
Interface Automata
�y

Luca de Alfaro Thomas A� Henzinger

Dept� of Electrical Engineering
and Computer Sciences

University of California� Berkeley
Berkeley� CA ������	���

fdealfaro�tahg�eecs�berkeley�edu

Abstract� Conventional type systems specify interfaces in terms of values and domains�
We present a light�weight formalism that captures the temporal aspects of software
component interfaces� Speci
cally� we use an automata�based language to capture both
input assumptions about the order in which the methods of a component are called�
and output guarantees about the order in which the component calls external methods�
The formalism supports automatic compatibility checks between interface models� and
thus constitutes a type system for component interaction� Unlike traditional uses of
automata� our formalism is based on an optimistic approach to composition� and on
an alternating approach to design re
nement� According to the optimistic approach�
two components are compatible if there is some environment that can make them work
together� According to the alternating approach� one interface re
nes another if it
has weaker input assumptions� and stronger output guarantees� We show that these
notions have game�theoretic foundations that lead to e�cient algorithms for checking
compatibility and re
nement�

� Introduction

The purpose of a modeling language is to capture certain aspects of a design� For hardware�
modeling languages �called hardware description languages provide the basis for design� validation�
and synthesis� For software� modeling languages such as UML �	�� are becoming widely used in
design and documentation� but except for very speci
c domains� they are either too informal or
too heavy to be used e�ectively in validation� We present a light�weight formalism for capturing
temporal aspects of software component interfaces which are beyond the reach of traditional type
systems� Speci
cally� we use an automata�based language to capture assumptions about the order
in which the methods of a component are called� and the order in which the component calls external
methods� Since our language is formal� it can be used not only in design and documentation� but

�This research was supported in part by the AFOSR MURI grant F��������������	
 the DARPA MoBIES grant
F���������C��	��
 the MARCO GSRC grant ���DT����
 the NSF Theory grant CCR������	�
 and the NSF ITR
grant CCR��������

yA preliminary version of this paper will appear in the Proceedings of the �th Annual ACM Symposium on Foun�

dations of Software Engineering �FSE�
 ����

	

also in validation� in particular� for checking that the interfaces of two components are compatible�
Since interfaces are often much simpler than the corresponding implementations� we believe that
it is in this area where formal methods can be most e�ectively used to aid in software design�

The prevalent trend in software and system engineering is towards component�based design�
According to this approach� new software designs are created by combining pre�existing modules
with new software that provides both glue between the components� and new functionality� Indeed�
component�based design� and the use of component libraries� are such standard concepts in cur�
rent software engineering that new programming languages� such as Java� come already supplied
with their component libraries� and the development of systems of any sophistication would be un�
thinkable without resorting to libraries of components� The e�ective reuse of components requires
languages for the documentation and interface speci
cation of components� along with methods for
checking the compatibility of component interfaces in a design� The formalism of Statecharts ����
also used in UML� is widely used to document component behavior� Light�weight constraint�based
languages for component speci
cation have been presented in ���� Automata�based speci
cations
for component behavior have been considered in �	� ��� Our formulation of interface compatibility
is related in various respects to �	��� which also considers the synthesis of component adaptors to
bridge between incompatible interfaces�

We capture the temporal I�O behavior of a component by an automaton� While we are not
the
rst to propose an automata�based formalism for modeling� our approach is� in a certain im�
portant sense� diametrically opposed to the traditional approach� The traditional approach to the
modeling of a component that interacts with an environment �namely� other components is pes�
simistic� the underlying assumption is that the environment is free to behave as it pleases� and
that two components are compatible if no environment can lead them into an error state� Hence�
the pessimistic approach considers two components compatible if they can be used together in all
systems� We believe that for design purposes� where both the components and their environment
are being designed� an optimistic view is more natural� Components are usually designed under
assumptions about the environment� when they are composed� we should compose also their envi�
ronment assumptions� Accordingly� two components are compatible if there is some environment
that can make them work together� simultaneously satisfying both of their environment assump�
tions� Hence� under the optimistic approach two components are compatible if they can be used
together in at least one design� We will demonstrate that the optimistic view� which assumes a
helpful environment� leads to a simple� clean� and powerful theory of interface automata� which
are typically smaller� and thus easier on the user� than the traditional pessimistic interface models�
which must be prepared to cope with all environments�

Our formalism of interface automata is syntactically similar to the I�O automata of ���� Interface
automata interact through the synchronization of input and output actions� while the internal
actions of concurrent automata are interleaved asynchronously� Input actions are used to model
procedures or methods that can be called� and the receiving end of communication channels� as
well as the return locations from such calls� Output actions are used to model procedure or method
calls� message transmissions� the act of returning after a call or method terminates� and exceptions
that arise during method execution� Components are designed under assumptions about their
environment� that is� the design describes the behavior of the component only under environments
that satisfy the assumptions� For example� the design of an object�oriented software component
may assume that the method calls occur in a speci
c order� and it may behave as desired only
in response to such properly ordered calls� In similar fashion� interface automata accept only
some input behaviors generated by the environment� and they describe the component behavior
under those inputs only� Unlike I�O automata� which at every state must be receptive towards

�

every possible input action �the �pessimistic�� or input�enabled � view� for interface automata� at
every state some inputs may be illegal� By not accepting certain inputs� the interface automaton
expresses the assumption that the environment never generates these inputs �the �optimistic�� or
environment�constraining � view� In this way� environment assumptions can be used to encode
restrictions on the order of method calls� and on the types of return values and exceptions� By
capturing environment assumptions� and by freeing designers from the obligation of specifying
responses to inputs that cannot occur in the intended environment� interface automata provide a
concise and formal notation that parallels the natural way of evolving a component�based design�

The optimistic approach has several rami
cations on the technical development of an interface
modeling language� In component�based design� one wants to hand o� and re
ne an interface�
ultimately towards an implementation� independent of the design of other components� In the
traditional� pessimistic view� where the interface captures only the legal component behaviors� re�

nement means to choose and implement a particular legal behavior� In the optimistic approach�
the interface captures not only the legal component behaviors but also an assumption about the
environment� in the form of permissible environment behaviors� Re
nement� then� means to choose
among the legal component behaviors without restricting the permissible environment behaviors�
Mathematically speaking� re
nement acts contravariantly on input assumptions and output guar�
antees� the former can be relaxed only� the latter can be restricted only� This leads to a notion of
alternating simulation ��� as re
nement�

Second� the optimistic view implies a notion of interface composition that leads to smaller com�
pound automata than the pessimistic view� If two interface automata are composed� the result
may contain error states� where one automaton generates an output that is an illegal input for
the other automaton� While the standard pessimistic view would consider the two interfaces to
be incompatible� we follow again an optimistic approach� just as each individual interface expects
the environment to provide only legal inputs� so the compound interface expects the environment
to steer away from all error states� The existence of a legal environment for the composition of
two interfaces indicates that the interfaces are compatible� i�e�� that there is a way to use the cor�
responding components together and� at the same time� ensure that the environment assumptions
of both are met� The resulting composite interface automaton combines not only the behaviors of
the two component interfaces� but also combines the environment assumptions of the components
into the least restrictive composite environment assumption under which the components can work
together� Algorithmically� the composite automaton is constructed by pruning from the product of
the component automata all states from which the environment cannot prevent an error state from
being entered in one or more steps� This algorithm solves a game between the product automaton
�which attempts to get to an error state and the environment �which attempts to prevent this�
An interesting special case is that of single�threaded interface automata� used to model systems in
which only one thread of execution is active at any given time� For these automata we introduce a
specialized notion of composition� for which the product pruning leads to particularly big savings�

As a consequence of the pruning� the composition of two interface automata has a nonempty set
of states i� the two automata are compatible� This underlines a di�erence between the optimistic
approach� exempli
ed by interface automata� and the usual pessimistic approach� In the optimistic
approach� composing two components is conceptually complex �but computationally linear time�
because it requires the solution of a game between the components and the environment� but check�
ing compatibility� once the composition has been computed� is trivial� In particular� the optimistic
approach obviates the need for explicitly specifying consistency properties between components�
In contrast� in the usual pessimistic approach� composing components is conceptually simple� but
checking for compatibility requires human supervision for providing consistency properties� and

�

proof that they hold in the composed system�
By enabling automatic compatibility checks between component interfaces analogous to those

a�orded by conventional type systems� which focus on values and domains� interface automata o�er
a �type system for component interaction�� as propagated in ����

� A Preview of Interface Automata

We illustrate the basic features of interface automata by applying them to the modeling of a software
component that implements a message�transmission service� The component has a method msg �
used to send messages� Whenever this method is called� the component returns either ok or fail �
To perform this service� the component relies on an interface to a communication channel that
provides the method send for sending messages� The two possible return values are ack � which
indicates a successful transmission� and nack � which indicates a failure� When the method msg is
invoked� the component tries to send the message� and resends it if the
rst transmission fails� If
both transmissions fail� the component reports failure� otherwise� it reports success� The interface
automaton Comp modeling this component is illustrated in Figure 	�b� The automaton Comp

is not receptive� its illegal inputs are used to specify assumptions about the environment� For
example� the input msg is accepted only in state �� This represents the assumption that� once the
method msg is called� the environment will wait for an ok or fail response before issuing another
call of msg �

Assume that the component Comp is used by a user component that expects messages to be
successfully sent� and makes no provisions for handling failures� The interface automaton User

shown in Figure 	�a models such a component� after calling the method msg � it accepts the return
value ok � but does not accept the return value fail � The expectation that the return value is ok
is an assumption by the component Comp about its environment� that is� the component Comp is
designed to be used only with message�transmission services that cannot fail�

In Figure 	�c we present the product User�Comp of the two automata Comp and User � Each
state of the product consists of a state of User together with a state of Comp� Each step of the
product is either a joint msg step� which represents the call of the method msg by User � or a joint
ok step� which represents the termination of the method msg with return value ok � or a step of
Comp calling the method send of the �unspeci
ed channel� or a step of Comp receiving the return
value ack or nack from the channel� Consider the following sequence of events� The component
User calls the method msg � then Comp calls twice the method send and receives twice the return
value nack � indicating transmission failure� This sequence of events brings us to state � of the
product automaton� which corresponds to state 	 of User and state � of Comp� In state �� the
component Comp tries to report failure by returning fail � but not expecting failure� the component
User does not accept the return value fail in state 	� We declare the �unexpected� state � of
the product automaton User � Comp to be illegal � because if the environment assumption of the
component Comp is satis
ed by its environment� then this state does not occur�

There are two ways of dealing with illegal states� The standard �pessimistic� approach considers
two interfaces incompatible if the product can reach illegal states� In the example� the components
User and Comp would be incompatible� since state � is reachable in User � Comp� and User and
Comp would be declared incompatible� because Comp does not by itself satisfy the environment
assumption of User � namely� that every call to msg returns the value fail �

The pessimistic approach is appropriate when the product system is closed� However� the prod�
uct User � Comp is again an open system� with an environment �the communication channel�
which provides ack and nack values to User � Comp� By declaring User and Comp to be incom�

�

msg failok

ok�

msg�

� �

�a� Interface automaton User

failmsg ok

�fail� nack�

send ack nack

� � � � �

�

send� send�

ack�ok�

nack�

ack�

msg�

�b� Interface automaton Comp

nack��

send ack nack

� � � � �

�

send� send�

ack�

nack�

ack�

ok�

msg�

�c� User � Comp The illegal state of the product is depicted
as a square

send ack nack

� � � � �

�

send� send�

ack�

nack�

ack�

ok�

msg�

�d� UserkComp

Figure 	� Interface automata� We enclose each automaton in a box� whose ports correspond to the
input and output actions� We append to the name of the actions the symbol ��� �resp� ���� ��� to
denote that the action is an input �resp� output� internal action� An arrow without source denotes
the initial state of the automaton� �

patible� the pessimistic approach forecloses on the possibility that the channel is helpful and makes
the two components work together� In fact� the pessimistic approach rejects an open system if there
is some environment under which it behaves incorrectly� In particular� the pessimistic approach
fails to propagate the environment assumption of User to its composition with Comp�

In contrast� according to our optimistic approach User and Comp are compatible� In fact� we
consider two components compatible if there is some environment in which they work correctly�
indeed� the environment that provides input ack at state � ensures that the illegal state � is not
entered� Such environments� that prevent illegal states from being reached� are called the legal

environments� The states of the product User � Comp from which the environment can ensure
that no illegal state is entered are called the compatible states� in the example� they are �� 	� �� ��
�� and �� The composition UserkComp of the two interface automata is obtained by restricting the
product User � Comp to its compatible states� as depicted in Figure 	�d� Note how restricting
User �Comp to its compatible states corresponds to imposing an assumption on the environment�
namely� that calls to the method msg never return twice in a row the value nack � Hence� when
the two automata Comp and User are composed� the assumption of User that no failures occur
is translated into the assumption of UserkComp that no two consecutive transmissions fail� The
indicates how� under the optimistic approach� the composition of the interface automata User and
Comp propagates to the environment of UserkComp the assumptions that are necessary for the
correct interaction of User and Comp�

This example illustrates the deep di�erence between the pessimistic and optimistic approaches�
While the optimistic approach considers many components compatible which would be incompatible
under the pessimistic approach� there are of course components that cannot work together even
under the optimistic view� namely those for which no legal environment exists� The compatibility
check is performed by computing compatible states� which amounts to solving a game between the
product automaton �which tries to enter illegal states and its environment �which tries to prevent
this�

� Interface Automata

De�nition ��� An interface automaton P � hVP � V
init
P �AI

P �A
O
P �A

H
P � TP i consists of the following

elements�

� VP is a set of states�

� V init
P � VP is a set of initial states� We require that V init

P contains at most one state� If

V init
P � �� then P is called empty�

� AI
P � A

O
P � and A

H
P are mutually disjoint sets of input� output� and internal actions� We denote

by AP � AI
P � AO

P � AH
P the set of all actions�

� TP � VP �AP � VP is a set of steps�

If a � AI
P �resp� a � AO

P � a � AH
P � then �v� a� v� is called an input �resp� output� internal step�

We denote by T I
P �resp� T O

P � T H
P the set of input �resp� output� internal steps� The interface

automaton P is closed if it has only internal actions� that is� AI
P � AO

P � �� otherwise� we say
that P is open� An action a � AP is enabled at a state v � VP if there is a step �v� a� v� � TP
for some v� � VP � We indicate by AI

P �v� A
O
P �v� A

H
P �v the subsets of input� output� and internal

actions that are enabled at the state v� and we let AP �v � AI
P �v � A

O
P �v � A

H
P �v� Unlike I�O

automata ���� an interface automaton is not required to be input�enabled� that is� we do not require

�

that AI
P �v � AI

P for all states v � VP � The set AI
P �v of enabled input actions speci
es which

inputs are accepted at the state v� we call the inputs in AI
P n AI

P �v the illegal inputs at v� Also
note that an interface automaton is not required to be non�blocking� that is� we do not require that
AP �v �� � for all states v � VP � Blocking states can be used to model terminating processes� The
size of an interface automaton P is de
ned by jP j � jVP j� jTP j�

Example ��� The interface automaton User of Figure � has two input actions� ok and fail� one

output action� msg� and no internal actions� It has two states� with state � being initial� and two
steps� ���msg� 	 and �	� ok� ��

De�nition ��� An execution fragment of an interface automaton P is a �nite alternating sequence

of states and actions v�� a�� v�� a�� � � � � vn such that �vi� ai� vi�� � TP for all � 	 i � n� Given two

states v� u � VP � we say that u is reachable from v if there is an execution fragment whose �rst

state is v� and whose last state is in u� The state u is reachable in P if there exists an initial state

v � V init
P such that u is reachable from v�

In the de
nition of interface automaton� it is not required that all states are reachable� However�
one is generally not interested in unreachable states� and they can be removed in linear time�

��� Compatibility and composition

We de
ne the composition of two interface automata only if their actions are disjoint� except that
an input action of one may coincide with an output action of the other� The two automata will
synchronize on such shared actions� and asynchronously interleave all other actions�

De�nition ��� Two interface automata P and Q are composable if

AH
P
 AQ � � AI

P
 AI
Q � �

AO
P
 AO

Q � � AH
Q
 AP � ��

We let shared �P�Q � AP
 AQ�

Note that if two interface automata P and Q are composable� then shared �P�Q � �AI
P
 AO

Q �

�AO
P
 AI

Q� We de
ne the composition of interface automata in stages� de
ning
rst the product
automaton P �Q� This product coincides with the composition of I�O automata ���� except that
since P and Q are not necessarily input�enabled� some steps present in P or Q may not be present
in the product�

De�nition ��� If P and Q are composable interface automata� their product P�Q is the interface

automaton de�ned by

VP�Q � VP � VQ

V init
P�Q � V init

P � V init
Q

AI
P�Q � �AI

P � AI
Q n shared �P�Q

AO
P�Q � �AO

P � AO
Q n shared �P�Q

AH
P�Q � AH

P � AH
Q � shared �P�Q�

The set TP�Q of steps is de�ned in Figure ��

�

TP�Q � f��v� u� a� �v�� u j �v� a� v� � TP � a �� shared �P�Q � u � VQg

� f��v� u� a� �v� u� j �u� a� u� � TQ � a �� shared �P�Q � v � VPg

� f��v� u� a� �v�� u� j �v� a� v� � TP � �u� a� u� � TQ � a � shared �P�Qg�

Figure �� De
nition of the steps of the product of two interface automata�

Illegal �P�Q �

���
��
�v� u � VP � VQ

��� �a � shared �P�Q �

�
B�

a � AO
P �v � a �� AI

Q�u

a � AO

Q�u � a �� AI
P �v

�
CA

	�

��
�

Figure �� De
nition of the illegal states of a product automaton�

Example ��� The product User � Comp of the interface automata User and Comp of Figure �

is shown in Figure �	c
� We have only depicted the reachable states of the product� After each

operation involving interface automata� such as product� we routinely remove from the result�

ing automaton all unreachable states� Note that state � has no outgoing edges� because fail �
shared �User�Comp� but the step ��� fail� � of Comp has no corresponding step in User�

Since interface automata are not necessarily input�enabled� in the product P �Q of two interface
automata P and Q� one of the automata may produce an output action that is an input action
of the other automaton� but is not accepted� The set Illegal�P�Q of states of P � Q where this
happens are called the illegal states of the product�

De�nition ��� Given two composable interface automata P and Q� the set Illegal�P�Q � VP�VQ
of illegal states of P �Q is de�ned in Figure ��

Example ��� Referring again to the product User � Comp shown in Figure �� we have � �
Illegal�User�Comp� because the output step ��� fail� � of Comp has no corresponding input step

in User�

When the product P �Q is closed� we say that P and Q are compatible if no illegal state of P �Q is
reachable� When P �Q is open� however� the fact that a state in Illegal �P�Q is reachable does not
necessarily indicate an incompatibility� because by generating appropriate inputs� the environment
of P � Q may be able to ensure that the set Illegal�P�Q is not entered� Such an environment�
which steers away from the illegal states� is called a legal environment� The existence of a legal
environment indicates that there is a way to use the interfaces P and Q together without giving
rise to incompatibilities� A legal environment for R � P � Q needs to satisfy the following side
conditions�

De�nition ��� An environment for an interface automaton R is an interface automaton E such

that 	�
 E is composable with R� 	�
 E is nonempty� 	�
 AI
E � AO

R� and 	
 Illegal�R�E � ��

The second condition ensures that the environment does not constrain the reachable states of R
by having no initial state� The third and fourth conditions ensure that the environment does not
constrain R by not accepting some of its output steps� and that the environment generates only
inputs to R that can be accepted by R�

�

put tokenget token

send ack

send�

ack� �

get token�

��

�

put token�

nack

�a� Channel

put token�get token�

msg�

	�� �

	�� �
 	�� �

	�� �
 	�� �
 	�� �

send�

ack�put token�

ok� get token�

�b� User � Comp � Channel

Figure �� A legal environment Channel for �User �Comp� and the product User�Comp�Channel �

De�nition ��	 Given two composable interface automata P and Q� a legal environment for the

pair �P�Q is an environment for P � Q such that no state in Illegal�P�Q � VE is reachable in

�P �Q�E�

Example ��� The interface automaton Channel shown in Figure 	a
 is a legal environment for

�User�Comp� because in the product �User � Comp � Channel 	see Figure 	b

� the state ��� u
is not reachable for any u � f�� �� �� �g�

We de
ne compatibility as the existence of a legal environment�

De�nition ��
 Two interface automata P and Q are compatible if they are nonempty� composable�

and there exists a legal environment for �P�Q�

Example ��� The two interface automata User 	Figure �	a

 and Comp 	Figure �	b

 are com�

patible� because the automaton Channel 	Figure 	a

 is a legal environment for �User� E�

The composition of two interface automata is obtained by restricting the product of the two au�
tomata to the set of compatible states� which are the states from which the environment can prevent
entering illegal states�

De�nition ��� Consider two composable interface automata P and Q� A pair �v� u � VP �VQ of

states is compatible if there is an environment E for P �Q such that no state in Illegal�P�Q�VE
is reachable in �P � Q � E from the state f�v� ug � V init

E � We write Cmp�P�Q for the set of

compatible states of P �Q�

Hence� we can rephrase the de
nition of compatibility for interface automata as follows� two
nonempty� composable interface automata P and Q are compatible i� their initial states are com�
patible� i�e�� if V init

P � V init
Q � Cmp�P�Q�

De�nition ���� Consider two composable interface automata P and Q� The composition PkQ is

an interface automaton with the same action sets as P � Q� The states are VPkQ � Cmp�P�Q�
the initial states are V init

PkQ � V init
P�Q
 Cmp�P�Q� and the steps are TPkQ � TP�Q
 �Cmp�P�Q �

APkQ � Cmp�P�Q�

�

a

c�

c� a�

b�

c�

b

�

�

�

�

Figure �� Interface automaton R� State � is not reachable after composition with any environment
for R�

Example ��� In the automaton User�Comp 	Figure �	c

� the states �� �� �� �� � and � are com�

patible� The result of restricting User�Comp to its compatible states is the automaton UserkComp�

depicted in Figure �	d
� In general� the restriction to compatible states may render some states un�

reachable� They can then be removed from the composite automaton�

Recalling that two interface automata are compatible if their initial states are compatible� the
de
nition of composition yields the following alternative characterization of compatibility�

Two interface automata P and Q are compatible i� 	a
 they are composable and

	b
 their composition is nonempty�

This criterion will be used in our algorithmic check of compatibility� based on the computation of
automaton composition� The composition of interface automata is associative�

Theorem ��� For all interface automata P � Q� and R� either both �PkQkR and Pk�RkQ are
unde�ned� because some of the automata are not composable� or �PkQkR � Pk�RkQ�

��� Discussion

An interface automaton represents both assumptions about the environment� and guarantees about
the speci
ed component� The environment assumptions are twofold� each output step incorporates
the assumption that the corresponding action is accepted by the environment as input� and each
input action that is not accepted at a state encodes the assumption that the environment does
not provide that input� The component guarantees correspond to sequences and choices of input�
output� and internal actions� as usual� When two interface automata are composed� the composition
operator k combines not only the component guarantees� as is the case in other component models�
but also the environment assumptions�

One interesting note about interface automata is that while some states may be reachable in
an interface automaton R� they cannot be reached in any composition of R with an environment
E� This may happen� because the environment cannot observe the state of R� only its input and
output actions� Hence� in order to satisfy condition �� of the de
nition of environment� namely�
that R�E contains no illegal states� the environment must be conservative and provide an input
to R only if R accepts that input in all states in which it could possibly be� Because of this� there
may be reachable states v of R such that for all environments E of R� no state of the form �v� � is
reachable in the product R�E� These states can� of course� be removed from R in order to make
R smaller� However� the best known algorithm for
nding these states requires exponential time
�and polynomial space� and relies on an adaptation of the subset construction of �		��

	�

Example ��	 Consider the interface automaton R of Figure �� State � of the automaton is not

reachable after composition with any environment for R� An environment for R can provide neither

input a� nor input b� to R� The reason is that� because of the internal steps from state � to states �

and �� the environment can never be sure that R is ready to accept these inputs�

Whenever two interface automata P and Q are compatible� there is a particularly simple legal
environment for �P�Q� namely� the one that accepts all outputs of P �Q� and that generates no
inputs for P � Q� clearly� this environment avoids entering Illegal�P�Q whenever possible� This
points to a limitation of interface automata� while the environment assumption of an automaton can
express which inputs may occur� it cannot express which inputs must occur� Thus� the automaton
that produces no inputs is the best for showing compatibility� There are several ways of enabling
interface automata to specify inputs that must occur� among them� synchronicity� adding fairness�
or adding real�time constraints� Such extensions are beyond the scope of this work�

��� Computing the composition

Given two interface automata P and Q� a pair �v� u � VP � VQ is compatible if there is some
environment under which Illegal�P�Q is not reachable in P �Q from �v� u� As remarked above�
the best environment corresponds to accepting all outputs of P �Q� and generating no inputs for
P � Q� On the basis of this observation� the set Cmp�P�Q can be computed by performing a
backward reachability analysis from Illegal�P�Q which traverses only internal and output steps�
and removes all states thus reachable� To present the algorithm� we introduce the operator OHpre�
Intuitively� for a set U of states of an interface automaton R� the set OHpreR�U contains the
states of R that can enter a state in U by taking an internal or output step� Formally� the operator
OHpreR � �VR �� �VR is de
ned for all sets U � VR by

OHpreR�U � fv � VR j ��v� a� u � T O
R � T H

R � u � Ug�

The set Cmp�P�Q can be computed by iterating the operator OHpreP�Q� starting from Illegal�P�Q
until no new states are found�

Algorithm �

Input Interface automata P and Q�

Output Cmp�P�Q�

Initialization Let U� � Illegal�P�Q�
Repeat For k � �� let Uk�� � Uk �OHpreP�Q�Uk�
Until Uk�� � Uk�

Return VP�Q n Uk�

Using this algorithm� the composition of two interface automata can be computed by
rst pruning
the incompatible states from the product� and then� for optimization� removing any unreachable
states� The following theorem summarizes the complexity of deciding compatibility� and computing
the composition� of interface automata�

Theorem ��� Given two interface automata P and Q� we can decide whether they are compatible�

and we can compute PkQ in time linear in jP j and jQj�

		

nackacksend

msg failok

� �

�

�

send� send�

ack�ok�

fail� nack�

nack�

ack�

�

ack�

nack�

fail�

ok�

send�

��

�

� � �� msg�

once

once�

Figure �� Interface automaton QuickComp� o�ering retry�once and retry�twice message transmis�
sion�

Since the composition of interface automata is associative� we can check whether n � � interface
automata P�� � � � � Pn are compatible by computing their composition P�k � � � kPn in a gradual
fashion� constructing �P�k � � � kPi��kPi for i � 	� �� � � � � n� and checking for each i that the resulting
composition is nonempty� The e�ciency of this check lies in the fact that� in the computation of
�P�k � � � kPi��kPi� the incompatible states are pruned as early as possible� This idea is closely
related to the use of games for the early detection of errors in veri
cation ���� We can further
improve the algorithm by composing the automata P�� � � � � Pn in a tree�like fashion� rather than
in a linear order�

� Re�nement

The re�nement relation aims at formalizing the relation between abstract and concrete versions of
the same component� for example� between an interface speci
cation and its implementation� In
the input�enabled setting� re
nement is usually de
ned as trace containment or simulation �	���
this ensures that the output behaviors of the implementation are behaviors that are allowed by
the speci
cation� However� such de
nitions are not appropriate in a non�input�enabled setting�
such as interface automata� if one requires that also the set of legal inputs of the implementation
is a subset of the inputs allowed by the speci
cation� then the implementation could be used in
fewer environments than the interface speci
cation� To illustrate the shortcomings of the standard
de
nition� consider the interface automaton QuickComp of Figure �� This automaton represents a
component that provides two services� the
rst is the try�twice service msg provided also by the
automaton Comp of Figure 	�b� the second is a try�once�only service once designed for messages
that are useless when stale� Clearly� we would like to de
ne re
nement so that QuickComp is
a re
nement of Comp� because QuickComp implements all services provided by Comp� and is
consistent with Comp in their implementation� The language of QuickComp� however� is not
contained in the language of Comp� indeed� once is not even an action of Comp� Instead� we must
de
ne re
nement in a contravariant fashion� the implementation must allow more legal inputs� and
fewer outputs� than the speci
cation�

We choose a contravariant re
nement relation in the spirit of simulation� rather than language

	�

containment� This leads to the de
nition of re
nement as alternating simulation ���� Roughly� an
interface automaton P re
nes an interface automaton Q if all input steps of Q can be simulated
by P � and all the output steps of P can be simulated by Q� The precise de
nition must take
into account the fact that the internal steps of P and Q are independent� For this� we need some
preliminary notions� The 	�closure of a state v consists of the set of states that can be reached
from v by taking only internal steps�

De�nition ��� Given an interface automaton P and a state v � VP � the set 	�closureP �v is the
smallest set U � VP such that 	�
 v � U and 	�
 if u � U and �u� a� u� � T H

P � then u� � U �

The environment of an interface automaton P cannot see the internal steps of P � Consequently� if
P is at a state v� then the environment cannot distinguish between v and any state in 	�closureP �v�
In particular� the environment must be able to accept all output actions in ExtEnOP �v� because P
can issue these outputs without any forewarning to the environment� Conversely� the environment
can safely issue an action a as input to P only if a is accepted at all states in 	�closureP �v� because
P could have transitioned to any of these states� unbeknownst to the environment� This motivates
the following de
nition�

De�nition ��� Consider an interface automaton P � and a state v � VP � We let

ExtEnOP �v � fa j �u � 	�closureP �v� a � AO
P �ug

ExtEnIP �v � fa j �u � 	�closureP �v� a � AI
P �ug

be the sets of externally enabled output and input actions� respectively� at v�

The following de
nition introduces an abbreviation for the set of states that are reachable by taking
externally enabled actions�

De�nition ��� Consider an interface automaton P and a state v � VP � For all externally enabled

input and output actions a � ExtEnIP �v � ExtEnOP �v� we let

ExtDestP �v� a � fu� j ��u� a� u� � TP � u � 	�closureP �vg�

Using this notation� we are ready to de
ne alternating simulation on interface automata�

De�nition ��� Consider two interface automata P and Q� A binary relation � � VP � VQ is

an alternating simulation from Q to P if for all states v � VP and u � VQ such that v � u� the

following conditions hold�

�� ExtEnIP �v � ExtEnIQ�u and ExtEnOQ�u � ExtEnOP �v�

�� For all actions a � ExtEnIP �v�ExtEn
O
Q�u and all states u� � ExtDestQ�u� a� there is a state

v� � ExtDestP �v� a such that v� � u��

Condition 	 expresses the input�output duality between states v � u in the alternating simulation
relation� all externally enabled inputs of v are also externally enabled in u� and conversely� all
externally enabled outputs of u are externally enabled in v� Condition � recursively propagates the
simulation relation� all steps from u that correspond to externally enabled actions can be matched
by steps from v� This de
nition of alternating simulation is more involved than the one of ���
because it deals with internal steps� In the example of Figures 	�b and �� there is an alternating
simulation that relates i with i�� for i � f�� 	� �� �� �� �� �g�

	�

De�nition ��� The interface automaton Q re
nes the interface automaton P � written P � Q� if

	�
 AI
P � AI

Q and AO
P � AO

Q� and 	�
 there is an alternating simulation � from Q to P � a state

v � V init
P � and a state u � V init

Q such that v � u�

Note that unlike in standard simulation� the �typing� condition �	 is contravariant on the action
sets� The de
nition of re
nement captures a simple kind of sub�classing� if P � Q� then the
implementationQ is able to provide more services than the speci
cation P � but it must be consistent
with P on the shared services� Re
nement between interface automata is a preorder �i�e�� re�exive
and transitive�

Theorem ��� For all interface automata P � Q� and R� we have P � P � and if P � Q and Q � R�

then P � R�

The following theorem states two important properties of re
nement between interface automata�
First� re
nement and compatibility are related as follows� we can always replace a component P
with a more re
ned version Q such that P � Q� provided that Q and P are connected to the
environment by the same inputs� The side condition is due to the fact that if the environment
were to provide inputs for Q that are not provided for P � then it would be possible that new
incompatibilities arise in the processing of these inputs� For software components� this property
is a statement of sub�class polymorphism� we can always substitute a sub�class for a super�class�
provided no new methods of the sub�class are used� In general� this property captures the essence
of component�based design� the designer of the environment �i�e�� the other system components
needs to ensure only compatibility with the component speci
cation P � and in this way guarantees
compatibility with the component implementation Q� Second� re
nement is compositional � in order
to check if PkP � � QkQ� it su�ces to check both P � Q and P � � Q�� Since the latter checks
involve smaller automata� they are more e�cient�

Theorem ��� Consider three interface automata P � Q� and R such that Q and R are composable�
and AI

Q
 AO
R � AI

P
 AO
R� If P and R are compatible and P � Q� then Q and R are compatible

and PkR � QkR�

The set of alternating simulations between two interface automata is closed under union� Hence�
there is a unique alternating simulation from Q to P that is maximal in the partial order induced
by set inclusion� To check whether P � Q� it thus su�ces to compute this maximal alternating
simulation� and check if it relates the initial states of P and Q� The maximal alternating simulation
can be computed by starting from the relation VP �VQ and iteratively removing pairs� until either
the computed relation satis
es the conditions of an alternating simulation� or no pairs are left� in
which case there is no alternating simulation� This procedure is analogous to the one presented in
��� for alternating simulation relations between game structures�

Algorithm �

Input Interface automata P and Q�

Output The unique maximal alternating simulation from Q to P �

Initialization Let �� � VP � VQ�
Repeat For k � �� de�ne �k�� � �k by v �k�� u if v �k u and conditions � and �

of De�nition � are satis�ed by v and u� with � replaced by �k�

Until �k�� � �k�

Return �k�

	�

From the hardness results on ordinary simulation ��� we have the following theorem� analogous to
a result of ����

Theorem ��� Checking re�nement between interface automata is PTIME�complete�

� Single�Threaded Interface Automata

When there is only one active thread of control in a system� we can take advantage of this fact
by providing specialized de
nitions of interface automata and composition� These single�threaded
versions of interface automata give rise to smaller automata for composite systems�

De�nition ��� A single�threaded interface automaton 	STIA
 P is an interface automaton that

satis�es the following conditions�

�� The set VP of states is partitioned into two disjoint sets VP � V O
P � V I

P � The states in V O
P

are called running� because only internal and output actions are enabled� for all v � V O
P � we

have AI
P �v � �� The states in V I

P are called waiting� because only input actions are enabled�

for all v � V I
P � we have AO

P �v � AH
P �v � ��

�� All output steps must lead to waiting states� for all �u� a� v � T O
P � we have v � V I

P � Con�

versely� only output steps can lead to waiting states� for all v � V I
P and all �u� a� v � TP � we

have a � AO
P �

Condition 	 rules out states where there is a choice between output�internal actions �which are
caused by the automaton advancing a thread of control and input actions �which are caused by
some other automaton advancing a thread of control� The running states indicate ownership of
the single thread of control� the waiting states indicate non�ownership� Condition � ensures that
an STIA waits for an input precisely after issuing an output action� this is because if there is a
single thread of control� then each output step relinquishes that thread�

De�nition ��� Two STIAs P and Q are composable if 	�
 they are composable when considered

as interface automata� and 	�
 at most one of the initial states is running� that is� V init
P � V I

P or

V init
Q � V I

Q� Two STIAs are compatible if they are composable as STIAs� and compatible when

considered as interface automata�

In the de
nition of single�threaded compatibility� we do not need a restriction to single�threaded
environments� because the �optimal� environment� which issues no outputs� has only waiting states�
and is therefore single�threaded� Together� these de
nitions ensure that in every reachable state
of a composition of STIAs� at most one of the components is in a running state� The composition
PkQ of two compatible STIAs P and Q is not necessarily an STIA� This is because PkQ may
contain reachable states v where both input and output actions are enabled� However� these input
actions are never taken if PkQ is composed only with other STIAs� since one of P or Q is running
at v� no other STIA can be running and cause the input actions to be taken� The theorem below
makes this statement precise�

Theorem ��� Consider two compatible STIAs P and Q� a state v � VPkQ� and two actions a� b �

APkQ�v with a � AI
PkQ and b � AH

PkQ � AO
PkQ� If R is an STIA compatible with PkQ such that

�PkQkR is closed� then for all states u � VR we have a �� A	PkQ
kR�v� u�

	�

a

c
b�

a�

c�

�a� P

f

d� e�

f �

d

�b� Q

d� e�

c� c� c�

d�

d�

b�

a�

e�

e�

a� a�

b�b�

f �

f �

f �

a

f

c

d

�c� PkQ

a

f

c

d

d� e�

b�

a�

f �

c�

�d� P jjjQ

Figure �� Single�threaded interface automata P and Q� their composition PkQ� and their single�
threaded composition P jjjQ� The steps of the composition PkQ are connected on a toroidal topol�
ogy�

Hence we introduce a special version of composition for STIAs� called single�threaded composition�

which prunes the input actions that occur at states where internal or output actions are also
enabled�

De�nition ��� Consider two composable STIAs P and Q� The single�threaded composition P jjjQ
is obtained from PkQ by �rst removing all steps �v� a� u � T I

PkQ for which AO
PkQ�v�A

H
PkQ�v �� ��

and then removing all states that become unreachable from V init
PkQ�

Single�threaded composition is again associative� In Figure � we illustrate that single�threaded
composition may lead to a substantial reduction in the size of the state space� By performing
the single�theaded pruning on�the��y during the product construction� it is possible to construct
P jjjQ without constructing the entire reachable state space of PkQ� The following theorem indicates
that the single�threaded composition of STIAs yields STIAs� and that ordinary and single�threaded
composition give rise to the same notion of compatibility�

Theorem ��� For composable STIAs P and Q� the single�threaded composition P jjjQ is an STIA�

Furthermore� if PkQ is nonempty� then P jjjQ is nonempty�

Acknowledgments� We thank Edward A� Lee� Xiaojun Liu� Freddy Mang� and Yuhong Xiong
for fruitful discussions�

	�

References

�	� R� Allen and D� Garland� Formalizing architectural connection� In Proc� ��th IEEE Conf�

Software Engineering� pages �	 ��� 	����

��� R� Alur� T� Henzinger� O� Kupferman� and M� Vardi� Alternating re
nement relations� In Con�

currency Theory� Lecture Notes in Computer Science 	���� pages 	�� 	��� Springer�Verlag�
	����

��� L� de Alfaro� T� Henzinger� and F� Mang� Detecting errors before reaching them� In Computer�

Aided Veri�cation� Lecture Notes in Computer Science 	���� pages 	�� ��	� Springer�Verlag�
�����

��� D� Harel� Statecharts� A visual formalism for complex systems� Science of Computer Pro�

gramming� ����	 ���� 	����

��� D� Jackson� Enforcing design constraints with object logic� In Static Analysis Sumposium�
Lecture Notes in Computer Science 	���� pages 	 �	� Springer�Verlag� �����

��� O� Kupferman and M� Vardi� Veri
cation of fair transition systems� Chicago J� Theoretical

Computer Science� �� 	����

��� E� Lee and Y� Xiong� System�level Types for Component�based Design� Technical Memorandum
UCB�ERL M����� Electronics Research Lab� University of California� Berkeley� �����

��� N� Leveson� System Safety and Computers� Addison�Wesley� 	����

��� N� Lynch and M� Tuttle� Hierarcical correctness proofs for distributed algorithms� In Proc�

�th ACM Symp� Principles of Distributed Computing� pages 	�� 	�	� 	����

�	�� R� Milner� An algebraic de
nition of simulation between programs� In Proc� �nd International

Joint Conference on Arti�cial Intelligence� pages ��	 ���� The British Computer Society� 	��	�

�		� J� Reif� The complexity of two�player games of incomplete information� J� Computer and
System Sciences� ������ ��	� 	����

�	�� J� Rumbaugh� G� Booch� and I� Jacobson� The UML Reference Guide� Addison�Wesley� 	����

�	�� D� Yellin and R� Strom� Protocol speci
cations and component adapters� ACM Trans� Pro�

gramming Languages and Systems� 	����� ���� 	����

	�

