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ABSTRACT
Workflow systems are gaining importance as an infrastruc-
ture for automating inter-organizational interactions, such
as those in Electronic Commerce. Execution of inter-organiz-
ational workflows may raise a number of security issues in-
cluding those related to conflict-of-interest among compet-
ing organizations. Moreover, in such an environment, a
centralized Workflow Management System is not desirable
because: (i) it can be a performance bottleneck, and (ii)
the systems are inherently distributed, heterogeneous and
autonomous in nature. In this paper, we propose an ap-
proach to realize decentralized workflow execution, in which
the workflow is divided into partitions called self-describing
workflows, and handled by a light weight workflow manage-
ment component, called workflow stub, located at each orga-
nizational agent. We argue that placing the task execution
agents that belong to the same conflict-of-interest class in
one self-describing workflow may lead to unfair, and in some
cases, undesirable results, akin to being on the wrong side of
the Chinese wall. We propose a Chinese wall security model
for the decentralized workflow environment to resolve such
problems, and a restrictive partitioning solution to enforce
the proposed model.

Keywords
Decentralized Workflow Execution, Chinese Wall Security
Policy, Self-describing workflow

1. INTRODUCTION
Since timely services are critical for any business, there

is a great need to automate or re-engineer business pro-
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cesses. Many organizations achieve this by executing the
coordinated activities (tasks) that constitute the business
process (workflow) through workflow management systems
(WFMS). In general, a workflow can be defined as a set
of tasks and dependencies that control the coordination re-
quirements among these tasks. The task dependencies can
be categorized into control-flow dependencies, value depen-
dencies, and external dependencies [9, 14].
With the rapid growth of internet usage for enterprise-

wide and cross-enterprise business applications (such as those
in Electronic Commerce), workflow systems are gaining im-
portance as an infrastructure for automating inter-organizat-
ional interactions.
Traditionally, the workflow management and scheduling is

carried out by a single centralized workflow management en-
gine. This engine is responsible for enacting task execution,
monitoring workflow state, and guaranteeing task depen-
dencies. However, in an electronic commerce environment
with inter-organizational workflows, a centralized Workflow
Management System is not desirable because: (i) scalability
is one of the pressing needs since many concurrent workflows
or instances of the same workflows are executed simultane-
ously, and a centralized WFMS can cause a performance
bottleneck, and (ii) the systems are inherently distributed,
heterogeneous and autonomous in nature, and therefore do
not lend themselves to centralized control. In fact, several
researchers have recognized the need for decentralized con-
trol [2, 18, 10, 6].
In this paper, we propose a decentralized workflow man-

agement model (DWFMS) where the intertask dependencies
are enforced without having to have a centralized WFMS.
Our model introduces the notion of self-describing workflows
and WFMS stubs. Self-describing workflows are partitions
of a workflow that carry sufficient information so that they
can be managed by a local task execution agent rather than
the central WFMS. A WFMS stub is a light-weight compo-
nent that can be attached to a task execution agent, which is
responsible for receiving the self-describing workflow, mod-
ifying it and re-sending it to the next task execution agent.
Execution of inter-organizational workflows may raise a

number of security issues including those related to conflict-
of-interest among competing organizations. In this paper,
we demonstrate that placing the task execution agents that
belong to the same conflict-of-interest group in one self-
describing workflow may lead to unfair, and in some cases,
undesirable results, akin to being the wrong side of the Chi-
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nese wall. We propose a Chinese wall security model for the
decentralized workflow environment to resolve such prob-
lems, and a restrictive partitioning solution to enforce the
proposed model.
The remainder of the paper is organized as follows. In

section 2, we present the motivation to this paper with
an example by distinguishing the centralized control with
its decentralized counterpart. In section 3, we present our
workflow model. In section 4, we present our approach to
providing decentralized control. In appendix A, we provide
a brief review of the Chinese wall security policy. In section
5, we present a variation of the Chinese wall security model
suitable for decentralized workflow systems, called the DW
Chinese Wall Policy, which can be used to eliminate the
problems that arise due to conflicts-of-interest. In section
6 we present our approach to decentralized control that en-
forces the DW Chinese wall policy. Section 7 provides a
brief review of related research. Finally, section 8 provides
conclusions and future research directions. Due to space
limitations, we have not included the proof of the theorems
(see [3]).

2. MOTIVATION
A workflow is comprised of a set of tasks, and a set of task

dependencies that control the coordination among the tasks.
In an inter-organizational workflow, tasks are executed by
different, autonomous, distributed systems. We call the sys-
tem that executes a specific task a task execution agent, or
simply an agent. We denote the agent of a task ti as A(ti).
In the following, we will take an example to illustrate first
how the workflow is executed with centralized control and
decentralized control, and then portray the security prob-
lems that arise due to decentralized control.

Example 1. Consider a business travel planning process
that makes reservations for a flight seat, a hotel room and a
rental car. The workflow that depicts the process at a travel
agent may comprise of the following tasks:
t1: Input travel information
t2: Reserve a ticket with Continental Airlines
t3: if t2 fails or if the ticket costs more than $400, reserve a
ticket with Delta Airlines
t4: if the ticket at Continental costs less than $400, or if the
reservation at Delta fails, purchase the ticket at Continental
t5: if Delta has a ticket, then purchase it at Delta.
t6: Reserve a room at Sheraton, if there is flight reservation,
and
t7: Rent a car at Hertz
The corresponding workflow can be depicted as a graph,
shown in figure 1. Note that “bs” and “bf” in the figure
stand for “begin on success” and “begin on failure,” respec-
tively. Assume that each task is executed at the appropriate
agent, for example, t2 by Continental, t3 by Delta, etc. In
the above workflow example, the type of dependencies that
are of interest to us in this paper are t2 → t3 and t2 → t4,
which state that t3 should begin only if t2 is not success-
ful or the outcome of t2 is more than $400, and t4 starts
when t2’s outcome is $400 or less. Examples such as this
are not unusual (consider priceline.com), where a customer
sets a maximum he is willing to pay, but not necessarily
looking for the best price. At the same time, he may have
preferences for the merchants whom he wants to do business
with, for example preferences for a specific set of airlines in

t2t1 t6 t7

t3

t4

t5

Bs Bs
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BsBf(Bf) OR price>$400

price<=$400

Figure 1: A Travel Plan Workflow

a certain order to accrue frequent flyer miles. To keep the
example simple, we have not taken into account the case
where both t2 and t3 result in a failure, but we realize that
the example can be enhanced to take into account all the
cases.

Centralized Control
With centralized control, there exists a single WFMS that
is responsible primarily for: (1) distributing the tasks to
the appropriate agents, and (2) ensuring the specified task
dependencies by sending the tasks to their respective agents
only when all requisite conditions are satisfied. To achieve
this, the WFMS first sends t1 to A(t1), after it receives the
response from A(t1), sends t2 to A(t2). When it receives the
response from A(t2), it evaluates the dependencies to choose
the next task in the workflow according to the dependency,
and sends it to the corresponding agent. For instance, if the
result from A(t2) was price > $400, the WFMS would send
t3 to A(t3). After receiving the response, it sends t4 or t5
to its corresponding agent, A(t4) or A(t5), and so on. In
other words, the WFMS is responsible for the control flow
at every stage of execution, as shown in Figure 2.

A(t 1) A(t )2 A(t 3) A(t )4 A(t )5 6A(t ) A(t 7)

Central System

Figure 2: Centralized (Traditional) Workflow Man-
agement

Decentralized Control
With decentralized control, the entire workflow is sent to
A(t1) by the central WFMS. After the execution of t1, A(t1)
forwards the remaining workflow to the following agents, in
this case, A(t2). After executing t2, A(t2) evaluates the fol-
lowing dependencies and forwards the remaining workflow to
the next appropriate agent. For instance, if the price > $400,
A(t2) would send the remaining workflow (t3, t4, t5, t6, t7) to
A(t3). Alternatively, if the price ≤ $400, it would send the
remaining workflow (t4, t6, t7) to A(t4). A(t3) executes its
task t3, evaluates the dependency, and makes a choice to
send the remaining workflow to the appropriate agent, ei-
ther to A(t4) or to A(t5), and so on. At the end, the last
task execution agent(s) need to report the results back to
the central WFMS, as shown in figure 3. Note that this way
of execution results in fewer message exchanges between the
central WFMS and the task execution agents, and also mini-
mizes the control by one single central controlling authority,
which is desirable in autonomous environments.
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Figure 3: Decentralized Workflow Management

Security Problems due to Decentralized Control
There is a clear problem, if we employ decentralized control
to execute the workflow in example 1. After the execution of
t2, A(t2) must send the remaining workflow to either A(t3)
or A(t4), based on the outcome of t2. A(t2) has the knowl-
edge that if it fails (that is, no ticket is available) or if the
ticket costs more than $400, the task needs to be sent to
A(t3) (Delta airlines), which is a competing company. Due
to this fact, A(t2) can manipulate the price of the ticket
and may reduce it to $399, which may result in a loss of
business to A(t3) or may prevent the customer from getting
a better price than $399 that may potentially be offered by
Delta. Note that A(t2) cannot gain such an advantage if the
workflow were executed with centralized control. This is be-
cause the central WFMS first sends t2 to A(t2) and observes
the result, and if it is more than $400 sends t3 over to A(t3).
Since A(t2) has no knowledge of the conditional dependency,
it outputs its originally intended price. It is important to
note that the actions of A(t2) are legitimate, and do not
involve any malicious activity such as changing the control
logic of the workflow. The problem still persists even if the
dependency information is revealed only to A(t3). Similar
problem exists with t2−→t4. Thus, with the knowledge of
dependency information, one agent can benefit at the cost
of the other. It is important to note that revealing only t2
to A(t2) by appropriately encrypting the workflow will not
work. This is because A(t2) has to evaluate the dependency
and forward the remaining workflow, and therefore A(t2)
should know both the dependency and the following agent.
In this paper, we argue that the problem depicted above is
similar to that of that addressed by the Chinese Wall Secu-
rity Policy, and we propose a modified Chinese wall security
policy to suit to the decentralized control environment.

3. THE WORKFLOW MODEL
A workflow is a set of tasks with task dependencies defined

among them. Formally:

Definition 1. [Workflow] A workflow W can be de-
fined as a directed graph (T,D), where T , the set of nodes,
denotes the tasks t1, t2...tn in W , and D, the set of edges, de-
notes the intertask dependencies ti

x−→ tj , such that ti, tj ∈
T and x the type of the dependency.

Given a workflow, W = 〈T,D〉, we define the tasks and the
dependencies in the following.

3.1 Workflow Tasks
The task structure can be represented as a state tran-

sition diagram with a set of states and a set of primitive
operations, as shown in figure 4. At any given time, a task
ti can be in one of the following states (sti): initial (ini),
executing (exi), done (dni), committed (cmi), aborted(abi),
succeeded (sui) or failed (fli). A primitive moves the task

in ex

dn cm su
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e

c e
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Figure 4: States of a Task

from one state to another. Given a task ti, we assume the
following primitives (pri): begin (bi), precommit (pi), com-
mit (ci), abort (ai) and evaluate (ei). We denote the set
of these distinct states and primitive operations by ST and
PR, respectively.
Note that, failure of a task can be due to one of the follow-

ing two reasons: (1) a task cannot execute to its completion
due to an internal failure (such as abort), or (2) its output
is not as expected although the execution has successfully
completed. The latter can be due to an invalid input from
the user. For example, the task of reserving a ticket for a
flight may commit successfully, but there may not be any
seats available. So a successful commit may still result in a
failure of a task.

Definition 2. [Task] Each task ti ∈ T is a 4-tuple
〈A,C, Input,Output〉, where A denotes the execution agent
of ti, C the set of activities (or operations) within ti, Input
the set of input parameters to ti, and Output the set of
output parameters from ti.

In the following, we use the notation A(ti), C(ti), Input(ti),
and Output(ti) to denote the task agent, the set of activities,
the set of input parameters, and the set of output parameters
of ti, respectively.

Example 2. An example of a task, t1 = Purchase a ticket
at Continental, is as follows:
A(t1) = ContinentalT ravelAgent,
C(t1) = {check seat, check price,make invoice},
Input(t1) = {travel date, destination}, and
Output(t1) = {invoice number, ticket},
which states that t1 requires a travel date and destination
as its input and generates the invoice number and a ticket
as its output.

3.2 Workflow Dependencies
Intertask dependencies support a variety of workflow co-

ordination requirements. Basic types of task dependencies
include control-flow dependencies, value-dependencies and
external dependencies [1, 13].

1. Control flow dependencies: Also referred to as state de-
pendencies, these dependencies specify the flow of control
based on the state of a task. Formally, a control-flow depen-
dency specifies that a task tj invokes a primitive prj only if
ti enters state sti. For example, a begin-on-success depen-

dency between tasks ti and tj denoted as ti
bs−→ tj , states

that tj can begin only if ti enters a succeeded state.

2. Value dependencies: These dependencies specify the flow
of control based on the outcome of a task. Formally, a task
tj can invoke a primitive prj only if a task ti’s outcome sat-

isfies a condition ci. For example, ti
bs,x>100−→ tj states that

tj can begin only if ti has successfully completed and the
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value of its outcome, x is > 100. Since the outcome can be
evaluated only in case of a successful completion of a task,
all value dependencies have to be associated with a “bs” de-
pendency. Therefore, explicit representation can be omitted.

3. External dependencies: These dependencies specify the
control flow based on certain conditions satisfied on param-
eters external to the workflow. A task ti can invoke a prim-
itive pri only if a certain condition c is satisfied where the
parameters in c are external to the workflow. For example,
a task ti can start its execution only at 9:00 am, or a task ti
can start execution only 24 hrs after the completion of task
tk.
Each task ti, therefore is associated with a set of state

dependency variables S = ST , value dependency variables
V = Output(ti), and external variables E .

Definition 3. [Dependency Variables and Literals]
A dependency variable dv for a task ti is defined as follows:
If ti ∈ T and v ∈ DV = {S ∪ E ∪ V}, then dv = ti.v.
A dependency literal l is a value that a dependency variable
can take, and is defined as l ∈ L = {R ∪ N ∪ G ∪ ST},
where R is the set of real numbers, N the set of natural
numbers, G the set of alphanumeric strings, and ST the set
of all possible states for tasks in W .

Definition 4. [Dependency Expression]
A dependency expression, de is defined as follows:

• if dv ∈ DV and l ∈ L, and op ∈ {=, �=, <,>,≤,≥},
then dv op l is a dependency expression.

• if de1 is a dependency expression, then (de1) is a de-
pendency expression;

• if de1 is a dependency expression, then ¬de1 is a de-
pendency expression; and

• if de1 and de2 are dependency expressions, (de1 ∧ de2)
and (de1 ∨ de2) are dependency expressions.

Example 3. Following are examples of dependency ex-
pressions.

1. t1.state = success;
2. (t1.price > $400 ∧ t2.seat ≥ 2)

Definition 5. [Dependency] Each dependency ti
d−→

tj in D, is a 4-tuple 〈hd, de, tl, pr〉, where hd and tl denote
the head (ti) and tail (tj) tasks, de the dependency expres-
sion, and pr ∈ PR the primitive of tj to be invoked when
de is true.

Example 4. Following is a list of examples of the three
types of dependencies:

1. t1
bc−→ t2: 〈t1, t1.state = commit, t2, begin〉

2. t1
bc,price>$200−→ t2: 〈t1, (t1.state = commit∧ t1.price >

$200), t2, begin〉
3. t1

time=10am,abort−→ t2: 〈t1, (t1.time = 10am), t2, abort〉

4. OUR APPROACH TO DECENTRALIZED
CONTROL

In this section, we will first propose a methodology and
architecture to enforce the inter-organizational task depen-
dencies without the need for having to have a centralized

WFMS Stub

A(t1)

WFMS Stub

A(t )2

WFMS Stub

)A(t3

WFMS Stub

A(t )4

))Self(A(t 3 ))Self(A(t 4Self(A(t 2) )

))Self(A(t 1

WFMS Stub

Central System

Figure 5: Our Approach to Decentralized Control

WFMS. In regard to this, we propose (1) self-describing
workflows and (2) WFMS stubs. Self-describing workflow
carries workflow information, and WFMS stubs are light-
weight software component that can be installed at each
agency to process a self-describing workflow. In the follow-
ing, we discuss them in detail.

4.1 Self-describing workflows
Intuitively, a self-describing workflow, comprises of (1) a

task t, (2) all the tasks that follow t and the dependencies
among them, (3) the agent that executes t, (4) the input ob-
jects required to execute t. This information is piggy-backed
along with t when sending it to its execution agent. Figure 5
shows how such decentralized control can be achieved using
the notion of self-describing workflows.
If we walk through this example, the central WFMS stub

constructs a self-describing workflow with the entire work-
flow, and sends it to A(t1) first. WFMS Stub at A(t1) exe-
cutes t1, partitions the remainder of the workflow if needed,
constructs a self-describing workflow(s), and sends it to the
subsequent agent A(t2) based on the dependency evalua-
tion. That is, as the workflow execution progresses, it gets
divided into partitions and forwarded for the next task ex-
ecution agent. We assume the initial partition is the entire
workflow, which is denoted as P1. Let Pi be the ith parti-
tion. Following is a formal definition of the self-describing
workflow:

Definition 6. [Self Describing Workflow] Given a
workflow Pi, we define its self-describing workflow, SELF(Pi),
as a tuple 〈ti, P reSet(ti), OutState(ti), Pi〉, where ti is the
first task in Pi, PreSet(ti) is preconditions to be satisfied
before ti entering a state sti, OutState(ti) is the set of de-

pendency variables in ti
d−→ tj for all tj with an outgoing

dependency from ti and their values generated from ti’s ex-
ecution.

OutState(ti) can be a control state, value state of a variable,
and/or an external state. For instance, OutState(t1) of de-
pendency 2 in example 4 can be {cm, price > $200}, and for
that of dependency 3 can be {bs, time=9AM}. Note that
OutState(ti) is used for evaluating dependency expressions,
while Output(ti) is forwarded to the following agents to be
used as input to their tasks.

4.2 WFMS stub
A WFMS stub is a small component that can be attached

to a task execution agent. This module is responsible for
interpreting the given workflow: i.e. (1) evaluate precon-
ditions and execute its task, (2) partitions the remaining
workflow, constructs self-describing workflows, (3) evaluate
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control information and (4) forwards each to its subsequent
agent.

4.2.1 Precondition Evaluation
The WFMS stub at each agent needs to evaluate the

preconditions for its task to change its state from one to
another through its primitive operations. Although, until
now we have referred to the precondition set of a task ti
(PreSet(ti)) that applies to the task as a whole, since the
task dependencies may specify invocation of any primitive,
we need to distinguish them for each primitive. Before the
task changes its state from one to another, preconditions
attached to each primitive operation need to be evaluated.
Following is the definition of preconditions of a task ti for
each primitive operation pri.

Definition 7. [Precondition Set] Given a task ti in
W , we define the precondition set, PreSet(ti) = Preb

ti
∪

Prec
ti

∪ Prea
ti
, such that each Prepr

ti
= {de1 ∨ de2 ∨ ... ∨

den|tk d−→ ti where k = 1..n } where d = 〈tk, de, ti, pr〉.

For the sake of simplicity, in this paper, we assume that
all joins and splits are OR-joins and OR-splits. In the above
definition, Preb

ti
, Prec

ti
and Prea

ti
are dependency expres-

sions that must be satisfied to invoke primitive operations,
begin, commit, and abort, respectively. We have not in-
cluded the preconditions for the evaluate primitive because,
typically there will not be any dependency specification that
requires to invoke it.
For example, PreSet(t3) in our example 1 comprise of:

Preb
t3 = (t2.state = fl ∨ t2.price > $400), Prec

t3 = ∅ and
Prea

t3 = ∅.
Given PreSet(ti), we say Prepr

ti
is satisfied at a given state

if the de in Prepr
ti

is evaluated true in OutState(tk).
1

4.2.2 Workflow Partitioning
Once the task is completed, the WFMS stub prepares

self-describing workflows for the following task agents, by
first partitioning the remaining workflow. Following is an
algorithm to partition and then generate a self-describing
workflow.

Algorithm 1. [Self-describing Workflow Construc-
tion]

Partitioning: Given Wi at A(ti),

For each tj where ti
x−→ tj exists,

p = a connected component < tj , ... > where tj is its root
Pj = {(T,D)| T = a set of tasks {tj , tk, ..., te} in p and

D = a set of dependencies among tasks in T}
Generation of Self-describing Workflows:
Given a partition Pj ,

tj = first task in Pj
SELF(Pj) = 〈tj , P reSet(tj), OutStates(tj), Pj〉

We illustrate the working of the partitioning with the help
of an example shown in figure 6. After task agent A(t2) fin-
ishes its task execution with P2 in figure 6(A), it partitions
the remaining workflow into two, P3 and P4 as shown in
figure 6(B). Notice the t6 and t7 are included in both P3
and P4 since we assume there is OR-join at t6, so they are

1If Prepr
ti

= ∅, then the preconditions are always satisfied
for that primitive operation.

t2

t3 t5

t6 t7
t4

Bs

t6 t7 t7P7

t6 t7
t4

t6 t7

t3 t5

t4

Bs

Bf Bs(Bf) OR price>$400

Bf
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P3

P4

P6

(A)

(B)

(C) (D)

Bs

Bs

BsBf

Bf

Bs

Bf

Bf

price<=$400

Figure 6: An example to illustrate partitioning

not omitted in case one partition results in a failure during
execution. Subsequently, A(t4) would partition P4 into P6,
and at A(t6) P6 gets partitioned into P7 as in figure 6(C).
The workflow partitioning is a necessary step for decentral-
ized execution. To handle COI, we modify this partitioning
algorithm by further restricting the way in which partition-
ing is done (in algorithm 2 in section 6).

4.2.3 The WFMS stub
In the following, we describe the functionality of theWFMS

stub at each A(ti). The WFMS stub encounters the follow-
ing three cases. Since the algorithm is similar to the secure
WFMS stub algorithm (algorithm 3), we provide only an
informal discussion here.

Case 1: WFMS stub does not need to evaluate the precon-
ditions of its following task(s) tj to send SELF(Pj). This
is possible if Preb

tj
= ∅. In this case, the task(s) following

ti can be executed in parallel with that of ti. Therefore,
the WFMS stub does not need to evaluate the precondition
of tj at this point, but ti and tj can start their execution
in parallel. Therefore, the WFMS stub at A(ti) first con-
structs the SELF(Pj), sends it over to A(tj), and executes
its own task ti. Only after the execution of ti is complete,
it evaluates PreSet(tj) and sends a signal to A(tj) indicat-
ing the completion of its execution. For example, consider
the dependency t2

c−→ t3 in the workflow shown in figure
7. Since this is a commit dependency, only the precondition
for the commit primitive is non-empty, but that of the begin
primitive is empty. In this case t2 and t3 will be executed
in parallel.

Case 2: WFMS stub needs to evaluate the preconditions
of its following task(s) tj before sending the SELF(Pj) to
A(tj). This is required if Preb

tj
�= ∅. Therefore, WFMS

stub first constructs SELF(Pj), executes ti, evaluates Preb
tj
,

and sends SELF(Pj) to A(tj) only if the Preb
tj

is true. For

example, in t1
bs−→ t2 in figure 7, SELF(P2) will not be sent

to A(t2) if Preb
t2 is not true.

Case 3: TheWFMS stub needs to evaluate the precondition
of its own task ti. When a task is executed in parallel along
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t1 t2 t3 t4
bs xc

Figure 7: An example to describe WFMS stub

with its preceding task as in case 1, it has to wait (in the
done state) for the signal to terminate its execution. This
work will be in addition to taking care of one of the previous
two cases. For example, the WFMS stub at A(t3) has to
evaluate Prec

tj
before commiting. In addition, it has to do

the functions of either case 1 or case 2 based on t3
x−→ t4.

5. CHINESE WALL SECURITY MODEL
FOR DECENTRALIZED WORKFLOWS

In this section, we propose a variation of the Chinese Wall
Security model that is capable of addressing the problems
of conflict-of-interest in the decentralized workflow environ-
ment. We call this as DW Chinese Wall Security Policy.
Note that the conventional Chinese Wall security model ad-
dresses the issue of a company information leaking to an-
other company, which is in the same conflict of interest
group. In our model, the sensitive information is not in-
herent to a company (task agent), but rather the workflow
definition itself. First, the sensitive dependency information
could leak to a task agent, thus the output of a task can be
manipulated. Second, the output or “response” of a task
can be sensitive and can leak to another task. In the fol-
lowing, we will first define objects, subjects, read and write
operations by drawing an analogy with those of the original
Chinese wall security model. Based on these definitions, we
then define our security model.

Objects: Objects include, the data objects in a company
data set, and the dependencies in a workflow. We refer
the latter as dependency objects. We categorize the data
objects in the workflow into two: sensitive and non-sensitive.
Sensitive data objects are those that change the execution
flow of the workflow. In other words, these are the objects
involved in the dependencies. We are concerned about only
sensitive objects, so from now on, data objects refer to only
sensitive objects.

• Object COI Property: A distinguishing property that
we impose here is that, if x is a data object involved in
a dependency object o, then o belongs to the company
of x as well as to all companies in the same COI class.

Let us consider dependency t2
bf∨price>400−→ t3 in example 1

to illustrate sensitive and non-sensitive objects. Since the
execution flow depends on the value of the price written by
A(t2), price is a sensitive object. On the other hand, con-
sider the workflow which simply gathers the price from each
airline and reports them back to the user where the user de-
cides the airline of his choice. In such a case, although price
is one of the output parameters of t2, since there is no depen-
dency defined over price, it cannot influence the execution
flow. Therefore, in this case, price is a non-sensitive object.
There are two sensitive dependency objects in the workflow
in example 1, which is price > $400 and price ≤ $400.

Subjects: A subject is the task execution agent that ex-
ecutes a task in a workflow. A subject S, by definition
belongs to one company and therefore belongs to that COI
class, which is denoted as COI(S) (unlike the conventional
Chinese wall policy in which a subject’s association with a
company is determined by his first access.) A subject is al-
lowed to access (both read and write) any data object from
its company dataset.

Read and Write operations: A read operation includes
reading data and dependency objects, and evaluating the
dependency expressions. A write operation includes writing
to data objects, and generating self-describing workflows.

Definition 8. [DW Chinese Wall Security Policy]

1. [Evaluation/Read Rule]: A subject S can read an
object O,
if O belongs to its own company data set,
or if O is a dependency object that does not belong to
another company in COI(S).

2. [Write Rule]: A subject S can write an object O,
if S can read O

The read rule says that a subject is allowed to read its
own company data objects. A subject is also allowed to
read any dependency object that does not belong to a com-
pany which is in the same COI as that of the subject’s com-
pany. Considering once again example 1, the dependency

t2
(bf)∨(price>400)−→ t3 belongs to both A(t2) and A(t3), ac-

cording to our object COI property. Hence both A(t2) and
A(t3) are not allowed to read this, thus not allowed to eval-
uate it. The write rule says that a subject is allowed to
write any object, both data and the dependency type, if it
is allowed to read. Note that writing an object includes par-
titioning the workflow to generate self-describing workflows.

6. DECENTRALIZED CONTROL WITH
THE DW CHINESE WALL POLICY

In this section, we provide the partitioning and WFMS
stub algorithms that enforce the DW Chinese wall security
policy.

6.1 Restrictive Partitioning
According to the read and write rules of this policy, a

task execution agent cannot read, evaluate preconditions,
or write to any sensitive object that belongs to a different
company within its own COI class. In other words, it not
only is not allowed to view, but also not allowed to construct
a self-describing workflow that involves sensitive objects or
tasks that belong to the same COI class. To accomplish
this, we restrict the partitions using the following rule.

Definition 9. [Restrictive Partitions Rule] Let ti be
a task in W. Let Pi be a partition sent to A(ti). A restrictive
partition Pj of ti is such that there exist no sensitive objects
belonging to COI(A(ti)).

Definition 10. [Critical Partition] A partition Pi is
said to be a critical partition if it does not comply with the
restrictive partition rule.
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A trivial solution to obtain restrictive partitions is as fol-
lows. When a workflow is submitted to the central WFMS,
it partitions the entire workflow so that no two tasks that
belong to the same COI class exist in a partition. However,
the central WFMS stub has to ensure the execution of each
partition as a separate workflow. Although this solution is
simple and straight forward, this requires relying heavily on
the central WFMS for the execution of the entire workflow.
In the worst case, it effectively results in centralized control.
The challenge, therefore, is to decompose a workflow into

partitions that satisfy the restrictive partition rule (1) with-
out having to introduce any additional centralized control,
and (2) without making the intermediate task execution
agents take over part of the control.
In the following, we propose a restrictive partition algo-

rithm that meets these two challenges. We divide Prepr
ti

as Prelocal
ti

and Preremote
ti

, where Prelocal
ti

comprises of the
predicate involving non-sensitive objects, and Preremote

ti
com-

prises of the predicate involving sensitive objects.

Algorithm 2. [Restrictive Partition]

Given Pi,
Pj = Partition(Pi)
for each critical partition Pj

Given tm such that tj
d−→ tm in Pj

Case 1: tj−→tm is sensitive for both A(tj) and A(tm)
/*COI(A(tj))=COI(A(tm)) and d belongs to both */
add a dummy task tdi at A(ti) such that C(ti)=∅
split Pj as follows:

Pj : tj
signal−→ tdi

Pi : remove the dependency (tj
d−→ tm),

add dependency tdi
d′−→ tm such that d′ = d

Prepr
tj
=Prelocal

tj
and Prepr

ti
=Preremote

tj

Output(tj) = Outstate(tj)∪Output(tj)
Case 2: tj−→tm is sensitive only for A(tj)
/*A(tm) evaluates the sensitive part of the dependency*/
split Pj as follows:

Pj : tj
signal−→ tm

Pm : remove tj−→tm from Pj

Prepr
tj
=Prelocal

tj
and Prepr

tm
=Preremote

tj

Output(tj) = Outstate(tj)∪Output(tj)
Case 3: d is not sensitive to either A(tj) or A(tm)

split Pj into

Pj : tj
signal−→ tm

Pm : remove tj−→tm from Pj

Prepr
tj
=Preremote

tj
and Prepr

tm
=Prelocal

tj

Output(tj) = Outstate(tj)∪Output(tj)
In the following, we explain the three different cases of

restrictive partitioning: Case 1: when the sensitive infor-
mation pertains to both task agents (A(tj) and A(tm)), the
sensitive dependency information is split and routed through
a neutral task agent (A(ti)), thus avoiding the information
leakage to both A(tj) and A(tm); Case 2: when the sensi-
tive information is only to A(tj), then the sensitive part of
the dependency will be evaluated at A(tm), leaving A(tj)
with non-sensitive information, thus preventing A(tj) from
manipulation; Case 3: when the sensitive information per-
tains to A(tm) only or somewhere along the path there exists
sensitive information to A(tj), then the algorithm splits the
rest of the workflow into two to prevent A(tj) to get hold

t6 t7

t3 t5
t2

t4

Bs

Bs

Bf

Bf

(Bf) OR price>$400 BsP23

t6 t71t t4

t2 t6 t7
t4

t2 1tP24’

P24’’ Bs Bf

(B)

(A)

p24 Bs Bfprice<=$400

price<=$400

P24 Before Split

P24 After Split

Figure 8: An example for restrictive partition for
adjacent tasks

of senstive information, or try to hide sensitive information
from A(tm) by splitting the dependency between A(tj) and
A(tm).
Note that when the above algorithm makes a restrictive

partition, it removes the actual dependency connecting these
two restrictive partitions and adds an additional signal de-
pendency that still connects these two partitions. A signal
dependency simply sends a signal. The reason for adding
such a dependency is to ensure that the dependency infor-
mation is not lost even when it is removed. In other words,
it preserves the semantics of the workflow while partitioning.

Example 5. We illustrate case 1 of the restrictive par-
tition algorithm using the travel plan workflow shown in
figure 1. Assume P1 be the workflow shown in figure 1 sent
to A(t1). When t1 is finished the WFMS stub at A(t1)
has to split the remaining workflow for the next task agent
A(t2). The partition P2 is critical because the dependency

t2
bf∨price>$400−→ t3 and t2

price<=$400−→ t4 belong to A(t2) who
cannot read them (due to the read rule). Since there exist
two outgoing edges from t2, the critical partition P2 needs to
consider both sub-partitions, P23 and P24 as shown in figure
8(a). We have used dashed circle to indicate the agents that
belong to the same COI class.

To show how the restrictive partition algorithm works,
we will consider only the sub-partition P24 since the solu-
tion for the partition P23 is almost the same. This is case
1 of the algorithm 2 since the dependency object belongs
to both COI(A(tm)) and COI(A(tj)) and COI(A(tm)) =
COI(A(tj)).

(1) The first step is to remove the dependency t2
price<$400−→

t4, and split P24 into two: P ′
24 = {t2} and P ′′

24 = {t4 bs−→
t6, t6

bf−→ t7}.
(2) The second step is to split dependency into sensitive

(remote) and non-sensitive parts (local), and hide the sensi-
tive dependency information. We introduce a dummy task
td1 at A(t1), whose function is only to keep the ouput from
t2 and use it to evaluate the dependency between t2 and t4.
In this case the dependency comprises of all sensitive predi-
cates, and therefore, it has to be evaluated at A(t1) (all the
dependency is Preremote

td
1

).
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non-adjacent tasks

(3) The last step is to add a signal dependency between

t2 and td1 so that P ′
24 = {t2 signal−→ td1}, as shown in figure

8(B). The purpose of the signal dependency is simply that
when A(t2) completes the execution it will generate a self-
describing workflow to inform A(t1) that it can start eval-
uating the sensitive dependency with Output and Outstate
forwarded by the stub in A(t2). We have used a dashed edge
to represent the signal dependency.
In this manner, A(t2) neither has the knowledge of the

remainder of the workflow (i.e. t4, t6, t7 ), nor does it know
on what sensitive control flow logic t1 would proceed. We

preserve the control flow logic of the original t2
price<$400−→ t4

by including this dependency as a Precondition in A(td1).
For step 2, if the dependency contains both control and

sensitive value dependency (as in t2
bf∨price>$400−→ t3 in P23),

we have to split the dependency expression into two: local
and remote dependency expressions. Local dependency ex-
pressions (i.e. the control flow bf) should be evaluated after
the execution of original task (in that case t2), while remote
dependency expressions (i.e. sensitive dependency like the
value dependency price > $400) should be evaluated in the
dummy task (td1), so that reading the sensitive information
by the same COI class, A(t2) as well as A(t3), is prohibited.
A(t1) contains enough information to evaluate the precondi-
tion price < $400, and if the condition evaluates to true, it
splits the partition P ′′

24 as (t4, t6, t7), and sends the workflow
to the next agent like usual.

Example 6. This example illustrates the senario of case
2. In the workflow shown on figure 9(A) we suppose that
the tasks t2 and the task t4 are in the same COI; We also

suppose that the dependency t2
price<=$400−→ t3 is sensitive

for A(t2) (and of course for A(t4)).

When t1 has to split the workflow to send to A(t2) it has to
take care of the fact that A(t2) cannot read the dependency

t2
price<=$400−→ t3. In this case, different from the one in

example 5, A(t3) can read the dependency and can evaluate
that.
To do that, A(t1) has to split the workflow into two parts.

P2, which includes t2 and a signal dependency from t2 to t3.
P3 includes the task t3 and all the tasks following that. To
evaluate the sensitive dependency, we have to split it into
two. Prelocal

t2 including the non-sensitive objects that can be
evaluated in A(t2) Preremote

t2 including the sensitive objects
that have to be evaluate in the task t3 using the Outstate(t2)
that are also sent to A(t3) for permitting the evaluation.

In this case, there are only sensitive objects that have to
be evaluated in A(t3). This does not reveal sensitive objects
to A(t4) because the conditions have already been evaluated
before the workflow is sent to it.

Theorem 1. The restrictive partition algorithm (algo-
rithm 2) enforces the read and write rules of the DW Chinese
wall policy.

6.2 Secure WFMS stub
In order to make the WFMS stub at the central system

same as that in the agents, we introduce the following. We
assume there exist two dummy tasks t0 and tF that comprise
of empty set of operations such that PreSet(t0) = PreSet(tF )
= φ, Input(t0) = Output(t0) and Input(tF ) = Output(tF ).
The central WFMS is the task execution agent responsible
for executing both t0 and tF .

Definition 11. Given a task ti in a self-describing work-
flow SELF(P ), we say ti is tail(SELF(P )) if there exists no
tj such that ti → tj .

For example, in figure 6(B), t7 = tail(SELF(P4)) and t7
= tail(SELF(P6)).
When a workflow W is sent to the central WFMS, it in-

cludes a t0 to the initial task and a dependency t0
bs−→ t1

such that t1 is one of the tasks in W that do not have any de-
pendency ti → t1 in W . Then the central WFMS sends the
workflow to the WFMS stub in its own location. The func-
tions of the WFMS stub (at the central as well as at the
execution agents) are outlined in the following algorithm.
This algorithm employs the DW Chinese Wall policy using
the restrictive partitioning.

Algorithm 3. [Secure WFMS stub at A(ti)]

Given a SELF(ti)
extract the task ti to be executed in A(ti)
Pj = Restrictive Partition(Pi)
construct SELF(Pj)
if (Preb

tj
= ∅)

/*The task tj has to be executed in parallel with ti*/
then forward SELF(Pj) to A(tj)

execute(ti) until state(ti) = done
if (Preb

ti
= ∅)

/* ti is executed in parallel with the preceding task and
it has to wait to complete*/
then wait

until (sync− signal �= yes ∨ ¬timeout)
raise an error if (timeout)

if (Prepr
ti

= true) where pr ∈ {commit, abort}
then terminate execution
else raise an error

if (OutState(ti) satisfies dependency expression de in
PreSet(tj) ∧ Pretj = true )
then

if (Preb
tj
= ∅)

then send sync-signal to A(tj)
about the completion of its execution

else forward SELF(Pj) to A(tj)

The above WFMS stub algorithm uses restrictive parti-
tion algorithm to split the workflow for task agents that are
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in conflict-of-interest. It also shows how a task (ti) is ex-
ecuted sequentially or in parallel with the subsequent task
(tj). In case of parallel execution, the sync-signal needs
to be sent between task agents in order to coordinate the
task executions. For instance, the dependency specification
in ti

c−→ tj allows to begin parallel execution of ti and tj .
However, once tj is in done state, it needs to wait for a
synchronization signal from ti in order to commit.
Once the self-describing workflows are generated, it should

be proven that the composition of partitioned self-describing
workflows do not lose the dependencies originally in the self-
describing workflows. The following defines the equivalence
of a SELF(P) and the composition of its partitioned work-
flows. Theorem 1 proves that when the partitioned self-
describing workflows are assembled together, they are equiv-
alent to the original SELF(P).

Definition 12. [Equivalence]Given two self-describing
workflows SELF(P ) and SELF(P ′), we say that SELF(P ) is
equivalent to SELF(P ′), denoted as SELF(P ) ≡ SELF(P ′)
if, (1) the set of all operations in SELF(P ) is same as that
of SELF(P ′), and (2) for each ti, the PreSet(ti) in SELF(P )
= PreSet(ti) in SELF(P ′).

Theorem 2. Let SELF(Pi) be a self-describing workflow.
Assume SELF(Pi) is decomposed into SELF(Pi1),
SELF(Pi2), . . . SELF(Pin) using algorithm 2.
Then SELF(Pi) ≡∪n

j=1SELF(Pij ).

7. RELATED WORK
In recent years, several approaches and architectures for

decentralized workflow execution have been proposed [2, 18,
10, 6]. Our approach to decentralized control differs from
these in the following aspects. In these approaches, a work-
flow is pre-partitioned in a central server, and the partitions
are made statically in the central server and distributed to
each execution agent, whereas our approach partitions as
the workflow progresses with its execution. Therefore, our
approach can accommodate dynamism easily. None of these
approaches address the conflict-of-interest issues while parti-
tioning. Some workflow security issues have been addressed
in [4, 1], but are geared towards access control.
Work in the area of mobile code security where code is

executed by untrusted hosts is also relevant to our work [7,
17, 8, 16]. The security concern here is to ensure that sen-
sitive information in the “floating” software is not exploited
by malicious hosts for its advantage, and vice versa where
the mobile software does not leak the sensitive information
of the host to somebody else. Proposed solutions use cryp-
tography where only the relevant code that needs to be exe-
cuted is visible to the host. The code is typically encrypted
using an “Onion Ring” approach, which is explained briefly
below.
Suppose the code comprises of three parts, P1, P2, and P3

to be executed by three hosts H1, H2, and H3, respectively.
P3 is first encrypted with H3’s public key, this encrypted
P3 and P2 together are encrypted by H2’s public key, and
so on. With this, H1 can access only P1, but cannot access
neither P2 nor P3. Such solutions cannot resolve the COI
issues resulting due to decentralized control since each host
should know the control/dependency information in order

to enforce it. If the dependency information d in ti
d−→ tj

is encrypted with tj ’s public key, ti would not be able to

know on which condition it should forward the remaining
workflow to A(tj). If dependency d information is encrypted
with A(ti)’s public key, then the COI problem we addressed
in this paper still remains since ti has already read d.
[11, 12] propose a decentralized label model for more fine-

grained information sharing, while reducing the potential in-
formation leakage through uncontrolled propagation, among
distrusted applications as in mobile codes. Information at a
host is labeled with a pair 〈owner, readerlist〉 where owner
can specify the allowed flow of information, i.e. allowed read-
ers in a program. However, it does not address the policies
on the conflicts of interest among hosts. Its primary concern
is to deal with privacy and confidentiality of information by
controlling information propagation.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have first proposed a model for decen-

tralized control of workflows, using the notions of self- de-
scribing workflows and workflow stubs. We have shown that
fair execution of workflows in a decentralized workflow man-
agement system needs to take into consideration the Chinese
wall policy and the conflicts of interest (COI) groups of task
agents. We have proposed a Chinese Wall Security policy
for decentralized control, in which we modify the original
Chinese wall policy. We have then proposed algorithms to
enforce these read and write rules using restrictive partitions.
While, the partition algorithm generates a non-restrictive

self-describing partition if it does not contain sensitive ob-
jects, it generates restrictive self-describing partitions if it
contains sensitive objects involving the same COI group.
This approach allows to hide the sensitive information con-
tained in dependencies so that the task agents cannot ma-
nipulate their output for their own advantage.
In our future work we intend to extend our framework

to handle the AND join and split while partitioning. Note
that although we have portrayed our approach as a solution
to resolve the issue of conflicts of interest, one can adopt
it under other considerations to restrict the partitions. For
example, factors that affect the partitioning of workflows for
distributed execution may include reliable network connec-
tions and geographic proximity among task agencies, het-
erogeneity of information systems used among task agencies,
degree of autonomy for changing workflows by task agencies,
and so on. We intend to explore these factors for restrict-
ing partitions in the future. We will also investigate how
dynamic changes and exceptions of workflows can be mod-
eled in decentralized WFMS for secure and fair execution of
workflows.
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APPENDIX

A. THE CHINESE WALL SECURITY POL-
ICY

The Chinese wall policy was identified by Brewer and
Nash [5, 15] for information flow in a commercial sector.
It is defined as follows. All company information is cate-
gorized into mutually disjoint conflict of interest classes, as
shown in figure 10. For example, Banks, Oil Companies, Air
Lines are the different conflict-of-interest (COI) classes. The
Chinese wall policy states that information flows from one
company to another that cause conflict of interest for indi-
vidual consultants should be prevented. Thus, if a subject
accesses Bank A information, it is not allowed to access any
information within the same COI class, for example, that of
Bank B. However, it can access information of another COI
class, for example, oil company A.
The Brewer-Nash model [5] proposes the following manda-

tory read and write rules:

1. BN Read Rule: Subject S can read object O only if
O is from the same company information as some object
read by S,
or O belongs to a COI class within which S has not
read any object.

2. BN Write Rule: Subject S can write object O only if
S can read O by the BN Read rule, and no object can
be read which is in different company dataset to the
one for which write access is requested.

The BN write rule prevents information leakage by Trojan
Horses. For example, suppose John has read access to Bank
A objects and Travel agency T objects, and Jane has read
access to Bank B objects and Travel agency T objects. If
John is allowed write access to T’s objects, a Trojan Horse
can transfer information from Bank A’s objects to T’s ob-
jects which is read by Jane, who then can read information
about both Bank A and Bank B.

Company Information

1 2

. . . . . . .
conflict ofconflict of conflict of conflict of
interest class 2 interest class 3 interest class n 

Bank Oil Company Airline Company

O1  O2  .....         OjB1, B2, .....         Bi A1, A2,   . . .        Ak

... ...  ...

. . . .

. . .

interest class 1

Figure 10: Company Information for the Chinese
Wall Policy
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