Patterns for e-Service Composition

Marie-Christine Fauvet!'* Marlon Dumas? Fethi Rabhi’®
Boualem Benatallah?

! LSR-IMAG, University of Grenoble
BP 72, 38402 Saint-Martin d’Héres, France. E-Mail: Marie-Christine.Fauvet@imag.fr

2 Centre for Information Technology Innovation, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia. E-Mail: m.dumasQqut.edu.au

3 School of Information Systems, Technology and Management,
University of New South Wales, Sydney NSW 2052, Australia. E-Mail: £.rabhiQunsw.edu.au

4 School of Computer Science & Engineering, University of New South Wales,
Sydney NSW 2052, Australia. E-Mail: boualem@cse.unsw.edu.au

Abstract
Due to the growth of the Internet, the concept of e-service has gained a considerable momentum as a paradigm
for supporting Business-to-Business (B2B) collaboration. In this paper, we propose two patterns dedicated to the
composition of e-services, namely the Service Wrapper Pattern and the Service Composition Pattern. By service, we
mean any class of immaterial products whose provision involves the execution of a set of human and/or computational
activities within an organisation, or across several organisations. An e-service is a service which is accessible through
electronic means (e.g., a web interface).

1 Introduction

Internet and Web technologies have opened new means of doing business cheaply and more efficiently. Es-
tablished enterprises are continuously discovering new opportunities to form alliances with other enterprises,
by offering value-added integrated e-services. By service, we mean any class of immaterial products whose
provision involves the execution of a set of human and/or computational activities within an organisation, or
across several organisations (Dumas, O’Sullivan, Heravizadeh, Edmond & ter Hofstede 2001). An e-service is
a service which is accessible through electronic means (e.g., a web interface).

At the same time, the lack of high level abstractions and functionalities for e-service integration has triggered
a considerable amount of research and development efforts. This has resulted in a number of systems and
standards addressing different aspects of service integration (Dogac, editor 1998, Brodie 2000, Weikum 2001)
(e.g., XML, CORBA, workflow-based systems). However, there is still a need to provide rigorous software
methodologies and tools supporting the rapid integration of e-services. Ad hoc and proprietary solutions on
the one hand, and lack of canonical methodologies for abstracting, searching, composing, executing, monitoring,
and evolving e-services on the other hand, have largely hampered a faster pace in deploying Web-based B2B
applications.

We propose two complementary design patterns related to activities involved during the service composition
life-cycle. Among others, these activities are:

e Wrapping native services: ensuring that a native/proprietary service (e.g., legacy application) can be
invoked regardless of its underlying data model, message format and interaction protocol.

o Assembling and erecuting composite services: identifying component services, specifying their interactions
at a high level of abstraction, and deriving an execution model that satisfies the specifications (e.g., data
flow and control flow).

The proposed design patterns are Service Wrapper and Service Composition. Both patterns come with a
range of implementation strategies that depend on the underlying technology. These strategies explain the
trade-offs involved, possible optimisations, etc.

The rest of the paper is organised as follows. Section 2 presents the Service Wrapper Pattern. The Service
Composition Pattern is described in section 3. Finally, Section 4 provides some concluding remarks and bring
both patterns together to show their dependencies.

2 Service Wrapper Pattern (SWP)

2.1 Intent

The purpose of the SWP is to ensure that a pre-exiting service specification (e.g., service’s interface) is separated
from its implementation (e.g., a stand-alone program, an ERP application, or a workflow).

*Work conducted while the author was Visiting Fellow at the School of Computer Science & Engineering, University of New South
Wales, Australia.

Copyright ©2002, Australian Computer Society, Inc. This paper appeared at the Third Asian Pacific Conference on Pattern
Languages of Programs (KoalaPLoP 2002), Melbourne, Australia. Conferencesin Research and Practice in Information Technology,
Vol. 13. James Noble and Paul Taylor, Eds. Reproduction for academic, not-for profit purposes permitted provided this text is
included.

2.2 Problem description and forces

An organisation needs to interact with others in order to consume and provide services. Each of the services
provided by the organisation, as well as each external service consumed by the organisation, has its own
interaction requirements (e.g., document formats, data model, domain ontologies, message sequencing), which
can change over time following changes in business processes.

Forces. The specific forces that arise in this situation are:

e Given that the data model and format in which a business document is generated generally differs from
that in which it is interpreted, there is a need for specifying mappings between formats and data models.
Specifying these mappings requires an understanding of the meaning of the terms used in the formats
and data models.

e Given that the applications are likely to use different interaction protocols (e.g., different message names,
semantics and sequencing), these protocols need to be aligned. In other words, conversions between
sequences of messages need to be specified.

e Given that the applications belong to different organisations, and that they are likely to exchange crit-
ical business information, properties such as the confidentiality, integrity and non-repudiation of these
exchanges need to be ensured.

e The number of services consumed and provided is typically large and volatile. Some of the applications
which provide and consume services within the organisation are implemented by legacy systems which are
not cost-effective to be modified to accommodate new interaction requirements. Even those applications
that can undergo modifications require a considerable amount of programming effort to adapt to new
requirements.

2.3 Context

In the setting of B2B e-services, the interaction between a service provider and a service consumer entails
an interaction between the information systems of the organisations. Being developed by separate teams, for
different purposes, and at different times, these information systems are heterogeneous both from the managerial
and technological viewpoints. For similar reasons, an organisation requiring an external e-service needs to make
sure that its information system is capable of inter-operating with that of the prospective providers, and more
importantly, that this connection is loose enough so that alternative providers can be accommodated in the
future. On the other hand, any e-service provider needs to make sure that its information system has a clearly
defined interface to this e-service, and that the information systems of the consumers are properly interacting
with this interface.

At a lower level, this issue of information systems interaction becomes that of application and workflow inter-
operation. The consumption of a B2B e-service is, by definition, initiated by a business application (possibly
acting within a workflow), and similarly, the processing of this request is performed by another application or
workflow. These workflows, which are located in different organisations, interact through messages containing
business documents. Here, we are interested in the case where this interaction is carried out through an open
and volatile network such as the Internet.

2.4 Related patterns

The Service Wrapper Pattern specialises the Gateway Pattern (Buschmann, Meunier, Rohnert, Sommerlad &
Stal 1996) by explicitly taking into account the issues of security, document format, and conversational protocol
heterogeneity. The Service Wrapper Pattern can also be seen as a combination of the Facade pattern with the
Proxy Pattern (Gamma, Helm, Johnson & Vlissides 1995). In fact, the Service Wrapper acts as a proxy which
handles calls to remote servers on behalf on an application and offers as well a unified entry point to a set
of services offered by an organisation. Also notice that the scope of the Service Wrapper Pattern is far more
specialised than those of the above two patterns.

2.5 Solution

The idea of the SWP is to structure a service wrapper into 3 different modules (see Figure 1):

e Security manager: e-services may need to cross corporate firewall and security systems in order to access
partners’ services. The purpose of this module is to handle security issues including single mutual authen-
tication corporate wide, fine grain authentication, and access auditing and authorisation, communication
integrity, confidentiality, and non-repudiation.

e Content manager: It is likely that e-services use disparate information formats and semantics. For
example, if an internal application uses xCBL to represent business documents, and this application
needs to interact with an external service which expects documents in cXML (Dogac & Cingil 2001), the
conversion between these two formats should be handled by the content manager.

e Conversation manager: is concerned with the conversational interactions (i.e, joint business process)
among e-services. For instance, a given service may require a login procedure to be performed prior to
any access to the service’s functionalities, while another service with similar capabilities, may provide
access to some functionalities of the service without password verification, and only require a full login
procedure for accessing other functionalities.

2.6 Example

A French company Traduit-Tout provides translation services in several languages: English-French, French-
English, Spanish-French and French-Spanish. The English-French and Spanish-French translations are entirely
handled by a business process within the company. The French-English and French-Spanish translations are
first treated internally, and once a draft of the translation is produced, it is sent for proofreading to partner
companies in UK and Spain respectively. These partners are statically selected, but from time to time, a given
partner may be replaced by another.

The Traduit-Tout company therefore provides 4 services (the 4 kinds of translations), and consumes 2
services (the proofreading services from its partners in UK and Spain). Although statically selected, the
partner companies may be replaced by others at certain points in time. Also, the partner companies change
their business processes from time to time, and this may result in changes to the interface of the services that
they provide (e.g., the list of accepted document formats is extended or the list of accepted messages and
their inter-relationships is modified). Similarly, the company may change its own service interfaces, whether to
enhance or to simplify them, or to cope with internal policy changes. Figure 1 shows the internal architecture of
the WSP in the context of the Traduit- Tout company. Any request for a service emanating from an application
or workflow within Traduit- Tout, goes through the SWP of this company. Symmetrically, every request for any
of the four services provided by Traduit-Tout transits through the SWP.

Internet
|
L o d """"""""" Traduit-Tout’s Information System !
 Legen | } Client A
Service request Workflow E-F :
: @ Organisation : |
3 3 ServiceWrapper ____ l Client8
; E Software module Workflow S-F 0 N v,/
L 1 ‘\‘ Security Manager | —
) Pattem : ! Content Manager A1 '
Y- I /\ 9 ——— | _SPANIsH
E-F English-French Workflow F-E '| Conversation Manager | ' | Proofreader
SF Spanish-French R / !
F-E French English : English
SF French-Spanish } Workflow F-S : Proofreader
|
|

Figure 1: The SWP of the Traduit-Tout company.

2.7 Implementation aspects

In the following, we present techniques for handling document format and conversational protocol hetero-
geneity, two of the three aspects addressed by the SWP. The issue of security is not discussed here as it can
be handled using established cryptography techniques, secure communication protocols (e.g., HTTP-S), and
message logging.

The issue of handling document format heterogeneity at the syntactical level is more or less well addressed
by existing technologies such as XML and RDF parsers and generators. It is important to note however, that
these technologies do not address the issue of semantic integration, which remains an open area of research.

In the context of XML-based business document standards, for example, the XSLT language provides a
means of expressing transformations from documents abiding to a given standard, into documents abiding
to another standard. The specification of these transformations in XSLT is cumbersome, especially when
the granularity and ordering of the document elements in the source standard differ from those in the target
standard. Several approaches can be envisaged to cope with this difficulty. For instance, Microsoft’s BizTalk
2000 uses XSLT as the underlying transformation language, but provides a graphical tool on top of it (namely
BizMapper). However, whilst BizMapper hides the details of the XML syntax, it does not reduce the complexity
of the mappings that need to be specified.

An alternative approach based on separation of concerns is proposed by (Omelayenko & Fensel 2001). The
authors introduce a distinction between the syntar and the data model of a standard. The syntax of a document
standard is specified as an XML DTD or an XML schema. The data model is specified in the RDF Schema
Language. The transformation of a document XD in a given XML standard S, into a document XD’ in another
standard S’ is carried out in three steps, each of which involves a set of XSLT rules:

e Abstraction: translate XD into an RDF document RD abiding to the data model of S.
e Conversion: Translate RD into another RDF document RD’ abiding to the data model of S’.
e Refinement: Translate RD’ into an XML document XD’ abiding to the syntax of S’.

2.8 Related Work

As shown in (Omelayenko & Fensel 2001), in the context of four existing XML business document standards,
that the transformations involved by these three individual steps are simpler to build and maintain than a direct

transformation from XD into XD’. In particular, the development of a translator from xCBL to ¢cXML using
this approach is sketched. The authors also point out that the transformations involved by the abstraction and
the refinement steps are reusable.

In contrast to document format heterogeneity, the issue of handling conversational protocol heterogeneity
is still open. While B2B standards defining conversational protocols have recently emerged (e.g., RosettaNet’s
PIPs 1), the issue of mapping a conversation in a given protocol into an “equivalent” conversation in another
protocol 1s an open problem.

Web-Service Conversation Language (WSCL) could be used for specifying conversational protocols (Kuno,
Lemon, Karp & D 2001). The authors show that these specifications can be used to automatically build a
conversation controller, one of the two components of the conversational protocol manager.

In (Sayal, Casati, Dayal & Shan 2001), the authors describe an approach to extend existing workflow tech-
nology in order to handle both document format and conversational protocol heterogeneity in B2B interactions.
Specifically, given a structured description of a B2B protocol standard (e.g., a description of a RosettaNet PIP
in XMT), a process template is generated which encodes the sequencing of activities that is required in order
to handle a conversation in that standard. At runtime, this workflow interacts with external service providers
through a conversations manager, which handles the conversion of internal workflow variables into external
documents.

3 Service Composition Pattern (SCP)

3.1 Intent

The issues addressed by the SCP are, first to facilitate the description of integrated services and second to
derive from its specification, a suitable execution model for the resulting composite service.

3.2 Problem description and forces

To offer a value-added composite service, organisations face the problem of identifying the characteristics of
the services that need to be composed and the nature of their interactions. The task involved in this context
is that of integrating services (either pre-existing or composite services) in order to build a composite service
offering new integrated features and to make it ready to be executed when requested by users.

Forces. The important forces that play a role in service composition are summarised as follows:

e Given that a solution which allows fast integration and easy maintenance is required there is a need for a
high-level approach for describing interactions amongst services, without referring to any implementation
or execution model. Even if a low level approach is more flexible 1t may require significant coding effort.

e Given that services could be either reused in composition or decomposed in order to ease their design
and implementation, arbitrary nesting of composite services needs to be supported.

e A high-level approach can accommodate arbitrarily large compositions of services but makes compos-
ite service execution a complex issue. A low-level approach may not scale easily but control over the
composite service execution is maintained.

e In some situations service composition is only known at run-time. How to dynamically discover and
identify services and to bind them at run time.

The latter force is not addressed by the Service Composition Pattern.

3.3 Context

The dynamic integration of business processes is an essential requirement for organisations in the context of the
Internet. Unfortunately, as electronic commerce applications are most likely autonomous and heterogeneous,
connecting and coordinating them in order to build inter-organisational services is a difficult task. So far,
development of integrated B2B services is largely ad hoc, time-consuming and requires an enormous effort of
low-level programming. This approach is not only tedious, but also hardly scalable because of the volatility of
the Internet, and the dynamic nature of business alliances.

3.4 Related patterns

Two of the Business-to-Business integration (B2Bi) Patterns reported in (eBizQ n.d.) are related to the SCP.
Specifically, the Open Process B2Bi Pattern models a B2B integrated service as a global process, in which each
participant contributes with its own internal process. The participants interact in a peer-to-peer way. In the
Closed Process B2Bi Pattern on the other hand, there a principal participant responsible for managing the
global process. The other participants are secondary: they do not have visibility into the global process, nor
do they actively manage 1t. These two patterns can therefore be seen as specific realisations of the SCP: in
the former the collaboration between participants is conducted in a peer-to-peer way, and in the latter it is
conducted by a central authority.

“http://www.rosettanet.com

3.5 Solution

The solution distinguishes between elementary and composite services. Composite services are recursively
defined as an aggregation between other composite services and elementary services, which are referred to as
component services. Elementary services are pre-existing services, whose execution is entirely under the respon-
sibility of the SWP (see Section 2). The specification of interactions among services must include descriptions
about both control-flow and data-flow. The control-flow establishes the order in which the component services
should be invoked, the timing constraints, the signals that may interrupt or cancel their execution, etc. On
the other hand the data-flow captures the flow of data between component services.

Assuming a composite service S, there 1s one dedicated provider for this service. This provider should host a
Composite Service Scheduler (scheduler in short) which could be partially or totally derived from the semantics
of the service This scheduler is responsible for:

o Initiating the execution of the components of S according to the control-flow associated with S. To do so,
S’s scheduler invokes each of S’s components (or their wrapper if they are native services) in the order
and under the conditions specified in the control-flow.

o While the service S is available, the scheduler receives and processes service requests.

e The scheduler is also responsible for handling and processing data according to the data semantics of the
composite service.

The derivation of the scheduler from the composite service specification could be based upon two execution
models: (i) The components of a composite service are coordinated by a central scheduler hosted by the provider
of the composite service (components may be distributed), (ii) The entities participating in a composite service
coordinate the execution in a distributed manner (e.g., through peer-to-peer communication). In the former, the
scheduler of a composite service S is responsible for initiating the execution of the components of S according to
the control-flow associated with S. In the latter, the responsibility of coordinating the execution of a composite
service 1s distributed across the providers which host the components of the composite service.

3.6 Example

As an example, we consider an organisation that wants to offer an on-line travel planner called “Travel Solu-
tions”. This planner will allow users to build their own itinerary in a given city. To do so, the organisation
must integrate the following independent services:

e Flight booking: this service searches for a flight and when the most suitable flight is found, initiates
the booking and the payment. This service can be assigned to an individual provider (e.g., an airline
company).

e Accommodation booking: this service searches for different styles of accommodation (hotels, hostels, bed
& breakfast, camping, etc). Tt is assigned to a community of providers that federates entities such as
public central booking and private booking sites. When a service request is addressed to the community,
its representative forwards it to one of its members.

e Tourist attractions searching: this service gives information about the main tourist attractions (schedules,
venues, etc.).

e Bicycle hire and car rental booking: this service gives the user the choice to ride a bike or drive a car.
This choice is based upon the distance from the booked accommodation to the major tourist attractions.
Both of these services are assigned to an individual provider.

e Event attendance planner: this service is decomposed into two others: event searching and ticket pur-
chasing (if ticket pre-purchasing is required for the selected event).

3.7 Implementation aspects

A natural way of describing the control-flow of composite services is to adapt to this purpose an existing process-
modeling language, and especially one of those which have proven to be suitable for workflow specification.
In a nutshell, a workflow consists of a set of activities with explicitly specified control and data flow between
activities. An activity may invoke a transaction or some specific application (in our context, a service). There
are numerous workflow specification languages based upon different paradigms. In fact, each commercial
Workflow Management System (WfMS) implements its own specification language, with little effort being
done to provide some degree of uniformity between products. In this respect, the Workflow Management
Coalition (WIMC) (Coalition 1996) has defined a set of glossaries and notations that encompass many of the
concepts and constructs provided by existing workflow specification languages. Unfortunately, these efforts
have had a very limited impact. To add to the lack of uniformity, most of the existing workflow specification
languages, including the one defined by the WfMC, lack a formal semantics, making it difficult to compare
their capabilities and expressiveness in order to make an objective choice between them. The use of formal
notations for workflow specification has been considered in (Aalst 1998) and (Muth, Wodtke, Weissenfels,
Dittrich & Weikum 1998). (Aalst 1998) discusses several advantages of using Petri-nets for describing the
control-flow perspective of workflows, such as their expressive power. However, many designers find the Petri-
net formalism difficult to grasp, and, Petri-nets do not provide any means for structuring a specification into
recursive compositions.

As a tradeoff between expressiveness on the one hand, and ease of use and modularity on the other, (Muth
et al. 1998) advocates the use of statecharts instead (Harel & Naamad 1996). For example, the statechart

Travel Solutions [Attractions near

accommodation]
Attractions
®—| Search (AS) O

Bicycle Hire
(BH)

___________________________ Events Planner ®
- . - (EP)
Flight Booking Accom. Booking Car Rental
*~—— (FB) (AB) (CR)
\ [not Attractions near
\ [not FlightFound] accommodation]
Leged —« Transion :"Events plannin
® |nitial pseudo-state Events Search | [not needPre-purchasing]
Simple stat | o—
Q mpiesiate (® Fina pseudo-state (ES)

'
Ticket Purchasin
®

Figure 2: Example of a control flow specification using statecharts

@ Compound state [C] Condition

depicted in Figure 2 specifies the composite service “Travel Solutions” described earlier. The main argument
is that statecharts are based upon finite automata and Event-Condition-Action (ECA) rules, two paradigms
which are easy to comprehend. Finally, the statechart formalism has been integrated into the Unified Modeling
Language (UML) as the foundation of many intra and inter-object process modeling constructs.

There are three other implementation approaches. The first one is to use cross-organisational workflows
whose objective is to automate business processes that interconnect and manage communication among dis-
parate systems. In this approach, the description of the composite service can be defined collaboratively
among partners. However, the enactment of a composite may be either be centralised or distributed across
the participant partners. The second approach is that of component-based frameworks (e.g., CORBA, J2EE)
which provide for the connection and coordination of data and operations among services. The description of
a composite service is worked out and agreed off-line. After that, the global description of a composite service
is generally spread through the implementation code of every component.

Finally, the third approach, which includes EDI and XML-based integration frameworks, specifies the in-
teractions among the components of a composite service using shared document definitions. The components
are interconnected in terms of agreed upon documents. The business logic implementation at a partner side is
invisible to other trading partners. Interactions between components (partner services) may be carried out ac-
cording to a specific B2B standard (e.g., EDI, OBI, RosettaNet, cXML) or bilateral agreements. B2B standards
define formats and semantics of messages (e.g., request for quote purchase order), bindings to communication
protocols (e.g., HTTP, FTP), business process conversations (e.g., sequencing), security mechanisms (e.g., en-
cryption, non-repudiation), etc.

3.8 Related Work

CMI (Schuster, Georgakopoulos, Cichocki & Baker n.d.) is a platform for modeling and managing inter-
enterprise business processes. A service 1s modeled by a state machine that specifies possible states of a service
and their transitions. Transitions are caused by service operation (service activity) invocations or internal
service transitions.

EFlow (Casati, Tlnicki, Jin, Krishnamoorthy & Shan n.d.) is a platform for the specification, enactment,
and management of composne e-services. A composite service is modeled by a graph, which defines the order
of execution among the nodes in the process and may include service, decision, and event nodes. Service
nodes represent the invocation of a basic or composite service, decision nodes spec1fy the alternatives and rules
controlling the execution flow, while event nodes enable service processes to send and receive several types of
events. In both CMI and eFlow the execution model is based on a centralised process engine.

WebBIS (Benatallah, Medjahed, Bouguettaya, Elmagarmid & Beard 2000) is a platform for modeling, man-
aging, and evolving e-services. WebBIS adopts an ECA-rule (Event Condition Action) approach for defining
composite e-services. ECA rules are used to specify interactions between a composite service and its compo-
nents. Encoding the business logic of services as ECA rules is especially attractive to support the customisation
and increase in the flexibility of composite services. Indeed, rules can be added, modified, or removed to reflect
changes in both operational (e.g., server load) and market environments (e.g., user requirements).

CPM (Chen & Hsu 2001) supports the execution of inter-organisational business processes through peer-
to-peer collaboration between a set of workflow engines, each representing a player in the overall process. An
engine representing a player P, schedules, dispatches and controls, the sub-processes that P is responsible for.

In Mentor (Muth et al. 1998) the idea is to partition a global workflow specified as a statechart into
a number of sub-workflows, each encompassing all the activities that are to be executed by a given entity
within an organisation. Each of these sub-workflows is itself specified as a statechart and is executed by the
corresponding organisation.

In SELF-SERV (Benatallah, Dumas, Sheng & Ngu 2002), a subset of statecharts has been adopted to
express the control-flow perspective of composite services. In this approach, states can be simple or compound:
a simple state corresponds to the execution of a service, whether elementary or composite. Accordingly, each
simple state is labeled by a description of a service offering, and the set of parameters that are to be passed to
this service upon instantiation. When a basic state is entered, the service that labels it is invoked. The state

is normally exited through one of its trigger-less transitions, when the execution of the service is completed.
If the state has outgoing transitions labeled with events, an occurrence of one of these events provokes the
state to be exited, even if the corresponding service execution is ongoing (i.e. this execution is cancelled). In
SELF-SERV, the data-exchange perspective is implicitly handled by variables: parameters of services (inputs
and outputs) and events (consumed and produced by services).

In (Tut & Edmond 2002), the authors study the application of generic process patterns to service com-
position. The patterns considered in this work are essentially process templates whose activity nodes can
be associated to specific service descriptions in order to yield composite services that satisfy a given set of
functional and non-functional requirements. With respect to the patterns that we have presented, the patterns
presented in this approach are at a finer level of ganularity: they are intended to facilitate the development of
composite services fulfilling very specific user needs.

4 Conclusion

This text has discussed two complementary patterns for the definition and implementation of composite ser-
vices. These patterns suggest a methodology for building a new service that tackles each of these important
issues separately:

e Identify native services and make them elementary services through a wrapper (SWP)

e Specify the control and data flow semantics of the new service based on these elementary services or other

composite services, called component services (SCP).

The structural elements brought in by these patterns and the dependencies between them are summarised
by the UML (Rumbaugh, Jacobson & Booch 1999) class diagram depicted in Figure 3.

: Legend () Class §
. /\. Specidisation = _— __ | service
. Association (___ Pattern composed of

! ! I
: Elementary | | : Composite has | Control and Data. |,
: Service L service {1 1| Flow Spec. |
l 1 L 1] derived from !
i accessed through | 1 | E 1_ . ?:?)rr\rl:ggsition i
' : Compgste . Pattern !
| Service D invokes !
I Scheduler I

Figure 3: Patterns and issues for service composition

Figure 3 also relates these patterns to some issues neither the SWP nor the SCP deal with. However, in
order to provide a framework for services management these issues must be addressed (Benatallah, Dumas,

Fauvet & Rabhi 2002). They are listed below:

e Setting outsourcing agreements: negotiating, establishing, and enforcing contractual obligations between
partner services.

e Discovering services: instead of statically binding e-services to each other, dynamically discovering new
e-services with the right set of features and bind them at run time.

e Monitoring services execution: supervising service execution (e.g., state changes, contract violation), and
measuring performance (e.g., time) and predicting exceptions.

o Evolving services: adapting services to accommodate actual business climate (e.g., economical or organ-
isational changes) or to take advantage of new technological opportunities.

Acknowledgements

We thank our shepherd Brian Wallis for his valuable comments during the shepherding process. We are also
very grateful to our workshop mates who gave us interesting and useful feedback during the conference, that
helped us to improve our text for its final publication.

References

Aalst, W. v. (1998), Three good reasons for using a Petri-net-based workflow management system, in
T. Wakayama, ed., ‘Information and Process Integration in Enterprises: Rethinking documents’, Kluwer

Academic Publishers, Norwell MA, USA, pp. 161-182.

Benatallah, B., Dumas, M., Fauvet, M.-C. & Rabhi, F. (2002), Towards patterns of web services composition,
in F. Rabhi & S. Gorlatch, eds, ‘Patterns and Skeleton for Parallel and Distributed Computing’, Springer
Verlag (UK), chapter 10.

Benatallah, B., Dumas, M., Sheng, Q.-Z. & Ngu, A. (2002), Declarative composition and peer-to-peer pro-
visioning of dynamic web services, in I. C. Society, ed., ‘Proceedings of ICDE’02 Conference’, San Jose,
California.

Benatallah, B., Medjahed, B., Bouguettaya, A., Elmagarmid, A. & Beard, J. (2000), WebBIS: a system for
building and managing Web-based virtual enterprises, in ‘Proc. of the 1st workshop on Technologies for
E-Services, in cooperation with VLDB’, Cairo, Egypt.

Brodie, M. (2000), The B2B E-commerce Revolution: Convergence, Chaos, and Holistic Computing, in ‘in
Information System Engineering: State of the Art and Research Themes, S. Brinkkemper, E. Lindencrona,

and Solvberg (eds.)’, London.

Buschmann, F.; Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. (1996), Pattern-Oriented Software Ar-
chitecture: A System Of Patterns, John Wiley & Sons, West Sussex, UK.

Casati, F., Tlnicki, S., Jin, L.-J., Krishnamoorthy, V. & Shan, M.-C. (n.d.), Adaptive and dynamic service
composition in eFlow, in ‘Proc. of CAISE’00’, Springer Verlag, Stockholm.

Chen, Q. & Hsu, M. (2001), Inter-enterprise collaborative business process management, in ‘Proc. of the Int.
Conf. on Data Engineering (ICDE)’, Heidelberg, Germany.

Coalition, W. M. (1996), Terminology and glossary, Technical Report WFMS-TC-1011, Workflow Management
Coalition, Brussels - Belgium.

Dogac, A. & Cingil, I. (2001), ‘A survey and comparison of business-to-business e-commerce frameworks’, ACM
SIGecom Fzchanges 2(2).

Dogac, editor, A. (1998), ‘Special Issue on Electronic Commerce’, ACM SIGMOD Record 27(4).

Dumas, M., O’Sullivan, J., Heravizadeh, M., Edmond, D. & ter Hofstede, A. (2001), Towards a semantic
framework for service description, in ‘Proc. of the 9th Int. Conf. on Database Semantics’, Kluwer Academic
Publishers, Hong-Kong.

eBizQ (n.d.), ‘eBiz integration’, http://b2b.ebizq.net/ebiz_integration/yee_1.html. Last access on
March 2002.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns: Flements of Reusable Object-
Oriented Software, Addison-Wesley, Readings MA, USA.

Harel, D. & Naamad, A. (1996), ‘The STATEMATE semantics of statecharts’, ACM Transactions on Software
Engineering and Methodology 5(4), 293-333.

Kuno, H., Lemon, M., Karp, A. & D, B. (2001), Conversations + interfaces =3d business logic, in ‘Proc. of
the 2nd Workshop on Technologies for E-Services (TES)’, Roma, Ttaly.

Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A. & Weikum, G. (1998), ‘From centralized workflow specifi-

cation to distributed workflow execution’, Journal of Intelligent Information Systems 10(2).

Omelayenko, B. & Fensel, D. (2001), A two-layered integration approach for product information in B2B
E-commerce, in ‘Proc. of the International Conference on Electronic Commerce and Web Technologies
(EC-Web)’, Springer Verlag, Munich, Germany.

Rumbaugh, J., Jacobson, I. & Booch, G. (1999), The Unified Modeling Language reference manual, Addison-
Wesley.

Sayal, M., Casati, F., Dayal, U. & Shan, M. (2001), Integrating workflow management systems with Business-to
-Business interaction standards, Technical Report HPL-2001-167, HP Labs.

Schuster, H., Georgakopoulos, D., Cichocki, A. & Baker, D. (n.d.), Modeling and composing service-based and
reference process-based multi-enterprise processes, in ‘Proc. of CAISE’00’, Springer Verlag, Stockholm.

Tut, M. & Edmond, D. (2002), The use of patterns in service composition, in ‘CAiSE Workshop on Web Ser-
vices, e-Business, and the Semantic Web (WES)’, Toronto, Canada. http://pcsiwal2.rett.polimi.it/ per-
nici/WSeBT/papers/Tut AndEdmond.pdf.

Weikum, G., ed. (2001), Special Issue on Infrastructure for Advanced e-Services, IEEE Data Engineering
Bulletin. volume 24(1).

