
The Use of Patterns in Service Composition

Moe Thandar Tut and David Edmond

Cooperative Information Systems Group
Research Centre for IT Innovation

Queensland University of Technology
Brisbane, Australia

{m.tut,d.edmond}@qut.edu.au

Abstract. E-services are services that can be invoked over the Inter-
net. One likely use of e-services would be to build business applications
that can employ e-services from different service providers. This poten-
tial use of composite services in business settings highlights the issues
of payment mechanisms, reliability, trust, inter-operability and service
guarantees between different service providers. It also becomes essen-
tial to choose e-services that best fulfil the requirements of a particular
business application. We investigate how patterns can be used in service
composition to help in the development of business applications based
on e-services.

Keywords: e-services, service composition, patterns

1 Introduction

In this paper, we investigate the possibility of using patterns to facilitate the
composition process of electronic services. We will start with the discussion on
e-services and service composition. Kotov (2001) describes e-services as “the re-
alization of federated and dynamic e-business components in the Internet envi-
ronment”. One potential use of e-services would be to build business applications
that can invoke e-services from different providers. Before a suitable composi-
tion model for electronic services can be determined, a clear description of an
electronic service is needed. Electronic services offered over the Internet are also
referred to as electronic services, web services, Internet services, web-based ser-
vices or e-services. Piccinelli & Mokrushin (2001) define the concept of electronic
services as “electronic visualisations of standard business services”. A more tech-
nical definition is given as an interface that describes a collection of operations
that are network accessible through standardized eXtensible Markup Language
(XML) messaging (Colan 2001). One essential characteristic of e-services is the
ability to be described, published, discovered and invoked dynamically in a dis-
tributed computing environment. The types of e-services can range from simple
calculations and retrievals to complex business applications. The examples of
electronic services include real-time stock quotes, content syndication, mapping
services, payroll management, and credit scoring.



We would like to propose the use of patterns during the planning stage of
service composition. Patterns represent a proven way of doing something. They
could be business patterns such as how to model online store-fronts, or generic
patterns such as project work patterns. However, the nature of patterns make the
ideas generic or abstract. Hence, we would like to take the user through different
levels of abstraction from generic to specific, that would result in the concrete
model for business applications using e-services. We believe that this approach
will result in a structured and a more intelligent search and composition, using
both users and service providers’ knowledge.

2 Service composition

To compose a comprehensive offer for their customers, successful companies fo-
cus on their core competencies, and outsource the support services to other
companies. Piccinelli (1999) describes service composition as the ability to take
existing services (or building blocks) and combine them to form new services.
A composite service is one resulting from the integration, coordination and syn-
chronization of different service components from two or more service providers.
A composite service adds value that is not previously presented within the indi-
vidual services. Piccinelli & Mokrushin (2001) suggest that the realisation of the
full potential for the e-service vision depends upon on composition and interac-
tion orchestration. By using electronic services to outsource services, the focus
shifts from the connection to a specific business partner, to the definition of a
specific business need. The types of business applications that can be developed
using e-services from different providers include travel booking applications, por-
tals and e-market palaces, on-line stores, supply chain management, inventory
management, shipping and logistics, finance and insurance services. Service com-
position typically spans three phases: planning, definition and implementation.
Yang & Papazoglou (2002) describe planning as the phase where the candidate
services (elementary or composite) are sought and checked for composability
and conformance. During this phase, alternative composition plans may be gen-
erated and proposed to the application developer. The outcome of this phase
is the synthesis of a composite service out of desirable, or potentially available,
matching, constituent services.

We would like to propose the use of patterns during the planning stage of
service composition. Our objective is to facilitate the composition process and
to support the developer in selecting components based on rich descriptions of
services. Our assumption is that the business goal is to successfully compose a
service, not to decompose the process model to the lowest level. We believe that
the composer will prefer dealing with fewer providers and fewer e-services where
possible. It would also increase the security and the trustworthiness of the result-
ing service. Naturally, when composing e-services, the functionalities provided
by service components must be considered. We need to take into account the
comparability of data types, message types, business sequence logics etc (Fensel



& Bussler 2002). However, our view is that service composition is much more
than functional composition. Non-functional requirements also play a major part
in the selection process for service components. Consideration should be given
for non-functional requirements such as trust, reliability, security, geographical
location, execution time and payment mechanisms. For instance, when compos-
ing a product-ordering e-service, we must also consider auxiliary services such
as insurance financing, payment mechanisms, transporting and compliance with
government regulations.

3 Patterns

Alexander (1979) describes a pattern as “a three-part rule, which expresses a
relation between a certain context, a problem and a solution”. Patterns help
create a shared language for communicating insight and experience about the
problems and their solutions in a particular context (Appleton 2000). A pattern
catalog is a collection of related patterns (perhaps only loosely or informally
related). It typically subdivides the patterns into at least a small number of broad
categories and may include some amount of cross referencing between patterns
(Buschmann et al. 1996). A set of connected patterns provides a framework
upon which any design can be anchored (Salingaros 2000). Some examples on
how patterns can be connected to each other include

– One pattern contains or generalises another smaller-scale pattern.
– Two patterns are complementary and one needs the other for completeness.
– Two patterns solve different problems that overlap and coexist on the same
level.

– Two patterns solve the same problem in alternative, equally valid ways.
– Distinct patterns share a similar structure, thus implying a more abstract
version.

The paper by Edmond & ter Hofstede (2000) discusses the use of libraries of
common patterns of activity and instantiating and composing task structures
from these patterns to enable service composition. The authors propose that
well-defined frameworks within which services can be offered represent essential
reliability mechanisms. Lord (2001) describes how to facilitate the application
development process using the IBM Patterns for e-business. These patterns are
classified as business patterns, integration patterns, composition patterns, cus-
tom design and application and runtime patterns (IBM 2002).

Patterns can be used to represent reusable business process logic for the
applications. We would like to instantiate the generic patterns that are domain
independent into specific patterns using the domain knowledge of the developer.
Patterns will be stored in a repository and could be indexed based on a number of
classification codes. The user could search the repository for appropriate patterns
for the application. It might also result in modification / instantiation of patterns
to fit the particular needs. Every task in the pattern should map to an e-service or



another pattern. The process will come to an end when the user finds the right
level of abstraction for the process to compare with the service descriptions,
taking into consideration the issue of trust, reliability and payment mechanisms.
By doing so, the composition logic built into the pattern will be available to other
users. It would also result in separation of process logic from implementation.

Pattern X


Step

1


Step

2


Step

3


instantiate to

pattern Y


link directly to

service P


instatiate to another

case of pattern X


Fig. 1. Pattern instantiation

For example, according to figure 1, the services instantiated as part of pat-

ternX must be configured within a particular three-step framework. According
to this pattern, two steps must be invoked in sequence. After that, a decision
will be made on whether to proceed to step 3, or to stop straight away. It can
be seen that step 1 would be instantiated to another pattern called pattern Y.
Step 2 would link directly to service P and step 3 would instantiate to another
case of pattern X.

3.1 Generic patterns

In this subsection, we will introduce the two generic patterns, namely project
pattern and maintain pattern, and illustrate how these patterns could be instan-
tiated using domain knowledge with an educational service example.

Plan
 Execute
 Evaluate


Project Task:


Fig. 2. Making and following a plan

Assess
 Repair


Maintain Task:


Fig. 3. Maintenance

The project pattern (figure 2) describes a systematic way of making and fol-
lowing a plan. This plan is used in such commonly arising situations as building



a house, developing software, and holiday planning. First we develop a plan of
some kind, then we execute that plan, and finally we evaluate the outcome. Such
a pattern is not instantiated in a thoughtless manner. Its use suggests a prepared-
ness for deliberation, perhaps triggered by past experience, perhaps contrarily
by the realisation that the situation is novel. This pattern highlights the pre-
paredness for the task and evaluation of the task in addition to the execution.
This pattern is generic in the sense that it could be applied to any task that
would benefit from planning and review. The maintain pattern (figure 3), de-
scribes the process involved in assessment of a situation and making a decision
to repair / improve the situation. This pattern could be applied in situations
such as maintenance of some asset or improvement of processes. The use of such
a pattern would seem to arise from the recognition of the possibility of damage.
We can then employ this pattern as a means of recovery.

We will now consider how an educational service can be developed using these
generic patterns. As described in figure 4, this service consists of a fairly generic,
topic-free process of preparing a course of study, followed by the teaching and
assessment of that course, and finishing with some kind of evaluation process.
The entire process could be viewed as an example of the project framework
discussed earlier: preparing the course is obviously a form of planning; teaching
the course is a means of executing that plan; and, the evaluation of the course
is clearly a form of evaluation.

Prepare

Course


Teach

Course


Evaluate

Course


Educate:


Fig. 4. Education as instantiation

The first stage of the process (prepare course) involves the decision-making
from the user in terms of topics to include, resource availability, time constraints,
etc. The outcome of this phase is the detailed plan with the particular topics and
resources that will be used in defining the next process. The middle stage, the
actual teaching and assessment, may be further refined into a process based on
the outcome of the prepare course process. For instance, it could be instantiated
as described in figure 5. In this case, it is represented as a process whereby three
topics (SQL, ER modelling and workflow concepts) are taught, in sequence. Good
teaching practice requires rapid feedback and the assessments are interspersed
with the teaching, bringing the evaluation of student understanding closer to the
actual teaching. For example, once SQL has been taught, two parallel streams
are triggered – teaching ER and assessing SQL. A similar approach is taken after
ER has been taught, with an additional requirement that the SQL assessment



be finished before the ER assessment begins. Workflow assessment is performed
in the final exam, presumably. The final stage of the process (evaluate course
can be viewed as an instantiation of maintain pattern as shown in figure 6. It
involves the assessment of the course followed by a decision on whether or not
to modify the course structure.

Teach

SQL


Teach

ER


Teach

Workflow


Teach:


Assess

SQL


Assess

ER


Examine


Fig. 5. Instantiation of teaching and assessment

Assess

course


Modify

course


Evaluate:


Fig. 6. Instantiation of maintain pattern

Teach

SQL


Teach

ER


Teach

Workflow


Teach:


Assess

SQL


Assess

ER


Examine


Prepare

course
 Assess


course

Modify

course


Evaluate:


Fig. 7. Educational service pattern

The final process model for an educational service involving the development
of a course with database concepts now looks like figure 7. Even though an ed-
ucational service example is a simple one, it highlights the difficult nature of



decision making involved in constructing a service. Our instantiation of an edu-
cation course is based on time and resource constraints as well as the application
of business rules. The parallel processing model and synchronizers are instanti-
ated with the domain knowledge about teaching a course. It can be seen that it
is the result of using generic patterns to guide the decision of the composer by
taking into consideration, the generic patterns, time and resource constraints,
business rules as well as domain knowledge about education sector. The execu-
tion stage of this example can be represented as an e-service. It could also be a
composite e-service that uses various on-line e-services to teach the individual
topics. This process can also be considered as part of the process model for on-
line educational applications.

Next we will consider the modification to the figure 7 when the teach process
is outsourced. Imagine that we need to employ 3 lecturers to teach the topics in
the course structure. In that case, we would need to associate each teach pro-
cess with a payment process. Different payment mechanisms could be associated
with teaching each topic. For instance, the lecturer who will teach SQL might
like payment after his/her duties have been performed and the process could
be modelled as shown in figure 8. The processes TeachSQL and Payment to lec-

turer are invoked sequentially. On the other hand, the lecturer who will teach
ER would prefer payment in advance before teaching is carried out. Hence, the
process will be modelled as in figure 9.

Teach SQL

(lecturer X)


Teach SQL:


Payment to

lecturer X


Fig. 8. Payment after execution

Payment to

lecturer Y


Teach ER:


Teach ER

(lecturer Y)


Fig. 9. Payment in advance

We believe that associating a payment with the execution of a service will be
common in business applications using e-services from different providers. Hence,
the different payment mechanisms employed by these providers will become one
important criterion to consider when selecting service components.

3.2 Payment mechanism patterns

O’Sullivan et al. (2002) state that an essential ingredient of service represen-
tation is capturing the non-functional properties of services. These include the
methods of charging and payment, the channels by which the service is provided,
constraints on temporal and spatial availability, service quality, security, trust



and the rights attached to a service. Non-functional requirements are considered
to play a crucial role in understanding the problem being addressed, the trade-
offs discussed and the design solution proposed. Gross & Yu (2001) propose that
non-functional requirements that are explicitly represented in design patterns
aid in better understanding the rationales of design, and make patterns more
amenable to structuring and analysis. We will now consider how non-functional
requirements can be represented using patterns with the example of payment
mechanisms patterns.

Most business interactions would result in a payment being made between
service providers and service requestors. An organisation can employ a number
of payment mechanisms based on the type of user, the type of industry and
product, the type of accounting systems. We are interested in the processes in-
volved in this payment pattern and when a particular process will be invoked.
Payment mechanisms can be seen as interactions between three different pro-
cesses: billing, payment and execution of service. The billing process represents
the process of producing an invoice or a bill by the provider for the service.
The payment process represents the process of accounting required when the
payment is received by the provider. The service process represents the process
of invoking the service requested by the user. Next, we will look at different
mechanisms under which billing and payments could be carried out.

The example scenarios include subscription fees, cash sales, credit sales (ac-
counts receivables).

Billing
 Payment
 Service


Subscription Pattern:


Fig. 10. Payment in advance: Subscription

– Subscription: This is a common payment scenario for membership sub-
scriptions, magazine subscriptions and insurance premium payments. The
user is expected to pay in advance before the service is performed. There is
a certain order to the interaction as in figure 10. In this case, it is sequential
with the billing process followed by payment process and then by execution
of the functionality.

– Cash sales: This type of payment mechanism is used in day-to-day pur-
chases, repair services, and on-line purchases. The user selects the service or
the product, the cashier totals the amount and the user pays the amount to



Service
 Billing


Payment


Cash Sales Pattern:


Fig. 11. Payment: Cash Sales

the cashier. In this case, the billing and execution may be carried out at the
same time (order is not crucial). It results in the payment for the service as
shown in figure 11.

Service
 Billling
 Payment


Credit Sales Pattern:


Fig. 12. Payment afterwards: credit sales

– Credit sales: This type of payment mechanism is used mainly in business
to business transactions. The business customer sends an purchase order, the
order is executed and the invoice is sent to the customer with the due date
set depending on the credit terms. In this case, the function is executed, the
user is then billed and the payment process is performed at a later time as
in figure 12.

4 Issues raised by using patterns

We are interested in the development of business applications using pre-defined
patterns as well as in the effects of incorporating non-functional requirements
into payment mechanisms. Our approach to service composition using patterns
raises a number of issues.



4.1 Patterns repository

Ideally, we would like to store all the patterns in a repository, indexed on a
number of classifications to enable efficient search and reuse. The questions raised
include:

– What type of patterns would be the most useful for business applications de-
velopers? The types of patterns vary between organisational patterns, analy-
sis patterns, design patterns, process patterns etc. There is a need to identify
what kind of patterns would be suitable for composite e-services.

– How could the patterns be derived from well-known situations? It will be
necessary to identify well-known business process models and to derive pat-
terns from these. A lot of work has been carried out to derive patterns
for various problem domains and represent them as pattern catalogs see
(http://www.hillside.net/patterns/onlinepatterncatalog.htm.)

– How should the patterns be classified in the repository? It might be that indi-
vidual patterns belong to more than one category. The UDDI programming
interface (API) defines a consistent way for businesses to add any number
of classifications to their business registrations (UDDI.org 2001). The clas-
sifications used include category codes such as NAIC, UN/SPC, SIC codes,
that are widely used to classify businesses, industries, and product categories
as well as other classifications designate geographic information, or member-
ship in a given organization such as industry codes, product codes, geography
codes and business identification codes. Gamma et al. (1994) organise de-
sign patterns according to the purpose and scope of the patterns. They also
suggest other ways of classification such as grouping the patterns that are
mostly used together, or alternative patterns or patterns with similar out-
comes. We also need to consider the ontologies approach to classification.

– How should the patterns that are specific to e-service composition be de-
scribed? It is likely that some patterns might be specific to service composi-
tion. Appleton (2000) states that the following essential elements should be
clearly recognizable upon reading a pattern: name, problem, context, forces,
solution, examples, resulting context, rationale, related patterns and known
uses. We need to consider the aspects that are the most important for the
patterns to be reused in e-service composition and describe them accordingly.

These questions highlight the issue of what type of patterns will be included
in the repository for service composition and how to describe and classify the
patterns.

4.2 Pattern instantiations

We are interested in using a top-down approach to service composition, capturing
business goals in terms of established patterns. The issues raised in instantiating
generic patterns into specific or domain dependent patterns include:



– What is the right level of abstraction for the developer? The generic patterns
could be the building blocks in the repository. The patterns should also de-
scribe the specific functionality that is supported such as holiday planning
or internet sales.

– How can the gap between business goals and the initial generic pattern be de-
scribed? In this case, we should consider the work on multi-criteria decision
making by Corner et al. (2001). The dynamic process of structuring a deci-
sion problem involves the specification of options, attributes for evaluating
options and states of nature that may occur, with repeated cycling back in
the process to revise or augment the structure. Corner et al. (2001) advocate
a dynamic interaction between criteria and alternatives as a decision-maker
understands his preferences and expands the set of alternatives.

– How can the gap between available services and the composer’s needs be
measured? It is necessary to identify the mismatch between the descriptions
of available services and processes in the patterns. To find a service that
match exactly with user’s requirements will be very difficult. We should con-
sider services that match the functionality but still need adaptation.

– What will be the trigger to stop instantiating the pattern? All tasks might
not be performed by e-services. The business may want to use in-house func-
tionality that is not implemented as an e-service. User interaction is needed
to indicate the functionality that he/she wants to outsource.

A lot of work still needs to be done on bridging the gap between user requirements
and patterns as well as the gap between patterns and service descriptions.

4.3 Non-functional requirements (NFR) patterns

Service composition is much more than functional composition. We should be
able to represent other non-functional requirements as patterns and incorporate
them into decision making. We have attempted to illustrate the use of pay-
ment mechanism patterns as part of service composition. A number of issues are
raised in terms of payment mechanisms patterns and in general non-functional
requirements patterns. They include

– How does the payment mechanism for components affect the composite ser-
vice’s payment mechanism? The selection of a payment mechanism for the
composite service is not directly related to the payment mechanisms of its
components. However, we observe that the businesses are likely to ask for
payment in advance for their services and are also likely to ask for credit
terms to pay for their components.

– What are the influencing factors in determining the appropriate payment
mechanisms for composite services? Some of the factors might be the type



of industry, the type of business, and the type of customer.

– Is the payment mechanism inseparable from the service? There are services
that are free of charge, hence it seems that the payment mechanism can be
separated from the service. Even though these services do not offer service
guarantees, they could be used reliably if there are third party recommen-
dations and review.

– How can patterns be used to represent non-functional requirements? The
normal specification mechanisms focus on functional issues. Non-functional
requirements include the methods of charging and payment, constraints on
temporal and spatial availability, service quality, trust and quality (O’Sullivan
et al. 2002). Most of them are hard to define and quantify and they are also
relative to the user.

– How could the interactions between NFR patterns be represented? One non-
functional requirement could impact on the other requirements. We must
take into account the interdependencies and trade-offs between NFR pat-
terns.

Non-functional requirements plays a crucial part in decision making process for
service composition. Consideration should be given on how to represent these
non-functional requirements as patterns.

5 Conclusion

We believe that patterns combined with the domain knowledge could be used
to develop composite services in a systematic way. Our objective is to take the
user through different levels of abstraction from generic to specific, resulting
in a concrete business application using e-services. Within this paper, we have
attempted to describe how generic patterns could be instantiated into specific
patterns with the educational service example. We have also highlighted the im-
portance of non-functional requirements for service composition and described
how they can be represented in patterns using the payment mechanisms example.
We have also raised a number of questions regarding patterns and in particular
the use of patterns to represent non-functional requirements. The nature of pat-
terns and the classification of patterns in the repository will play a major part
in service composition. We also need to identify how to configure a match be-
tween processes in the model and the available e-services. To develop a pattern
repository that could be used to compose many types of business applications,
these issues must be carefully considered.

References

Alexander, C. (1979), The Timeless way of Building, Oxford University Press, New
York.



Appleton, B. (2000), ‘Patterns and Software: Essential Concepts and Ter-
minology’. http://www.enteract.com/~bradapp/docs/patterns-intro.html#

PatternElements accessed on 7 Mar 2002.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. (1996), Pattern-

Oriented Software Architecture - A System of Patterns, Wiley and Sons Ltd., USA.
Colan, M. (2001), ‘An overview of Web Services’. http://www-106.ibm.com/

developerworks/webservices/ accessed on 3 Sep 2001.
Corner, J., Buchanan, J. & Henig, M. (2001), ‘Dynamic Decision Problem Structuring’,

Journal of Multi-Criteria Decision Analysis 10, 129–141.
Edmond, D. & ter Hofstede, A. (2000), Service composition for electronic commerce, in

‘Proceedings of the Pacific Asia Conference on Information Systems(PACIS-2000)’,
Hong Kong.

Fensel, D. & Bussler, C. (2002), ‘The Web Service Modeling Framework (WSMF)’.
http://www.cs.vu.nl/~dieter/wsmf/wsmf.paper.pdf accessed on 8 Mar 2002.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994), Design Patterns: Elements
of Reusable Object-Oriented Software, Professional Computing Series, Addison-
Wesley, USA.

Gross, D. & Yu, E. (2001), ‘From Non-Functional requirements to Design through
Patterns’, Requirement Engineering 8, 18–36.

IBM (2002), ‘developerworks: Patterns for e-business’. http://www-106.ibm.com/

developerworks/patterns/ accessed on 28 Feb 2002.
Kotov, V. (2001), Towards Service-Centric System Organization, Technical Report

HPL-2001-54, Hewlett-Packard. http://www.hpl.hp.com/techreports/2001/

HPL-2001-54.html accessed on 3 Sep 2001.
Lord, J. G. J. (2001), ‘Facilitating the application development process using the ibm

patterns for e-business’. http://www-106.ibm.com/developerworks/patterns/

guidelines/lord.pdf accessed on 12 Mar 2002.
O’Sullivan, J., Edmond, D. & ter Hofstede, A. (2002), ‘What’s in a service? Towards

accurate description of non-functional service properties’, Distributed and Parallel
Databases Journal - Special Issue on E-Services (to appear).

Piccinelli, G. (1999), Service Provision and Composition in Virtual Business Communi-
ties, Technical Report HPL-1999-84, Hewlett-Packard. http://www.hpl.hp.com/

techreports/1999/HPL-1999-84.html accessed on 23 Jun 2001.
Piccinelli, G. & Mokrushin, L. (2001), Dynamic Service Aggregration in Electronic

Marketplaces, Technical Report HPL-2001-31, Hewlett-Packard. http://www.hpl.
hp.com/techreports/2001/HPL-2001-31.html accessed on 23 Jul 2001.

Salingaros, N. A. (2000), ‘The structure of pattern languages’, Architectural Research
Quarterly 4, 149–161.

UDDI.org (2001), ‘UDDI Version 2.0 API Specification’. http://www.uddi.org/pubs/
ProgrammersAPI-V2.00-Open-20010608.pdf accessed on 5 Sep 2001.

Yang, J. & Papazoglou, M. P. (2002), Web Components: A Substrate for Web Ser-
vice Reuse and Composition, in ‘Proceedings of the 14th International Conference
on Advanced Information Systems Engineering (CAiSE’02), May 27 - 31, 2002’,
Toronto, Canada.


