
Value-Added Web Services Composition
Using Automatic Program Synthesis�

Mihhail Matskin and Jinghai Rao

Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway
{misha,jinghai}@idi.ntnu.no

Abstract. The number of products and services available over the Inter-
net increases dramatically during the last years and it is already beyond
the human ability to analyze and combine them efficiently. At the same
time if we consider works in software engineering (and, in particular,
in component-based system development) then we can find quite strong
similarity in problem description. The web services can be treated in a
way similar to software components and service composition can be con-
sidered as problem of software synthesis and composition. Basic idea of
our approach is applying the software synthesis and composition methods
to value added web services composition. We also describe some techni-
cal details within the approach, in particular, a web service description
language and a program synthesis method.

1 Introduction

The number of products and services available over the Internet increases dra-
matically during the last years and it is already beyond the human ability to
analyze and combine them efficiently. In order to support a customer in such
analysis, several product/price comparison systems are developed and they give
the customer opportunity to compare prices for the same product from different
suppliers [7]. Most of the tools compare only product prices while there are also
some tools which perform a multi-criteria comparison [8] taking into account de-
livery conditions, guarantee etc. However, we think that problem of web service
analysis and selection, in general, is more complex than selection and analysis
of products. The complexity comes from the following two sources: first, it is
not so easy to define and evaluate selection criteria for web services and, second,
web services can be composed in order to satisfy customer’s requests. Taking
into account that the component services can be developed by different orga-
nizations, which provide different offers, the ability to efficient integration of
possibly heterogeneous services on the Web becomes a complex problem (espe-
cially for dynamic composition during runtime [2]).

Currently, services composition is basically made by predefined workflow
model or business logic. For example, in eFlow [5], a composite service is modeled
� Revised June, 2002 for inclusion in WES processdings

Ch. Bussler et al. (Eds.): WES 2002, LNCS 2512, pp. 213–224, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

214 Mihhail Matskin and Jinghai Rao

by a graph (the flow structure), which defines the order of execution among the
nodes in the process. PPM[14] uses state machine to specify the possible states
of a service and their transitions. Some XML-based languages, such as WSFL
[9] and composite process in DAML-S [1] are also used to define the sequence
and links among the services components.

In many ways, a composite service is similar to a workflow. For example, the
provider should specify the flow of services/work items together with the control
and data flow between the services/work items. However, workflow doesn’t al-
ways provide an efficient solution for the problem of dynamic matchmaking and
composition of web services [4]. In particular, there can be a large number of
web service components with the same functionality and, even if the workflow
has been predefined, we may still have problem to retrieve suitable (or the best)
service components or dynamically combine them together in order to create a
new service.

At the same time if we look at works in software engineering (in particular, in
component-based system development) then we can find quite a strong similarity
in problem description. In particular, the web services can be treated in a way
similar to software components and service composition can be considered as
problem of software synthesis and composition. Some methods of software com-
ponents retrieval and composition were proposed in the Automated Software En-
gineering area [13,11]. Several software composition systems are designed based
on these methods [16,3]. Main idea of these methods is that the components can
be composed using their interface, pre-/post- conditions and reasoning methods
(for example, deductive inference).

Basic idea of our approach is applying the software synthesis and composi-
tion methods to value-added web services composition. In order to do this the
following facility programs are needed:

– A compiler which translates the web service description language, e.g. WSDL
or DAML-S, into formal logic or other formal component description lan-
guage.

– A synthesis mechanism which automatically selects, adapts and composes
web service components.

– A manager that invokes the web service components and transfer data be-
tween them.

In this paper we propose an approach to using automatic program synthesis
in composition of value added web services. Section 2 presents a working exam-
ple. Then we describe some important technical details within the approach, in
particular, the web service description language and a program synthesis method.
Finally, we present conclusions and future work.

2 Working Example:
Value-Added Web Services Composition

We consider a value-added web services composition for illustration of our ap-
proach to services composition.

Value-Added Web Services Composition Using Automatic Program Synthesis 215

Value-added services differ from core services - they are not a part of core
services and they have unique properties/characteristics. In particular, they may
stand alone in terms of operation and profitability as well as provide adds-on
to core services. It is important to mention that value-added services may allow
different their combination and they may provide incremental extension of core
services.

As a working example we consider sport equipment selling web services. A
core service, in this case, may receive sport equipment characteristics (such as
measurements, brand, model etc) and it may provide prices, availability and
other requested characteristics as output. We may assume that there can be
several providers of sport equipment and prices for available equipment are com-
pared by the web service.

In order to be more particular we consider a ski selling web service. We also
assume that some web services consider measurements in inches and some in
centimeters. Some services give prices in US dollars (USD) and some others in
a local currency.

We can consider the following possible value-added services in our case:

– currency converter service - converts USD to other currency according to
the current rates

– measurement converter - converts inches into centimeters and vice versa
– ski length selection service - provides a recommended ski length based on

body measurements (in particular, based on height). We also assume that
this service accepts body measurements as well as produces recommended
ski length in centimeters.

The above-mentioned value-added services allow different their combination
as well as combinations with the core services. In particular, measurements con-
verters can be used both before and after ski length selection service depending
on inputs. The converters can also be applied to the core service. Combination
of value-added and different core services may give a large number of possible
measurements conversions. In general case, number of possible combinations can
be very high and it would be practical to configure them dynamically depending
on input values. This may require a flexible configuration tools. There also exists
a possible solution which provides converters to all inputs and outputs of all web
services (both core and value added), however, this may cause a big overhead in
service provision. Taking into account that each service may require payments
for its usage such solution may not be acceptable in most of cases.

We also would like to mention that our working example is simplified and it is
made more abstract than practical cases. This is done in order to keep simplicity
of presentation. In a more practical case there can be more services available.
In particular, there can be several recommendation services (recommendation
based on skills, based on fashion, based on age etc.) which can be composed
dynamically as well as payment and delivery services.

216 Mihhail Matskin and Jinghai Rao

3 Some Issues of Services Presentation and Composition

3.1 Functionality and Non-functionality Conditions

Web services selection is an important step in web services composition. When we
talk about services selection then we separate functionality and non-functionality
conditions. The functionality conditions express a transformation performed by
the service and they can be represented via the service input-output parameters.
These conditions are basis for matchmaking process - selection of service by
name, by what are its input arguments and by what are its output results. The
non-functionality conditions provide additional information about the service
and constraints on its usage (for example, information about service provider,
cost, QoS, security, etc.)

It is quite common that several similar services can be selected by the same
functionality conditions. Non-functionality conditions involve deeper level of ser-
vices description and they may require manipulation with semantic descriptions,
annotations etc.

Taking this into account we consider two levels of web services selection and
composition:

– coarse-grain selection - selection which is based on functionality conditions
and it is usually performed first

– fine-grain selection - it is based on non-functionality conditions and it can
be considered as an optimization of coarse-grain selection

We also would like to notice that it may happen that in some cases coarse-
grain selection is enough and no fine-grain selection is required. However, if more
than one service is selected by the coarse-grain selection, then we can apply the
fine-grain selection.

For the coarse-grain selection, we can apply both keywords matching and
semantic matching for each input-output parameter. Since web services exist in
an open environment, semantic matching is more natural. For the examples in
this paper, we use keyword matching only, however, the method can be extended
to semantic matching [12] as well.

3.2 Process and Interface Oriented Specifications

From the viewpoint of web services’ users, specifications of required composite
web services can be separated into two categories:

– Process Oriented Specification (POS) contains a set of abstract component
web services in addition to the business logic describing the relationship
among these services;

– Interface Oriented Specification (IOS) contains a set of input and output
data (possibly with pre-conditions) which specifies a user’s request for web
service. In this case no information about a structure or possible components
of the requested service is available.

Value-Added Web Services Composition Using Automatic Program Synthesis 217

Workflow
Engine

Composite
Web Service

Program
Synthesizer

Service
Specification

Web Service
Composer

Registry of
Web Services

Process Interface

Fig. 1. The Infrastructure of Web Services Composition

Using POS the user provides desired abstract web services (by functionality)
as well as a business logic which describes the relationship among the services.
Using IOS the user specifies only desired input/output of a required web service.
The internal structure of this web service can be hidden from the user.

The above-mentioned categories of service specifications may require different
methods and tools. In particular, we think that POS of composite web service is
better modeled by a workflow which is generated by business model, while the
IOS of service can be better implemented via usage of an automatic program
synthesis method.

A possible infrastructure for web services composition is presented on Fig-
ure 1.

In this infrastructure, if the service specification is process oriented then
it is processed by the workflow engine which generates a workflow model for
the composite service as a solution. The workflow model can be described by a
workflow language or web service flow language (e.g. WSFL [9]). If the service
specification is interface oriented (by arguments and results of the service) then
the requirement is transferred to the Program Synthesizer. If there is a service
specification (in the registry of available services) which matches the specified
requirements then the service is selected. Otherwise, the Program Synthesizer
starts a composition process using available service specifications and a program
synthesis method.

In this paper we are focused on the Program Synthesizer component of the
above infrastructure. For research on building the Workflow component of the
infrastructure we refer, for example, to [5].

4 Service Composition Method

We assume that the functionality of available web services can be presented as
input-output specifications defining what is a source for the service and what

218 Mihhail Matskin and Jinghai Rao

will be a result of the service performing. In this case a web service request can
also be expressed as an input-output specification.

We use a Structural Synthesis Program (SSP) method [11] for building a
composition of services. We choose the SSP method because of its efficiency
in basic cases, well-developed formal foundations, ability to extract an action
sequence from the process of services composition and our previous experience
in usage and implementation of the method. However, we would like to underline
that SSP is not the only method that could be used for our problem solving. Any
other synthesis method which allows combination of input-output specifications
and extraction of action sequence can also be applied.

Let us consider a value-added service provision problem from a service com-
position perspective. The web service request for the ski buying problem can be
described as an input-output specification where the input contains customer’s
body height in inches and the requested output is ski prices in NOK (here NOK
stands for ”Norwegian Krone”).

From the service providers’ side we assume that there are the following spec-
ifications of services:

– the core service taking ski length in inches as input and providing ski prices
in USD for available skies as the output

– the value-added service taking ski prices in USD as input and providing ski
prices in NOK (or in another local currency) as output

– the value-added service taking measurements in inches as input and provid-
ing measurements in centimeters (cm) as output

– the value-added service taking measurements in centimeters as input and
providing measurements in inches as output

– the value-added service taking body height measurements in centimeters and
providing a recommended ski length in centimeters as output

As we can see, there is no single service that matches the problem of buy-
ing skies based on body measurements in inches and prices in NOK. However,
services combination can provide the required service.

As we mentioned above, we use SSP for service composition. In SSP, com-
ponent specifications are presented as implications of the following two types
(where underlining means conjunction of the underlined components):

– unconditional computability statements

A −→
f

B (1)

where f is a term representing the function which computes the realization
b of B from the realization a of A.

– conditional computability statements

(A −→
g

B) → (C −→
F

D) (2)

where g is a variable representing a function which must be synthesized in
order to compute b from a and F is a term representing computation of d
depending on g

Value-Added Web Services Composition Using Automatic Program Synthesis 219

Using SSP specification the above-mentioned single services can be expressed
as follows:

– the core service

ski lenght in inches −−−−−−−−−−−→
ski prices service

ski prices USD (3)

– the measurements converter service:

body height in inches −−−−−−−−−−−−→
inch cm converter

body height in cm (4)

ski length in cm −−−−−−−−−−−−→
cm inch converter

ski lenght in inches (5)

– the currency converter service:

ski prices USD −−−−−−−−−−−−−−→
USD NOK converter

ski prices NOK (6)

– recommendation service:

body heigth in cm −−−−−−−−−−−−−−−−→
ski recommendation cm

ski lenght in cm (7)

We would like to notice that there can be more than one service provider for each
service. Their specifications then will differ only in the name of service provider
under the arrow.

The request for service (or goal) can be expressed as follows:

body heigth in inches −→ ski prices NOK (8)

The SSP-based synthesizer takes a goal (8) and makes a plan for its fulfillment
using (4), (7), (5), (3) and (6). The composed service is built by applying the
SSP inference rules described in [11]. We also would like to underline that the
result of planning with SSP is a sequence of actions (services) to be performed.
In particular, informal meaning of the synthesized plan (composed services) can
be as follows:

1. use the inch cm converter service for converting body height measurements
2. use ski recommendation cm service for getting recommended ski length in

cm
3. use cm inch converter service for converting ski length measurements
4. use the ski prices service core service
5. use USD NOK converter service

The above-mentioned sequence is a synthesized composed service.
We would like to notice that usage of single names in computability state-

ments might lead to a big overhead in service description. In particular, we may
need to describe all converters for measurements and currency for all compo-
nents (for body height, for ski length etc). This problem is solved in SSP on a
specification level. It is allowed usage of compound names there. For example,
it is possible to specify the Measurements and Currency classes as follows:

220 Mihhail Matskin and Jinghai Rao

Measurements
inches, cm : numeric;
inches −−−−−−−−−−−−→

inch cm converter
cm

cm −−−−−−−−−−−−→
cm inch converter

inches

Currency
USD, NOK : numeric;
USD −−−−−−−−−−−−−−→

USD NOK converter
NOK

NOK −−−−−−−−−−−−−−→
NOK USD converter

USD

Usage of these classes can be as follows:
body height, ski length : Measurements;
ski prices : Currency;
This allows usage of compound names like body height.cm, body height

.inches which refer to the above specified cm-to-inches and inches-to-cm ser-
vices without necessity to define such services explicitly for all possible argu-
ments.

Usage of full SSP power in our simplified working example seems to be too
advanced, however, in case of tens or hundreds of specified services it gives big
advantage.

In a more complex case the synthesizer may generate more than one possible
service composition. This may lead to alternative possible ways of the service
provision and to necessity of applying fine-grain selection (either automatically
or manually) for a particular service selection.

We also would like to notice that using conditional computability statements
in service presentation allows us synthesize conditional composed services. In
particular, alternative conditional services or exceptions can be described by
different left-hand-side implications in computability statements of the form (2)
and a selection criterion as a right-hand-side implication of the form (2). Such
conditional computability statements can be generated automatically from un-
conditional computability statements (1) extended by disjunction on the right-
had-side of the implication [10].

5 Service Description Languages

In spite of nice features of the SSP-based language and synthesis we don’t think
that this language should be considered as a general service description language
(it is rather suitable as an internal language for synthesis). Our approach is to use
a widely accepted language for service description and to provide a translation
from this language to SSP presentation when it is needed.

For our purpose (no matter what description language is used) the content
of the web service description should allow:

– to specify service inputs and outputs. This can be used by matchmaker to
determine whether the service meets request;

Value-Added Web Services Composition Using Automatic Program Synthesis 221

Compiler

Compiler

SynthesizerWSDL SSP Specification

SSP PlanWSFL

Fig. 2. Compilers and Synthesizer

– to describe a service as a task which should be performed. The task should
be described in some form which allows its invocation;

– to specify the details of how the web service can be accessed. Typically a
protocol will specify a communication protocol (eg., RPC, HTTP-FORM,
CORBA IDL, SOAP, Java RMI/Bean) and the location (eg., URL, port
number)

Recent industrial efforts have developed several proposals for improving web
services discovery and execution. Most significant initiatives include the Univer-
sal Description, Discovery, and Integration (UDDI) [15]; the XML-based Web
Service Description Language (WSDL) [17]; and DAML-S, a DAML (DARPA
Agent Modelling Language) based semantic markup of web services [6].

We don’t want to restrict ourselves by only one description language or one
internal language and allow different languages to be used in our system. In order
to support that, we have to design a set of compilers for translation between
the external XML based web services language and the internal logic language.
Figure 2 shows the dataflow between compilers and synthesizer. Here, WSDL is
a general term for all web services description languages (in particular, this can
refer to DAML-S profile). WSFL also refers to any web services flow language,
for example DAML-S process model.

In particular, this means that synthesizer can be developed independently
of particular internal representation (assuming that whatever representation is
used an access to it is implemented via standard methods). Such approach re-
quires development of different compilers from external description languages to
different internal representations.

In our prototype, we choose DAML-S as external language (however, other
external languages can be added in a similar way). A basic reason for this choice
is that DAML-S has features for support of both web services selection and
composition. For more detail specification and examples about DAML-S we refer
to [6].

Taking SSP-based language as internal representation and DAML-S as exter-
nal language we have implemented a DAML-S compiler which translates between
the DAML-S documents and SSP specifications. For example, a description of
the core service in our working example can be as follows1:
1 &concepts is the shorthands for the URI of the concepts’ name space

222 Mihhail Matskin and Jinghai Rao

<service:ServiceProfile rdf:ID="Ski_Price_Service">
<input>
<profile:ParameterDescription rdf:ID="ski_length">
<profile:parameterName>ski_length</profile:parameterName>
<profile:restrictedTo rdf:resource="&concepts;#Inch" />
<profile:refersTo rdf:resource="&concepts;#Measurements" />
</profile:ParameterDescription>
</input>
<output>
<profile:ParameterDescription rdf:ID="ski_price">
<profile:parameterName>ski_price</profile:parameterName>
<profile:restrictedTo rdf:resource="&concepts;#USD" />
<profile:refersTo rdf:resource="&concepts;#Currency" />
</profile:ParameterDescription>
</output>
</service:ServiceProfile>

This description can be translated into the following SSP formula:

ski length in inch −−−−−−−−−−−→
ski price service

ski prices USD

We would like to notice that a convention of interface names is needed to
make sure that the interface parameters which refer to the same concept have
the same names. In some web services language, such as DAML-S, RDF re-
sources and domain restrictions are used to indicate the concept and range of a
parameter name. The compiler takes care about the problem and it can tranlate
all restrictions to SSP specifications.

6 Conclusion

We propose an approach to automate value-added web services composition. The
problem of service composition is considered as a problem of software synthesis
where algorithms for matching and composition are based on the SSP method.
The SSP language was adopted as internal presentation language for automated
service composition, while DAML-S is used as external language for description
of web service properties.

Basic features of the proposed approach can be formulated as follows:

– Service composition is based on the input-output information of services
components and requires little domain knowledge.

– Usage of compilers allows adopting different internal formal languages and
external XML-based web service description languages.

At the moment, the basic components of the approach are developed. We
currently work on developing of presentation tools for making more convenient
usage of the system by the customer.

Value-Added Web Services Composition Using Automatic Program Synthesis 223

The approach can work together with other workflow methods. We also sug-
gest that combining workflow model and synthesis method may give a better
efficiency and flexibility in web service provision. We consider this direction as
an interesting future work. Another our future work is related to taking into
consideration semantic matching both for service composition and optimization
of the results of the composition.

Acknowledgements

This work is partially supported by the Norwegian Research Foundation in the
framework of the Information and Communication Technology (IKT-2010) pro-
gram - the ADIS project and in the framework of the Distributed Information
Technology (DITS) program - the ElComAg project.

References

1. Anupriya Ankolekar et al. Daml-s: Semantic markup for web services. In Proceed-
ings of the International Semantic Web Workshop, 2001.

2. B. Benatallah, M. Dumas, M.C Fauvet, and F. Rabhi. Towards patterns of web ser-
vices composition. Technical report, The University of New South Wales, November
2001.

3. James L. Caldwell. Moving proofs-as-programs into practice. In The twelfth IEEE
International Automated Software Engineering Conference, 1997.

4. Fabio Casati, Mehmet Sayal, and Ming-Chien Shan. Developing e-services for
composing e-services. In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors,
Proceeding of 13th Int. Conference on Advanced Information Systems Engineering
(CAiSE), Interlaken, Switzerland. Springer Verlag, June 2001.

5. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and dy-
namic service composition in eflow. In Benkt Wangler and Lars Bergman, editors,
Proceeding of 12th Int. Conference on Advanced Information Systems Engineering
(CAiSE), Stockholm, Sweden. Springer Verlag, June 2000.

6. DAML-S Coalition. Daml-s 0.6 draft release.
http://www.daml.org/services/daml-s/2001/10/, december 2001.

7. R. Doorenbos, O. Etzioni, and D. Weld. A scalable comparison-shopping agent
for the world wide web. In Proceedings of the First International Conference on
Autonomous Agent(Agent ’97), Marina Del Rey, CA, February 1997.

8. R. Guttman, A. Moukas, and P. Maes. Agent-mediated electronic commerce: A
survey. Knowledge Engineering Review, 1998.

9. IBM. Web Services Flow Language(WSFL 1.0).
10. Sven Lammermann. Runtime Service Composition via Logic-Based Program Syn-

thesis. PhD thesis, Department of Microelectronics and Information Technology,
Royal Institute of Technology, Stockholm, 2002.

11. Mihhail Matskin and Enn Tyugu. Structural synthesis of programs and its exten-
sions. Computing and Informatics Journal, 20:1–25, 2001.

12. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-
mantic matching of web services capabilities. In First International Semantic Web
Conference (ISWC), Sardinia, Italy, June 2002.

224 Mihhail Matskin and Jinghai Rao

13. John J. Penix. Automated Component Retrieval and Adaptation Using Formal
Specifications. PhD thesis, Division of Research and Advanced Studies of the
University of Cincinnati, 1998.

14. H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and compos-
ing service-based and reference processbased multi-enterprise processes. In Benkt
Wangler and Lars Bergman, editors, Proceeding of 12th Int. Conference on Ad-
vanced Information Systems Engineering (CAiSE), Stockholm, Sweden. Springer
Verlag, June 2000.

15. UDDI.org. Universal description, discovery and integration specification.
http://www.uddi.org/specification.html.

16. T. Uustalu, U. Kopra, V. Kotkas, M. Matskin, and E. Tyugu. The nut language
report. Technical report, The Royal Institute of Technology(KTH), 1994.

17. W3C.org. Web services description language (wsdl) 1.1.
http://www.w3.org/TR/wsdl.

	1 Introduction
	2 Working Example: Value-Added Web Services Composition
	3 Some Issues of Services Presentation and Composition
	3.1 Functionality and Non-functionality Conditions
	3.2 Process and Interface Oriented Specifications

	4 Service Composition Method
	5 Service Description Languages
	6 Conclusion
	References

