
DAML-QoS Ontology for Web Services

Chen Zhou, Liang-Tien Chia, Bu-Sung Lee
Center for Multimedia & Network Technology

School of Computer Engineering, Nanyang Technological University
Email:{pg04878518, asltchia, ebslee}@ntu.edu.sg

Abstract

As more and more Web services are deployed, Web service’s
discovery mechanisms become essential. Similar services can have
quite different QoS levels. For service selection and management
purpose, it is necessary to explicitly, precisely, and unambiguously
specify various constraints and QoS metrics for Web services de-
scriptions. This paper provides a novel DAML-QoS ontology as a
complement for DAML-S ontology to provide a better QoS met-
rics model. Three layers are defined together with clear role de-
scriptions for developments. Cardinality constraints are utilized
to describe the QoS property constraints. Basic profile is presented
for general web service’s description and the speed startup of on-
tology definition. Matchmaking algorithm for QoS property con-
straints is presented and different matching degrees are described.
When incorporated with DAML-S, multiple service levels can be
described through attaching multiple QoS profiles to one service
profile. Well-defined Metrics can be further utilized by measure-
ment organizations to guarantee the promised service level.

keywords: Ontology, Web Services Discovery, Matchmaking,
QoS

1. Introduction

With the industry’s efforts in promoting the use of web
services, a huge number of web services are being devel-
oped and made available on the web. Service requesters are
presented with a group choice of service offers that provide
similar services. Different offers may have quite different
quality of service. This will require more sophisticated pat-
terns of service discovery and negotiation. For service selec-
tion and management purpose, it is necessary to explicitly,
precisely, and unambiguously specify various constraints,
QoS metrics, service level objectives, and other contracts
between Web Services. The formal specification of con-
straints and SLAs and the differentiation of service have
been researched extensively in computing and telecommu-
nications. However, web services are XML-based protocol
stacks and have its own specific features. The former re-
searches could not be applied directly to Web Services. Fur-

thermore, Web Service discovery, composition, and cooper-
ation need to be more dynamic, automatic and across enter-
prise boundaries.

The semantic web can be a promising solution. It re-
quires that data be not only machine readable, but also ma-
chine understandable. With the help of Semantic Web,
application developers should not worry about how to in-
terpret the information found on the Web, as ontologies
will be used to provide vocabulary with explicitly de-
fined and machine understandable meaning. One com-
mon ontology for Web Services which has been de-
signed for the purpose of describing web services, is the
DAML-S ontology[5]. DAML-S aims to make Web Ser-
vices computer-interpretable and to enable automated
Web service discovery, invocation, composition and mon-
itoring. However, the specification has not provided a
detailed set of classes, properties and constraints to repre-
sent QoS descriptions. We have tried to develop a proper
QoS ontology design pattern for the formal specifica-
tion of various types of constraints and QoS metrics as
a complement to the DAML-S. This novel QoS ontol-
ogy is based on DAML+OIL and named DAML-QoS. It
has unique characteristics with regard to the semantic tech-
nologies: better machine understandability, interoperabil-
ity, unambiguousness and extensibility. The corresponding
matchmaking algorithm is also presented. As a follow-
ing step of the DAML-S service profile’s matchmaking,
our work facilitates the QoS selection between similar se-
mantic service advertisements. The metric ontologies may
also provide a powerful solution for measurement or-
ganization to monitor and bill against the agreed upon
SLAs.

This paper is organized as follows: In this section, we
have introduced the motivation for our research. Section 2
introduces the background information of the description
logic and DAML-S. In Section 3, we give the modeling defi-
nition of the QoS ontology and its relationship with DAML-
S. Section 4 describes the matchmaking algorithm for our
QoS ontology. In Section 5 we review some related works
and compare our approach to these works. At the end, we

summarize the conclusions and future work.

2. Background

In this section we will give an overview of Semantic Web
languages and Web Services description efforts.

2.1. Ontology Languages

Ontology plays a key role in the Semantic Web by pro-
viding machine readable vocabularies used by applications
to understand the shared meanings. DAML+OIL[4] is an
ontology language that has been designed specifically to be
used in the Semantic Web and it is based on RDF and RDF
Schema. Its well-defined semantics is similar to the de-
scription logicSHIQ(D).DAML+OIL describes the struc-
ture of a domain in terms of classes and properties. Like
SHIQ(D), DAML+OIL (March 2001) also supports the
use of datatypes in class description. By defining the service
descriptions upon the semantics provided by DAML+OIL,
we can utilize a DL reasoner to make inference and clas-
sify descriptions written in DAML+OIL.

2.2. Description Logic

The description logic is based on the notion of concepts
(classes) and roles (binary relations), and is mainly char-
acterized by constructors that allow complex concepts and
roles to be built from atomic ones[7]. A DL reasoner can
check whether two concepts subsume each other. In DL, an
interpretationI = (4I ; ·I) consists of a set4I , called the
domain of I, and a valuation·I which maps every concept
to a subset of4I and every role to a subset of4I × 4I

such that, for all concepts, roles, and nonnegative integers,
the properties are satisfied.

The basic DLS does not fulfill our requirement of rea-
soning with cardinality restrictions on roles and datatypes.
We therefore use the DLSHIQ(D) to reason with
DAML+OIL descriptions, which include, e.g., cardinal-
ity restrictions on roles, and datatypes. A more detailed dis-
cussion of DLs is out of the scope of this paper, which can
be found in [1].

2.3. DAML-S

DAML-S[5] is a DAML+OIL ontology for describ-
ing Web Services. Through the tight connection with
DAML+OIL, DAML-S aims to make Web Services
computer-interpretable and to enable automated Web ser-
vice discovery, invocation, composition and monitoring. It
defines the notions of a Service Profile (what the service
does), a Service Model (how the service works) and a Ser-
vice Grounding (how to use the service). As a DAML+OIL

ontology, DAML-S retains all the benefits of Web con-
tent described in DAML+OIL. It enables the definition of a
Web services vocabulary in terms of objects and the com-
plex relationships between them, including class, sub-
class relations, cardinality restrictions, etc.[4] It also in-
cludes the XML datatype information.

However, Cardoso et. al.[3] point out that significant im-
provement for the QoS model should be made to supply a
realistic solution to DAML-S’ users. One current limitation
of DAML-S’ QoS model is that it does not provide a de-
tailed set of classes and properties to represent quality of
service metrics. The QoS model needs to be extended to al-
low a precise characterization of each dimension. This is the
motivation of our current work for the QoS ontology.

3. Modeling

Web Services QoS ontology, especially for service dis-
covery purpose, is the focus of our work. Here we design
a web services domain-specific QoS ontology in order to
achieve an agreement at the semantic level between various
parties. Our ontology contains three layers: the QoS pro-
file layer designed for matchmaking purpose; the QoS prop-
erty definition layer for elaborating the property’s domain
and range constraints; the metrics layer for metrics defini-
tion and measurement. In our prototype, we define the on-
tology in DAML+OIL. For the purpose of clarity and com-
pactness, in this paper we will use the DL notions in place
of the DAML+OIL syntax for the T-Box definition.

3.1. QoS Profile Layer

In the QoS profile layer, we define QoSProfile as
a common superclass for QoS matchmaking concept
ProviderQoS, InquiryQoS and TemplateQoS. They can be
formulated as:

QoSProfile v >
ProviderQoS v QoSProfile

InquiryQoS v QoSProfile

TemplateQoS v QoSProfile

The QoSProfile is logically used for three roles.
ProviderQoS is the advertisement ontology published
by the service provider. InquiryQoS is the service re-
quester’s inquiry ontology for QoS matchmaking. The
TemplateQoS is stored by any user for further us-
age or modification. The above definition, however, has
not provided any constraints over QoSProfile so that the
ProviderQoS contains all the possible QoS combinations
for the published service. No constraint means no useful in-
formation for the QoS matchmaking process and this makes
no sense. Our solution is to use property definition and car-
dinality to define the QoS constraints. Cardinality is chosen

instead of concrete datatype because of the following rea-
sons:

• All the QoSProfile layer ontologies are described in the
T-Box to make the description uniform and reduce the
matchmaking component’s complexity.

• Current DL reasoners normally have better support for
the subsumption reasoning in the T-Box than concrete
datatype reasoning in A-Box. Through classification,
taxonomy is built up by the reasoner’s predefined and
tested algorithm.

• Cardinality is constrained over property which has its
own domain and range constraints. These constraints
make the matchmaking more specific and precise.

This solution can cause a potential problem. The cardi-
nality ranges over nonnegative integers only so that the car-
dinality constraints cannot represent the real number value.
This imprecise will cause a maximum error that can reach
one half metric unit. However, by proper selection of met-
ric unit, the error can be constrained within one half met-
ric unit and the metric unit can be selected according to the
precision requirement. Furthermore, most measurements by
the observer are within the nonnegative integer domain. Ob-
servers normally obtain the current resource size or count
for certain events. Such information’s representation in ob-
server’s internal data structures is normally nonnegative in-
tegers, such as response time, bit rate, etc. Even if the ob-
served data cannot be precisely described by integer do-
main, through the using of more fine-grained metric unit,
this problem can always be solved. For example, using dol-
lar as the cost unit is not a good solution but we can change
the unit into cent to ensure the correctness. If different QoS
metric units for the same property are used in different ad-
vertisement, ontology translation is needed to normalise the
metric units.

In the normal web service development process, the ser-
vice provider hosts the web services and publishes the ser-
vice description information to the UDDI[2]. It is the ser-
vice provider’s task to setup this layer and provide enough
and correct property and cardinality constraint information
for service requester to discover and locate the proper ser-
vice. The cardinality can be viewed as abstract resource to-
kens to represent the resources. The matchmaking process
will be discussed in Section 4.

3.2. QoS Property Definition Layer

In addition to the property name, QoS property definition
constrains the property’s domain and range information.
The domain is the class which has the special QoS prop-
erty. We specify five QoSProfile classes for the QoS prop-
erty’s domain: QoSCore, QoSinput, QoSOutput, QoSPre-
condition and QoSEffect, and they can be expressed as:

QoSProfile v >
QoSCore v QoSProfile

QoSInput v QoSProfile

QoSOutput v QoSProfile

QoSPrecondition v QoSProfile

QoSEffect v QoSProfile

The QoSCore stands for the normal QoS property’s origina-
tion. This is the default QoS property’s domain class. From
the service requester’s view, if there’s no difference in QoS
properties based on input and output, this property’s domain
is assumed to be set on the QoSCore. Otherwise, if two QoS
properties are not the same on the input and output, their do-
mains are set as QoSInput and QoSOutput respectively. For
example, to a format covert service, we can have two QoS
properties: the input bit rate and the output bit rate. These
two values can be different. Thus we can set the inputBi-
tRate property’s domain to QoSInput and the outputBitRate
property’s domain to QoSOutput. Furthermore, since a ser-
vice may require external conditions to be satisfied to en-
sure that it can provide the promised QoS level, and it may
have the effect of changing the QoS condition, the QoSPro-
file ontology describes the QoSPrecondition required by the
service and the expected QoSEffect that result from the exe-
cution of the service. For example, some computational ser-
vice can require that the throughput of the request is within
50 times per minute so that it can guarantee the published
QoS level. Such property’s domain is defined as QoSPre-
condition. After the execution, the service has the effect of
lower throughput because the machine needs to be cooled
down. This property’s domain is defined in QoSEffect.

The range of the QoS property is defined within the QoS
metric class. The QoS metric classes are defined in the QoS
Metrics Layer (See Section 3.3). With the range constraints
together with the domain constraints, the QoS properties are
precisely specified. After the definition of the QoS proper-
ties, cardinality constraints are ready to be added on these
defined properties in QoS Profile Layer (See Section 3.1)
for matchmaking purpose.

The development of QoS ontology allows a new role of
QoS designer who designs customized QoS properties, and
selects or invents the suitable QoS metrics for the QoS prop-
erties. It is the service QoS designer’s and web services
vendor’s task to define the available property types, their
domain constraints and range constraints. Newly invented
QoS metrics are put into the QoS metrics hierarchy taxon-
omy while the metrics’ individual definition in A-Box is
left to the QoS measurement organization. The proper defi-
nition of this layer is the key for QoS profile definition and
matchmaking.

3.3. QoS Metrics Layer

The definition of this layer has two purposes: firstly, this
layer defines proper QoS metrics for the QoS property’s
range definition. Secondly, this layer defines precise seman-
tic meanings for service measurement organization to mea-
sure the service and check against the guarantee.

The service QoS metrics are divided into AtomicMetrics
and ComplexMetrics, which are showed as follows:

Metric v >
AtomicMetric v Metric

ComplexMetric v Metric

The Metric class is a common superclass for all metrics. The
Metric class has related propertiesunit, value, metricName.
The domains of these properties are indicated as the Met-
ric class. Their ranges areUnit, &xsd;#nonNegativeInteger,
and&xsd;#stringrespectively. Unit class indicates the met-
ric value’s unit. The Unit has its own taxonomy hierar-
chy. The&xsd; is the entity macro standing for the XML
Schema namespace. The value property has the nonNega-
tiveInteger as its range, which conforms to the property car-
dinality constraints in QoS Profile Layer. The value in the
metric class is within individual declaration and it is used
for web services partners to check against the published car-
dinality constraints in QoS Profile Layer, rather than match-
making. By proper selection of the unit, the nonNegativeIn-
teger is a practical choice for QoS value as discussed in Sec-
tion 3.1.

The atomic metrics are directly measured by the ob-
server. They contains child metrics and the measurement re-
sult is retrieved from the observer directly. That is, the mea-
surement organization gets the access point from the Atom-
icMetric individual, invokes the observer’s retrieval service
and then extracts the QoS data from the observer. There-
fore, for each AtomicMetric there must be an observer’s ac-
cess point that enables the measurement organization to get
the QoS data.

The complex metrics are composed of other (Atomic-
Metric or ComplexMetric) metrics. The operands property
in ComplexMetric points to these child metrics (Atomic-
Metrics or ComplexMetric). The function property in Com-
plexMetric points to the Function class which describes how
to process the operand metrics. Through the ComplexMet-
ric, the high level metrics can be mapped to the lower level
metrics in clear semantics. The metric aspect can also be de-
scribed through ComplexMetric, such as percentile, mean,
variance, and frequency.

Each QoS metric is a subclass of the AtomicMetric
or ComplexMetric. The metrics’ taxonomy is designed by
QoS designer or web service vendor in the T-Box. The indi-
vidual of each AtomicMetric and ComplexMetric is defined
by measurement organization in A-Box. Because each met-

ric class can has multiple individuals in the A-Box, differ-
ent measurement organizations can offer multiple choices
for the observers and complex metrics. The service provider
and service requester can choose the proper metric individ-
uals for the QoS monitoring and supervision. The proper
definition of this layer is the key for QoS monitoring.

3.4. Basic Profile

Anbazhagan et. al. [10] highlighted that the major re-
quirements for supporting QoS in Web Services include
Performance, Reliability, Security, etc. [14] divided the ser-
vices QoS into three categories: system centric, process
centric and information centric. The performance, reliabil-
ity, security, etc. are located in the system centric category.
These general QoS metrics are normally needed in QoS de-
scription. To facilitate the speed startup in using the QoS on-
tology, we design a basic profile according to system cen-
tric QoS category.

The basic profile contains response time, cost, reliability
and throughput.

• Response Time is defined as the total time needed by
the service requester to invoke the service. It is mea-
sured from the time the requester initiates the invoca-
tion to the time the requester receives the last byte of
the response.

• Cost represents the cost associated with the execution
of the service. It is necessary to estimate the guaran-
tee that financial plans are followed. The cost can be
broken into major components, which include the ser-
vice execution cost and network transportation cost.

• Reliability corresponds to the likelihood that the ser-
vice will perform when the user demands it and it is a
function of the failure rate. Each service has two dis-
tinct terminating states: one indicates that a web ser-
vice has failed or aborted; the other indicates that it
is successful or committed. By appropriately designed
redundancy, one can build highly reliable systems from
less reliable components.

• Throughput represents the number of Web service re-
quests served at a given time period. It is the rate at
which a service can process requests.

Using the basic profile, service provider and service re-
quester can easily write the QoS descriptions for a general
web service. After the setting of the cardinality constraints,
service provider completes the QoS Profile Layer’s defini-
tion. Figure 1 shows an example of QoS advertisement only.
Suppose that we want to specify the QoS level of a service
in the QoS Profile Layer, in which the response time is no
more than 20 seconds and the cost is no more than 1 dol-
lar. In DL syntax, this advertisement can be written as:

Advert
.= QoSProfile

u(≤ 100cost.CostUSCentMetric)
u(≤ 20000responseT ime.RespMSMetric)

Similar to the advertisement, service requesters can define
an inquiry in which the response time of the service should
be no more than 40 seconds and the cost should be no more
than 5 dollars. This inquiry can be expressed as:

Inquiry
.= QoSProfile

u(≤ 500cost.CostUSCentMetric)
u(≤ 40000responseT ime.RespMSMetric)

The template can be defined in the similar way. Once de-
fined, the template can be reused by service providers or ser-
vice requesters through adding additional constraints over
the template.

3.5. Extensibility

Each web service may have different QoS metrics to
evaluate and describe its QoS information. The basic profile
provides a speed startup for general web services, however
some other services have their own specific QoS properties.
This requires that the QoS description for service discovery
should have good extensibility to meet different user’s de-
mands. One of the semantic web’s design principles is to al-
low anyone to comment about anything. This design princi-
ple meets the extensibility requirement quite well. By using
DAML+OIL ontologies, extensibility is naturally achieved.

The different scenarios for the creation and maintainance
of the QoS ontology are as follows:

• Green field: In this scenario, the developer starts com-
pletely from scratch, creating all the layer’s ontologies.
With this approach, QoS designer first designs the cus-
tomized QoS property, and then selects or defines the
QoS metrics for the property’s range constraint. The
new QoS metrics are put in the metric taxonomy. The
QoS metric’s individuals are then defined by measure-
ment organizations. The cardinality constraints for the
QoS properties are set by the service provider.

• Bottom up: The bottom upscenario follows along the
same lines as thegreen field, with the exception that the
QoS metrics and properties have already been defined
by the QoS designer or by the web services vender.
The provided basic profile is located in this category.
Remaining thing is to setup the cardinality constraints
for the properties by the service provider.

• Top down: Thetop downscenario is a bit different. The
property domain and constraints have already been de-
fined while the QoS metrics are considered but not
properly defined or the original QoS metrics are not

suitable. The QoS designer or service vendor will se-
lect one metric in the taxonomy or define a new met-
ric. The newly defined metric’s individuals will be de-
fined by the measurement organization.

When the service provider has built up a common QoS
Profile for its specific service domain, this common QoS
Profile can be defined as a template, which is a stong
assistant for extensibility. Based on the template, service
provider can expend the QoS Profile Layer, add more QoS
properties and set stricter constraints over properties. Us-
ing the template to inherit the original QoS Profile avoids
building the whole profile block from scratches. For exam-
ple, suppose that we’ve made a basic profile template named
BPTemplate. Based on BPTemplate, we’re going to define
two storage services: one provides 10MB space for the ser-
vice requester and the other provides 100MB space. This
can be described as follows:

StorageAdvert1 .= BPTemplate

u(≤ 10storage.storageMBMetric)
StorageAdvert2 .= BPTemplate

u(≤ 100storage.storageMBMetric)

This ontology inheritance ability helps to achieve easy ex-
tensibility. Meanwhile, the inheritance indicates more spec-
ified and constrained QoS descriptions. Inheritance cannot
achieve fewer constraints on QoS properties. For exam-
ple, if the original template’s response time constraint is
≤ 10000, and the inherited QoS class want to set the re-
sponse time constraint as≤ 20000, then this will not take
effect. The inherited class still has the response time con-
straint as≤ 1000. This will be discussed further in Sec-
tion 4. Therefore, the template’s inheritance should be care-
fully designed so that the subclasses of the templates are of
stricter constraints.

3.6. Relationship with DAML-S

The approach described here allows a service developer
to take advantage of the complementary strength of both
DAML-S and our QoS ontology design model. On one hand
(service profile side), service developer benefits by making
use of DAML-S’ service profile model for semantic match-
making of service descriptions, as well as the well defined
process model and the grounding information. On the other
hand (QoS profile side), the developer benefits from the use
of DAML-QoS’ QoS prfile model for QoS matchmaking, as
well as the QoS metric layer’s definition for the QoS mea-
surement.

To connect the DAML-S with our QoS ontology, the has-
ServiceProfile property with range constrain ServiceProfile
is required to be added in the QoS Profile Advertisement.
Multiple QoS Profiles of one Web Service can refer to the
same service profile, and they have different constraints

QosProfile

QoSPrecondition QoSInput QoSOutput QoSEffectQoSCore

Metric

string

nonNegtiveInteger

Unit

unit

metricName

valueAtomicMetric

ComplexMetricstring

ac
ce

ssP
oin

t

string

operationName

Function

function

operands

OperandList

ResponseTimeMSM
etric

TimeMSUnit

unit

CostUSCentMetric

<=100cost

CostUSCentUnit

unit

<=20000responseTime

Metrics Layer
Profile Layer and

Property Definition
Layer

Figure 1. Advertisement Ontology Layers Example

over the contained QoS property constraints which are in
a lower level than the QoS Profile. This provides multi-
ple service level objectives (refers to the different QoS Pro-
files) to the service requester, each with different capability,
performance, price, etc. The service requester can choose
the most suitable one according to their customized inquiry.
Dynamic adaptation is possible based on multiple QoS Pro-
files.

With the help of the Basic Profile and DAML-S’ process
ontology, algorithms can be implemented for the automatic
computation of QoS metrics for processes based on atomic
tasks and sub-processes’ QoS metrics. The analytic model
used in [3] is a good example.

4. Matchmaking

Matchmaking here is defined as a process that requires a
repository to take an inquire as input, and to return all the
published advertisements which may potentially satisfy the
QoS requirements specified in the input inquiry.

4.1. Constraint Order Definition

The novel of QoS matchmaking lies in the matching
of different QoS advertisements with different QoS con-

straints. We must determine whether the guarantee given in
the provider’s advertisement is no looser than the one in-
quired by the service requester is true.

Cardinality constraints for the property contain≥ and≤
operators. These operators on the nonnegative integer do-
main are totally ordered sets. To the same property, what is
better QoS in the description is defined as follows: To≥ op-
erator,≥ m means better QoS than≥ n if m > n. To ≤
operator,≤ m means better QoS than≤ n if m < n. If
some metric does not have the nonnegative integer values
as its domain, mapping is required for the metric’s defini-
tion. Take the score degree metric as an example: there ex-
ist five levels: A, B, C, D and F. A definition for these levels
on the nonnegative integer domain is required for the met-
ric ontology’s definition. One solution is to define 5, 4, 3, 2,
1 for A, B, C, D, F respectively. Then all those who pass the
exam can be described as≥ 2.

Better QoS profile’s description will subsume the worse
one. Let’s assume A and B are better and worse advertise-
ments respectively. There exist two cases:

Firstly, A and B has the same list ofl properties:
P1.C1, P2.C2, ..., Pl.Cl, in whichPi is property names and
Ci is range class names. Without loss of generality, we as-
sume that the≤ cardinality constraint is used in each case.
We have definition of A and B here:

A
.= (≤ k1P1.C1) u (≤ k2P2.C2) u ... u (≤ klPl.Cl)

B
.= (≤ n1P1.C1) u (≤ n2P2.C2) u ... u (≤ nlPl.Cl)

in which ki > ni (A has better QoS description),i =
1, 2, ..., l. To each property we have(≤ kiPi.Ci) v (≤
niPi.Ci). By conjunction on these properties, we haveA v
B.

On the contrary, ifA v B and they have same property
list, A will have the better QoS profile description than B.
If this is not true, there’s some property (≤ ktPt.Ct) in A
and (≤ ntPt.Ct) in B in whichnt > kt hence (≤ ntPt.Ct)
v (≤ ktPt.Ct). Because the propertyPt.Ct is not defined
in the A-Box, we can define the property in proper manner
and make the individual x to satisfy thatx ∈ 4I , x ∈ (≤
ktPt.Ct)I , x /∈ (≤ ntPt.Ct)I andx ∈ (≤ kiPi.Ci)I where
i = 1, 2, ..., l andi 6= t. Thereforex ∈ AI while x /∈ BI ,
this contradicts the premiseA v B. Therefore,nt <= kt

and A has the better QoS profile description than B.
Secondly, A has all the B’s QoS properties as well as

some additional properties. All the same properties in A are
better than B and we define all these same properties’ con-
junction in A as class AS. Then we haveA v AS v B and
vice versa, which can be proved in the similar way to the
previous case.

4.2. Matchmaking Algorithm

Formally the matchmaking can be specified as: For a
given inquiryP , the matchmaking algorithm should return
the set of all the published advertisements which are com-
patible. Two QoS ontology descriptions, say C1 and C2, are
compatible iff their intersection is satisfiable:

compatible(C1, C2) ⇔ ¬(C1 u C2 v ⊥)

All the compatible advertisements will be added to the re-
sult set. However, we need to introduce the definition of
the degree of match to distinguish different advertisements.
The matching degree definition in our algorithm is differ-
ent from [11, 8]. Some of the definition are as follows:

• SubsumeIf requestR is super-concept of advertise-
mentA,we call the match Subsume; that is,A v R.

• Exact If advertisementR and requestA are equivalent
concepts, this is called the match Exact; that is,A ≡
B.

• PlugIn If requestR is sub-concept of advertisement
A, we call this match PlugIn; that is,R v A.

• Intersection If the intersection of advertisementA and
requestR is satisfiable, we call the match Intersection;
that is,¬(A uR v ⊥)

• Disjoint Otherwise it is disjoint; that is,A uB v ⊥.

Degrees of the match are organized in a discrete scale.
Subsume matches are considered the preferable match,
since we can expect that the advertisement with bet-
ter QoS description will subsume the inquiry description;
Exact matches are the next best, since the advertise-
ment is exactly the same to the requirement’s descrip-
tion; PlugIn matches are considered to be the third best,
since the advertisement does not fully provide the re-
quired QoS level according to the inquiry; Intersection is
supposed to be the fourth best, since it means that the ad-
vertisement is not incompatible with the inquiry; and
Disjoint is the lowest level since it shows that noth-
ing could satisfy both the advertisement and the inquiry,
which is a failed match. Intersection matches are not nec-
essarily of worse QoS than PlugIn matches.

With the definition of match degrees, we can use a DL
reasoning engine to match a request. We use the RACER
system to compute a QoSProfile hierarchy for all adver-
tised services. When an inquiry arrives, RACER is used to
classify the requester’s QoSProfileR, that is, to compute
R′s subsumption relationships against all the advertise-
ment QoSProfiles. Advertisements with QoSProfiles sub-
sumes but not equal toR are considered to be Subsume
matches. Those with QoSProfiles equivalent toR are con-
sidered as Exact matches, and those with QoSProfiles sub-
suming but not equal toR are considered to be Plugin
matches. Then RACER is used to classify¬R. Advertise-
ments with QoSProfiles subsuming but not equal to¬R are
considered to be Intersection matches, and those subsumed
by ¬R are considered to be Disjoint matches. For exam-
ple, theAdvert andInquiry defined in Section 3.4 satis-
fies thatAdvert v Inquiry so that theAdvert will be in-
cluded in the result set.

5. Related Works

There’re many research works that target the describ-
ing, advertising and signing up to Web and Grid services at
defined QoS levels. This includes HP’s Web Services Man-
agement Language(WSML) and framework[12], IBM’s
Web Service Level Agreement (WSLA) language[9], the
Web Services Offer Language (WSOL)[13] as well as ap-
proaches based on WS-Policy[6].

WSML and WSLA were developed for the XML-based
specification of custom-made SLAs for Web Services. Their
SLAs contain QoS constraints, prices and management in-
formation. They’re oriented towards management applica-
tions in enterprise scenarios and they are accompanied by
appropriate management infrastructures. Some support for
templates is available in WSML and WSLA. WSOL pro-
vides formal representation of various constrains as well as
management statements. Its major feature is richer set of
reusability constructs and lightweight management infras-

tructure. The definition of QoS metrics about how they are
measured or computed is done in external ontologies. WS-
Policy is a general framework for the specification of poli-
cies for Web Services. The details of the specification for
particular categories of policies will be defined in special-
ized languages. It is flexible and extensible because policies
are not limited in certain places and its specification is ex-
tensible through additional specifications. However, when
the new specification will appear and how the polices are
monitored and evaluated remain a problem.

Our QoS Profile is based on DAML+OIL layer instead
of pure XML layer. The advertisement is specified in a
more unambiguous manner because of the stricter con-
straints over the cardinality, domain and range. The pub-
lished web services should not need human intervention to
understand the meaning of SLAs, and to monitor and guar-
antee their compliance. In addition, unification and stan-
dardization of the well defined cardinality constraints and
metric semantics will reduce the programming effort of sup-
porting framework and achieve better code reuse. The ex-
tendibility and openness of ontology facilitates the share of
experiences and fastens the development cycle. The well-
established reasoning tool is also a great help to check the
consistency between QoS metrics and ensures a quick de-
velopment for the matchmaking frameworks. However, we
mainly focus on using this ontology as descriptive adver-
tisement for the service discovery purpose instead of SLA
assignment, monitoring, billing and analysis purpose in the
web service life cycle. WSLA and some other works made
good efforts on the SLA supporting framework for web ser-
vices. The SLA supporting system based on ontology layer
can be of better automaticity but it remains a research is-
sue.

6. Conclusions and Future Work

This paper provides a novel DAML-QoS ontology as a
complement for the DAML-S ontology to provide a better
QoS metrics model. It is mainly designed for the matchmak-
ing purpose. The well-defined Metric can be further utilized
by measurement organizations to guarantee the SLAs for
the service. The ontology contains three definition layers:
the QoS Profile Layer, the QoS Property Definition Layer
and QoS Metrics Layer. The roles for the development of
each layer are described. A basic profile is recommended
for normal web services’ usage. Additional specific prop-
erties can be added above the basic profiles for certain ser-
vice categories, such as the storage service, computational
service, etc. The matchmaking algorithm is presented for
the descriptions. One service profile can also have multi-
ple QoS profiles for the choice of service level objectives.
The recent related works, such as WSLA, WSML, etc., are
mainly based on XML layer so that they do not have the

semantic web technology’s advantages such as good ma-
chine understandability, interoperability, unambiguousness,
and better extensibility.

The QoS matchmaking is a following step of the ser-
vice profile matchmaking. As part of our future work, we
would incorporate the QoS matchmaking and service pro-
file matchmaking into our current QoS-Aware service dis-
covery framework[15]. Furthermore, the metric class can
be further studied to provide better management control to-
gether with supporting frameworks.

References
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.

Patel-Schneider, editors.The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

[2] T. Bellwood, L. Clmen, and C. von Riegen. UDDI Version
3.0.1 Specification, Nov 2003.

[3] J. Cardoso, A. Sheth, and J. Miller. Workflow Quality of Ser-
vice. InProceedings of the International Conf. on Enterprise
Integration and Modeling Technology and International En-
terprise Modeling Conference, 2002.

[4] DAML+OIL. The DAML+OIL Language. 2001.
[5] A. A. et al. DAML-S: Web Service Description for the Se-

mantic Web. InProc. Int’l Semantic Web Conf. (ISWC 02).,
2002.

[6] M. Hondo and C. Kaler. Web Services Policy Framework
(WS- Policy) Version 1.0, December 2002.

[7] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for
expressive description logics. InProceedings of the 6th In-
ternational Conference on Logic for Programming and Au-
tomated Reasoning (LPAR’99), pages 161–180, 1999.

[8] L. Li and I. Horrocks. A Software Framework For Match-
making Based on Semantic Web Technology. Inthe Interna-
tional World Wide Web Conference (WWW2003), 2003.

[9] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck.
Web Service Level Agreement (WSLA) Language Specifi-
cation, v1.0, Jan 2003.

[10] A. Mani and A. Nagarajan. Understanding quality of service
for Web services. 2002.

[11] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Seman-
tic matching of web services capabilities. InFirst Int. Se-
mantic Web Conf.

[12] A. Sahai, A. Durante, and V. Machiraju. Towards Automated
SLA Management for Web Services. HPL-2001-310 (R.1),
2002.

[13] V. Tosic, B. Pagurek, and K. Patel. WSOL - A Language for
the Formal Specification of Classes of Service for Web Ser-
vice. In the Int. Conf. on Web Services (ICWS03), 2003.

[14] G. Weikum. Towards guaranteed quality and dependabil-
ity of information service. In8th GI Fachtagung: Daten-
banksysteme in Buero, Technik und Wissenschaft, 1999.

[15] C. Zhou, L.-T. Chia, B. Silverajan, and B.-S. Lee. UX—An
Architecture Providing QoS-Aware and Federated Support
for UDDI. In the Int. Conf. on Web Services (ICWS03).

