows the dynamic definition, publication, and matching of both Web service offers
and requirements regarding server performance, network performance, security,
transaction, pricing as well as customer defined issues at both implementation time and
runtime. Our architecture supports the dynamic mapping of requirements regarding the
network performance from higher layers onto the underlying network layer at runtime.
Furthermore, our architecture allows users to obtain real-time information about server
performance in order to prove the accomplishment of assured services. Our approach is
extensible and based on Internet standards such as XML schema, SOAP, WSDL, and
UDDI. This ensures the independence of any particular programming model and other
implementation specific semantics.

The remainder of this paper is outlined as follows. In the next section, we will present
the architecture of our QoS aware approach and discuss the specification issues. We
conclude with an outlook of future work.

2 Web Service QoS Architecture
We propose QoS support in both the Web service layer and the network layer. By
utilizing our system, service providers can augment their Web service offers with QoS
aspects while clients can define their requirements related to QoS parameters. QoS
parameters such as processing time, request rate, response time, availability, reliability,
security protocols, transaction, price, and customer defined parameters are declared for
the Web service layer QoS support by clients and servers. Standard and customer
defined parameters such as delay, bandwidth, jitter, and packet loss are defined for the
network layer QoS support by both parties.

We introduce a Web service broker (WSB) in order to accelerate the client lookup
process for services. That means a Web service client will contact the WSB for looking
up a service instead of doing this with a UDDI registry. The WSB has then the task of

testing the clients’ requirements against the Web service providers’ offers. Figure 2
depicts the participating roles service providers, clients, UDDI registries, and the WSB
and their interactions.

Figure 2 Interactions between the four participating roles

The interactions between the roles are as follows:

1. Service providers publish their Web services with QoS information to UDDI
registries. Web services available in UDDI registries are identified uniquely by
an interface key.

2. Clients ask the WSB for services that implement a certain interface and
accomplish the required QoS requirements.

3. If the WSB does not already hold up-to-date information on offers that
accomplish clients’ requirements, the WSB will request Web services according
to the interface key from one or more UDDI registries. Note that we would
prefer the model in which the WSB prefetches information of offers that clients
could be interested in. This would accelerate the lookup phase significantly.

4. The UDDI registries return a list of services that implement the interface key.
5. The WSB asks the service providers for service descriptions, e.g. WSDL files.
6. The service providers return their service descriptions with QoS offers.
7. The WSB tests the offers against the clients’ requirements.
8. The WSB returns the most appropriate service to the client.
9. The client directly invokes the service with the original QoS requirements. At

this time, the QoS requirements regarding the network performance are actively
mapped onto the underlying transport technology.

Note that the WSB in step 7 tests the offers (step 6) against clients’ QoS requirements
sent in step 2. The definition of both the QoS requirements and offers is essential in our
architecture. In the following subsections we will describe the QoS definition and
components participating in this process, how offers and requirements are matched, the
mapping of the QoS requirements onto the QoS aware network as well as how service
providers deliver real-time information about the server performance to the user.

UDDI
Registry

Service
Broker

Client
Application

Service
Provider

1

publish

9 invoke service

2

request
service

8

get best
service

3 request services

4

7

 get services

test offers
against client
requirements

5
6

request service
description

get
service

description

2.1 Web Service Layer QoS Support
For the QoS aware dynamic selection of Web services the QoS parameters defined by
both service providers and clients must be compared by the WSB. The WSB selects the
cheapest service fulfilling the requirements from all offers available for services that
implement the specified interface. To standardize the QoS specification for efficient
comparison, we have designed a Web service-QoS XML schema. Its core element is a
QoSInfo node that defines a specific QoS level by assigning certain values to standard
QoS parameters. QoSInfo elements are referenced in a QoSDefinition node either for the
scope of an individual operation or as a default QoS level for the whole service. This
QoSDefinition, which also relates the QoS level to a price, can either be a
WSQoSRequirementDefinition element or a QoSOffer element. A
WSQoSRequirementDefinition element specifies a client’s minimal QoS requirements
which must not be violated by underperformance. A WSQoSOfferDefinition element
contains one or more QoSOffer elements that each declares a QoS level that a service
provider is willing to deliver. Besides the standard parameters, further custom
parameters can be declared, referring to a public WS-QoS ontology. Therefore a
WSQoSOntology element holds definitions of QoS parameters and protocol references.

2.1.1 QoS Info
The most important of all elements are those of the type tQoSInfo as depicted in Figure
3. It holds information on the level of QoS regarding the server performance, transport
QoS support and protocol required for providing security and transaction support. In a
serverQoSMetrics element, values for the standard parameters processing time, requests
per second, reliability, and availability can be declared as well as custom server QoS
metrics.

A transportQoSPriorities element
specifies priorities for the four
standard transport parameters delay,
jitter, throughput, and packet loss
rate and optional custom transport
QoS priorities. Security and
transaction management for Web
Services is realized by a variety of
protocols. Most of them already
have sophisticated mechanisms of
negotiating key and session
information. Therefore, security and
transaction support at this level will
be restricted to listing protocols

needed for a successful service
execution.

2.1.2 WS-QoS Ontology
Custom metrics, custom priority and protocol support statements all have an attribute
ontology, which references a file containing a WS-QoS Ontology where the referenced
types are defined respectively. By using the combination of the ontology’s URL and the

Figure 3 Structure of the type tQoSInfo

serverQoSMetrics

securityAndTransaction protocol

tQoSInfo • • •

0 .. ∞

protocol

0 .. ∞

transportQoSPriorities

 • • •

trustedParty

0 .. ∞

extensibilityElement

availability

requestsPerSecond

 • • •

processingTime

reliability

availability

requestsPerSecond
 • • •

processingTime

reliability

customMetric customMetric

0 .. ∞

customMetric customPriority

parameter name, a reference is unique. A custom transport QoS priority is defined by a
distinct name and a human readable definition of what metric the priority refers to in a
priorityDefinition element.

A custom server QoS metric defined in a metricDefinition element also has a name and a
human readable description of what is measured, but it also declares a standard unit and
the direction of how values are to be compared.

Accordingly, in a protocolDefinition element, a protocol is defined by its name, a human
readable description of the reasons for using this protocol and the URL of an overview
document of the protocol specification if available.

2.1.3 QoS Definition
Figure 4 shows the type tQoSDefinition. An element of this type holds one or more
elements of the type tQoSInfo. These can be defined for the scope of an individual
operation in an operationQoSInfo element or for the whole service in a defaultQoSInfo
element. In its contractAndMonitoring node, a node of the type tQoSInfo provides
references to protocols needed for service management and QoS monitoring as well as
entries of third parties that one side would be willing to trust. Finally, the price element
relates the specified QoS level to the cost of service usage per invocation.

Elements of the type tQoSDefinition are either instantiated as a
WSQoSRequirementDefinition element expressing a client’s QoS requirements or as a
qosOffer representing a minimal QoS level a service provider guarantees to provide for
all requests. The qosOffer element is extended by an attribute expires which denotes a
point in time until which the offer will be valid.

2.1.4 WS-QoS Offer Definition
Offers for one service can be declared in a WSQoSOfferDefinition element which is
introduced into the service’s WSDL file as an extension element of the service
description’s service node. Apart from offers definitions within this node, offers in
further WS-QoS files can be referenced in an include element. This allows for
dynamically adjusting offers without changing the WSDL file. Furthermore, an offer
could be referenced from multiple WSDL files and thus be reused for different services.

defaultQoSInfo

operationQoSInfo

contractAndMonitoring

protocol

trustedParty

price

tQoSDefinition • • •

0 .. ∞

0 .. ∞

trustedParty

protocol

0 .. ∞

operationQoSInfo

attribute: name

attribute currency

 • • •

Figure 4 Structure of the type tQoSDefinition

2.2 Network Layer QoS Support
In the previous section, we have introduced our approach that allows the definition,
lookup, and matching of QoS statements declared by both Web service clients and
providers. In order to control and set the requirements of the client application
concerning the network performance, we have to deal with the network streams
exchanged between the client application and the remote Web service provider. Note
that we assume that the underlying transport technology supports QoS such as DiffServ,
ATM, or UMTS. On the client side, a QoS proxy resides between the Web service client
and the network interface. The proxy observes the traffic on a specific port, through
which the Web service client sends its requests to the server. The QoS proxy maps the
client’s requirements onto the current QoS aware network after detecting QoS
parameters set by the client application.

On the server side, a QoS proxy is located between the Web service and the network
interface. It sets the QoS parameters according to the client requirements onto the
underlying transport technology when the Web service provider sends responses to the
service client.

Figure 5 Proxies map client’s requirements onto the underlying transport technology

Figure 5 depicts the participating components and the data flows during the interaction
between a Web service client and the service provider at runtime. In this case, we
assume that the QoS aware network is a DiffServ network. The QoS information
regarding the network performance specified by the client is placed in the SOAP
headers, which will be parsed by the QoS proxies on both client and server side. Based
on the client’s information, the proxies mark the DiffServ specific DiffServ code points
(DSCP) in the IP packets. DiffServ routers in the network will treat the traffic between
clients and server depending on the DSCP. For simplicity, we only show the interaction
between the Web service client and provider, ignoring the UDDI registries and the WSB,
which are also Web services.

2.3 Server and Network Performance Observation
Our architecture allows users to be informed with real-time information about the current
server and network performance. We introduce a QoS channel between the server and
the client. The QoS channel is realized by placing information into the SOAP headers.
The user defines what QoS information regarding the server and network performance

client

QoS Proxy

Network
Interface

Web service

Network
Interface

Service client Service provider

request
response

DiffServ Router

<requirements>

Code point
111000

QoS Proxy

<requirements>

Code point
111000

she wants to know. The server delivers the required information to the client by applying
the QoS channel. The client knows the service time, which is defined as the time interval
between the moment the client requests the service and the moment the client receives
the response. The server provides its performance data such as the processing time of the
current request. The client can derive the network performance from this information.

A graphical user interface (GUI) on the client side shows the server and network
performance. The usage of the GUI is fully flexible. The user can switch off the GUI
completely; she can choose QoS parameters she is interested in from the GUI; she can
request statistics about the server performance of to other classes of the same service.
She can be alerted instantly in case of server and network underperformance. She can
even get a feeling what would happen if she paid for a better or worse class of the same
service as she does.

3 Conclusions and Future Work
In this paper, we have introduced our current effort on QoS support in Web services and
the dynamic mapping of requirements from Web service layer onto the underlying QoS
aware network layer. Our approach allows the dynamic selection of Web services
depending on various QoS requirements. The QoS definition regarding network
performance can be stated independently of the underlying network. Its mapping onto
the current transmission technology takes place at runtime. Our approach allows the user
to receive instant information about the server and network performance.

We have built a testbed in order to conduct performance measurements of our
architecture. We are interested for example in the performance of the WSB for selecting
the most appropriate service in comparison to the standard lookup model. Another
interesting issue is to extend our architecture with support for mobile clients.

4 References
[Da02] A. Dan, A. R. Franck, A. Keller, R. King, H. Ludwig. (IBM) Web Service Level
Agreement (WSLA) Language Specification 2002.
http://dwdemos.alphaworks.ibm.com/wstk/common/wstkdoc/services/utilities/wslaauthoring/
WebServiceLevelAgreementLanguage.html

[MA02] D. Menasce and V. Almeida, Capacity Planning for Web Services, Prentice Hall 2002

[Na01] K. Nahrstedt, et al., QoS-aware middleware for ubiquitous and heterogeneous
environments IEEE Communications Magazine, Nov. 2001

[Ri01] H. Ritter, Bedarfsorientierte Dienstgüteunterstützung durch adaptive Endsysteme, VDI
Reihe 10 Nr. 681, 2001

[Sa02] A. Sahai, V. Machiraju, M. Sayal, L. Jie Jin, F. Casati (HP) Automated SLA Monitoring
for Web Services, http://www.hpl.hp.com/techreports/2002/HPL-2002-191.pdf

[To03] V. Tosic, B. Pagurek, K. Patel WSOL – A Language for the Formal Specification of
Classes of Service for Web Services Research Report OCIECE Feb. 2003. http://www.sce.
carleton.ca/netmanage/papers/TosicEtAlResRep03-03.pdf

[Vo01] T. Voigt, R. Tewari, D. Freimuth and A. Mehra. Kernel Mechanisms for Service
Differentiation in Overloaded Web Servers. 2001 Usenix Annual Technical Conference, Boston,
MA, USA, June 2001

