
Formal Ver ification of Workflow Schemas

C. Karamanolis1, D. Giannakopoulou1, J. Magee1, S. M. Wheater2

1 Dept. of Computing, Imperial College of Science, Technology and Medicine
{ctk,dg1,jnm}@doc.ic.ac.uk

2 Dept. of Computing Science, University of Newcastle upon Tyne
Stuart.Wheater@ncl.ac.uk

Abstract
Practical experience indicates that the definition of real-world workflow applications is a complex
and error-prone process. Existing workflow management systems provide the means, in the best
case, for very primitive syntactic verification, which is not enough to guarantee the overall
correctness and robustness of workflow applications. The report introduces a method for formal
verification of system behaviour which, in C3DS, is defined as workflow schemas. Workflows are
modelled by means of an automata-based method, which facilitates exhaustive compositional
reachability analysis. The workflow behaviour is checked against safety properties, which can be
either generic (applicable to all workflow schemas) or domain specific (applicable to a given
schema). The analysis is performed in an automated way using the LTSA toolkit, which is
accessible by designers who are not experts in formal methods.

1 Introduction
Workflow Management Systems provide automated support for defining and controlling various
activities (tasks) associated with business processes [1, 2]. A Workflow Schema is used to represent
the structure of an application in terms of tasks as well as temporal and data dependencies between
tasks. A Workflow Application (or just Workflow) is executed by instantiating the corresponding
workflow schema [3]. In the context of the C3DS project, Workflow Schemas have been chosen as
the means for specifying the behaviour view of the system, i.e. the dependencies (data and
temporal) between the constituent services of the system.

The aim of providing automated support for composing and executing complex systems, as
those required for implementing business processes, is to reduce costs and flow times, to improve
the robustness of the process and to increase productivity and quality of service [4, 5]. However,
specifying a real-world workflow schema is a complex manual process, which is prone to errors.
Incorrectly specified workflow schemas result in erroneous workflow applications, which, in turn,
may cause dramatic problems in the organisation where they are deployed. Therefore, it is crucial
to be able to verify the correctness of a workflow schema before it becomes operational.

Many commercial workflow management systems provide the means for some basic syntactic
verification, while a workflow schema is designed. They check, for example, for the existence of
inputs and outputs in task specifications. However, more thorough and rigorous analysis is required
to ensure that the schema is correct [6, 7]. For instance, we need to be able to check that the
workflow eventually terminates, that there are no potential deadlocks, or that a certain path of
execution is possible. This report proposes a novel method for formal verification of workflow
schemas, by means of Labelled Transition Systems (LTS). Analysis is done by automated tools
provided as part of the LTSA toolkit.

LTSs and in particular the TRACTA approach followed here have been used extensively to
model and analyse concurrent systems. TRACTA and LTSA are already being used in C3DS for

modelling and analysis of the structural view of systems [8]; that is, the hierarchical structure of the
system components that provide the resources for the execution of complex services as workflow
applications. Our experience (backed by the feedback we have been having from the Industrial
Advisory Board of C3DS) indicates that the method is accessible and usable by practising
engineers, who are not experts of model checking techniques. We have therefore decided to adapt
these techniques for modelling and analysis of the behaviour view of the system. For the discussion
in this report, we use the C3DS notation for workflow schema definitions [9, 10]. However, the
method is generic and can be used in combination with other approaches to workflow specification.

Due to the size and complexity of most real-world workflow schemas, any viable analysis
method should follow an incremental (compositional) approach, which should be applied at each
step of the design procedure [11]. TRACTA addresses exactly this problem by enforcing a close
integration of modelling and analysis with system design. In particular, Compositional Reachability
Analysis (CRA) is used for modelling and analysis of system components, as they are composed
from other sub-components. CRA improves the computational complexity of analysis (together
with minimisation techniques) and favours reusability of specifications.

The remainder of this report is organised as follows. Section 2 provides an overview of the
semantics of the C3DS workflow definition notation, outlines the requirements for verification in
this context and introduces the TRACTA approach. Sections 3 and 4 form the core of the report.
Section 3 proposes a complete and formal modelling, in terms of LTSs, of all workflow schema
elements. Section 4 discusses the classes of safety properties that can be verified using the TRACTA
techniques and the LTSA toolkit. In both sections, the theoretical concepts are illustrated by means
of a case study: the hierarchical composition of a workflow for business trip reservations. The
report is concluded (section 5) with a critical discussion of the proposed method and directions of
future work.

2 Background

2.1 Defining workflow schemas
A workflow schema must be expressive enough to be able to represent the structure of a business
process. The schema represents a workflow application as a collection of tasks (services) and their
dependencies. A task is an application-specific unit of activity. There can be two types of
dependencies between tasks: 1) notification dependencies indicating temporal (causal) relations; 2)
dataflow dependencies indicating that a task requires some input (data) from another task. In the
following, we present the principles for workflow schema definitions [9, 10].

A task can start in one of several initial states and can terminate in one of several output states.
Thus, a task is modelled as having a set of input sets and a set of output sets. Each such set consists
of a (possibly empty) set of data objects. In Figure 1, task t3 is represented as having three input
sets I1, I2, and I3, and two output sets O1 and O2.

t3

I1

I3

I2

O1

O2

s1

s2

s5

s6

s7

s8t2

s3

n1

i3

i1

i2

i4

i5

t1

n2

s9

s4
o1

o2

o3

Figure 1. A workflow schema defining inter-task dependencies.

The execution of a task is triggered by the availability of an input set; only the first available input
set will trigger the task. For an input set to be available, all its dataflow and notification
dependencies must be satisfied. For example, in Figure 1, input set I1 of task t3 requires three
dependencies to be satisfied: objects i1, i2 and i3 must become available (dataflow dependencies).
On the other hand, input set I2 requires three dependencies to be satisfied: object i1 must become
available and two notifications, n1 and n2, must be signalled (notifications are modelled as data-less
input objects). A given input can be obtained from more than one source (e.g., two for object i1 in
set I1 of task t3). If multiple input sources become available simultaneously, then one source is
selected deterministically by the execution environment.

The notification dependencies are represented by dotted lines, for example, s6 is a notification
source for notification dependency n1. A notification dependency may have more than one
alternative sources too. For example, n1 has two alternative sources, s5 and s6. A task terminates
producing output objects belonging to exactly one of a number of output sets (e.g. O1 or O2 for task
t3).

To allow workflow applications to be designed in a hierarchical way, tasks can be composite:
they are realised as a collection of instances of other, inter-dependent tasks. Therefore a task can be
either primitive (implemented by some application service) or composite (consists of other
primitive of composite tasks). Figure 2 illustrates an example of a composite task called
Reservation. The task provides the schema definition for a trip reservation workflow.

Figure 2. A composite workflow task.

Composite tasks facilitate reusability of workflow schema definitions. Figure 3 shows a
composite task BusinessTrip, which reuses the definition of the Reservation task to define a
workflow schema for a business trip reservation process. The latter two examples (tasks
Reservation and BusinessTrip) will be used as case-studies for the rest of the report, in order to
illustrate the modelling and analysis concepts discussed.

Figure 3. A composite workflow task containing a composite sub-task.

2.2 Requirements for a workflow verification method
Our experience with building large workflow systems indicates that it is important for the designer
to be able to apply a rigorous verification method on the workflow schema and argue formally
about the correctness of the resulting workflow applications. In this context, we have identified a
number of requirements to be satisfied by any such verification method:

1. Have a solid mathematical foundation and allow for rigorous and formal analysis of both safety
and liveness properties.

2. Perform exhaustive analysis at design-time (of the workflow schema) as well as interactive
simulation of the workflow model.

3. Employ algorithms that are computationally efficient in order to be applicable to real-world
systems. These algorithms should be supported by automated tools.

4. Follow a compositional approach in order to enable incremental analysis while the system is
designed and to support re-use of specifications in multiple contexts.

5. Generate meaningful diagnostic information, in the form of execution traces, to indicate
potential errors to the designer.

6. Use a comprehensible graphical representation for humans and also an equivalent well-defined
and space-efficient formal notation for usage with the tools.

7. Be understandable and accessible by users who have no special expertise in the area of
modelling and formal methods.

2.3 The TRACTA approach to behaviour modelling and analysis
The TRACTA approach has been extensively used for modelling and analysing concurrent and
distributed systems [12-14]. It is based on the use of Labelled Transition Systems (LTS) for
modelling the behaviour of system components and for expressing system properties.

In order to integrate analysis with other activities of software development, TRACTA uses a
compositional approach to modelling, by following the phases of hierarchical system design.
Behaviour is attached to the software architecture by specifying a labelled transition system for
each primitive component in the hierarchy (primitive is a system component which cannot be
expanded to sub-components, at least for the sake of analysis). Following the terminology of
traditional process algebras, the LTS of a primitive component is equivalent to a finite-state
interacting process. An LTS contains all the reachable states and executable transitions (triggered

by actions) of a process. The behaviour of composite system components is defined as the
composition of the LTSs of their constituent components.

TRACTA exhaustively explores the reachable states of an LTS, a technique known as
reachability analysis. The main disadvantage of this technique is state explosion. That is, the
exponential relation between the system state-space and the number of its constituent components.
TRACTA takes advantage of the hierarchical structure of the system in order to address this
problem. As the system behaviour is composed in a bottom-up manner, internal details (actions) of
a subsystem’s behaviour are hidden and the subsystem is minimised, at intermediate stages of the
analysis. In general, only a subset of the actions in a subsystem’s LTS are of interest to external
systems (processes) that have to interact with it.

Explicit representation of LTSs becomes impractical for systems with more that a few states.
For this reason, TRACTA uses a simple process algebra notation called FSP (stands for Finite State
Process) to specify the behaviour of components in a system [15]. FSP is not a different way of
modelling a system. It is a specification language with well-defined semantics in terms of LTSs,
which provides a concise way for describing LTSs. Each FSP expression can be mapped onto a
finite LTS and vice versa.

TRACTA is supported by the LTSA software tool, which provides for automatic composition,
analysis, minimisation, animation and graphical display of system models expressed in FSP.

Primitive system components

Primitive system components are defined as finite-state processes in FSP using action prefix “ - >” ,
choice “ | ” and recursion. If x is an action and P a process, then (x- >P) describes a process that
initially engages in the action x and then behaves exactly as described in P. If x and y are actions,
then (x- >P| y- >Q) describes a process which initially engages in either of the actions x or y , and
the subsequent behaviour is described by P or Q, respectively. The definition of a primitive
component may use an auxiliary process (used as a means for modular FSP specifications).

FSP uses an interface operator ‘@’ , which specifies (using prefix matching) the set of action
labels which are visible at the interface of the component and thus may be shared (synchronisation
points – used for interaction) with other components. All other actions are “hidden” and will appear
as silent “τ” (tau) actions during analysis, if they do not disappear during minimisation of the
component. When it is more concise to describe what actions are hidden rather than which actions
remain observable, the hiding operator “ \ ” may be used instead.

Composite system components

Composite-component processes are defined in terms of other, non-auxiliary, processes. Their
identifiers are prefixed with “ | | ” . The process of a composite component does not define
additional behaviour; it is simply obtained as the parallel composition of instances of the processes
it is made of. Process instances are denoted as “ instance-name:type-name” . The LTS of the
instance is identical to that of the type, with action labels prefixed with the instance name. The
instance name is not necessary if there is just one instance of a process in a given context.
Composition expressions use parallel composition (| |) together with operators such as re-labelling
(/), action hiding (\) or interface (@). Communication is modelled by means of synchronisation of
shared actions (the remaining actions are interleaved). Actions that correspond to interaction
interfaces are re-labelled to a common name in order to be synchronised when behaviours are
composed. Re-label specifications are of the form “new-label/old-label” .

More details of the TRACTA approach and the FSP specification language will become clear
during the discussion of wokflow modelling and analysis, in the following sections.

3 Workflow modelling
The model of each workflow schema consists of two parts:

• A generic part, which is concerned with modelling elements that are common to every schema,
such as input/output interfaces and dataflow/notification dependencies between tasks.

• An application-specific part, which is concerned with the model of actual tasks in the schema
and their inter-dependencies.

The models are presented in the form of FSP specifications and, when appropriate, as LTS
diagrams produced by the LTSA tool.

3.1 Task interfaces
A task interacts with its environment through its interface sets. Interface sets consist of zero or
more data objects (representing dataflow dependencies) and inbound and outbound notifications
(representing notification dependencies). Interface sets model the common denominator of the
behaviour of input and output sets of tasks.

� An interface set is “ available” , if all its dataflow and notification dependencies are satisfied.
When an interface set is available, then all of its constituent objects and outbound notifications
are also available.

An interface object can perform i nput and out put actions, reflecting the fact that the object
receives and outputs data, respectively. To model the fact that an interface becomes available when
all its constituent objects are available (a logical AND operation), we use an action avai l abl e, on
which all objects in a set need to synchronise. An object can only perform avai l abl e after
performing action i nput . Therefore, the behaviour of an object with identification I D (to uniquely
identify it in the set) is modelled as follows:

Object (I D=1) = (i nput [I D] - > avai l abl e - > out put [I D] - > STOP) .

Action avai l abl e is also used to make sure that all inbound notifications are received before an
interface set becomes available and also, that outbound notifications are provided only after the
interface set becomes available:

InNotification (I D=1) = (i nNot i f y[I D] - > avai l abl e - > STOP) .

OutNotification = (avai l abl e - > out Not i f y - > STOP) .

An interface set is, then, modelled as the parallel composition of a set of objects and inbound and
outbound notifications. If an interface set does not contain any objects and has no notification
dependencies, it is unconditionally available, as modelled by process Def aul t .

input.1

inNotify.1 input.1 available

output.1

outNotify output.1

outNotify

inNotify.1

0 1 2 3 4 5 6 7

Figure 4: LTS of an inter face set, with one object, one in- and one out- notification.

| | Iface (Obj s=1, I Not f s=1, ONot f s=1) =

 if (ONot f s >= 2) then

 I f ace_Pr obl em

else (if (Obj s > 0) then

 (forall [i : 1. . Obj s] Obj ect (i))

 | | if (I Not f s > 0) then

 (forall [i : 1. . I Not f s] I nNot i f i cat i on(i))

 | | if (ONot f s > 0) then

 Out Not i f i cat i on

 | | if (Obj s == 0 && I Not f s == 0 && ONot f s == 0) then

 Def aul t

) .

Default = (avai l abl e - > STOP) .

Iface_Problem = (er r oneous - > ERROR) .

An interface produces at most one outbound notification (which can be bound to more than one
task). Thus, no identifier is required for these type of notifications. A process I f ace_Pr obl em is
introduced to model a transition to an error state, if an interface instance is specified with more
than one outbound notification. Figure 4 illustrates the LTS of an interface with one object, one
inbound and one outbound notification.

3.2 Primitive tasks
The main entities of a primitive task that need to be modelled are its interfaces, qualified as input
and output sets. They are modelled as interfaces that have zero notifications. The reason is that, in
the general case, a task should be modelled in a reusable way: the designer has no knowledge of the
context in which the task may be instantiated.

minimal

| | AbsInputSet (Obj s=1) = (I f ace(Obj s, 0, 0))

/ { r eady/ avai l abl e}

@ { r eady, i nput } .

minimal

| | AbsOutputSet (Obj s=1) = (I f ace(Obj s, 0, 0))

/ { enabl e/ avai l abl e}

@ { enabl e, out put } .

Action avai l abl e of the I f ace process is renamed to r eady or enabl e to differentiate between
input and output sets, respectively. Moreover, information that is concerned with the outputs of
input sets and the inputs of output sets is encapsulated within the model of primitive tasks. The
only actions kept explicitly visible are the ones prefixed with labels i nput and r eady for input
sets, and out put and enabl ed for output sets.

The prefix mi ni mal is added to the processes to make sure that, during the generation of the
model, our tools will not only hide the actions that are not made visible, but will also minimise the
corresponding LTSs. Minimisation results in a more compact but behaviourally equivalent model.

A primitive task’s behaviour is dictated by two rules:
� The execution of a task starts as soon as one of its input sets is available.
�

When the execution of a task completes, exactly one of its output sets is available.

The two rules also capture the causal dependency between a task’s input and output sets. This
behaviour pattern is common to all primitive tasks and is modelled by the process AbsTaskI mpl .
This process also models the fact that, even if more than one input set is available, just one is
selected by the internal task behaviour and exactly one output is produced.

AbsTaskImpl (I nSet s=1, Out Set s=1) = (r eady[i : 1. . I nSet s] - > Execut e) ,

Execut e = (enabl e[o: 1. . Out Set s] - > STOP) .

A specific primitive task is then defined as the parallel composition of instances of its input and
output sets with an instance of the above default implementation process. For example, the
primitive task Tr i pPl an of Figure 2 is modelled as shown below. The renaming reflects the
bindings of the task’s interfaces to AbsTaskI mpl .

| | TripPlan = (AbsTaskI mpl (1, 2)

| | dat a: AbsI nput Set (1)

| | abor t : AbsOut put Set (0)

| | det ai l s: AbsOut put Set (4)

)

 / { dat a. r eady/ r eady[1] ,

 abor t . enabl e/ enabl e[1] ,

 det ai l s. enabl e/ enabl e[2] } .

3.3 Composite tasks
Composite tasks are constructed out of a number of constituent task (sub-task) instances. Sub-tasks
are either primitive or composite tasks. In the context defined by a composite task, the data objects
of its input and output set(s) (“external” interfaces) are bound to objects of input and output sets,
respectively, of sub-tasks. Similarly, there may be notification dependencies between external and
internal interfaces.

However, incoming notification dependencies to the composite’s own input sets and outgoing
notification dependencies from the composite’s output sets are not known in this context. The aim
is to achieve reusability of the composite task’s model, by making it context independent. This
principle is captured in the specifications of the external input and output sets of composite tasks:
an I nput Set is an interface set with no input notifications and an Out put Set is an interface set
with no output notifications.

| | InputSet (Obj s=1, ONot f s=1) =

if (Obj s ==0 && ONot f s==0) then I f ace_Pr obl em

 else (I f ace(Obj s, 0, ONot f s))

/ { r eady/ avai l abl e} .

| | OutputSet (Obj s=1, I Not f s=1) =

if (Obj s ==0 && I Not f s==0) then I f ace_Pr obl em

 else (I f ace(Obj s, I Not f s, 0))

/ { enabl e/ avai l abl e} .

The conditional specification in the above model states that: 1) an external input set must have at
least one data object or one outgoing notification; 2) an external output set must have at least one
data object or at least one incoming notification. Process I f ace_Pr obl em is again used to model a
transition to an error state, if either of the above conditions is not satisfied. Composite task
Reser vat i on (of Figure 2) has one external input and four external output sets. Figure 5
illustrates a general diagram of the task interfaces and the corresponding model.

| | Reservation = (

 / * Sel ect or s of i nt er f ace set s . . . * /

 I nSel ect or (1) | | Out Sel ect or (4)

 / * I nt er f aces . . . * /

 / * I nput set s * /

 | | dat a: I nput Set (1, 0)

 / * Out put set s * /

 | | abor t : Out put Set (0, 1)

 | | cnl NOK: Out put Set (1, 1)

 | | cnl OK: Out put Set (0, 1)

 | | booki ng: Out put Set (4, 0)

 . . .

) / { / * mappi ngs t o sel ect or s. . . * /

 dat a. r eady/ r eady[1] ,

 abor t . enabl e/ enabl e[1] ,

 cnl NOK. enabl e/ enabl e[2] ,

 cnl OK. enabl e/ enabl e[3] ,

 booki ng. enabl e/ enabl e[4] , . . . } .

InSelector (I nSet s=1) = (r eady[i : 1. . I nSet s] - > STOP) .

OutSelector (Out Set s=1) = (enabl e[i : 1. . Out Set s] - > STOP) .

Figure 5. “ External” input and output sets of a composite component.

In the case of composite tasks, we have, again, to model the fact that exactly one input set is
selected even if more than one is available and exactly one output set is enabled when the task
terminates. The later is modelled by processes I nSel ect or and Out Sel ect or , instances of
which are used together with the necessary action renaming to guarantee single set selection, as
shown in Figure 5.

When instances of tasks are interconnected within the context of a composite task, two
additional generic processes, Cont ext Out Not f s and Cont ext I nNot f s provide the “glue”
required for specifying notification dependencies. Their models are based on the abstract input and
output sets, since they introduce conditions for an input to become ready or provide outputs, in the
form of notifications, as soon as an output set is enabled. Recall that we can have only a single
outbound notification per output set.

| | ContextOutNotfs = AbsOut put Set (1)

/ { out Not i f y/ out put [1] } .

| | ContextInNotfs (I Not f s=1) = AbsI nput Set (I Not f s)

/ { i nNot i f y/ i nput } .

All tasks, whether primitive or composite, may need to be augmented with the above behaviour,
when they are put in a context. For example, the model of task Reser vat i on consists of the
parallel composition of five constituent task instances, together with the processes modelling their
notifications glue.

| | Reservation = (

 . . .

 / * Const i t uent t asks . . . * /

 | | pl an: Tr i pPl an | | pl an. abor t : Cont ext Out Not f s

 | | chk: Fl i ght Sear ch | | chk. abor t : Cont ext Out Not f s

 | | f l i ght : Fl i ght Res | | f l i ght . abor t : Cont ext Out Not f s

 | | f l i ght . f l Booki ng: Cont ext Out Not f s

 | | hot el : Hot el Res | | hot el . dat a: Cont ext I nNot f s(1)

 | | hot el . abor t : Cont ext Out Not f s

 | | cancel : Fl Cancel | | cancel . f l i ght : Cont ext I nNot f s(1)

 | | cancel . cnl NOK: Cont ext Out Not f s

 | | cancel . cnl OK: Cont ext Out Not f s

) / { . . . }

The implementation of composite tasks is modelled by the appropriate bindings between interface
sets. In the case of the Reser vat i on task, the dataflow dependency between the dat a object of
Reser vat i on’ s (external) input set and the object of the input set of task pl an: Tr i pPl an is
modelled by the renaming of Figure 6.

| | Reservation = (. . .)

 / { . . . , dat a. out put [1] / pl an. dat a. i nput [1] , . . . }

Figure 6. Dataflow dependencies between external and sub-task input objects.

The dataflow dependency between three of the objects of the dat a output set of pl an: Tr i pPl an
and the dat a input set of chk: Fl i ght Sear ch are modelled by a similar renaming of all the
corresponding data objects, as shown in Figure 7. A single data object may be the source of more
than one dependency, as it is the case with the first two objects of the det ai l s output set of
pl an: Tr i pPl an.

| | Reservation = (. . .)

/ { . . . ,

 pl an. det ai l s. out put [1] / chk. det ai l s. i nput [1] ,

 pl an. det ai l s. out put [2] / chk. det ai l s. i nput [2] ,

 pl an. det ai l s. out put [3] / chk. det ai l s. i nput [3]

 , . . . }

Figure 7. Dataflow input dependencies between data objects of sub-tasks.

A given set or object may have more than one alternative input sources. Availability of any of the
input sources (logical OR) is enough to enable the set or object, accordingly. Alternative
dependency sources are modelled by means of relational relabelling. In our example, the abor t
output set of Reser vat i on can be enabled by a number of alternative sources: pl an. abor t ,
chk. abor t and f l i ght . abor t . The relational relabelling of Figure 8(a) states that a transition
labelled abor t . i nNot i f y[1] in the LTS of the “external” output set abor t is, now, performed
when any of the other three transitions occurs. The corresponding transformation of the LTS is
shown in Figure 8(b).

| | Reservation = (…)

 / { . . . ,

 { pl an. abor t . out Not i f y,

 chk. abor t . out Not i f y,

 f l i ght . abor t . out Not i f y

 } / abor t . i nNot i f y[1]

 , . . . }

(a) Modelling alternative input sources for notification dependencies.

abort.inNotify[1]

⇒

plan.abort.outNotify
chk.abort.outNotify

flight.abort.outNotify

(b) LTS transformation due to relational relabelling.

Figure 8. Relational relabelling used to model alternative input sources.

4 Workflow analysis
This section describes how to customise generic LTS analysis techniques for the domain of
workflow systems.

4.1 Interactive simulation
A practical first step in checking a process is to simulate its behaviour. Simulation is performed as
a user-controlled animation of the process. For composite processes, the LTS of their behaviour is
not composed first. The method does not, as a result, suffer from state explosion. The LTSs of the
components of the process are used to determine the current state of the process, as well as which
actions are enabled at that state. The enabled actions are the “ ticked” actions in the “animator
window”. When the user selects one of these actions, the process transits to the corresponding next
state. The LTSA tool highlights the transitions on the LTS diagrams of the component processes
and presents the corresponding system trace.

AbsTaskImpl(1,2) flight.ready abort.enable

flBooking.enable

0 1 2

flight:AbsInputSet(1) flight.input.1 flight.ready

0 1 2

Figure 9: Interactive simulation of task type FlightRes.

Figure 9 illustrates the interactive simulation of an instance of task Fl i ght Res (see Figure 2). We
can see that after the input to the task has been provided, its input set f l i ght becomes ready.
Action f l i ght . r eady is performed synchronously by processes f l i ght : AbsI nput Set (1) and
AbsTaskI mpl (1, 2). Since this is a primitive task, the outputs become available, as soon as an

input set is ready. In this case, when actions abor t . enabl e and f l Booki ng. enabl e become
available, users may select which output to enable, according to the scenario they wish to check.

Interactive simulation provides an intuitive way for the system designers to experiment with
different execution scenarios. However, in the general case, interactive simulation cannot establish
the correctness of a real system, since designers cannot simulate all its possible execution
scenarios. For that reason, techniques are required for rigorously checking the models of workflow
systems.

4.2 Properties
The model-checking techniques associated with TRACTA can be used to check a workflow system
exhaustively, against both generic and domain-specific properties. When a property is violated, our
tools provide a counterexample, an execution trace that violates the property.

Gener ic proper ties: deadlock

The LTSA identifies deadlock states in the LTS of a process, as states with no outgoing transitions.
Reachability of such states is checked by default for every process in the system. This is because
LTSA has been mainly aimed at reactive models that exhibit non-terminating behaviours. A typical
way of dealing with terminating executions is to add a looping transition to each valid terminating
state of a system. For workflow tasks that are expected to terminate, we provide a generic process
called Val i dTaskTer mi nat i on, which models the fact that a valid terminating state of a task is
one where some output of the task has been enabled:

ValidTaskTermination = (out _enabl ed - > TERM) ,

TERM = (t er m_ok - > TERM) .

When composed with a task that we wish to check for deadlock, this process will add looping
transitions to the valid terminating states of the task. In this way, only real deadlock states will have
no outgoing transitions in the resulting LTS.

| | Complete_Reservation =

 (Reser vat i on | | r eser vat i on: Val i dTaskTer mi nat i on)

 / { { abor t . enabl e, cnl NOK. enabl e, cnl OK. enabl e, booki ng. enabl e} /

r eser vat i on. out _enabl ed} .

In this example, an instance of Val i dTaskTer mi nat i on is composed with an instance of
Reser vat i on. Relational relabelling is applied so that the Val i dTaskTer mi nat i on process
transits to its terminating state whenever any one of the outputs of the Reser vat i on task is
enabled. In this way, valid terminating states of process Compl et e_Reser vat i on will have
looping transitions labelled with action r eser vat i on. t er m_ok . Indeed, the LTSA tool does not
detect any deadlocks in process Compl et e_Reser vat i on:

 St at es Composed: 120 Tr ansi t i ons: 254 i n 0ms

 No deadl ocks/ er r or s

According to the workflow models of this report, the fact that a task has no deadlocks implies that
it eventually terminates. In this context, this is the main liveness property of interest. Specific
liveness-checking techniques are required [14], when the behaviour model of the resources used for
the execution of each primitive task is also introduced in the system model. The analysis of
workflow schemas, in the presence of resource models, is an ongoing research issue as discussed in
section 5.

Gener ic safety proper ties

In TRACTA, safety property violations are identified by the reachability of a special "error state",
represented as state -1 in LTSs. The error state has special semantics [13]. Firstly, it never has any

outgoing transitions, since there is no meaning in exploring a system after a safety violation has
occurred. Moreover, in the context of parallel composition, local errors are propagated globally.
That is, if any component of a global state is an error state, then this global state is also an error
state. Safety properties are specified as FSP primitive processes, whose definition is prefixed with
the keyword "property".

A fundamental requirement, to be satisfied by all composite tasks, is:

� The output produced by a task causally depends on the input that triggers the task execution.

It is expressed by means of a safety property:

pr oper t y Task_InOut_Relation = (i nput _r eady - > out put _enabl e - > STOP) .

This property has an alphabet of two actions: { i nput _r eady, out put _enabl e} . It asserts that
action out put _enabl e can occur only after i nput _r eady , after which none of these actions is
allowed to occur again. In the corresponding LTS, any trace from the property’s alphabet that does
not satisfy the property leads to the error state. Property process Task_I nOut _Rel at i on is
composed with process Compl et e_Reser vat i on in order to check for potential violations of the
property in the non-blocking version of the reservation task. Figure 10 illustrates the LTS for
property Task_I nOut _Rel at i on, after relational relabelling is applied. It specifies, that if any
one of the input sets (just dat a in our example) is enabled, then (and only then) any one of the
output sets may be enabled by the corresponding task.

| | Check_InOut_Reservation =

(Compl et e_Reser vat i on | | Task_I nOut _Rel at i on)

/ { dat a. r eady / i nput _r eady,

 { abor t . enabl e, cnl NOK. enabl e, cnl OK. enabl e, booki ng. enabl e} / out put _enabl e

 } .

Task_InOut_Relation

data.ready

abort.enable

cnlNOK.enable

cnlOK.enable

booking.enable
data.ready

abort.enable

cnlNOK.enable

cnlOK.enable

booking.enable

data.ready

abort.enable

cnlNOK.enable

cnlOK.enable

booking.enable

-1 0 1 2

Figure 10. LTS of proper ty Task_InOut_Relation.

Another typical requirement for any workflow schema is:
� For each task, there must exist at least one execution of the workflow where this task is

triggered.

To check this for some task T, we introduce a property Pat hsToSubt ask to the model, which
states that no input set of T ever becomes ready. If our analysis tools return a counterexample, it
means that indeed, there exists some execution where T is triggered, as desired. If the LTSA
detects no violations, it means that T never plays any role in the context of the specific workflow.

pr oper t y PathsToSubtask = STOP + { r eachabl e} .

Here, action r eachabl e (explicitly added to the alphabet of the property) expresses the fact that a
task is triggered. In the case of a task, r eachabl e is relationally relabelled to the set of r eady
actions corresponding to the task’s input sets. For example, we proceed as follows to check that
task pl an is triggered in at least one execution of Compl et e_Reser vat i on:

| | ExistPathsToPlan = (Compl et e_Reser vat i on | | Pat hsToSubt ask)

 / { pl an. dat a. r eady/ r eachabl e } .

The LTSA tool returns the following result:

Tr ace t o pr oper t y v i ol at i on i n Pat hsToSubt ask:

 dat a. i nput . 1

 dat a. r eady

 dat a. out put . 1

 pl an. dat a. r eady

The counterexample gives the prefix of an execution of Compl et e_Reser vat i on where task
Pl an is triggered.

Domain-specific safety proper ties

In addition to checking generic properties of workflows, our techniques can be used for properties
that refer to the particular workflow under analysis. Some examples are briefly described in this
section.

�

Cor r ect _Booki ng asserts that booking is enabled only if both a flight and a hotel have
been booked, and they have been booked in this order.

pr oper t y Correct_Booking = (f l i ght . f l Booki ng. out put [1] - >

 hot el . hoBooki ng. out put [1] - >

 booki ng. enabl e - > STOP) .

�

Cor r ect _Abor t asserts that, if any of the tasks pl an, chk , or f l i ght aborts, then the only
possible outcome is an abort.

pr oper t y Correct_Abort = No_Abor t _Seen,

No_Abor t _Seen =

({ cnl NOK. enabl e, cnl OK. enabl e, booki ng. enabl e} - > No_Abor t _Seen

 | { pl an. abor t . enabl e, chk. abor t . enabl e, f l i ght . abor t . enabl e} - > Abor t _Seen) ,

Abor t _Seen = (abor t . enabl e - > STOP) .

�

Adds_To_Abor t additionally checks, that no task is triggered (i.e. no input set becomes ready)
subsequently to any abort action.

pr oper t y Adds_To_Abort = No_Abor t _Seen,

No_Abor t _Seen =

({ pl an. dat a. r eady, chk. det ai l s. r eady, f l i ght . f l i ght . r eady,

 hot el . dat a. r eady} - > No_Abor t _Seen

| { pl an. abor t . enabl e, chk. abor t . enabl e, f l i ght . abor t . enabl e} - > STOP) .

In TRACTA, any number of properties may be checked simultaneously on a system. All the
properties of interest can be composed with the process to be analysed; reachability of the error
state is then checked. We can even compose properties amongst themselves, before they are
applied to a process, as the following example illustrates.

| | Strict_Abort_Check = (Cor r ect _Abor t | | Adds_To_Abor t) .

| | Check_All = (Compl et e_Reser vat i on

 | | Cor r ect _Booki ng

 | | St r i ct _Abor t _Check) .

4.3 Modularity and Abstraction
After checking thoroughly that a task satisfies its requirements, the behaviour of the task may be
abstracted before re-using it in some other context. The only actions that need to be visible by the
context of a task are actions related to its interfaces. Specifically, the interface of an abstracted task
consists of the i nput actions of its input sets and the out put actions of its output sets.
Additionally, the r eady actions of input sets and enabl ed actions of output sets must also be
exposed, in order to be able to add notifications to and from the task when it is introduced in a
context. The LTS of the task is then minimised. For example, the Compl et e_Reser vat i on task
is abstracted as follows:

minimal

| | AbstractReservation = (Compl et e_Reser vat i on)

 @ { dat a. i nput , dat a. r eady,

 abor t . enabl e, abor t . out put ,

 cnl NOK. enabl e, cnl NOK. out put ,

 cnl OK. enabl e, cnl OK. out put ,

 booki ng. enabl e, booki ng. out put

 } .

Minimisation reduces the size of the LTS of the reservation task from 120 down to 26
states.

5 Discussion and conclusions
The report has proposed a method for modelling and verifying workflow schemas (defining the
behavioural view of complex systems and services in C3DS), in lines with the TRACTA approach.
TRACTA satisfies the fundamental requirements that have been set in section 2.2. It is a mature
method that has been extensively used for model checking of complex concurrent and distributed
systems. It uses a solid automata-based theory to allow exhaustive analysis on the static model of a
system, at design time.

The TRACTA approach is fully automated within the LTSA toolkit. The algorithms employed
for process composition, action hiding and minimisation are computationally efficient and scale
well for real-world workflow schemas. In addition, LTSA provides a graphical representation of
LTSs and an animation facility for simulating the execution of the model. Diagnostic information is
presented in the form of counterexamples: traces of execution that lead to violation of a desired
property. All these facilitate the use of the method by designers that are not experts in formal
methods. In fact, with an automated production of the model from the workflow schema definition
(which is currently under development), the workflow designers will not have to write any FSP
code apart from expressing the task properties they wish to analyse.

The feature of TRACTA that makes it particularly suitable for behaviour analysis of complex
workflow schemas, as those required for application domains that are of interest to C3DS, is
compositionality. TRACTA traditionally follows a compositional approach to modelling and
analysis, in order to address the state explosion problem which is inherent to all exhaustive
reachability analysis techniques. We have exploited this feature, by making the models of tasks
context independent and re-usable. Therefore, designers can check the model of their system in an
incremental manner, while the system is designed. Design errors can be spotted early in the design
and right in the components (tasks) where they occur.

The lack of compositionality is the main weakness of the Woflan system, according to its
designers [11]. Woflan is a verification tool that uses a special type of Petri-nets to model and
analyse the behaviour of workflow processes. Errors in the model are reported in the form of
“behaviour error messages” , similar to our “counter-example traces” . The main advantage of the
system is the theoretical robustness of the Petri-nets and the clear representation of workflow state
by token-based nets. However, the system lacks a means for visual representation of the model. In
addition, Woflan can only handle systems with just up to 105 states. In comparison, LTSA can
typically handle LTSs with more than 106 states, which may correspond to a system that is several
orders of magnitude larger, before minimisation.

There are a number of directions we are planning to follow in order to extend the work
presented in this report. The proposed modelling method has been illustrated by means of a specific
workflow notation, the one used in C3DS. However the method is generic and can be adapted for
other approaches to workflow scheme specification. To justify this claim, we are planning
mappings for other (proprietary) notations used by commercial workflow management systems. In
addition, the proposed method has to be extended with a generic model of recursive tasks (tasks
that can trigger new instances of their own type), a common design pattern, especially in business
processes.

The work presented in this report focuses on the modelling and analysis of workflow schemas,
irrespectively of the environment in which schemas are instantiated and executed. Such models can
be enriched with the behaviour of system resources used for the enactment of workflow instances.
Analysis of the extended models can then ensure that workflow specifications are consistent with
the constraints set by the execution environment. We are currently investigating what are the
required abstractions for modelling system resources in this setting.

Acknowledgements
This work has been supported in part by ESPRIT LTR Project C3DS (Project No. 24962). We
gratefully acknowledge our colleagues Jeff Kramer, Santosh Shrivastava and Frederic Ranno for
helpful discussions as well as the members of the C3DS Advisory Board for their comments and
feedback.

References

[1] Koulopoulos, T.M., The Workflow Imperative, New York: Van Nostrand Reinhold 1995.

[2] Georgakopoulos, D., Hornick, M., and Sheth, A., An overview of workflow management:
from process modelling to workflow automation infrastructure. International Journal on
Distributed and Parallel Databases. Vol. 3(2), April 1995: pp. 119-153.

[3] Wheater, S.M., Shrivastava, S.K., and Ranno, F. "A CORBA Compliant Transactional
Workflow System for Internet Applications", in Proc. of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing. 1998, Lake District,
UK. Also: C3DS 1st year deliverable, task C2.1, part III.

[4] Workflow-Management-Coalition, Workflow Handbook, ed. P. Lawrence, New York: John
Wiley and Sons 1997.

[5] Schal, T., Workflow Management for Process Organisations. Lecture Notes in Computer
Science. Vol. 1096, Berlin: Springer Verlag 1996.

[6] Sheth, A.P., van de Aalst, W.M.P., and Arpinar, I.B., Processes Driving the Networked
Economy. IEEE Concurrency. Vol. 7(3), July - September 1999.

[7] van der Aalst, W.M.P., The Application of Petri-NEts to Workflow Management. The
Journal of Circuits, Systems and Computers. Vol. 8(1) 1998: pp. 21-66.

[8] Magee, J., Kramer, J., and Giannakopoulou, D. "Behaviour Analysis of Software
Architectures", in Proc. of the 1st Working IFIP Conference on Software Architecture
(WICSA1). 22-24 February 1999 San Antonio, TX, USA. Also: C3DS 1st year deliverable,
task B1.1, part II.

[9] Ranno, F., Shrivastava, S.K., and Wheater, S.M. "A Language for Specifying the
Composition of Reliable Distributed Applications", in Proc. of the 18th International
Conference on Distributed Computing Systems (ICDCS-98). 1998, Amsterdam, The
Netherlands. Also: C3DS 1st year deliverable, task C2.1, part II.

[10] Ranno, F., A language and toolkit for the specification, execution and monitoring of
dependable distributed applications. PhD thesis. Department of Computing Science,
University of Newcastle upon Tyne. June 1999, Newcastle upon Tyne.

[11] Verbeek, H.M.W., Basten, T., and van der Aalst, W.M.P., Diagnosing Workflow Processes
using Woflan, 1999, Eidhoven University of Technology: Eidhoven.

[12] Magee, J., Kramer, J., and Giannakopoulou, D. "Analysing the Behaviour of Distributed
Software Architectures: a Case Study", in Proc. of the 5th IEEE Workshop on Future
Trends of Distributed Computing Systems. October 1997 Tunis, Tunisia, pp. 240-245

[13] Giannakopoulou, D., Kramer, J., and Cheung, S.C., Analysing the Behaviour of Distributed
Systems using Tracta. Journal of Automated Software Engineering, special issue on
Automated Analysis of Software. Vol. 6(1), January 1999: pp. 7-35.

[14] Giannakopoulou, D., Magee, J., and Kramer, J. "Checking Progress with Action Priority: Is
it Fair?", in Proc. of the 7th European Software Engineering Conference held jointly with
the 7th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’99). September 1999 Toulouse, France. Springer, Lecture Notes in Computer
Science 1687. M.L. O. Nierstrasz, Ed

[15] Magee, J. and Kramer, J., Concurrency: State Models & Java Programs. Worldwide Series
in Computer Science: John Wiley & Sons 1999.

