
Expressiveness and Suitability of

Languages for

Control Flow Modelling

in Workflows

Bartosz Kiepuszewski, M.Sc.

A dissertation presented to the

Faculty of Information Technology

Queensland University of Technology

in fulfilment of the requirements for the degree of

Doctor of Philosophy

November 13, 2002

Copyright c© Bartosz Kiepuszewski

Centre for Cooperative Information Systems

Abstract

Workow management has been a research area that attracted signi�cant interest
in the last decade. In spite of this, little consensus has been reached as to what
the essential ingredients of workow speci�cation languages should be. Consequently
many workow management systems have been developed that are based on di�erent
paradigms and include di�erent feature sets. These di�erences result in various levels
of suitability and expressive power.

The challenge, which we undertake in this thesis, is to provide a comprehensive analy-
sis of control ow aspects of workow speci�cations. We start by analysing modelling
languages of eight commercially available workow systems.

Next we identify the requirements for workow control ow through the use of work-
ow patterns. Ranging from very simple to more complex, we identify the business
requirements that need to be addressed by any workow management system that is
to be used to support a wide range of business processes. Through matching these
patterns with the modelling capabilities of the workow systems that we have under
review, we provide a thorough analysis of these systems and identify shortcomings in
their modelling language approaches.

Finally, we establish a theoretical foundation that is subsequently used to provide
a formal analysis of the expressive power and suitability of di�erent approaches to
modelling control ow in workows. We identify four major evaluation strategies and
assess their theoretical expressive power. Additionally we analyse some of the more
advanced concepts related to control ow modelling for workows such as termination,
deadlock, decomposition and use of data ow to augment control ow speci�cation.
The results obtained as part of this work should not only aid those developing workow
speci�cations in practice, but also those developing new workow engines.

Contents

Abstract 3

Publications based on this thesis 15

Declaration 17

Acknowledgements 19

1 Introduction 21

1.1 Problem Statement . 22

1.2 Approach . 24

1.3 Related Work . 25

1.4 Thesis Structure . 27

2 Industry: State of the Art 29

2.1 Workow Management Coalition . 29

2.2 Commercial Products . 33

2.2.1 FileNet's Visual WorkFlo . 34

2.2.2 Fort�e Conductor . 36

2.2.3 Changengine . 38

2.2.4 Sta�ware . 40

2.2.5 Fujitsu i-Flow . 43

2.2.6 MQSeries Workow . 45

2.2.7 Verve . 48

5

6 CONTENTS

2.2.8 SAP R/3 Workow . 49

2.3 Test Harness . 51

2.3.1 Basic Assumptions . 53

2.3.2 Advanced Control Flow . 54

2.3.3 Termination . 56

2.3.4 Multiple Instances . 57

2.4 Summary . 59

3 Workow Patterns 61

3.1 Basic Control Flow Patterns . 62

3.2 Advanced Branching and Synchronization Patterns 66

3.3 Structural Patterns . 74

3.4 Patterns Involving Multiple Instances 75

3.5 State-based Patterns . 82

3.6 Cancellation Patterns . 89

3.7 Summary . 91

4 Formal Foundations 95

4.1 Classi�cation of Workow Models . 96

4.1.1 Standard Workow Models . 96

4.1.2 Safe Workow Models . 104

4.1.3 Structured Workows Models 104

4.1.4 Synchronizing Workow Models 106

4.2 Equivalence in the Context of Control Flow 115

4.3 Summary . 121

5 Basic Expressiveness Results 123

5.1 Standard Workow Models . 123

5.2 Safe Workow Models . 131

5.3 Structured Workow Models . 136

5.3.1 Simple Workows without Parallelism 139

CONTENTS 7

5.3.2 Workows with Parallelism but without Loops 141

5.3.3 Workows with Parallelism and Loops 146

5.4 Synchronizing Workow Models . 147

5.5 Summary . 159

6 Advanced Expressiveness Results 163

6.1 Termination . 164

6.2 Deadlock . 167

6.3 Advanced Synchronization . 169

6.4 Decomposition . 174

6.5 Transformations Using Data Flow . 177

6.6 Summary . 179

7 Conclusions 181

7.1 Towards a Better Design of a Workow Language 183

7.2 Future Work . 186

A Product Evaluation 187

B Petri Nets: Notations and De�nitions 197

List of Figures

2.1 Graphical representation of an AND-Split 31

2.2 Graphical representation of an OR-Split and XOR-Split 31

2.3 Graphical representation of an AND-Join 32

2.4 Graphical representation of an OR-Join 32

2.5 Sample process model . 34

2.6 Sample process model implemented with Visual WorkFlo 36

2.7 Sample process model implemented with Fort�e Conductor 38

2.8 Loop with multiple entry points in Changengine 40

2.9 Loop with multiple exit points in Changengine 41

2.10 Sample process model implemented with Changengine 41

2.11 Sample process model implemented with Sta�ware 43

2.12 Subprocess de�nition in i-Flow . 44

2.13 Sample process model implemented with i-Flow 45

2.14 Sample process model implemented with MQSeries Workow 47

2.15 Sample process model implemented with Verve 49

2.16 Sample process model implemented with SAP R/3 Workow 52

2.17 Standard processes with well-understood semantics 53

2.18 Mixed Split/Join constructs . 55

2.19 Termination policy scenarios . 57

2.20 AND-Join with multiple instances . 58

3.1 Graphical representation of basic control ow patterns 66

3.2 Implementation strategies for the Multi-Choice Pattern 67

9

10 LIST OF FIGURES

3.3 How do we want to merge here? . 68

3.4 How do we want to merge here? . 70

3.5 Typical implementation of Multi-Merge Pattern 71

3.6 Implementation of a 2-out-of-3-Join using the basic discriminator . . . 73

3.7 Implementation strategy for multiple instances 78

3.8 Design patterns for multiple instances 79

3.9 Implementation strategy for multiple instances 81

3.10 Strategies for implementation of deferred choice 84

3.11 The implementation options for interleaving execution of A, B and C. . 87

3.12 The state in-between the processing/time-out of the questionnaire and
archiving the complaint is an example of a milestone. 88

3.13 Schematical representation of a milestone. 88

3.14 Implementation options for Milestone Pattern 90

4.1 Mapping of basic control ow constructs 97

4.2 Alternative mappings for the XOR-Split 98

4.3 Mapping for the AND-Split . 98

4.4 Mappings for the AND-Join and the OR-Join 99

4.5 Sample Standard Workow Model and its corresponding Petri net . . . 102

4.6 Illustration of Structured Workow Models 106

4.7 Example of a Structured Workow Model 107

4.8 Activity semantics for Synchronizing Workow Models 108

4.9 Split semantics for Synchronizing Workow Models 108

4.10 Join semantics for Synchronizing Workow Models 109

4.11 Synchronizing Workow Model and its corresponding Petri net 112

4.12 Enabled and completed XOR-Split . 114

4.13 Two trace equivalent processes . 116

4.14 Interleaving vs. concurrent activity invocation 117

4.15 Equivalence in the context of data ow 117

4.16 Weak bisimulation vs. branching bisimulation 118

LIST OF FIGURES 11

5.1 Free-choice Petri net with deferred choice 124

5.2 Illustration of bisimulation relations between markings 124

5.3 Interpretation of a sample hybrid net 127

5.4 Translation of marked places . 127

5.5 Translations of labelled transitions . 127

5.6 Translations of transitions/places without input or output 128

5.7 Removal of transitions sharing nonsingular set of input places 128

5.8 Removal of transitions sharing input or output places 129

5.9 Removal of transitions . 129

5.10 Removal of places . 130

5.11 FCDA net with equivalent Standard Workow Model 131

5.12 Node replication . 132

5.13 Illustration of Lemma 5.2.1 . 133

5.14 Illustration of Lemma 5.2.2 . 134

5.15 Multiple instances speci�cation . 135

5.16 Exit from a loop structure . 138

5.17 Exit from a decision structure . 140

5.18 Entry into a decision structure . 140

5.19 Entry into a loop structure . 141

5.20 Arbitrary workow and illustration of its essential causal dependencies 142

5.21 Overlapping structure . 144

5.22 Transformation of a workow with parallel exit from decision structure 145

5.23 Two workow models with arbitrary loops 146

5.24 Structured version of leftmost workow of Figure 5.23 147

5.25 Example of sets P s and T s . 150

5.26 Equivalent Standard and Synchronizing Workows 151

5.27 ALL-Join adds expressive power . 158

6.1 Sample Standard Workow Model utilising relaxed termination policy . 165

6.2 Sample Standard Workow model with two �nal tasks 166

12 LIST OF FIGURES

6.3 Terminating uniquely equivalent workow to workow of Figure 6.2 . . 167

6.4 Two execution equivalent processes . 168

6.5 Standard Workow Model with a deadlock 168

6.6 Illustration of the discriminator proof 171

6.7 Petri net semantics of the discriminator 172

6.8 A decomposed activity with multiple instances 175

6.9 Two workow models which are not equivalent 176

6.10 Speci�cation using data ow and its Petri net semantics 177

6.11 Simpli�ed workow equivalent to workow of Figure 6.10 178

6.12 Entry into a loop structure . 179

6.13 Exit from a decision structure . 179

6.14 Entry into a decision structure . 180

6.15 Exit from a loop structure . 180

List of Tables

2.1 Test result for a process containing an OR-Split followed by an AND-Join 56

2.2 Test result for a process containing an AND-Split followed by an OR-Join 56

2.3 Test result for a process containing multiple termination points 58

3.1 The main results for Sta�ware, MQSeries Workow, Fort�e Conductor
and Verve. 92

3.2 The main results for Visual WorkFlo, Changengine, i-Flow, and SAP
R/3 Workow. 93

4.1 Classi�cation of workow products according to evaluation strategy . . 122

5.1 Transformations of Structured Workow Models with parallelism but
without loops . 145

A.1 Visual WorkFlo . 188

A.2 Verve Workow . 189

A.3 Sta�ware . 190

A.4 MQSeries Workow . 191

A.5 Fort�e Conductor . 192

A.6 HP Changengine . 193

A.7 Fujitsu i-Flow . 194

A.8 SAP R/3 Workow . 195

13

Publications based on this thesis

• A.H.M. ter Hofstede and B. Kiepuszewski. Formal Analysis of Deadlock Be-
haviour in Workows. Technical report FIT-TR-1999-03, Queensland University
of Technology/Mincom, Brisbane, Australia, April 1999.

• B. Kiepuszewski and A.H.M. ter Hofstede. Experiences with Embedding a
Workow Engine in Mims. In Proceedings of the 3rd Workow Management
Conference, Muenster, Germany, November 1999.

• B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured Work-
ow Modelling. In B. Wangler and L. Bergman, editors, Proceedings of the
18th International Conference on Advanced Information Systems Engineering
(CAiSE'00), volume 1789 of Lecture Notes in Computer Science, pages 431-445,
Stockholm, Sweden, June 2000. Springer-Verlag.

• W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, andB. Kiepuszewski.
Advanced Workow Patterns. In O. Etzion and P. Scheuermann, editors, Fifth
IFCIS International Conference on Cooperative Information Systems
(CoopIS'2000), volume 1901 of Lecture Notes in Computer Science, pages 18-29,
Eilat, Israel, September 2000. Springer-Verlag.

• W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski and A.P. Bar-
ros. Worklfow Patterns. Technical Report WP 47, BETA Research Institute,
Einhoven University of Technology, Eindhoven, The Netherlands, August 2000.
Submitted for publication in Distributed and Parallel Databases.

• B. Kiepuszewski, A.H.M. ter Hofstede and W.M.P. van der Aalst. Fun-
damentals of Control Flow in Workows. Technical report, FIT-TR-2001-01,
Queensland University of Technology/Mincom, Brisbane, Australia, January
2001. Conditionally accepted for publication in Acta Informatica.

Declaration

I declare that to the best of my knowledge and belief that the work presented in this
thesis is my own work, except as otherwise acknowledged in the text. The material
has not been submitted, either in whole or in part, for a degree at this or any other
university.

Bartek Kiepuszewski

Brisbane, Australia

20 March, 2002

Acknowledgements

I am deeply indebted to my supervisor, A/Professor Arthur ter Hofstede, for his
guidance and patience during the course of my doctoral studies at the Queensland
University of Technology. Arthur's work ethic, commitment and inspirational manner
has had a role in the successful completion of this thesis.

I would like to thank the management team at both Mincom Limited, my former
employer, and Infovide, my current employer, for providing the opportunity to me
to undertake my doctoral studies in conjunction with my work responsibilities. Spe-
cial thanks go especially to David Cox, John Benders, William Ferguson, and many
other Mincom sta� members as well as Kuba Moszczy�nski, Borys Stokalski and other
Infovide sta� members who directly or indirectly made this work possible.

I would also like to o�er my deepest gratitude towards many colleagues from di�erent
organizations who provided me with a great deal of additional insight during many
hours of collaborative work. Special thanks should especially go to Wasim Sadiq and
Alistair Barros of DSTC, Wil van der Aalst of Eindhoven University of Technology
and Christoph Bussler of Oracle.

Last but not least I would like to thank my wife, Gosia for her continuous support,
love and patience as well as my little boy Adam for his understanding and presence
during darkest moments of doubt.

Chapter 1

Introduction

Every modern business environment is characterised by an extensive set of business
processes that needs to be followed to achieve stated business objectives. In the
past work was passed from one participant (or worker) to another manually. As the
work was delivered to people, each participant could assume that work was ready
for processing. The focus of information technology was on automating individual
tasks performed by participants so that they can be completed in a more timely and
eÆcient manner.

In recent years, the possibility of automating the coordination of the processes them-
selves has been explored, resulting in an area of research and technology commonly
referred to as workow technology. In one of the de�ning research papers on workow
technology ([GHS95]) Georgakopoulos et al. associate workow technology with fa-
cilitating business process speci�cation, reengineering and automation while de�ning
workow as a \collection of tasks organized to accomplish some business process".
The Workow Management Coalition, the industry standardisation group comprising
many leading workow vendors de�nes workow as \the automation of a business
process, in whole or part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of procedural rules"
([Wor99b]).

The traditional areas of business process modelling, business process coordination
and document and image management along with emergent areas such as business-to-
business and business-to-consumer interactions propelled a great diversity of di�erent
workow management systems (WfMS) to be available either as commercial products
or research prototypes. Despite ongoing standardisation, these products are often
based on di�erent paradigm and they support a large variety of process modelling
languages (see e.g. [Aal98a, Aal98c, Ell79, EN93, JB96, Kou95, LR99, Law97, Sch96,
DKTS98]).

21

22 CHAPTER 1. INTRODUCTION

Workow speci�cations can be understood, in a broad sense, from a number of di�er-
ent perspectives (see [JB96]). The control-ow perspective (or process) perspective
describes activities and their execution ordering through di�erent constructors, which
permit ow of execution control, e.g. sequence, choice, parallelism, and synchroniza-
tion. Activities in elementary form are atomic units of work, and in compound form
modularise an execution order of a set of activities. The data perspective layers busi-
ness and processing data on the control ow perspective. Business documents and
other objects which ow between activities, and local variables of the workow, qual-
ify in e�ect pre- and post-conditions of activity execution. The resource perspective
provides an organizational structure anchor to the workow in the form of human and
device roles responsible for executing activities. The operational perspective describes
the elementary actions executed by activities, where the actions map into underlying
applications. Typically, (references to) business and workow data are passed into and
out of applications through activity-to-application interfaces, allowing manipulation
of the data within applications.

Clearly, the control ow perspective provides an essential insight into a workow
language's e�ectiveness. The data ow perspective rests on it, while the organizational
and operational perspectives are ancillary.

1.1 Problem Statement

It is perhaps surprising that in discussions on workow products, emphasis is hardly
ever on the workow languages used, rather focus is almost exclusively on operational
and architectural aspects. Workow modelling requirements, even though virtually
ignored at the early stage of many projects, always turn out to play an important role
as they heavily impact on the quality of business process analysis and ultimately the
�nal workow design.

Workow modelling requirements naturally derive from generic requirements for infor-
mation modelling techniques as promulgated by e.g. [Hof93] which are presented as a
set of principles that should characterize any good modelling language. In this Thesis
the main focus in on three such principles: suitability, expresiveness and formality.

The thought that a \silver bullet" exists for the problem of information systems
development has dogged research for a long time. These days however it is recognised
that there isn't a \one best way" approach to information systems development (see
e.g. [AW91]). The choice of technique very much depends on the problem domain.
This implies that modelling techniques should be suitable for the domain that they
are to be used in. Suitability problems in workow languages typically manifest
themselves in di�erent ways to solving the same modelling problem, some being direct,

1.1. PROBLEM STATEMENT 23

\natural" solutions, others requiring elaborate workarounds. Suitability is a subjective
notion - we will often argue for some approaches to be more suitable than others, but
it is possible that some readers may disagree.

The 100% principle ([Gri82]) states that a conceptual model should describe all rele-
vant static and dynamic aspects of the problem at hand. This implies that a language
should have suÆcient expressive power. In contrast to suitability, expressiveness is an
objective criterion. Given a certain set of modelling constructs, it is often possible to
show that certain processes can, or cannot be modelled.

There are many issues related to the expressive power and suitability of workow
languages. Some languages allow multiple instances of the same activity at the same
time in the same workow context while others do not. Some languages structure
loops with one entry point and one exit point, while in others loops are allowed to
have arbitrary entry and exit points. Some languages require explicit termination
activities for workows and their compound activities while in others termination is
implicit. It is often unclear how these di�erent approaches to workow modelling
a�ect the expressive power and suitability of a given modelling language.

Finally, formality is a principle, that traditionally in the �eld of information systems,
has not attracted a lot of attention. Many languages have been proposed without a
formal foundation and it has increasingly become clear that this is not a desirable
situation. The use of informal languages, i.e. languages without a formal semantics,
easily leads to speci�cations that are inherently ambiguous. In addition to that,
such speci�cations cannot be formally validated, veri�ed, or analysed with respect
to their expressive power. We believe that workow speci�cations in particular need
a good formal foundation given that workow models are rare examples of graphical
models that not only serve as a communication mechanism between users and analysts,
or analysts and designers, but they provide a speci�cation of a system (a workow
process) that is directly executable by a workow engine.

Given the existence of many di�erent modelling techniques, how can we asses their
respective suitability and expressive power? Given a business process that needs to be
automated, should the choice of a workow system be made based on the modelling
capabilities of this system or are the architectural and operational requirements the
only ones worth consideration? Is it possible to interchange process models from two
di�erent workow languages given that they have fundamentally di�erent semantics?
Are all workow languages essentially the same and is the di�erence mainly terminol-
ogy and graphical notation or are they based on fundamentally di�erent paradigms
making interoperability a diÆcult proposition? There seems to be no common theory
for workow speci�cation similar to relational model theory for relational database
management systems hinting at the possibility that the answer to the above questions
is not an easy one. These are the questions we would like to answer in this Thesis.

24 CHAPTER 1. INTRODUCTION

1.2 Approach

We will provide answers to the questions raised in the previous section through a
comprehensive analysis of the control ow perspective of workows with particular
focus on expressiveness and suitability of di�erent workow modelling languages used
in practice. We will provide both a practical approach for evaluating a given modelling
language as well as a theoretical framework for establishing the limits of expressive
power in a precise, formal manner. This should not only help analysts specifying
workows in practice, as they may have to understand fundamental limits of the
workow language they use or have to map their speci�cations to, but also developers
designing new workow engines, as the results presented may prevent them from
imposing restrictive constraints on workow speci�cations, or may, in some cases,
provide them with certain useful equivalence preserving transformations.

In the �rst part of this Thesis we indicate requirements for workow languages through
workow patterns. As described in [RZ96], a pattern \is the abstraction from a
concrete form which keeps recurring in speci�c nonarbitrary contexts". Gamma et
al. [GHJV95] �rst catalogued systematically some 23 design patterns which describe
the smallest recurring interactions in object-oriented systems. The design patterns,
as such, provided independence from the implementation technology and at the same
time independence from the essential requirements of the domain that they were
attempting to address (see also e.g. [Fow97]).

In the second part of this Thesis we provide a framework necessary to establish the
theoretical limit of a given modelling technique. Our experience in formal methods is
that providing a formal speci�cation not only enables reasoning about the properties
of a workow speci�cation (such as complexity of veri�cation, expressiveness, etc)
but also greatly contributes to a thorough understanding of the semantics of the con-
structs in question. An interesting experience was gained with Verve Workow, which
supports a concept referred to as discriminator. The discriminator allows multiple
parallel execution paths to be synchronised in such a way that only the �rst path to
�nish initiates the rest of the execution. Naturally, this concept requires care when
used in a loop. The formal semantics assigned by us to the discriminator, which we
present in Section 6.3, was distilled from the documentation and would lead to proper
behaviour when used in a loop. Unfortunately, it turned out that the discriminator
behaved di�erently when used in an actual workow. This has led to a recommenda-
tion to implement this concept as speci�ed by the formal Petri net and to the best of
our knowledge the new version of Verve Workow is going to have the semantics of
the discriminator altered as per our suggestions.

The other reason to specify formal semantics for workow speci�cation languages is
to avoid ambiguity. Notions which have similar names and have similar syntactical

1.3. RELATED WORK 25

restrictions may have an entirely di�erent semantics. As we will show throughout this
thesis, even the most fundamental workow modelling concepts such as AND-Joins
and OR-Joins, given the ambiguous de�nition of their semantics by the Workow
Management Coalition (see Section 2.1), do not have an uniform implementation,
hence making workow interoperability diÆcult if not impossible.

Based on the formal foundation the latter part of the Thesis is devoted to establishing
a number of properties of di�erent workow modelling languages with the aim of
providing a strong, theoretical argumentation for the choice of one approach over
another.

1.3 Related Work

Most earlier works on workow systems emphasize the separation of workow descrip-
tion and execution levels ([BW95]), build time and run time ([JB96]), modelling and
enactment ([GHS95]). Various workow modelling approaches have been proposed.
Among them is the MOBILE process model presented in [Jab94] by Jablonski. His
approach recognizes the need to combine methods from organizational theory, be-
havioural theory, decision theory and database theory, in order to provide a complete
speci�cation for a workow process. In [CCPP95] Casati et al propose a WFDL
(WorkFlow Description Language) where a workow model comprises workow tasks
and routing tasks. The latter concept can carry di�erent semantics depending on the
type of the routing task, of which particularly interesting are partial and iterative
joins. In [RD97] Reichert and Dadam present fundamentals of the ADEPT Workow
Model. This model is based on the concept of symmetrical control structures, where
various structures such as splits, joins and loops are speci�ed as symmetrical blocks
with explicit start and end points. Finally in [KG99] Kradolfer and Geppert present
a TRAMs workow model in which control ow is speci�ed through start and end
conditions of workow tasks.

None of this work, however, focuses on comparative study of di�erent approaches
towards workow modelling. Typically, new modelling techniques are proposed with-
out suÆcient discussion of comparative strengths and weaknesses with existing tech-
niques. The comparative studies published by prestigious consulting companies such
as The Butler Group ([Mak96]) or e.g. Accenture, Andersen, Ernst & Young, De-
loitte & Touche and Price Waterhouse Coopers, typically focus on purely technical
issues (Which database management systems are supported?), the pro�le of the soft-
ware supplier (Will the vendor be taken over in the near future?), and the marketing
strategy (Does the product speci�cally target the telecommunications industry?).

Few new techniques proposed are accompanied by a formal speci�cation of the se-
mantics. Interestingly, it is sometimes the case that other researchers \second-guess"

26 CHAPTER 1. INTRODUCTION

the intentions of the original authors and attempt to provide such a formal speci�ca-
tion (see e.g. [Aal98b]). To some extent this is a challenge we are faced with in this
Thesis. Among techniques that are used to provide a formal foundation for work-
ow speci�cation, the most popular is through translation to, or direct application
of Petri nets or some variant thereof ([AAH98, EN93, AHH94, AMP94, HHSW96]).
In [Aal98a] van der Aalst argues that using Petri nets as the underlying formal foun-
dation for workows provides a workow modeller with several theoretically proven
analysis techniques that already have been used for Petri nets thus allowing for for-
mal veri�cation of workow models. Additionally he hints on the expressiveness issue
pointing out that, in contrast to activity-based workow models, Petri nets provide
means of distinguishing states of the model (and constituent tasks), so that task states
such as initiation, activation, and termination, can be clearly identi�ed.

Another attempt at providing a theoretical foundation for workow speci�cation can
be found in [HN93] where process algebra ([BK84]) was used to provide the seman-
tics of task structure diagrams and bisimulation is used as the equivalence notion
for establishing equivalence between di�erent workow models. In [SO99] Sadiq and
Orlowska represent a workow process as a direct, acyclic graph and de�nes its se-
mantics using a set of \instance subgraphs" that represent a possible execution of a
workow process. Their language, however, does not support cycles and the approach
cannot be easily generalized if cycles were allowed. Finally, according to [Low01] Mi-
crosoft's BizTalk workow component (called BizTalk Orchestration) uses a modelling
language called XLANG that is based on Milner's �-calculus ([Mil99]), however we
were unable to �nd an article describing the semantics of XLANG in detail using the
�-calculus formalism.

Not only is it the case that few proposals for new modelling techniques are accom-
panied by a formal semantics, it is also rare to �nd a comprehensive investigation
into the requirements for control ow speci�cation in a workow modelling language
and hence our work on workow patterns appears to be unique in this �eld. Other
authors have used our patterns to evaluate existing workow management systems
or newly designed workow languages, e.g., in [Lav00] the OmniFlow environment is
evaluated using 10 of our patterns. Some of the patterns presented in this thesis are
related to the control-ow patterns described in [JB96]. However, the goal of [JB96]
is to develop a workow management system that can be extended with new patterns
rather than structuring and evaluating existing patterns. Other authors have coined
the term workow patterns but addressed di�erent issues. In [WAH00] a set of work-
ow patterns inspired by Languages/Action theory and speci�cally aiming at virtual
communities are introduced. Patterns at the level of workow architectures rather
than control ow are given in [MB97]. In [Lon98] Lonchamp presents 13 patterns
describing scenarios relatated to collaborative work on one or more documents and
the focus is more on the data ow.

1.4. THESIS STRUCTURE 27

1.4 Thesis Structure

This thesis provides both a practical and a theoretical approach to control ow analysis
in various workow modelling languages.

In Chapter 2 we introduce the reader to workow modelling and we informally present
a number of commercially available workow modelling languages. The aim of this
chapter is to demonstrate the great diversity of di�erent modelling approaches being
used in industry as well as to provide a future reference for subsequent Chapters. In
this Chapter we also present a \hands-on" approach towards a �rst approximation of
a given workow language's modelling power through a workow \test harness".

In Chapter 3 we present a practical approach towards identifying requirements for
workow language expressiveness through workow patterns. Patterns address busi-
ness requirements in an imperative workow style expression, but are removed from
speci�c workow languages. We then present a comparison of workow manage-
ment systems introduced in Chapter 2 using these patterns. This work is based
on [ABHK00] and [AHKB00].

Chapter 4 de�nes a theoretical framework necessary to establish the theoretical limit
of a given modelling technique. We introduce the reader to formal speci�cations of
di�erent workow modelling paradigms as well as provide a formal equivalence notion
necessary for comparison of di�erent modelling languages.

In Chapter 5, based on the framework de�ned in Chapter 4 we establish some funda-
mental properties of di�erent workow modelling approaches.

In Chapter 6 we introduce several more advanced modelling concepts and, again based
on the foundation established in Chapter 5, we provide important insights into their
expressive power and suitability. The work in Chapters 4-6 is based on [KHA01],
[KHB00] and [HK99].

Finally in Chapter 7 we present the conclusion of this thesis. The major contributions
of the research outcomes are summarized and areas for future research are identi�ed.

Chapter 2

Industry: State of the Art

The primary task of a workow management system is to enact case-driven busi-
ness processes by allowing workow models to be speci�ed, executed, and monitored.
Workow process de�nitions (workow models) are de�ned to specify which activities
need to be executed and in what order. Workow process de�nitions are instantiated
for speci�c cases (i.e. workow instances). Examples of cases are: a request for a
mortgage loan, an insurance claim, a tax declaration, an order, or a request for infor-
mation. Since a case is an instantiation of a process de�nition, it corresponds to the
execution of concrete work according to the speci�ed routing.

Routing speci�cation requires an adoption of the workow modelling language. In this
Chapter we present modelling languages of several commercially available products.
Our aim is to show diversity of di�erent approaches to workow modelling as well as to
provide a reference for the future comparison of di�erent modelling techniques. Before
we introduce speci�c products, we present a common workow modelling terminol-
ogy that will be used in this thesis based on the glossary promulgated by Workow
Management Coalition.

2.1 Workow Management Coalition

The Workow Management Coalition (WfMC), founded in August 1993, is a non-
pro�t, international organization of workow vendors, users, analysts and univer-
sity/research groups.

The Coalition's mission is to promote and develop the use of workow through the
establishment of standards for software terminology, interoperability and connectivity
between workow products. Consisting of over 285 members (as of beginning of
2002), spread throughout the world, the Coalition has quickly become established

29

30 CHAPTER 2. INDUSTRY: STATE OF THE ART

as the primary standards body for this rapidly expanding software market. Since
its inception WfMC has focused on furthering the �eld of workow management by
providing standards, common terminology, and interfaces.

Given all that it may be surprising to �nd, that very few workow vendors conform
to the WfMC recommendations. In fact, very few of them even use a standard termi-
nology, as de�ned in WfMC basic document \Terminology & Glossary" ([Wor99b]).
Despite all these problems it is important to have a closer look at these de�nitions,
not least because they provide a good starting point for more advanced discussion.

According to [Wor99b] a Process Model is a \formalized view of a Business Process,
represented as a co-ordinated (parallel and/or sequential) set of process activities
that are connected to achieve a common goal". Activity itself is \a piece of work that
forms one logical step within a process". According to the de�nition, it is typically
the smallest unit of work which is scheduled by a workow engine during process
enactment. There is very little said about the semantics of an activity, in particular
there is no discussion on state transition diagram that is used to manage activity
lifecycle.

The activities and other process control constructs are connected using transitions
which may be unconditional, such that completion of one activity always leads to the
start of another, or conditional, where the sequence of operation depends upon one
or more Transition Conditions.

In this thesis we will graphically represent an activity as a rectangle with activity's
name in the middle and a transition as an arrow between activities and/or other pro-
cess control constructs. Apart from activities [Wor99b] recommends that the following
process control constructs should be supported by a workow management system.

AND-Split is \a point within the workow where a single thread of control splits into
two or more threads which are executed in parallel within the workow, allowing
multiple activities to be executed simultaneously". The WfMC additionally
observes that \in certain workow systems all the threads created at an AND-
Split must converge at a common AND-Join point (Block Structure); in other
systems convergence of a subset of the threads can occur at di�erent AND-Join
points, potentially including other incoming threads created from other AND-
Split points (Free Graph Structure)". The AND-Split construct is graphically
depicted on Figure 2.1.

OR-Split is \a point within the workow where a single thread of control makes a
decision upon which branch to take when encountered with multiple alternative
workow branches". The WfMC does not clearly distinguish between the split in
which one and only one path is always taken, and the split in which any number

2.1. WORKFLOW MANAGEMENT COALITION 31

A

AND

B C

Figure 2.1: Graphical representation of an AND-Split

of paths (possibly zero) is taken depending on conditions associated with each
path. As this distinction is important in our thesis, and to avoid any possible
ambiguities, we will call an XOR-Split a split in which one and only one path is
taken (depending on conditions associated with this split). The OR-Split and
XOR-Split constructs are graphically depicted in Figure 2.2.

A

OR

B C

A

XOR

B C

Figure 2.2: Graphical representation of an OR-Split and XOR-Split

AND-Join is \a point in the workow where two or more parallel executing activi-
ties converge into a single common thread of control". Each parallel executing
thread is held until the set of all thread transitions to the next activity is com-
pleted, at which point the threads converge and the next activity is initiated.
In this de�nition there seems to be an implicit assumption that both paral-
lel threads eventually will \reach" that common point as it is not stated what
should happen if this is not the case. The AND-Join construct is graphically
depicted in Figure 2.3.

OR-Join is a \point within the workow where two or more alternative activity(s)
workow branches re-converge to a single common activity as the next step
within the workow". In addition it is noted that \as no parallel activity exe-
cution has occurred at the join point, no synchronization is required". Again,

32 CHAPTER 2. INDUSTRY: STATE OF THE ART

A B

C

AND

Figure 2.3: Graphical representation of an AND-Join

it is unclear how the OR-Join should behave if parallel execution actually does
occur before the join point. The OR-Join construct is graphically depicted on
Figure 2.4.

A B

C

OR

Figure 2.4: Graphical representation of an OR-Join

There are several reasons, we believe, why industry has been unsuccessful in embarking
fully on these de�nitions. The two most important amongst them are:

• The constructs are de�ned in a very vague and ambiguous manner. Especially
in processes which WfMC calls \Free Graph Structures" the interaction between
the constructs is far from clear. As an example consider a process in which an
AND-Split is followed by an OR-Join. How should this process behave? The
WfMC de�nitions do not provide any hint. In fact, as it is later demonstrated
in this thesis, almost every product that we have evaluated took a di�erent view
on the semantics of these constructs in more complex scenarios.

• The WfMC, to support the biggest possible range of products takes a \least
common denominator" approach. Indeed these basic constructs, or their equiv-
alents, can be found in every single system we have evaluated. However, with

2.2. COMMERCIAL PRODUCTS 33

these constructs one can build only the simplest process models. Complex pro-
cesses require more sophisticated modelling primitives, and this is the area,
where, again, products di�er in a substantial way.

These issues de�nitely hamper the WfMC's attempts to provide standards for work-
ow de�nition interoperability. If vendors take fundamentally di�erent views on how
given products should behave, clearly, process interoperability between them is dif-
�cult. What is needed, is a much more thorough insight in the semantics of each
product.

2.2 Commercial Products

In this section we will introduce eight di�erent workow modelling languages sup-
ported by commercially available workow management products. These products
have been selected based primarily on their availability and/or willingness of the
vendors to cooperate in our research. We have tried to incorporate major workow
o�erings such as Sta�ware, FileNet Visual WorkFlo and MQ Series Workow. The
latter one is of particular interest as it sparked interest in academia (see e.g. [AAA+95,
MAGK95]). SAP R/3 Workow is included as SAP has the largest customer base in
the ERP systems market (although we have no data how many SAP implementations
actually use its Business Workow component). Fujitsu's i-Flow is one of the �rst
workow engines designed primarily for use on the Internet while Verve is one of the
�rst workow engines speci�cally designed as an embeddable component in other sys-
tems. Finally we have also included Fort�e Conductor and HP Changengine as they
both have interesting modelling concepts and these systems were available to us dur-
ing the course of this research. When describing each modelling language the focus is
exclusively on control ow. The insight in the semantics of each particular language
is gained primarily from studying workow process design manuals that accompany
each workow product. It may be worth noting that none of the evaluated products
is accompanied by a speci�cation of the formal semantics of its workow speci�cation
language. That may be understandable as the targeted audience of the manuals are
typically process designers without a proper formal background. However, as is the
case with the WfMC glossary document, we will see that the informal language used
in these manuals makes the workow semantics ambiguous at times. In subsequent
Chapters we will try to present some techniques aimed at a more thorough under-
standing of a given modelling language's semantics. In some cases it may seem that
the versions of products are outdated. On a practical level it is one of the consequences
of the relatively long period during which this research was conducted, and we have
made the best e�ort to obtain the latest releases when possible. Nevertheless, it is

34 CHAPTER 2. INDUSTRY: STATE OF THE ART

our experience that the control ow speci�cation of workows rarely, if ever, changes
with the release of a new version of the product.

To graphically illustrate each product's modelling language we have chosen to show
an implementation of a sample process shown in Figure 2.5. This process employs all
WfMC-de�ned basic constructs which are used in a typical context leaving no scope
for ambiguous interpretation.

A

D

EXOR

AND

C

OR

AND

OR XORB

Figure 2.5: Sample process model

2.2.1 FileNet's Visual WorkFlo

Visual WorkFlo [Fil97, Fil99] is one of the leading workow products in the industry.
It is part of the FileNet's Panagon suite (Panagon WorkFlo Services) that includes also
document management and imaging servers. Visual WorkFlo is one of the oldest and
best established products on the market. Since its introduction in 1994 it managed
to gain a respectable share of all worldwide workow applications. Our evaluation is
based on version 3.0 (introduced in late 1998) of the product.

Visual WorkFlo [Fil97, Fil99] has a relatively simple workow modelling language. A
process in Visual WorkFlo is called an Instruction Sheet and it consists of a number
of Steps. Steps cannot be connected in an arbitrary manner - the graphical process
design environment imposes several syntactical restrictions on a process modeller.
These are later clari�ed when a speci�c Step type is discussed.

The following Step types are available.

Activity is an atomic work unit. It de�nes what work has to be done in this step
of the process and as such, it does not have any additional semantics related to
control ow.

Branch is used to model a choice in a process. It directly models a XOR-Split/OR-
Join construct combination. A branch can have many outgoing transitions -

2.2. COMMERCIAL PRODUCTS 35

however one and only one can be �red depending on the condition de�ned in a
Branch. A Branch always converges in a merge point.

Static Split and Rendez-Vous are used to model a concurrent split in a process.
Each Static Split needs to be followed by a Rendez-Vous which converges parallel
threads spawned o� by a split into a single thread of execution. The combination
explicitly models an AND-Split/AND-Join pair.

Goto and Label are used if one wants to bypass certain processing instructions.
Using a Goto construct requires the use of a Label construct, and vice-versa.
Multiple Goto constructs can reference the same Label instruction. The combi-
nation is constrained with many rules and as such it cannot be used to model
arbitrary workows. Speci�cally, one cannot use a Goto instruction to jump to
a di�erent process de�nition. One can jump from within a Branch to the main
process outside the branch, however the opposite is not allowed. One can jump
within one branch but not from branch to branch. One cannot jump outside of
a static split. One cannot jump into a static split. One cannot jump from one
branch of a static split to another, but one may jump within a single branch.
E�ectively, with so many constraints, each Goto can be easily modelled by a
Branch and is primarily used to unclutter more complex branches.

While construct is used to model a structured loop, that is a loop that has only one
entry and one exit point.

Release is used to spawn o� a branch asynchronously. It can only be put in one (or
more) of the branches of the Static Split - Rendez-Vous pair. A Rendez-Vous
will only synchronize branches without a Release construct. The spawned-o�
branches run independently and a subsequent synchronization is not possible.

Terminate is used to prematurely end processing of the workow. A special sub-
process called Terminate Instruction Sheet is then invoked to enable some clean-
up work.

Call is used to synchronously call another Instruction Sheet (sub-process).

A process has one starting node and one ending node.

Figure 2.6 shows the sample process introduced in Section 2.2 implemented with
Visual WorkFlo.

36 CHAPTER 2. INDUSTRY: STATE OF THE ART

A

C D

E

B

Branch
?

Rendez
Vous

Static
Split

While

LeafLeaf

Leaf

Figure 2.6: Sample process model implemented with Visual WorkFlo

2.2.2 Fort�e Conductor

Fort�e Conductor [For98] is a workow engine that is an add-on to Fort�e's devel-
opment environment, Fort�e 4GL (formerly Fort�e Application Environment). Con-
ductor's engine is based on experimental work performed at Digital Research and its
modelling language is powerful and exible. In October 1999 Fort�e Software was ac-
quired by Sun Microsystems and subsequently became part of iPlanet E-Commerce
Solutions. In late 2000 version 3.0 of the product became an integral part of iPlanet
Integration Server. Our evaluation is based on version 1.0 of the product.

In Fort�e a process de�nition is laid out graphically as a series of connected activity
de�nitions. Activities are linked to other activities by transitions which are called
process routers in Fort�e.

The following activity types are available for the workow modeller:

Activity represents an atomic piece of work. There are primarily three kinds of reg-
ular activities, i.e. o�ered activities, queued activities and automatic activities.
However, from a control point of view there is no semantical di�erence between
the three as they only di�er in the way they are o�ered to the users.

Each activity has an associated trigger condition. There are three types of
trigger conditions:

2.2. COMMERCIAL PRODUCTS 37

1. Trigger when any router arrives

2. Trigger when all routers arrive

3. Custom trigger

The trigger condition de�nes the semantics for an activity's behaviour primarily
in a situation when the activity has more than one incoming transition. If an
activity has a trigger of type \all routers arrive" it will act as an AND-Join.
If an activity has a trigger of type \any router arrives" it will act as an OR-
Join. With help of a custom trigger one can write a condition using a process
de�nition's variables or a special count variable which indicates how many times
any other arbitrary activity in the process has executed.

An activity can have more than one outgoing transition (router). In that case,
Fort�e evaluates a condition associated with each transition. Depending on the
activity's setting it can either:

1. Evaluate conditions of all routers and trigger these routers for which the
conditions evaluated to \true" (possibly none).

2. Evaluate conditions of each routher in a sequence until the condition of
some router evaluates to \true". This will be the only router to be trig-
gered. Again, it is possible that no router is selected.

One can also specify a special else router which will execute if all other router
conditions evaluate to false. If all OnComplete router methods return False,
the engine takes no further action for that activity. Thus an activity with more
than one outgoing transition can model either an AND-Split or an OR-Split.

There are no syntactical restrictions governing the use of activities and process
routers. Thus, any arbitrary cycles are possible to model.

It is possible to have many concurrent instances of one activity running at the
same time.

First Activity is a special activity type that makes a starting point of a process
instance. There can be only one First activity in a process. There is no extra
semantics associated with this activity type.

Last Activity is a special activity type that causes the termination of a process
instance. There can be only one Last activity in a process.

Junction Activity has no real associated semantics. It is primarily used to unclut-
ter more complex diagrams.

Subprocess Activity represents a subprocess de�nition. A subprocess can be in-
stantiated either synchronously or asynchronously depending on its settings.

38 CHAPTER 2. INDUSTRY: STATE OF THE ART

LastFirst A

B

C

D

E

B or (C and D)

Figure 2.7: Sample process model implemented with Fort�e Conductor

The sample process introduced in Section 2.2, implemented with Fort�e Conductor, is
shown in Figure 2.7. Note the need for using null activities, i.e. activities that have
no task associated with them. One of these activities, preceding activity E has a
custom condition de�ned so that it triggers when either B or both C and D com-
plete. Furthermore, conditions associated with the output routers of the null activity
subsequent to activity A are such that either B or C and D are �red. Both triggering
condition and conditions associated with output routers are implicit in a diagram
making a quick interpretation of the diagram semantics by end-users impossible.

2.2.3 Changengine

Changengine [HP00] is a workow o�ering from HP, the second largest computer
supplier in the world. The �rst major version of the product, 3.0, has been introduced
in 1998 and it is focused on high performance and support for dynamic modi�cations.
In late 2000 the product changed its name to HP Process Manager to better convey
the purpose of the product to the customers. Our evaluation is based on version 4.0,
introduced in early 2000.

A business process in Changengine consists of a number of di�erent process elements
called Nodes linked by Arcs.

The following is a summary of nodes available for process modelling.

Work Node is a node that de�nes some work to be done. Once a work node has
been executed, it cannot be executed again unless it is reset. This interesting
behaviour is explained in more details later on when the Reset Arc is introduced.
This semantics prevents the process from having multiple instances of the same

2.2. COMMERCIAL PRODUCTS 39

node running concurrently. Syntactically, a work node can have only one input
and one output.

Complete Node is situated at the end of each branch of a process where no further
nodes are to be executed. This node has no associated semantics, it simply
visualises the end of a process. A complete node can have only one input, and
has no outputs.

Start Node is the starting node of a process. It can be seen as a special type of a
Work Node, as it also de�nes some work to be done.

Route Node is used to split a link to two or more destinations, merge links together,
or both. A Route Node with more than one input is called a Merge Node, a
Route Node with more than one output is called a Split Node (a route node can
be both a split and a merge).

A Merge Node can be synchronising or non-synchronising depending on the rule
associated with that node. For example, a route rule \If WorkNode1 = COM-
PLETED AND WorkNode2 = COMPLETED THEN Goto WorkNode3" states
that WorkNode3 can be started only when both WorkNode1 and WorkNode2
are complete. Similarly, one may de�ne a rule such that only one or some of the
incoming branches need to be complete before the next activity following the
merge is performed.

A Split Node can �re any combination of outgoing arcs depending on rule con-
ditions de�ned for this node.

A Route Node must have at least one input and at least one output.

Abort Node is used to terminate a process. Process terminates immediately, even
if other nodes in the process have not yet completed. An abort node has exactly
one input and no outputs.

There is no special graphical construct used for decomposition, however, when de�ning
a Work Node, a process designer might specify another process instead of a simple
task to be performed. This way one can achieve decomposition in an implicit manner.

A process terminates once all the end points have been reached.

Loops and Reset Arcs

In Changengine one may draw a loop in an arbitrary way. Because a Work Node that
has been executed cannot be executed again, to be able to use a Work Node in a loop,
a special construct, called a Reset Arc has been provided. A Reset Arc is a link that

40 CHAPTER 2. INDUSTRY: STATE OF THE ART

loops back to an earlier node in a process, possibly causing one or more nodes to be
executed again. All work nodes on a directed path between the end and the beginning
of a Reset Arc are said to be in-scope of this Reset Arc. When the Reset Arc is �red,
any in-scope work nodes are initialised so that they can be run again. Moreover, if
there are still any running nodes within the scope of the loop (as could be the case if
an AND-Join is followed by a non-synchronising merge) then the running nodes will
be stopped and reset.

Some interesting scenarios are possible. Consider a scenario in Figure 2.8 which
depicts a loop with multiple entry points.

Reset

Work
Node 1

Work
Node 2

Merge
Node

Work
Node 3

Figure 2.8: Loop with multiple entry points in Changengine

If the loop is activated and the merge node is non-synchronising, the process can
advance through the merge node from Work Node 2 without having to wait for Work
Node 1 to complete.

However, if the merge node is synchronising and the loop is activated, the merge node
will wait for Work Node 1 to complete again. Unless Work Node 1 has also been reset,
the process will deadlock.

Another common scenario is a loop with multiple exit points as shown in Figure 2.9.

When the reset arc is �red, Work Node 3 is not reset because it is not within the
scope of the loop, and therefore cannot be run again. When the split node is reached
again because one of the branches loops back, other branches outside the loop cannot
be performed a second time.

The sample process introduced in Section 2.2 implemented with Changengine is shown
in Figure 2.10

2.2.4 Sta�ware

Sta�ware [Sta00] is one of the leading workow management systems. Sta�ware

2.2. COMMERCIAL PRODUCTS 41

Reset

Work
Node 3

Work
Node 1 Split

Node

Work
Node 2

Figure 2.9: Loop with multiple exit points in Changengine

Route
Node

Link

A
Start Node Work

Node

B

C

D

E
Complete

Node

Reset Arc

Figure 2.10: Sample process model implemented with Changengine

is authored and distributed by Sta�ware PLC. Sta�ware PLC has its headquarters
in Maidenhead (UK), operates through oÆces in 15 countries and has a network of
360 partners, resellers and OEMs. We used the most recent version of Sta�ware
(i.e. Sta�ware 2000), which was released in the last quarter of 1999. In 1998, it
was estimated by the Gartner Group that Sta�ware has 25 percent of the global
market [Cas98].

A workow de�nition in Sta�ware is called a Procedure. A procedure consists of a
number of Objects connected with Lines. Linking Objects with Lines de�nes control
ow - a source Object of the Line has to complete before the destination Object of
the Line can be started. The following Objects are supported:

Step corresponds to an activity. It is depicted by a form icon. Sta�ware di�erentiates
between normal steps, automatic steps, event steps and open client steps. This
di�erentiation has no e�ect on the control semantics of the process. A Step can
be linked to many other Steps. The underlying semantics is that of an AND-

42 CHAPTER 2. INDUSTRY: STATE OF THE ART

Split. Several Steps can link to one Step. The underlying semantics is similar
to an OR-Join, but Sta�ware does not support concurrent multiple instances of
a Step in a running state. A new instance of a Step will override any existing
instances.

Start indicates the beginning of the process and is depicted as a green street light icon
in the Procedure diagram. There can be only one Start object in a Procedure.
A Start can have only one single Line linking it with another Object in the
Procedure. There is no semantics de�ned for Start - it is only used as a visual
representation of the beginning of the ow.

Stop indicates the end of a process. It is represented by red street sign icon. It does
not have any underlying semantics and it is only used as a visual representation
of the end of the ow. A Procedure can have many Stop objects. At most one
Object can link to a Stop.

Condition object models a binary XOR-Split. It is represented in a graph by a
diamond icon with a question mark. There is one logical condition associated
with the Condition object. The Condition has only one incoming transition and
two sets of outgoing transitions. - one set is triggered if condition evaluates to
\true", the second if condition evaluates to \false".

Wait is used for synchronisation of parallel paths and is represented by an hourglass
icon in the diagram. A Wait object has a semantics similar to that of an AND-
Join. It has two types of incoming transitions. A �rst type (represented by
a solid line) links a Step that will \wait" for other Steps to �nish before the
process can continue. There can be only one such transition. Transitions of the
other type (represented by dashed lines) link Wait to \waited for" Steps. There
can be many such transitions (see Figure 2.11).

Router is a visual object that improves the design of the process. It is represented
by a small circle and it has exactly one incoming and one outgoing transition.
Router does not have any associated semantics.

Objects in a process diagram are connected by solid black lines that correspond to
transitions. There can be only one such Line between two Steps. It is possible to draw
a special Line between Steps called Withdrawal Connection. If a Step that is a source
of a Withdrawal Connection is started, Sta�ware will attempt to remove any existing
instance of a Step that the withdrawal connection points to. Withdrawal Connections
can only point to normal Steps.

Sta�ware does not implement decomposition directly. Decomposition can be achieved
by instantiating a new process as part of the activity processing. Synchronisation
between the main process and a subprocess can be achieved using events.

2.2. COMMERCIAL PRODUCTS 43

There is no restriction in Sta�ware as far as loops or cycles in the workow graph are
concerned.

Figure 2.11 shows the sample process introduced in section 2.2 implemented with
Sta�ware.

�
�
� ? ? STOP

ConditionStep

Wait

Router

A B

C

D

E

Figure 2.11: Sample process model implemented with Sta�ware

2.2.5 Fujitsu i-Flow

I-Flow [Fuj99] is a workow o�ering from Fujitsu that can be seen as the successor
of the well-established workow engine from the same company, TeamWare. I-Flow is
web-centric and has a Java/CORBA based engine built speci�cally for Independent
Software Vendors and System Integrators. Our evaluation is based on version 3.5 of
the product, introduced in early 2000. The latest version of the product is 4.1 (as of
early 2002).

An i-Flow process de�nition consists of a number of nodes connected by arrows (rep-
resenting transitions) in an arbitrary way with very few syntactical restrictions. The
following are the node types available for workow modelling:

Activity Node represents an atomic step in a workow process. Upon receiving
an event from any of the incoming arrows, an activity node enters a running
state. While in this state, it ignores any events that it receives from its incoming
arrows. If an activity has more than one outgoing arrows, an assignee of a work

44 CHAPTER 2. INDUSTRY: STATE OF THE ART

item associated with this activity node chooses one of the outgoing arrow for
the process to continue.

Start Node is used to indicate the start of a process. All nodes following a start
node are immediately instantiated. A process can have only one Start Node. A
Start Node cannot have any incoming arrows.

Exit Node marks the end of a workow process. If a process has multiple exit nodes,
once the �rst one is reached, process is terminated. An Exit Node cannot have
any outgoing arrows.

Conditional Node represents a step in a workow process where the process ow
proceeds to one of the outgoing arrows depending on process data. Upon re-
ceiving an event from one of the incoming arrows, the conditions are evaluated,
for the �rst one with condition evaluated to \true" an event is sent. If all condi-
tions evaluate to \false", an event is sent to an arrow speci�ed as default. The
Condition construct is a direct equivalent of the XOR-Split.

AND Node represents a step in a workow process where the process pauses to
synchronize multiple threads of execution (AND-Join). An AND Node waits till
it receives at least one event on each of its incoming arrows. Any additional event
received from the same arrow is ignored while waiting to receive events from each
of the other arrows. When each of the incoming arrows have received an event,
all execution threads are synchronized and events are sent to all outgoing arrows.

OR Node represents a step in a workow process from where a single thread splits
into multiple parallel threads. The node can have many incoming arrows. Every
time it receives an event from one of its incoming arrows, it sends an event to
all its outgoing arrows. OR Node can be used as both OR-Join as well as
AND-Split.

START EXIT

Subprocess
Node

Chained-process
Node

Figure 2.12: Subprocess de�nition in i-Flow

Decomposition is modelled using two special node types, subprocess nodes and chained
process nodes.

2.2. COMMERCIAL PRODUCTS 45

Subprocess Node represents a separate process de�nition. On receiving an event
from one of the incoming arrows a subprocess node starts a separate instance of
its subprocess and waits for it to complete. While waiting, it ignores any events
received from the incoming arrows. Upon completion, the subprocess sends an
event to all its outgoing arrows.

Chained-process Node also represents a separate process de�nition. Unlike the
subprocess node it does not wait for the new process to complete and immedi-
ately after instantiating a new subprocess instance it sends an event to all its
outgoing arrows.

Both nodes are depicted in Figure 2.12.

The sample process introduced in Section 2.2, implemented with i-Flow is shown in
Figure 2.13.

Activity A

START

EXITActivity B

Activity C

Activity D

OR
Node

AND
Node

Activity E

Conditional
Node

Figure 2.13: Sample process model implemented with i-Flow

2.2.6 MQSeries Workow

MQSeries Workow [IBM99] is the successor of IBM's major workow o�ering,
FlowMark. FlowMark was one of the �rst workow products that was independent
from document management and imaging services. It has been renamed to MQSeries
Workow after a move from the proprietary middleware to middleware based on the
MQSeries product. Our evaluation is based on version 3.1.

The terminology of MQSeries Workow is very consistent with the recommendations
of the Workow Management Coalition. A business process model consists of a num-

46 CHAPTER 2. INDUSTRY: STATE OF THE ART

ber of activities linked together by connectors representing transitions. The activities
can be connected in an arbitrary manner as long as there are no cycles.

There are three di�erent types of activities:

Program Activity represents a task to be done in order to complete a business
process. Each program activity has an executable application associated with
it that will be used by the end-user to perform that task.

Block Activity is a construct to model structural decomposition of a process. Sim-
ilarly to a top-level process it consists of a number of activities. Recursive block
execution is impossible since every object within the block is visible only in this
block's namespace.

Process Activity is similar to Block Activity. The di�erence is that the de�nition of
the Process Activity is contained within a separate process object. That means
that subprocesses can be shared between many di�erent processes (otherwise
the semantics of the Process Activity is identical to that of a Block Activity).

Every connector in an MQSeries Workow process model has a condition associated
with it that is evaluated during process execution. Each activity has a �eld indicating
whether it will be started if at least one incoming connector evaluates to \true", or it
will be started if all incoming connectors evaluate to \true" (the setting of this �eld
in an activity with only one incoming connector is irrelevant).

An activity can only be started if all of its incoming connectors are evaluated and the
condition associated with it is met. If all connectors are evaluated and the condition
associated with it is not met (for example all connectors evaluate to False for an
activity requiring at least one of its connectors to evaluate to True), it is marked as
\skipped" and all its outgoing connectors are evaluated to False regardless of their
associated conditions. If an activity can be started and it is subsequently completed,
all of its outgoing connectors get evaluated.

A business process �nishes when all activities in the graph are either completed or
marked as \skipped".

Applying the WfMC's de�nitions to MQSeries Workow we have that an activity with
more than one outgoing connector has an OR-Split semantics, whereas an activity
with more than one incoming connector has an OR-Join or an AND-Join semantics
depending on the context.

In addition to a condition governing the start of an activity, each activity in MQSeries
Workow also has an exit condition. This condition is evaluated once the activity is
completed. If it evaluates to True, the outgoing connectors are evaluated and the ow

2.2. COMMERCIAL PRODUCTS 47

may proceed to the next activities. If it evaluates to False, the activity is restarted.
The exit condition for program activities is typically set to True.

The common use of exit conditions is in association with block activities. As direct
cycles are not allowed in MQSeries Workow, to model loops one has to use a block
activity - after the block completes, and the exit condition evaluates to False, the
block is restarted.

MQSeries Workow, in versions prior to 3.1 used to provide one more additional con-
trol ow concept called Bundle. As this concept is an interesting one (it is surprising
that IBM has decided to drop it from subsequent releases) we will introduce it briey
here. Bundle is implemented externally so it does not have a separate graphical rep-
resentation. The concept behind it is to allow users to implement processes needing
multiple instances. A Bundle consists of a Planning Activity followed by a Block Ac-
tivity. The Planning Activity is used to specify during runtime how many instances
of the following block are to be instantiated. That value is then used to instantiate
the appropriate number of Block Activities in parallel. Such a block completes when
every instance of it is completed.

Figure 2.14 shows the sample process introduced in Section 2.2 implemented as an
MQSeries Workow process model. Note that since cycles are not allowed in a process
model, a loop has to be modelled as a repetitive block structure. The conditions
associated with the transitions from the null activity in the block structure to activities
B, C and D have to be such that either only B or both C and D can be performed.

A E

Activity Block

B

C

D

Figure 2.14: Sample process model implemented with MQSeries Workow

48 CHAPTER 2. INDUSTRY: STATE OF THE ART

2.2.7 Verve

Verve ([Ver00]) is a relative newcomer to the workow market as it made its debut in
1998. In late 2000 was acquired by Versata and renamed Versata Integration Server
(VIS). Our evaluation is based on version 2.0 of the product. What makes it an
interesting workow product is that it has been designed from the ground up as an
embeddable workow engine (i.e. a workow engine that can be embedded in other
applications rather then used as a stand-alone product).

The workow engine of Verve is very powerful and amongst other features allows
for multiple instances and dynamic modi�cation of running instances. The Verve
workow model consists of activities and other control ow constructs connected in
an arbitrary manner by transitions. Each transition has an associated condition which
is independently evaluated. When a condition evaluates to \true", an event trigger is
sent to a subsequent construct.

The following basic control ow constructs are available:

Activity represents an atomic unit of work. An activity gets activated as soon as it
receives a trigger from any of its incoming transitions. Unlike many other work-
ow products there may be several activity instances running concurrently. An
activity with many outgoing transitions represents an OR-Split (or and AND-
Split) depending on conditions associated with these transitions. An activity
with many incoming transitions implements an OR-Join.

Start Node marks the beginning of a process and does not have any semantics
associated with it. There can be only one start node in a process.

End Node marks the end of a process. There can be many end nodes in a process
and the �rst one reached terminates execution of the process.

Synchronizer is used to synchronize many parallel threads of execution into one
thread. Once one of the incoming transitions �res, the synchronizer enters
a \waiting" state and waits for other transitions to �re whilst ignoring any
additional triggers from the transition that has already been \�red". Once
all transitions have �red, subsequent activities are triggered. The synchroniser
directly implements the AND-Join.

Discriminator has many incoming transitions. Similarly to the synchronizer, once
one of the incoming transitions �res, it enters a \waiting" state and waits for the
other transitions to �re. In contrast to the synchronizer, it activates subsequent
activities as soon as it enters the waiting state. Once all incoming transitions
have �red, the discriminator resets itself and can be �red again.

2.2. COMMERCIAL PRODUCTS 49

Subprocess represents a subow that is instantiated synchronously.

The sample process introduced in Section 2.2, implemented with Verve is shown in
Figure 2.15. The conditions associated with transitions from the null activity to
activities B, C and D have to be such that either B or both C and D are executed.

Activity B

Activity C

Activity A Activity E

Activity D

Start

End

Synchronizer

Figure 2.15: Sample process model implemented with Verve

2.2.8 SAP R/3 Workow

SAP is the main player in the market of ERP systems. Its R/3 software suite includes
an integrated workow component called SAP R/3 Workow [SAP97, KT98] that we
have evaluated independently of the rest of R/3. Our evaluation is based on release
4.6 of the product which is a current release as of the beginning of 2002.

The SAP R/3 Workow model is based on an extended version of the EPC mod-
elling technique (Event-driven Process Chains), however the technique is adapted for
modelling executable workows. In comparison to standard EPCs, several syntacti-
cal restrictions have been introduced to impose on a workow processes a structured
form. SAP R/3 Workow Builder allows the designer to switch back and forth be-
tween three di�erent graphical views, Classic EPC being one, the SAP R/3 Workow
simpli�ed graphical representation being the second one and a third notation, called
simply EPC, which is a cross between Classic EPC and simpli�ed graphical notation
of SAP. Throughout this section we will use the simpli�ed graphical representation as
it is less cluttered than classic EPC notation.

A workow model in SAP has exactly one starting and one ending point and comprises
the following modelling primitives which are called steps in SAP R/3 Workow :

50 CHAPTER 2. INDUSTRY: STATE OF THE ART

Task represents either an atomic work unit (single-step task) or it represents a sub-
workow (in which case it is called a multi-step task). A task always has one
incoming and one outgoing connector.

An interesting feature of SAP R/3 Workow is that the actual work to be done
as part of a task can be determined during run-time.

When de�ning a task, apart from the regular processing of a program associated
with that task, one can set up a special kind of processing called Table-Driven
Dynamic Parallel Processing. This allows multiple instances of that task to be
running concurrently at the same time. Once all of them are completed, the
workow resumes with the subsequent step.

Condition represents branching in a workow de�nition. It has one incoming con-
nector and two outgoing connectors. The workow system evaluates the condi-
tion comparing elements of the workow container with constants, system �elds
or other, user-de�ned �elds. The condition evaluates either to True or False and
one of the outgoing branches is taken. Both branches of the condition have to
merge in a merge point. The Condition corresponds to an XOR-Split.

Multiple Condition is very similar to a Condition, however it may have more than
two outgoing branches. Only one of the branches can be chosen at runtime,
and this is done comparing the value of a given workow �eld with a set of
prede�ned constants. One branch can be de�ned as Others and it is taken when
the value of the �eld does not match with any of the constants associated with
the branches of the Condition. When there is no Others branch and no match is
found, the workow assumes the error status. Multiple Condition corresponds
to XOR-Split with more than two outgoing transitions.

User Decision is very similar to Multiple Condition but the choice of the outgoing
branch is done by the workow user rather than automatically by the workow
system using some workow data. From a control point of view there is no
semantical di�erence between User Decision and Multiple Condition.

Until Loop is a structured loop that is executed until a condition de�ned for the
loop is met. There can be only one entry and one exit point for such a loop.

While Loop is a construct that semantically can be thought of as a combination
of a Multiple Condition and an Until Loop. A While Loop can have several
branches, each branch is associated with a certain constant which, at runtime,
is compared to a given workow data �eld (similarly to Multiple Condition).
The branch that matches the selection criterion is then chosen and executed.
Once it is �nished, the condition is checked again. The loop is �nished if none
of the branches match the selection criterion.

2.3. TEST HARNESS 51

Fork and Join are used to facilitate parallel processing. Each Fork has to be as-
sociated with a Join. The workow modeller speci�es the number of branches
being waited for. This is typically equal to the total number of branches in the
Fork but can be smaller. In the latter case, the workow can continue when
the speci�ed number of branches are �nished. The remaining branches of the
Fork are not allowed to be completed - they are marked as logically deleted. It
is also possible to specify an additional condition that needs to be met before
the workow can continue beyond the Join point. The Fork and the Join can
be used to model the AND-Split and the AND-Join respectively.

Process Control is a special activity type that can be con�gured to execute several
prede�ned commands. Of particular interest to the control ow execution of the
workow process are the following:

• Cancel Work Item. It forces another work item of the same workow into
the status logically deleted. This essentially completes this other work item
and subsequent steps of this work item are not executed. This function
can only be used if the process control step and the step to be cancelled
are located in a fork.

• Terminate the Workow terminates the current workow. If there are any
incomplete work items, they are forced into the status logically deleted. If
the terminated workow is a subworkow, execution of the superworkow
continues as normal.

• Cancel Workow forces the enactment system to cancel further execution
for the current workow. Incomplete work items are forced into the status
logically deleted. In contrast to Terminate the Workow, if the cancelled
workow was a subworkow, the execution of the superworkow is not
continued.

The sample process introduced in Section 2.2, implemented with SAP R/3 Workow
is shown in Figure 2.16.

2.3 Test Harness

Having an existing workow engine in hand it is impossible to fully derive its se-
mantics in a formal manner. One can only assume that the given language has a
particular semantics through the study of the accompanying manuals and the subse-
quent con�rmation of the described behaviour with actual runs of test cases. Such
semantics can be called an observational semantics and is clearly limited by the fact

52 CHAPTER 2. INDUSTRY: STATE OF THE ART

C D

A

E

B

Start

End

Until

Join

Fork

Condition

Figure 2.16: Sample process model implemented with SAP R/3 Workow

that it is con�rmed through running a �nite number of test cases. It may happen
(and it has happened to us on few occasions) that the next test case invalidates ex-
isting assumptions for the behaviour of some control ow constructs and one needs
to come up with an alternative explanation of the observed behaviour. This situation
is quite familiar to theoretical physicists who try to establish mathematical models
of the universe which are valid until a new experiment is conducted and the results
cannot be explained by the existing model. A subsequent theoretical model will then
be typically developed in a never-ending pursuit of an ideal model that can explain
every physical experiment ever held in the past and to be held in the future.

With software the situation is even more complicated as the evaluated product, as
well as the environment (e.g. operating system) in which the workow software runs,
may contain various errors that may cause the software to behave unexpectedly for
certain test cases.

2.3. TEST HARNESS 53

Bearing that in mind, we believe that from a theoretical point of view, much more
important is the intentional semantics of the authors of the product rather that
observational one. In other words, we are more interested how the product should
behave, rather then how it actually behaves. Assuming bug-free implementation, the
two semantics should be identical. Unfortunately, in the majority of cases, we do not
have access to the authors of the product, so we are left with the often-ambiguous
documentation and the product itself to �nd out how a particular construct behaves.

In this section we would like to propose a set of test cases (process models) that
aim at discovering the behaviour of a given workow product. They can be used
to augment the knowledge gained from studying the process design manuals and are
designed to expose behaviour that is rarely described in manuals but nevertheless
worth understanding. It should be stressed that in theory no amount of test cases
will reveal all the semantics of any given workow language. However, it is easy to
add new test cases to the \test harness" and for the products we have evaluated we
believe that our proposed test harness is comprehensive enough to reveal important
di�erences between products that will be subsequently analysed in the remainder of
this Thesis.

2.3.1 Basic Assumptions

BA

A

B

C

DORXOR

A

B

C

DANDAND

Figure 2.17: Standard processes with well-understood semantics

Every workow product that we have evaluated implements the WfMC-recommended
control-ow constructs and the behaviour of these constructs in the simplest scenarios
is identical across the whole product range. These scenarios are shown in Figure 2.17

54 CHAPTER 2. INDUSTRY: STATE OF THE ART

and the observed behaviour of AND-Split, XOR-Split, AND-Join and OR-Join is
consistent and is as follows:

• In the �rst scenario two activities are joined with a transition. Activity on
the \receiving" end of a transition cannot start before the preceding activity
completes.

• In the second scenario an XOR-Split is followed by an OR-Join. The observed
behaviour is that only one path of the branch is taken, i.e. either activity B or
activity C is started. Once the activity on a selected branch completes, activity
D can be started.

• In the third scenario an AND-Split is followed by an AND-Join. After complet-
ing activity A both activities B and C are started. Once they both complete,
activity D can be started.

Each workow product has a slightly di�erent strategy when implementing the basic
control-ow constructs. For example Verve Workow does not have an explicit OR-
Join construct. To model an XOR-Split we have used an activity with two outgoing
transitions and we have assigned the conditions to these transitions so that only one
of the outgoing transitions can be �red at any one time. Similarly, to implement an
AND-Join we have used a Rendez-Vous construct in Visual WorkFlo, a Join in SAP
R/3 Workow, etc... This is the approach that we have used to implement the more
complex scenarios presented in the remainder of this Chapter.

2.3.2 Advanced Control Flow

Once it is known in a given workow language how to implement the basic control-
ow constructs, it is interesting to understand what happens when an XOR-Split is
followed by an AND-Join and an AND-Split is followed by an OR-Join as shown in
Figure 2.18.

Not every workow product allows the workow designer to model these two processes.
Some products, such as Visual WorkFlo or SAP R/3 Workow impose stringent syn-
tactical restrictions that force the designer to follow each XOR-Split with an OR-Join
and each AND-Split with an AND-Join.

For products that allow these processes to be modelled, in a scenario with an XOR-
Split followed by an AND-Join (top diagram of Figure 2.18) we have observed the
following di�erent behaviour:

2.3. TEST HARNESS 55

A

B

C

DANDXOR

A

B

C

DORAND

Figure 2.18: Mixed Split/Join constructs

1. Once activity B or C is completed the process deadlocks, activity D will never
be started. The only way to resume work is to kill the process instance through
an administrator console. This behaviour is more common and can be observed
in Sta�ware, Verve, Fort�e, i-Flow and Changengine.

2. Once activity B or C is completed, the process is considered to be completed.
Activity D never gets executed. This behaviour can be observed with MQSeries
Workow.

The scenario in which an AND-Split is followed by an OR-Join (bottom diagram
of Figure 2.18) is more complicated as the observable behaviour in some products
depends on the execution sequence of the activities. Let us assume that we always
complete activity B before activity C (it should not matter as the process is symmet-
rical). The following di�erent behaviour has been observed:

1. Once activity B is completed, an instance of activity D is intantiated and can
be started. When activity C is completed before the instance of D is started,
a second instance of activity D is created and put on the user's worklist. Two
instances of D can then be started in parallel. This behaviour can be observed
with Fort�e and Verve.

2. Once activity B is completed, an instance of activity D is created, and can
be started. If this instance is completed before activity C completes, a second
instance of activity D is created. However if the �rst instance of activity D is
not completed before activity C completes, a second instance of D will not be
created. This behaviour can be observed with Sta�ware and i-Flow.

56 CHAPTER 2. INDUSTRY: STATE OF THE ART

3. Once activity B is completed, activity D can be started. There will be only one
instance of activity D regardless of the state of activity C. This behaviour can
be observed in Changengine.

4. Activity D cannot be started before both activities B and C are completed.
This behaviour can be observed in MQSeries Workow.

Table 2.1 provides a summary of the behaviour for the scenario involving an XOR-
Split followed by an AND-Join.

Product Behaviour
MQSeries process terminates after executing either B or C
Fort�e process deadlocks after executing either B or C
Verve process deadlocks after executing either B or C

Changengine process deadlocks after executing either B or C
i-Flow process deadlocks after executing either B or C

Sta�ware process deadlocks after executing either B or C
Visual WorkFlo not allowed

SAP not allowed

Table 2.1: Test result for a process containing an OR-Split followed by an AND-Join

Table 2.2 provides a summary of the behaviour for the scenario involving an AND-
Split followed by an OR-Join.

Product Behaviour
MQSeries D executed once, after both B and C completes
Fort�e D executed twice, once after either B or C �nishes
Verve D executed twice, once after either B or C �nishes

Changengine D executed once, after either B or C �nishes
i-Flow D executed once or twice, depending on execution scenario

Sta�ware D executed once or twice, depending on execution scenario
Visual WorkFlo not allowed

SAP not allowed

Table 2.2: Test result for a process containing an AND-Split followed by an OR-Join

2.3.3 Termination

The next two scenarios are used to test the termination policy of the workow engine.
If the workow language allows the process to have more than one �nal task (i.e.

2.3. TEST HARNESS 57

A

C

D

AND

B

XOR A

B

COR

Figure 2.19: Termination policy scenarios

a task without any outgoing transitions), it is important to understand when the
process will be considered terminated by the workow engine.

The scenarios are depicted in Figure 2.19. The left diagram can be used with any
workow engine that allows more than one �nal task. The right diagram is to be
used with workow engines that will instantiate activity C twice and the goal is to
�nd out if the workow engine will wait for both instances of C to terminate before
it considers the workow to be complete.

With the left hand diagram the following behaviour has been observed:

1. The process is terminated once either activity B, C or D is completed regardless
of the state of the other activities. This can be seen with Verve, Fort�e and i-Flow.

2. The process is terminated after all activities are completed, i.e. either B or both
C and D. This behaviour can be seen with MQSeries Workow and Sta�ware.

3. The process never completes (as it waits for all �nal activities to complete). As
that can never happen (either B or C can complete but not both) the process
deadlocks. This can be seen with Changengine.

Table 2.3 provides the summary of the behaviour for both termination scenarios:

2.3.4 Multiple Instances

The test shown in Figure 2.20 is designed to test the behaviour of an AND-Join
when used in a multiple instances scenario. Ideally one would expect activity D to
be executed twice regardless of the execution scenario of the remaining activities. In
some languages though that is not the case as the synchronizer is not commutative
(it does not remember the triggers that �red it). The behaviour we observed in Verve
is the following: Assume an execution scenario in which activities A-D are completed

58 CHAPTER 2. INDUSTRY: STATE OF THE ART

Product
Left

diagram
Right

diagram
MQSeries Both B and C complete not allowed
Fort�e Either B or C complete only one C can complete
Verve Either B or C complete only one C can complete

Changengine Process deadlocks not allowed
i-Flow Either B or C complete only one C can complete

Sta�ware Both B and C complete both C can complete
Visual WorkFlo not allowed not allowed

SAP not allowed not allowed

Table 2.3: Test result for a process containing multiple termination points

A

B

EOR

C

D

FOR

AND G

Figure 2.20: AND-Join with multiple instances

and there are two instances of E and two instances of F ready for execution. Once
one of the instances of E is completed, the AND-Join (Synchronizer in Verve) gets
instantiated and waits for an instance of F to complete. While in the \waiting" state,
it ignores any other triggers from E, so when the second instance of E completes
before the �rst instance of F does, the extra trigger is lost. When an instance of F
eventually completes, G is started. When the second instance of F completes, the
AND-Join is instantiated and waits for an instance of E. That is never going to
happen though as both instances of E are already completed, thus the process will
deadlock. The careful reader will notice that a slightly di�erent execution scenario
(an instance of E followed by an instance of F followed by another instance of E and
F will result in instantiation of two instances of activity G).

Sta�ware for this scenario behaves slightly di�erently as the AND-Join construct in
Sta�ware is not symmetric. As input of an AND-Join, there is a transition (graphically
represented by a solid line) that waits till other transitions are released and there are
transitions (graphically represented by dashed lines) that represent threads that have

2.4. SUMMARY 59

to be waited upon. Multiple signals from the former type of transition are ignored,
whereas multiple signals from the latter type of transition are remembered.

2.4 Summary

In this Chapter we have presented basic control ow modelling constructs based on
de�nitions by Workow Management Coalition. Then we have introduced eight dif-
ferent workow modelling languages from the leading workow vendors. Vagueness
of WfMC de�nitions provided workow vendors with opportunity to implement these
workow constructs using di�erent approaches. The di�erences between semantics of
common workow constructs are highlighted using a set of simple business process
which, when implemented in di�erent workow engines, behave di�erently. These
examples provide strong empirical evidence that to achieve workow interoperability
and business process interchange one need to consider standardization of both process
syntax and process semantics. Moreover, the semantics of process constructs should
be formal so that there is no room for di�erent interpretations on the workow vendors
part.

Chapter 3

Workow Patterns

Even without formal quali�cation, the distinctive features of di�erent workow lan-
guages allude to fundamentally di�erent semantics. As we have shown in Chapter 2
some languages allow multiple instances of the same activity type at the same time in
the same workow context while others do not. Some languages structure loops with
one entry point and one exit point, while in others loops are allowed to have arbi-
trary entry and exit points. Some languages require explicit termination activities for
workows and their compound activities while in others termination is implicit. Such
di�erences point to di�erent insights of suitability and di�erent levels of expressive
power.

The challenge, which we undertake in this Chapter, is to systematically address work-
ow requirements, from basic to complex, in order to 1) identify useful routing con-
structs and 2) to establish to what extent these requirements are addressed in the
current state of the art. Some of the basic requirements identify slight, but subtle
di�erences across workow languages, while many of the more complex requirements
identi�ed in this Chapter, in our experiences, recur quite frequently in the analysis
phases of workow projects, and present grave uncertainties when looking at current
products.

For our purpose, patterns address business requirements in an imperative workow
style expression, but are removed from speci�c workow languages. Thus they do
not claim to be the only way of addressing the business requirements. Nor are they
\alienated" from the workow approach, thus allowing a potential mapping to be
positioned closely to di�erent languages and implementation solutions. Along the
lines of [GHJV95], patterns are described through: conditions that should hold for
the pattern to be applicable; examples of business situations; problems, typically
semantic problems, of realization in current languages; and implementation solutions.

To demonstrate solutions for the patterns, our recourse is a mapping to existing

61

62 CHAPTER 3. WORKFLOW PATTERNS

workow language constructs. In some cases support from the workow engine has
been identi�ed, and we briey sketch implementation level strategies. As a whole,
we show that the workow patterns are comprehensive with respect to current work-
ow languages. Indeed, no contemporary workow management system supports all
the patterns. For those patterns that were supported, some had a straightforward
mapping while others were demonstrable in a minority of tools.

The design patterns presented in this Chapter range from fairly simple constructs
present in any workow language to complex routing primitives not supported by
today's generation of workow management systems. We will start with the more
simple patterns. Since these patterns are available in the current workow products we
will just give a (a) description, (b) synonyms, and (c) some examples. In fact, for these
rather basic constructs, the term \workow pattern" is not very appropriate. However,
for the more advanced routing constructs we also identify (d) the problem and (e)
potential solutions. The problem component of a pattern describes why the construct
is hard to realize in many of the workow management systems available today. The
solution component describes how, assuming a set of basic routing primitives, the
required behaviour can be realized. For these more complex routing constructs the
term \pattern" is more justi�ed since non-trivial solutions are given for practical
problems encountered when using today's workow technology.

It is important to understand that all patterns are context-oriented, i.e., a workow
pattern typically describes certain business scenarios in a very speci�c context. The
semantics of the pattern in this context is clear, while the semantics outside the context
is unde�ned. This is a pragmatic approach which is taken to avoid unnecessary,
lengthy discussions related to semantical subtleties. In Chapter 4 we will take a more
rigorous approach when we will present a formal foundation for establishing workow
modelling language expressiveness.

The systematisation of the workow patterns is a result of the collaborative work
between the author of this thesis and his supervisor, Arthur ter Hofstede, Alistair
Barros of DSTC, and Wil van der Aalst of University of Eindhoven. I would like to
especially acknowledge Wil van der Aalst for his initial input as well as providing an
insight to state-based patterns presented in section 3.5.

3.1 Basic Control Flow Patterns

In this section patterns capturing elementary aspects of process control are discussed.
These patterns closely match the de�nitions of elementary control ow concepts pro-
vided by the WfMC in [Wor99b]. These patterns are re-stated here for completeness
and reference.

3.1. BASIC CONTROL FLOW PATTERNS 63

Pattern 1 (Sequence)
Description An activity in a workow process is enabled after the completion of
another activity in the same process.
Synonyms Sequential routing, serial routing.
Examples

- Activity Send Bill is executed after the execution of activity Send Goods.

- An insurance claim is evaluated after the client's �le is retrieved.

- Activity Add Air Miles is executed after the execution of activity Book Flight.

Implementation

- The sequence pattern is used to model consecutive steps in a workow process
and is directly supported by each of the workow management systems available.
The typical implementation involves linking two activities with an unconditional
control ow arrow.

2

The next two patterns can be used to accommodate for parallel routing.

Pattern 2 (Parallel Split)
Description A point in the workow process where a single thread of control splits
into multiple threads of control which can be executed in parallel, thus allowing ac-
tivities to be executed simultaneously or in any order.
Synonyms AND-Split, parallel routing, fork.
Examples

- The execution of the activity Payment enables the execution of the activities
Ship Goods and Inform Customer.

- After registering an insurance claim two parallel subprocesses are triggered: one
for checking the policy of the customer and one for assessing the actual damage.

Implementation

- All workow engines known to us have constructs for the implementation of
this pattern. One can identify two basic approaches: explicit AND-Splits and
implicit AND-Splits. Workow engines supporting the explicit AND-Split con-
struct (e.g. Visual WorkFlo) de�ne a routing node with more than one outgoing
transition which will be enabled as soon as the routing node gets enabled. Work-
ow engines supporting implicit AND-Splits (e.g. MQSeries/Workow) do not

64 CHAPTER 3. WORKFLOW PATTERNS

provide special routing constructs - each activity can have more than one outgo-
ing transition and each transition has associated conditions. To achieve parallel
execution the workow designer has to make sure that multiple conditions asso-
ciated with outgoing transitions of the node evaluate to True (this is typically
achieved by leaving the conditions blank).

2

Pattern 3 (Synchronization)
Description A point in the workow process where multiple parallel activities con-
verge into one single thread of control, thus synchronizing multiple threads. It is an
assumption of this pattern that each incoming branch of a synchronizer is executed
only once (if this is not the case, then see Patterns 13-15 (Multiple Instances requiring
synchronization)).
Synonyms AND-Join, rendezvous, synchronizer.
Examples

- Activity Archive is enabled after the completion of both activity Send Tickets
and activity Receive Payment.

- Insurance claims are evaluated after the policy has been checked and the actual
damage has been assessed.

Implementation

- All workow engines available support constructs for the implementation of this
pattern. Similarly to Pattern 2 one can identify two basic approaches: explicit
AND-Joins (e.g. Rendez-vous construct in Visual WorkFlo or Synchronizer in
Verve) and implicit joins in an activity with more than one incoming transition
(as in e.g. MQSeries/Workow or Fort�e Conductor).

2

The next two patterns are used to specify conditional routing. In contrast to parallel
routing only one selected thread of control is activated.

Pattern 4 (Exclusive Choice)
Description A point in the workow process where, based on a decision or workow
control data, one of several branches is chosen.
Synonyms XOR-Split, conditional routing, switch, decision.
Examples

- Activity Evaluate Claim is followed by either Pay Damage or Contact Customer.

3.1. BASIC CONTROL FLOW PATTERNS 65

- Based on the workload, a processed tax declaration is either checked using a
simple administrative procedure or is thoroughly evaluated by a senior employee.

Implementation

- Similarly to Pattern 2 (Parallel split) there are a number of basic strategies.
Some workow engines provide an explicit construct for the implementation of
the exclusive choice pattern (e.g. Sta�ware, Visual WorkFlo). In some workow
engines (MQSeries/Workow, Verve) the workow designer has to emulate the
exclusiveness of choice by specifying exclusive transition conditions.

2

Pattern 5 (Simple Merge)
Description A point in the workow process where two or more alternative branches
come together without synchronization. It is an assumption of this pattern that none
of the alternative branches is ever executed in parallel (if this is not the case, then see
Pattern 8 (Multi-merge) or Pattern 9 (Discriminator)).
Synonyms OR-Join, asynchronous join, merge.
Examples

- ActivityArchive Claim is enabled after either Pay Damage or Contact Customer
is executed.

- After the payment is received or the credit is granted the car is delivered to the
customer.

Implementation

- Given that we are assuming that parallel execution of alternative threads does
not occur, this is a straightforward situation and all workow engines support a
construct that can be used to implement the simple merge. It is interesting to
note here that some languages impose a certain level of structuredness to auto-
matically guarantee that not more than one alternative thread is running at any
point in time. Visual WorkFlo for example requires the merge construct to al-
ways be preceded by a corresponding exclusive choice construct (combined with
some other requirements this then yields the desired behaviour). In other lan-
guages workow designers themselves are responsible for the design not having
the possibility of parallel execution of alternative threads.

2

Figure 3.1 shows a simple process that uses all the �ve patterns using graphical no-
tation that we have adopted for the remainder of this chapter.

66 CHAPTER 3. WORKFLOW PATTERNS

A

C

B

E

XOR

G

I

K

AND AND

D

F

H

J

OR

Sequence

Exclusive Choice Simple Merge

Parallel Split Synchronization

Figure 3.1: Graphical representation of basic control ow patterns

3.2 Advanced Branching and Synchronization Pat-

terns

In this section the focus will be on more advanced patterns for branching and syn-
chronization. As opposed to the patterns in the previous section, these patterns do
not have straightforward support in most workow engines. Nevertheless, they are
quite common in real-life business scenarios.

Pattern 4 (Exclusive choice) assumes that exactly one of the alternatives is selected
and executed, i.e. it corresponds to an exclusive OR. Sometimes it is useful to deploy
a construct which can choose multiple alternatives from a given set of alternatives.
Therefore, we introduce the multi-choice.

Pattern 6 (Multi-choice)
Description A point in the workow process where, based on a decision or workow
control data, a number of branches are chosen.
Synonyms Conditional routing, selection, OR-Split.
Examples

- After executing the activity Evaluate Damage the activity Contact Fire De-
partment or the activity Contact Insurance Company is executed. At least one
of these activities is executed. However, it is also possible that both need to be
executed.

Problem In many workow management systems one can specify conditions on the
transitions. In these systems, the multi-choice pattern can be implemented directly.

3.2. ADVANCED BRANCHING AND SYNCHRONIZATION PATTERNS 67

However, there are workow management systems which do not o�er the possibility to
specify conditions on transitions and which only o�er pure AND-Split and XOR-Split
building blocks (e.g. Sta�ware).
Implementation

- As stated, for workow languages that assign transition conditions to each tran-
sition (e.g. Verve, MQSeries/Workow, Fort�e Conductor) the implementation
of the multi-choice is straightforward. The workow designer simply speci�es
desired conditions for each transition. It may be noted that the multi-choice
pattern generalizes the parallel split (Pattern 2) and the exclusive choice (Pat-
tern 4).

- For languages that only supply constructs to implement the parallel split and
the exclusive choice, the implementation of the multi-choice has to be achieved
through a combination of the two. Each possible branch is preceded by an
XOR-Split which decides, based on control data, either to activate the branch
or to bypass it. All XOR-Splits are activated by one AND-Split.

- A solution similar to the previous one is obtained by reversing the order of the
parallel split pattern and the exclusive choice pattern. For each set of branches
which can be activated in parallel, one AND-Split is added. All AND-Splits are
preceded by one XOR-Split which activates the appropriate AND-Split. Note
that, typically, not all combinations of branches are possible. Therefore, this
solution may lead to a more compact workow speci�cation. Both solutions are
depicted in Figure 3.2.

2

A

B C

x<5 y>7

A

B C

x<5 y>7

XOR

y<=7

x>=5

A

x>=5 & y<=7

B

XOR

B C

AND

x<5 & y>7

x<5 & y<=7

x>=5 & y>7

C
XOR

OR AND

Multi-choice

Workflow A Workflow B Workflow C

Figure 3.2: Implementation strategies for the Multi-Choice Pattern

68 CHAPTER 3. WORKFLOW PATTERNS

It should be noted that there is a trade-o� between implementing the multi-choice as
in Workow A of Figure 3.2 or as in Workow B or C of this �gure. The solution
depicted in Workow A (assuming that the Workow language allows for such an im-
plementation) is much more compact and therefore more suitable for end-users. How-
ever, automatic veri�cation of the workow (i.e. checking for existence of deadlocks,
etc.) is not possible for such solutions without additional knowledge of dependencies
between the transition conditions (in Workow B and C, the workow designer has
typically eliminated impossible combinations; this transformation is necessary, though
not necessarily suÆcient in itself, for enabling automatic veri�cation).

Today's workow products can handle the multi-choice pattern quite easily. Un-
fortunately, the implementation of the corresponding merge construct is much more
diÆcult to realize. This merge construct, the subject of the next pattern, should have
the capability to synchronize parallel ows and to merge alternative ows. The diÆ-
culty is to decide when to synchronize and when to merge. As an example, consider
the simple workow model shown in Figure 3.3. After activity A �nishes, either B
or C, or both B and C, or neither B nor C will be executed. Hence, we would like
to achieve the following traces: ABCD, ACBD, ABD, ACD, and A (these should
be all the possible completed traces). The use of a simple synchronization construct
leads to potential deadlock, while the use of a merge construct as provided by some
workow engines may lead to multiple execution of activity D (in case both B and C
were executed).

A

B

C

D???OR

Figure 3.3: How do we want to merge here?

Pattern 7 (Synchronizing Merge)
Description A point in the workow process where multiple paths converge into
one single thread. If more than one path is taken, synchronization of the active
threads needs to take place. If only one path is taken, the alternative branches should
reconverge without synchronization. It is an assumption of this pattern that a branch
that has already been activated, cannot be activated again while the merge is still
waiting for other branches to complete.
Synonyms Synchronizing join.
Examples

3.2. ADVANCED BRANCHING AND SYNCHRONIZATION PATTERNS 69

- Extending the example of Pattern 6 (Multi-choice), after either or both of the
activities Contact Fire Department and Contact Insurance Company have been
completed (depending on whether they were executed at all), the activity Submit
Report needs to be performed (exactly once).

Problem The main diÆculty with this pattern is to decide when to synchronize and
when to merge. Generally speaking, this type of merge needs to have some capacity
to be able to determine whether it may (still) expect activation from some of its
branches.
Implementation

- The only workow engine reviewed in this thesis that provide a straightforward
construct for the realization of this pattern is MQSeries Workow. As noted
earlier, if a synchronizing merge follows an OR-Split and more than one outgoing
transition of that OR-Split can be triggered, it is not until runtime that we
can tell whether or not synchronization should take place. MQSeries/Workow
works around that problem by passing a False token for each transition that
evaluates to False and a True token for each transition that evaluates to True.
The merge will wait until it receives tokens from each incoming transition.

- In other workow engines the implementation of the synchronizing merge typi-
cally is not straightforward. The only solution is to avoid the explicit use of the
OR-Split that may trigger more than one outgoing transition and implement it
as a combination of AND-Splits and XOR-Splits (see Pattern 6 (Multi-choice)).
This way we can easily synchronize corresponding branches by using AND-Join
and standard merge constructs.

2

The next two patterns can be applied in contexts where the assumption made in
Pattern 5 (Simple merge) does not hold, i.e. they can deal with merge situations
where multiple incoming branches may run in parallel. As an example, consider the
simple workow model depicted in Figure 3.4. If a standard synchronization construct
(Pattern 3 (Synchronization)) is used as a merge construct, activity D will be started
once, only after activities B and C are completed. Then, all possible completed
traces of this workow are ABCD and ACBD. There are situations though where
it is desirable that activity D is executed once, but started after either activity B

or activity C is completed (as to avoid waiting unnecessarily for the other activity
to �nish). All possible completed traces would then be ABCD, ACBD, ABDC,
ACDB. Such a pattern will be referred to as a discriminator. Another scenario
which may occur is one where activity D is to be executed twice, after activity B is
completed and also after activity C is completed. All possible completed traces of

70 CHAPTER 3. WORKFLOW PATTERNS

this workow will be ABCDD, ACBDD, ABDCD, and ACDBD. Such a pattern
will be referred to as a multi-merge.

A

B

C

D???AND

Figure 3.4: How do we want to merge here?

Pattern 8 (Multi-merge)
Description A point in a workow process where two or more branches reconverge
without synchronization. If more than one branch gets activated, possibly concur-
rently, the activity following the merge is started for every activation of every incom-
ing branch.
Examples

- Sometimes two or more parallel branches share the same ending. Instead of
replicating this (potentially complicated) process for every branch, a multi-
merge can be used. A simple example of this would be two activities Audit
Application and Process Application running in parallel which should both be
followed by an activity Close Case.

Problem The use of a standard merge construct as provided by some workow
products to implement this pattern often leads to undesirable results. Some workow
products (e.g. Sta�ware, i-Flow) will not generate a second instance of an activity if
another instance is still running, while e.g. HP Changengine will never start a second
instance of an activity. Finally, in some workow products (e.g. Visual WorkFlo, SAP
R/3 Workow) it is not even possible to use a merge construct in conjunction with a
parallel split as in the workow of Figure 3.4 due to syntactical restrictions that are
imposed.
Implementation

- The merge constructs of Verve Workow and Fort�e Conductor can be used
directly to implement this pattern.

- If the multi-merge is not part of a loop, the common design pattern for lan-
guages that are not able to create more than one active instance of an activity is
to replicate this activity in the workow model as presented on Figure 3.5. Note
that we have decided not to use a separate graphical notation for the multi-merge
construct. This should not cause any ambiguities as patterns Simple-Merge and

3.2. ADVANCED BRANCHING AND SYNCHRONIZATION PATTERNS 71

Multi-Merge which use the same, OR-Join graphical representation are used in
di�erent context.

If the multi-merge is part of a loop, then typically the number of instances of
an activity following the multi-merge is not known during design time. For
a typical solution to this problem, see Pattern 14 (Multiple Instances with a
Priori Runtime Knowledge) and Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge).

2

A

B C

D

A

B C

D D

ANDAND

OR
Multi-merge

Figure 3.5: Typical implementation of Multi-Merge Pattern

Pattern 9 (Discriminator)
Description The discriminator is a point in a workow process that waits for
one of the incoming branches to complete before activating the subsequent activity.
From that moment on it waits for all remaining branches to complete and \ignores"
them. Once all incoming branches have been triggered, it resets itself so that it can
be triggered again (which is important otherwise it could not really be used in the
context of a loop).
Examples

- To improve query response time, a complex search is sent to two di�erent
databases over the Internet. The �rst one that comes up with the result should
proceed the ow. The second result is ignored.

Problem Most workow engines do not have a construct that can be used for a direct
implementation of the discriminator pattern. As mentioned in Pattern 8 (Multi-
merge), the standard merge construct in some workow engines (e.g. Sta�ware, i-
Flow) will not generate the second instance of an activity if the �rst instance is still
active. This does not provide a solution for the discriminator, however, since if the

72 CHAPTER 3. WORKFLOW PATTERNS

�rst instance of the activity �nishes before an attempt is made to start it again, a
second instance will be created (in terms of Figure 3.4 this would mean that e.g. a
trace like ABDCD is possible).
Implementation

- A regular join construct in Changengine has a semantics similar to that of
the discriminator. More speci�cally, as Changengine will not create a second
instance of an activity, an OR-Join construct can be used to implement the
Discriminator semantics.

- There is a special construct that implements the discriminator semantics in
Verve. This construct has many incoming branches and one outgoing branch.
When one of the incoming branches �nishes, the subsequent activity is triggered
and the discriminator changes its state from \ready" to \waiting". From then
on it waits for all remaining incoming branches to complete. When that has
happened, it changes its state back to \ready". This construct provides a direct
implementation option for the discriminator pattern, however, it does not work
properly when used in the context of a loop (once waiting for the incoming
branches to complete, it ignores additional triggers from the branch that �red
it).

- In SAP R/3 Workow (version 4.6C) for forks (a combination of an AND-Split
and an AND-Join) it is possible to specify the number of branches that have
to be completed for the fork to be considered completed. Setting this number
to one realizes a discriminator except that 1) the branches that have not been
completed receive the status \logically deleted" and 2) the fork restricts the
form that parallelism/synchronization can take.

- The discriminator semantics can be implemented in products supporting Cus-
tom Triggers. For example in Fort�e Conductor a custom trigger can be de�ned
for an activity that has more than one incoming transition. Custom triggers
de�ne the condition, typically using some internal script language, which when
satis�ed should lead to execution of a certain activity. Such a script can be used
to achieve a semantics close to that of a discriminator (again, in the context of
a loop such a script may be more complicated). The downside of this approach
is that the semantics of a join that uses custom triggers is impossible to deter-
mine without carefully examining the underlying trigger scripts. As such, the
use of custom triggers may result in models that are less suitable and hard to
understand.

- Typically, in other workow engines the discriminator is impossible to imple-
ment directly in the workow modelling language supplied.

3.2. ADVANCED BRANCHING AND SYNCHRONIZATION PATTERNS 73

2

To realize a discriminator that behaves properly in loops is quite complicated and this
may be the reason why it has not been implemented in its most general form in any
of the workow products referred to in this thesis. The discriminator needs to keep
track of which branches have completed (and how often in case of multiple activations
of the same branch) and reset itself when it has seen the completion of each of its
branches.

Note that the discriminator pattern can easily be generalized for the situation when
an activity should be triggered only after n out of m incoming branches have been
completed. Similarly to the basic discriminator all remaining branches should be
ignored. In the literature, this type of discriminator has been referred to as a partial
join (cf. [CCPP95]). Implementation approaches to this pattern are similar to those
for the basic discriminator when custom triggers can be used and SAP R/3 Workow's
approach already allowed the number of branches that need to be completed to be
more than one. In languages that provide direct support for the basic discriminator
(e.g. Verve Workow) an n-out-of-m join can be realized with the additional use of a
combination of AND-Joins and AND-Splits (the resulting workow de�nition becomes
large and complex though). An example of the realization of a 2-out-of-3 join is shown
in Figure 3.6.

A

AND

B2B1

2-out-of-3

C

B3

A

AND

B2B1

Disc.

C

B3

AND AND AND

AND AND AND

Figure 3.6: Implementation of a 2-out-of-3-Join using the basic discriminator

74 CHAPTER 3. WORKFLOW PATTERNS

3.3 Structural Patterns

Di�erent workow management systems impose di�erent restrictions on their work-
ow models. These restrictions (e.g. arbitrary loops are not allowed, only one �nal
node should be present etc) are not always natural from a modelling point of view and
tend to restrict the speci�cation freedom of the business analyst. As a result, business
analysts either have to conform to the restrictions of the workow language from the
start, or they model their problems freely and transform the resulting speci�cations af-
terwards. A real issue here is that of suitability. In many cases the resulting workows
may be unnecessarily complex which impacts end-users who may wish to monitor the
progress of their workows. In this section two patterns are presented which illustrate
typical restrictions imposed on workow speci�cations and their consequences.

Virtually every workow engine has constructs that support the modelling of loops.
Some of the workow engines provide support only for what we will refer to as struc-
tured cycles. Structured cycles can have only one entry point to the loop and one
exit point from the loop and they cannot be interleaved. They can be compared to
WHILE loops in programming languages while arbitrary cycles are more like GOTO
statements. This analogy should not deceive the reader though into thinking that
arbitrary cycles are not desirable as there are two important di�erences here with
\classical" programming languages: 1) the presence of parallelism which in some cases
makes it impossible to remove certain forms of arbitrariness and 2) the fact that the
removal of arbitrary cycles may lead to workows that are much harder to interpret
(and as opposed to programs, workow speci�cations also have to be understood at
runtime by their users).

Pattern 10 (Arbitrary Cycles)
Description A point in a workow process where one or more activities can be done
repeatedly.
Synonyms Loop, iteration, cycle.
Problem Some of the workow engines do not allow arbitrary cycles - they have sup-
port for structured cycles only, either through the decomposition construct (MQSeries
Workow) or through a special loop construct (Visual WorkFlo, SAP R/3 Workow).
Implementation

- Arbitrary cycles can typically be converted into structured cycles unless they
contain one of the more advanced patterns such as multiple instances (see Pat-
tern 14 (Multiple Instances With a Priori Runtime Knowledge)). The conversion
is done either through auxiliary variables or through node repetition. A thor-
ough analysis of conversions and an identi�cation of some situations where they
cannot be done is presented in Chapter 5 and Chapter 6.

3.4. PATTERNS INVOLVING MULTIPLE INSTANCES 75

2

Another example of a requirement imposed by some workow products is that the
workow model has to contain only one ending node, or in case of many ending nodes,
the workow model will terminate when the �rst of these ending nodes is completed.
Again, many business models do not follow this pattern - it is more natural to think
of a business process as terminated once there is nothing else to be done.

Pattern 11 (Implicit Termination)
Description A given subprocess should be terminated when there is nothing else to
be done. In other words, there are no active activities in the workow and no other
activity can be made active (and at the same time the workow is not in deadlock).
Problem Most workow engines terminate the process when an explicit Final node
is reached. Any current activities that happen to be running at that time will be
aborted.
Implementation

- Some workow engines (Sta�ware, MQSeries Workow) support this pattern
directly as they would terminate a (sub)process when there is nothing else to
be done.

- For workow products that do not support this pattern directly, the typical
solution to this problem is to transform the model to an equivalent model that
has only one terminating node. The complexity of that task depends very much
on the actual model. Sometimes it is easy and fairly straightforward, typically by
using a combination of di�erent join constructs and activity repetition. However,
there are situations where it is diÆcult or even impossible to do so. A model
that involves multiple instances (see section 3.4) and implicit termination is
typically very hard to convert to a model with explicit termination. A detailed
analysis of which workow model can be converted to an equivalent model that
has only one terminating node is presented in Section 6.1.

2

3.4 Patterns Involving Multiple Instances

The patterns in this subsection involve a phenomenon that we will refer to as multi-
ple instances. From a theoretical point of view the concept is relatively simple and
corresponds to multiple threads of execution referring to a shared de�nition. From a
practical point of view it means that an activity in a workow graph can have more

76 CHAPTER 3. WORKFLOW PATTERNS

than one running, active instance at the same time. As we will see, such behaviour
may be required in certain situations. The fundamental problem with the implemen-
tation of these patterns is that due to design constraints and lack of anticipation for
this requirement most of the workow engines do not allow for more than one instance
of the same activity to be active at the same time.

When considering multiple instances there are two types of requirements. The �rst
requirements has to do with the ability to launch multiple instances of an activity
or a subprocess. The second requirement has to do with the ability to synchronize
these instances and continue after all instances have been handled. Each of the pat-
terns needs to satisfy the �rst requirement. However, the second requirement may
be dropped by assuming that no synchronization of the instances launched is needed.
This assumption is somewhat related to patterns 8 (Multi-merge) and 11 (Implicit
Termination). The Multi-merge also allows for the creation of multiple instances with-
out any synchronization facilities. If instances that are created are not synchronized,
then termination of each of these instances is implicit and not coordinated with the
main workow.

If the instances need to be synchronized, the number of instances is highly relevant.
If this number is �xed and known at design time, then synchronization is rather
straightforward. If however, the number of instances is determined at run-time or
may even change while handling the instances, synchronization becomes very diÆcult.
Therefore, we identify three patterns with synchronization. If no synchronization is
needed, the number of instances is less relevant: Any facility to create instances within
the context of a case will do. Therefore, we only present one pattern for multiple
instances without synchronization.

Pattern 12 (Multiple Instances Without Synchronization)
Description Within the context of a single case (i.e., workow instance) multiple
instances of an activity can be created, i.e., there is a facility to spawn o� new threads
of control. Each of these threads of control is independent of other threads. Moreover,
there is no need to synchronize these threads.
Synonyms Multi threading without synchronization, Spawn o� facility
Examples

- A customer ordering a book from an electronic bookstore such as Amazon may
order multiple books at the same time. Many of the activities (e.g. billing,
updating customer records, etc.) occur at the level of the order. However,
within the order multiple instances need to be created to handle the activities
related to one individual book (e.g. update stock levels, shipment, etc.). If the
activities at the book level do not need to be synchronized, this pattern can be
used.

3.4. PATTERNS INVOLVING MULTIPLE INSTANCES 77

Problem Most workow engines do not allow multiple instances of an activity to be
active at the same time.
Implementation

- The most straightforward implementation of this pattern is through the use
of the merge construct used in a loop in conjunction with the parallel split
construct. This is possible in languages such as Fort�e and Verve. This solution
is illustrated in Figure 3.7.

- Some workow languages support an extra construct that enables the designer
to create a subprocess or a subow that will \spawn-o�" from the main process
and will be executed concurrently. For example, Visual WorkFlo supports the
Release construct while i-Flow supports the Chained Process Node. Referring
back to the process in Figure 3.7, one can use spawning-o� facility instead of
AND-Split to achieve a similar result

- Some workow engines allow for creating an arbitrary number of multiple in-
stances as long as this number is known at a certain point of a process execution.
An example of such a facility is the Bundle in MQSeries Workow and Table-
driven Dynamic Parallel Processing in SAP R/3 Workow. As these facilities
provide an automatic synchronization of created instances, they are covered in
detail when describing pattern 14 (Multiple Instances With a Priori Runtime
Knowledge).

- For the workow engines that lack a spawning-o� facility, there is usually the
possibility to create new instances of a workow process through some API.
This allows for the creation of new instances by calling the proper method from
activities inside the main ow.

2

Pattern 12 is supported by many workow management systems, typically through
asynchronous subprocess invocation. The problem is not to generate multiple in-
stances, the problem is to coordinate them. As explained before, it is not trivial to
synchronize these instances. Therefore, we will present three patterns involving the
synchronization of concurrent threads.

The simplest case is when we know, during the design of the process, the number of
instances that will be active during process execution. In fact, this situation can be
considered to be a combination of patterns 2 (Parallel Split) and 3 (Synchronization)
were all concurrent activities share a common de�nition.

Pattern 13 (Multiple Instances With a Priori Design Time Knowledge)
Description For one process instance an activity is enabled multiple times. The

78 CHAPTER 3. WORKFLOW PATTERNS

A

OR

B

XOR

C

More instances needed
No more instances needed

AND

Figure 3.7: Implementation strategy for multiple instances

number of instances of a given activity for a given process instance is known at design
time. Once all instances are completed some other activity needs to be started.
Examples

- The requisition of hazardous material requires three di�erent authorizations.

Implementation

- If the number of instances is known a priori during design time, then a very
simple implementation option is to replicate the activity in the workow model
preceding it with a construct used for the implementation of the parallel split
pattern. Once all activities are completed, it is simple to synchronize them
using a standard synchronizing construct. The workow on the left diagram of
Figure 3.8 is an implementation for the scenario when the number of instances
is known to be less than four.

2

It is simple enough to model multiple instances when their number is known a priori,
as one simply replicates the task in the process model. However, if this information
is not known, and the number of instances cannot be determined until the process is
running, this technique cannot be used. The next two patterns consider the situation
when the number of instances is not known at design time. The �rst pattern considers
the situation where it is possible to determine the number of instances to be started
before any of these instances is started.

3.4. PATTERNS INVOLVING MULTIPLE INSTANCES 79

B B

A

B B B

B1 instance

2 instances

3 instances

Solution for NumInst<=3

Solution using Bundle construct

A

Bundle B

C

AND

XOR AND

AND

AND

C

OR

Figure 3.8: Design patterns for multiple instances

Pattern 14 (Multiple Instances With a Priori Runtime Knowledge)
Description For one case an activity is enabled multiple times. The number of
instances of a given activity for a given case varies and may depend on characteristics
of the case or availability of resources [CCPP98, JB96], but is known at some stage
during runtime, before the instances of that activity have to be created. Once all
instances are completed some other activity needs to be started.
Examples

- In the review process of a scienti�c paper submitted to a journal, the activity
Review Paper is instantiated several times depending on the content of the paper,
the availability of referees, and the credentials of the authors. Only if all reviews
have been returned, processing is continued.

- For the processing of an order for multiple books, the activity Check Avail-
ability is executed for each individual book. The shipping process starts if the
availability of each book has been checked.

- When booking a trip, the activity Book Flight is executed multiple times if the
trip involves multiple ights. Once all bookings are made, the invoice is to be
sent to the client.

- When authorizing a requisition with multiple items, each item has to be autho-
rized individually by di�erent workow users. Processing continues if all items
have been handled.

Problem As the number of instances of a given activity is not known during the

80 CHAPTER 3. WORKFLOW PATTERNS

design we cannot simply replicate this activity in a workow model during the de-
sign stage. Currently only a few workow management systems allow for multiple
instances of a single activity at a given time, or o�er a special construct for the mul-
tiple activation of one activity for a given process instance, such that these instances
are synchronized.
Implementation

- As pattern 15 (Multiple Instances without a priori Runtime Knowledge) is
a generalization of this pattern, any solution presented there can be used to
implement this pattern.

- Some workow engines o�er a special construct that can be used to instantiate
a given number of instances of an activity. An example of such a construct
is the Bundle concept that was available in FlowMark, version 2.3 (it is not
available in MQSeries/Workow version 3.3) and Table-driven Dynamic Parallel
Processing in SAP R/3 Workow. Once the desired number of instances is
obtained (typically by one of the activities in the workow) it is passed over via
the available data ow mechanism to a \bundle" construct that is responsible
for instantiating a given number of instances. Once all instances in a bundle are
completed, the next activity is started (see right workow in Figure 3.8).

2

Finally, we present a pattern which is typically the hardest to implement. In it the
number of instances in a process is determined in a totally dynamic manner rendering
solutions such as e.g. the use of the Bundle concept inappropriate.

Pattern 15 (Multiple Instances Without a Priori Runtime Knowledge)
Description For one case an activity is enabled multiple times. The number of
instances of a given activity for a given case is not known during design time, nor is
it known at any stage during runtime, before the instances of that activity have to
be created. Once all instances are completed some other activity needs to be started.
The di�erence with Pattern 14 is that even while some of the instances are being
executed or already completed, new ones can be created.
Examples

- The requisition of 100 computers involves an unknown number of deliveries.
The number of computers per delivery is unknown and therefore the total num-
ber of deliveries is not known in advance. After each delivery, it can be deter-
mined whether a next delivery is to come by comparing the total number of
delivered goods so far with the number of the goods requested. After processing
all deliveries, the requisition has to be closed.

3.4. PATTERNS INVOLVING MULTIPLE INSTANCES 81

- For the processing of an insurance claim, zero or more eyewitness reports should
be handled. The number of eyewitness reports may vary. Even when processing
eyewitness reports for a given insurance claim, new eyewitnesses may surface
and the number of instances may change.

Problem Some workow engines provide support for generating multiple instances
only if the number of instances is known at some stage of the process. This can be
compared to a \for" loop in procedural languages. However, these constructs are of
no help to processes requiring \while" loop functionality.
Implementation

- If the language supports multiple instances and supports a decomposition con-
cept with implicit termination (hence a decomposition is only considered to
be �nished when all its activities are �nished), then multiple instances can be
synchronized by placing the sub-workow containing the loop generating the
multiple instances inside the decomposition block (see workow in Figure 3.9).
Here, activity B will be invoked many times. Once all instances of B are com-
pleted, the subprocess will complete and activity C can be processed. Implicit
termination of the subprocess is used as the synchronizing mechanism for the
multiple instances of activity B. We �nd this approach to be a very natural
solution to the problem, however, none of the languages included in our review
supports both multiple instances and a decomposition concept with implicit
termination.

A

C

BB

SubB:

OR

B

XOR
More instances needed

No more instances needed

AND

Figure 3.9: Implementation strategy for multiple instances

- If the workow engine supports multiple instances directly (cf. Fort�e and Verve),

82 CHAPTER 3. WORKFLOW PATTERNS

we can try and use the solution illustrated in Figure 3.7. However, activity C
in this model will possibly be started before all instances of activity B are
completed. To achieve proper synchronization one needs to resort to techniques
well beyond the modelling power of these languages. For example, it may be
possible to implement activity B such that once it is completed, it sends an
event to some external event queue. Activity C can be preceded by another
activity that consumes the events from the queue and triggers C only if the
number of events in the queue is equal to the number of instances of activity
B. This solution is very complex, may have some concurrency problems, and
for the end-user it is totally unclear what the true semantics of the process is.

- Similar problems occur when using the Release construct of Visual WorkFlo,
the Chained Process Node of i-Flow, or some API to invoke the subprocess as
part of an activity in a process. In each of these systems, it is very diÆcult to
synchronize concurrent subprocesses.

2

3.5 State-based Patterns

In real workows, most workow instances are in a state awaiting processing rather
than being processed. However, most workow management systems abstract from
states as they are typically based on messaging, i.e. if an activity �nishes, it noti�es
or triggers other activities. This means that activities are enabled by the receipt of
one or more messages. The state-based patterns that we are presenting in this section
have all in common that a state of activity (typically the fact whether it is enabled or
disabled) can be dynamically inuenced by the state of another activity in a workow
process. As in most workow management systems states are implicit, there are no
convenient means to disable activities that have been once enabled (for example by
sending negative messages). As we will see, these systems typically have problems
dealing with the patterns introduced in this section.

The �rst pattern we would like to present can be seen as an extension to pattern 4
(Exclusive Choice). Moments of choice, such as supported by this pattern are of an
explicit nature, i.e. it is based on data captured through decision activities. This
means that the choice is made a-priori, i.e. before the actual execution of the selected
branch starts an internal choice is made. Sometimes this notion is not appropriate.
There are situations when we would like both branches of the choice to be available
for the end users (as if they were to be executed concurrently), however, once any of
the scheduled activity from either of the branch is executed by one of the assignees,

3.5. STATE-BASED PATTERNS 83

the other activity should be disabled (and, in e�ect, disappear from the worklist of
the assignee). We will call such a pattern a Deferred Choice.

Pattern 16 (Deferred Choice)
Description A point in the workow process where one of several branches is chosen.
In contrast to the XOR-Split, the choice is not made explicitly (e.g. based on data
or a decision) but several alternatives are o�ered to the environment. However, in
contrast to the AND-Split, only one of the alternatives is executed. This means that
once the environment activates one of the branches the other alternative branches are
withdrawn. It is important to note that the choice is delayed until the processing in
one of the alternative branches is actually started, i.e. the moment of choice is as late
as possible.
Synonyms implicit choice, deferred XOR-Split.
Examples

- At certain points during the processing of insurance claims, quality assurance
audits are undertaken at random by a unit external to those processing the
claim. The occurrence of an audit depends on the availability of resources to
undertake the audit, and not on any knowledge related to the insurance claim.
Deferred Choices can be used at points where an audit might be undertaken.
The choice is then between the audit and the next activity in the processing
chain. The audit activity triggers the next activity to preserve the processing
chain.

- After receiving products there are two ways to transport them to the depart-
ment. The selection is based on the availability of the corresponding resources.
Therefore, the choice is deferred until a resource is available.

- Business trips require approval before being booked. There are two ways to
approve a task. Either the department head approves the trip (activity A1)
or both the project manager (activity A21) and the �nancial manager (activity
A22) approve the trip. The latter two activities are executed sequentially and
the choice between A1 on the one hand and A21 and A22 on the other hand
is implicit, i.e., at the same time both activity A1 and activity A21 are o�ered
to the department head and project manager respectively. The moment one of
these activities is selected, the other one disappears.

Problem Many workow management systems support the XOR-Split described in
Pattern 4 but do not support the deferred choice. Since both types of choices are
desirable (see examples), the absence of the deferred choice is a real problem.
Implementation

- Assume that the workow language being used supports cancellation of activ-
ities through either a special transition (for example Sta�ware, see Pattern 19

84 CHAPTER 3. WORKFLOW PATTERNS

(Cancel Activity)) or through an API (most other engines). Cancellation of an
activity means that the activity is being removed from the designated worklist
as long as it has not been started yet. The deferred choice can be realized by
enabling all alternatives via an AND-Split. Once the processing of one of the
alternatives is started, all other alternatives are cancelled. Consider the deferred
choice between B and C in Figure 3.10 (Workow A). After A, both B and C

are enabled. Once B is selected/executed, activity C is cancelled. Once C is
selected/executed, activity B is cancelled. Workow B of Figure 3.10 shows the
corresponding workow model. Note that the solution does not always work
because B and C can be selected/executed concurrently.

A

B C

D

OR

A

cancel

cancel

Workflow B Workflow C

A

B C

D

DChoice

OR

AND

E

B C

D

OR

XOR

Workflow A

Figure 3.10: Strategies for implementation of deferred choice

- Another solution to the problem is to replace the implicit XOR-Split by an
explicit XOR-Split, i.e. an additional activity is added. All external triggers
activating the alternative branches are redirected to the added activity. As-
suming that the activity can distinguish between triggers, it can activate the
proper branch. Consider the example shown in Figure 3.10. By introducing a
new activity E after A and redirecting external triggers from B and C to E, the
implicit XOR-Split can be replaced by an explicit XOR-Split based on the origin
of the �rst trigger. Workow C of Figure 3.10 shows the corresponding workow
model. Note that the solution moves part of the routing to the application or
task level. Moreover, this solution assumes that the choice is made based on the
type of external trigger.

2

3.5. STATE-BASED PATTERNS 85

Typically, Patterns 2 (Parallel Split) and 3 (Synchronization) are used to specify
parallel routing. Most workow management systems support true concurrency, i.e.
it is possible that two activities are executed for the same case at the same time. If
these activities share data or other resources, true concurrency may be impossible
or lead to anomalies such as lost updates or deadlocks. Therefore, we introduce the
following pattern.

Pattern 17 (Interleaved Parallel Routing)
Description A set of activities is executed in an arbitrary order: Each activity in
the set is executed, the order is decided at run-time, and no two activities are executed
at the same moment (i.e. no two activities are active for the same workow instance
at the same time).
Synonyms Unordered sequence.
Examples

- The Navy requires every job applicant to take two tests: Physical Test and
Mental Test. These tests can be conducted in any order but not at the same
time.

- At the end of each year, a bank executes two activities for each account: Add
Interest and Charge Credit Card Costs. These activities can be executed in any
order. However, since they both update the account, they cannot be executed
at the same time.

Problem Since most workow management systems support true concurrency when
using constructs such as the AND-Split and AND-Join, it is not possible to specify
interleaved parallel routing.
Implementation

- A very simple, but unsatisfactory, solution is to �x the order of execution, i.e.
instead of using parallel routing, sequential routing is used. Since the activities
can be executed in an arbitrary order, a solution using a prede�ned order may be
acceptable. However, by �xing the order, exibility is reduced and the resources
cannot be utilized to their full potential.

- Another solution is to use a combination of implementation constructs for the
sequence and the exclusive choice patterns i.e. several alternative sequences are
de�ned and before execution one sequence is selected using a XOR-Split. A
drawback is that the order is �xed before the execution starts and it is not clear
how the choice is made. Moreover, the workow model may become quite com-
plex and large by enumerating all possible sequences. Workow B in Figure 3.11
illustrates this solution in a case with three activities.

86 CHAPTER 3. WORKFLOW PATTERNS

- By using implementation strategies for the deferred choice pattern (instead of
an explicit XOR-Split) the order does not need to be �xed before the execution
starts, i.e. the implicit XOR-Split allows for on-the-y selection of the order.
Unfortunately, the resulting model typically has a \spaghetti-like" structure.
This solution is illustrated by Workow C of Figure 3.11.

- For workow models based on Petri nets, the interleaving of activities can
be enforced by adding a place which is both an input and output place of all
potentially concurrent activities. The AND-Split adds a token to this place and
the AND-Join removes the token. It is easy to see that such a place realizes the
required \mutual exclusion".

2

The next pattern, Pattern 18 (Milestone), allows for testing whether an activity (or,
more generally, a process instance) has reached a certain state. By explicitly mod-
elling the states in-between activities this pattern is easy to support. However, if one
abstracts from states, then it is hard, if not impossible, to test whether an activity or
a case is in a speci�c state.

Example 3.5.1 Consider the workow process for handling complaints (see Fig-
ure 3.12). First the complaint is registered (activity Register), then in parallel a
questionnaire is sent to the complainant (activity Send Questionnaire) and the
complaint is evaluated (activity Evaluate Questionnaire). If the complainant
returns the questionnaire within two weeks, the activity Process Questionnaire
is executed. If the questionnaire is not returned within two weeks, the result
of the questionnaire is discarded (activity Time Out). Note that there is a de-
ferred choice between Process Questionnaire and Time Out (Pattern 16). Based
on the result of the evaluation (activity Evaluate Questionnaire), the complaint
is processed or not. The actual processing of the complaint (activity Process
Complaint), if it is to be made at all, is delayed until the questionnaire is pro-
cessed or a time-out has occurred. The processing of the complaint is checked
via activity Check Processing. Finally, activity Archive is executed. 2

The construct involving activity Process Complaint is called a milestone.

Pattern 18 (Milestone)
Description The enabling of an activity depends on some other activity(s) being
in a speci�ed state, i.e. the activity is only enabled if a certain milestone has been
reached which did not expire yet. Consider three activities named A, B, and C. We
would like activity A to be enabled if and only if an activity B has been executed and

3.5. STATE-BASED PATTERNS 87

A

B

C

Interleaved
Sequence

End

Interleaved
Sequence

Begin

A B C

A C B

B A C

B C A

C A B

C B A

A

B

C

C

B

A

B

C

A

B

C

C

A

A

B

Workflow A

Workflow B

Workflow C

OR

OR

DChoice

DChoice

DChoice

DChoice

DChoice

Figure 3.11: The implementation options for interleaving execution of A, B and C.

C has not been executed yet, i.e. A is not enabled before the execution of B and A is
not enabled after the execution of C. Figure 3.13 illustrates the pattern. The state in
between B and C is modeled by place m. This place is a milestone for A. Note that
A does impact the state of the process. It only tests whether milestone is reached so
that it can be executed.
Synonyms Test arc, deadline (cf. [JB96]), state condition, withdraw message.
Examples

- In a travel agency, ights, rental cars, and hotels booking details may be
changed as long as the invoice is not printed.

- A customer can withdraw purchase orders until two days before the planned

88 CHAPTER 3. WORKFLOW PATTERNS

Register

Send
Question.

Evaluate
Compl. ?

Process
Quest.

TimeOut

OR

AND

dchoice

Process
Compl.

Check
Proc.OR

OR

ArchiveAND

XOR

XOR Processing
Needed

Skip

Not OK

OK

M

Figure 3.12: The state in-between the processing/time-out of the questionnaire and
archiving the complaint is an example of a milestone.

MB

A

C

Milestone

Figure 3.13: Schematical representation of a milestone.

delivery.

- A customer can claim air miles until six months after the ight.

Problem The problem is similar to the problem mentioned in Pattern 16 (De-
ferred Choice): There is a race between a number of activities and the execution of
some activities may disable others. In most workow systems (notable exceptions are
those based on Petri nets) once an activity becomes enabled, there is no other-than-
programmatic way to disable it. A milestone can be used to test whether some part
of the process is in a given state. Simple message passing mechanisms will not be
able to support this because the disabling of a milestone corresponds to withdrawing
a message. This type of functionality is typically not o�ered by existing workow
management systems. Note that in Figure 3.12 activity Process Complaint may be
executed an arbitrary number of times, i.e. it is possible to bypass Process Complaint,
but it is also possible to execute Process Complaint several times. It is not possible to

3.6. CANCELLATION PATTERNS 89

model such a construct by an AND-Split/AND-Join type of synchronization between
the two parallel branches, because it is not known how many times a synchronization
is needed.
Implementation

- The simple milestone scenario from Figure 3.13 can be realized using Pattern 16
(Deferred Choice). After executing B there is an implicit XOR-Split with two
possible subsequent activities: A and C. If A is executed, then the same implicit
XOR-Split is activated again. If C is executed, A is disabled by the implicit
XOR-Split construct. This solution is illustrated by Workow A in Figure 3.14.
Note that this solution only works if the execution of A is not restricted by
other parallel threads. For example, the construct cannot be used to deal with
the situation modeled in Figure 3.12 because Process Complaint can only be
executed directly after a positive evaluation or a negative check, i.e. the exe-
cution of Process Complaint is restricted by both parallel threads. Clearly, a
choice restricted by multiple parallel threads cannot be handled using Pattern 16
(Deferred Choice).

- Another solution is to use the data perspective, e.g. introduce a Boolean work-
ow variable m. Again consider three activities A, B, and C such that activity
A is allowed to be executed in-between B and C. Initially, m is set to false.
After execution of B m is set to true, and activity C sets m to false. Activity
A is preceded by a loop which periodically checks whether m is true: If m is
true, then A is activated and if m is false, then check again after a speci�ed
period, etc. This solution is illustrated by Workow B in Figure 3.14. Note
that this way a \busy wait" is introduced and after enabling A it cannot be
blocked anymore, i.e., the execution of C does not inuence running or enabled
instances of A. Using Pattern 19 (Cancel Activity), A can be withdrawn once
C is started. More sophisticated variants of this solution are possible by using
database triggers, etc. However, a drawback of this solution approach is that
an essential part of the process perspective is hidden inside activities and appli-
cations. Moreover, the mixture of parallelism and choice may lead to all kinds
of concurrency problems.

2

3.6 Cancellation Patterns

The �rst solution described in Pattern 16 (Deferred Choice) uses a construct where one
activity cancels another, i.e. after the execution of activity B, activity C is withdrawn

90 CHAPTER 3. WORKFLOW PATTERNS

B

A

C

dchoice

OR

Workflow A Workflow B

m:=False

B

m:=True

C

m:=False

Await

AND

OR

XOR
m=False m=True

Figure 3.14: Implementation options for Milestone Pattern

and after the execution of activity C activity B is withdrawn. (See Figure 3.10:
The dashed arrows correspond to withdrawals.) The following pattern describes this
construct.

Pattern 19 (Cancel Activity)
Description An enabled activity is disabled, i.e. a thread waiting for the execution
of an activity is removed.
Synonyms Withdraw activity.
Examples

- Normally, a design is checked by two groups of engineers. However, to meet
deadlines it is possible that one of these checks is withdrawn to be able to meet
a deadline.

- If a customer cancels a request for information, the corresponding activity is
disabled.

Problem Only a few workow management systems support the withdrawal of an
activity directly in the workow modelling language, i.e. in a (semi-)graphical manner.
Implementation

- If the workow language supports Pattern 16 (Deferred Choice), then it is
possible to cancel an activity by adding a so-called \shadow activity". Both
the real activity and the shadow activity are preceded by a deferred choice.
Moreover, the shadow activity requires no human interaction and is triggered
by the signal to cancel the activity. Note that the drawback of this solution
is the introduction of activities which do not correspond to actual steps of the
process.

3.7. SUMMARY 91

- Many workow management systems support the withdrawal of activities using
an API which simply removes the corresponding entry from the database, i.e. it
is not possible to model the cancellation of activities in a direct and graphical
manner, but inside activities one can initiate a function which disables another
activity.

2

A similar construct is the cancellation of an entire case.

Pattern 20 (Cancel Case)
Description A case, i.e. workow instance, is removed completely.
Synonyms Withdraw case.
Examples

- In the process for hiring new employees, an applicant withdraws his/her appli-
cation.

- A customer withdraws an insurance claim before the �nal decision is made.

Problem Workow management systems typically do not support the withdrawal of
an entire case using the (graphical) workow language.
Implementation

- Pattern 19 (Cancel Activity) can be repeated for every activity in the workow
process de�nition. There is one activity triggering the withdrawal of each activ-
ity in the workow. Note that this solution is not very elegant since the \normal
control-ow" is intertwined with all kinds of connections solely introduced for
removing the workow instance.

- Similar to Pattern 19, many workow management systems support the with-
drawal of cases using an API which simply removes the corresponding entries
from the database.

2

3.7 Summary

The workow patterns described in this Chapter correspond to routing constructs
encountered when modelling and analysing workows. Many of the patterns are
supported by workow management systems. However, several patterns are diÆcult,
if not impossible, to realize using many of the workow management systems available
today.

92 CHAPTER 3. WORKFLOW PATTERNS

The provision of the patterns would not be complete without a close look at to what
extent current crop of workow management systems is able to support them. In
this thesis we have introduced the functionality of 8 workow management systems.
Tables 3.1 and 3.2 summarize the results of the comparison of these workow manage-
ment systems in terms of the selected patterns. For each product-pattern combination,
we checked whether it is possible to realize the workow pattern with the tool. As
each pattern is di�erent, it is hard to come up with a characterization that would �t
all of them. If a product directly supports the pattern through one of its constructs,
it is rated +. If the pattern is not directly supported, it is rated -. Any solution which
results in spaghetti diagrams or coding, is considered as giving no direct support. The
exact evaluation of each pattern for every product evaluated with detailed comments
is given in the Appendix A.

Pattern Product

Sta�ware
MQSeries
Workow

Fort�e
Conductor

Verve

1 (seq) + + + +
2 (par-spl) + + + +
3 (synch) + + + +
4 (ex-ch) + +/- + +/-

5 (simple-m) + + + +
6 (m-choice) +/- + + +
7 (sync-m) - + - -
8 (multi-m) - - + +
9 (disc) - - +/- +
10 (arb-c) + - + +
11 (impl-t) + + - -
12 (mi-no-s) - - + +
13 (mi-dt) + + + +
14 (mi-rt) - - - -
15 (mi-no) - - - -
16 (def-c) +/- - - -
17 (int-par) - - - -
18 (milest) - - - -
19 (can-a) + - - -
20 (can-c) - - + +

Table 3.1: The main results for Sta�ware, MQSeries Workow, Fort�e Conductor and
Verve.

From the comparison it is clear that no tools support all the selected patterns. In fact,
many of these tools only support a fraction of these patterns and the best of them
only support about 50%. Speci�cally the limited support for the discriminator, and its

3.7. SUMMARY 93

Pattern Product

Visual
WorkFlo

Changengine i-Flow SAP R/3

1 (seq) + + + +
2 (par-spl) + + + +
3 (synch) + + + +
4 (ex-ch) + + + +

5 (simple-m) + + + +
6 (m-choice) +/- + +/- +/-
7 (sync-m) - - - -
8 (multi-m) - - - -
9 (disc) - + - +
10 (arb-c) +/- + + -
11 (impl-t) - - - -
12 (mi-no-s) + - + -
13 (mi-dt) + + + +
14 (mi-rt) - - - +/-
15 (mi-no) - - - -
16 (def-c) - - - -
17 (int-par) - - - -
18 (milest) - - - -
19 (can-a) - - - +
20 (can-c) - + - +

Table 3.2: The main results for Visual WorkFlo, Changengine, i-Flow, and SAP R/3
Workow.

94 CHAPTER 3. WORKFLOW PATTERNS

generalization, the N -out-of-M -join, the state-based patterns, the synchronization of
multiple instances (no tool fully supports this) and cancellation (esp. of activities), is
worth noting. Also, observe that Sta�ware is the only workow management systems
adopting a non-synchronizing strategy that support implicit termination.

It is our industry experience that very often workow product vendors, when con-
fronted with questions as to how certain complex patterns need to be implemented
in their product, they respond that the workow implementors may need to resort to
the application level, the use of external events or database triggers. This however
defeats the purpose of using workow engines in the �rst place.

Through the discussion in this Chapter we hope that we not only have provided
an insight into the shortcomings, comparative features and limitations of current
workow technology, but also that the patterns presented can provide a direction for
future developments.

Chapter 4

Formal Foundations

So far we have attempted to characterise various workow modelling techniques
through the use of a very pragmatic approach, namely the workow test harness
and workow patterns. Whilst these techniques have an important use, especially in
industry where a quick evaluation of new products is needed, they do not provide
us with a precise answer as to what is the theoretical expressiveness limit of a given
modelling technique. In this Chapter we provide the necessary theoretical foundation
to achieve the afore-mentioned goal.

As it turns out, workow languages can, as far as the control ow perspective goes,
be fully characterized in terms of the evaluation strategy they use, the concepts they
support, and the syntactic restrictions they impose. Based upon the evaluation strat-
egy, a mapping of workows to Petri nets (see e.g. [Pet81, Rei85, Mur89, RR98]) is
presented. Petri nets were chosen as they provide a general, well understood and well
researched, theory for concurrency.

Petri nets have been proposed for modelling workow process de�nitions long before
the term \workow management" was coined and workow management systems be-
came readily available. Consider for example the work on Information Control Nets,
a variant of the classical Petri nets, in the late seventies [Ell79]. Petri nets consti-
tute a good starting point for a solid theoretical foundation of workow management.
Clearly, a Petri net can be used to specify the control-ow, i.e., the routing of cases
(workow instances) [Aal98c]. Activities are modelled by transitions and causal de-
pendencies are modelled by places, transitions, and arcs. In fact, a place corresponds
to a condition which can be used as pre- and/or post-condition for activities. An
AND-Split corresponds to a transition with two or more output places, and an AND-
Join corresponds to a transition with two or more input places. OR-Splits/OR-Joins
correspond to places with multiple outgoing/ingoing arcs.

The mappings presented, assigning a formal semantics to workow languages, to-

95

96 CHAPTER 4. FORMAL FOUNDATIONS

gether with the \right" notion of equivalence, then allow an in-depth investigation
into expressiveness properties of various classes of workow languages presented in
subsequent chapters.

4.1 Classi�cation of Workow Models

As we have seen in previous chapters, there seems to be not one established workow
modelling technique which is widely accepted in industry. All the products we have
evaluated di�er substantially in their interpretation of the basic workow modelling
constructs. Both the Test Harness presented in Section 2.3 and the support for spe-
ci�c patterns led us to classify workow languages that we have considered, in terms
of four evaluation strategies used. Speci�cally, only two products, Verve and Fort�e
Conductor support Pattern 8 (Multi-merge) and they have very similar support for
the rest of the patterns. We will classify them into the class of Standard Workows
Models with the main characteristic being the ability to create multiple concurrent
instances of one activity. In contrast, Sta�ware, Changengine and i-Flow do not have
support for Pattern 8 (Multi-Merge), otherwise they are very similar to Standard
Workows. We will classify them as Safe Workow Models. Both SAP R/3 Work-
ow and FileNet Visual WorkFlo do not support Pattern 10 (Arbitrary Cycles) and
through the Test Harness we have learned that due to syntactical restrictions certain
processes cannot be modelled. We will consider these products to be members of a
class called Structured Workow Models. Finally, only one product, MQ Series Work-
ow, supports Pattern 7 (Synchronizing Merge) and we will consider it a member of
a class which we will refer to as Synchronizing Workow Models.

It should be stressed that these evaluation strategies may not take into account many
semantical subtleties as well as more advanced, non-standard modelling constructs
present in these products and as such should be viewed as an \idealization" of their
approach. It is quite conceivable that products exist that escape this classi�cation
and undoubtedly such products may emerge in the future. The next subsections will
provide a formal foundation for each of the four classes.

4.1.1 Standard Workow Models

Standard Workow Models represent what would appear to be the most \natural"
interpretation of the WfMC de�nitions. In this section a mapping of the WfMC basic
control ow constructs to Petri nets is provided, which captures this interpretation
formally. In addition to the mapping a justi�cation is supplied as to why we think this
mapping represents the \intent" of the broader workow community and a discussion
of how it compares to some other mappings which have been proposed.

4.1. CLASSIFICATION OF WORKFLOW MODELS 97

In the vast majority of workow management systems when an activity instance is
�nished, the next activity instance to be executed is selected and its state is changed
to READY (this typically corresponds to placing it on a designated worklist). After
this, the activity instance can go through a number of internal states. Finally, if
all the associated processing has been performed successfully, its state is changed to
COMPLETE. As will be seen, these two states are crucial to control ow considerations
and any formal semantics of control ow constructs has to take at least these two
states into account explicitly.

When using Petri nets for capturing formal semantics of workows, there is a choice
of labelling places or transitions, where the labels represent activities that are to be
performed. We have chosen to label transitions as this appears to be more common.
In this approach, a labelled transition being enabled indicates that the corresponding
activity is in the READY state. Firing the transition then corresponds to executing the
activity and changing its state to COMPLETE.

Not all transitions are labelled. Transitions without a label (sometimes the label � is
used, representing an internal or \silent" action; in the rest of this thesis we will refer
to such transitions as �-transitions) represent internal processing performed by the
workow engine which cannot be observed by the external users (though they may
also represent execution of the so-called null activity, the activity which does nothing).
Such transitions will play an important role when considering workow equivalence.
With these assumptions in mind, Figure 4.1 shows the semantics of basic workow
constructs.

AB

A

Sequence

Initial activity

AFinal activity

A B

A

A

Figure 4.1: Mapping of basic control ow constructs

For the semantics of the XOR-Split, consider Figure 4.2. Two alternative mappings are
shown with the rightmost mapping commonly used in the literature (see e.g. [AAH98,
SH96]). The semantics of the XOR-Split is that when completing activity A, a choice
needs to be made for activity B or activity C. However, only one of them can be
in the state READY. Hence, the rightmost mapping is incorrect, as after completion
of activity A both activities B and C would be enabled (though still only one of
them will be actually executed). This is not what can be observed for the majority of
workow systems - either B or C is enabled (appears on the worklist) but not both.

98 CHAPTER 4. FORMAL FOUNDATIONS

A

XOR

B C

A1

A

B C

A

B C

Figure 4.2: Alternative mappings for the XOR-Split

The rightmost mapping would correspond to the Deferred Choice pattern, introduced
in section 3.5, and its importance will be immediate in later sections when discussing
the expressiveness of Standard Workow Models. Note that the semantics of the
XOR-Split has been presented for the binary case, but, of course, can be trivially
extended for the n-ary case (this will also hold for the other constructs presented in
this Thesis).

A

AND

B C

A

B

C

Figure 4.3: Mapping for the AND-Split

The interpretation of the AND-Split is presented in Figure 4.3, while interpretations
for the AND-Join and the OR-Join are provided in Figure 4.4.

Note that the formal semantics provided for both types of joins leaves no ambiguities
as to what is the semantics of these constructs when put in the context of a more
complicated process structure. For example, if the AND-Join and activities A and B
of Figure 4.4 were preceded by a XOR-Split, only one incoming activity (say, activity
B) could complete. In this case there would be a token in cB and the subsequent
transition will never �re as no token would ever reach cA. The net would then be in
deadlock. If, on the other hand, the OR-Join and activities A and B of Figure 4.4
were preceded by the AND-Split, both activities B and A could run in parallel and

4.1. CLASSIFICATION OF WORKFLOW MODELS 99

B

C

A

B

CO
R

A

B

A
N

D

A

C

B

A

C

Figure 4.4: Mappings for the AND-Join and the OR-Join

tokens would be produced for both cB and cA. As a result two tokens would end up in
rC (though not necessarily at the same point in time). This corresponds to a situation
where activity C has to be performed twice (which may or may not be desirable). In
a workow context this behaviour is observable, as any user that has been assigned
to perform activity C will see two instances of this activity on his/her worklist.

Having informally established what a Standard Workow Model is and how its con-
structs should be mapped to Petri nets, the formal de�nition of such a net (De�ni-
tion 4.1.1) and its mapping (De�nition 4.1.3) can be presented.

De�nition 4.1.1
A Standard Workow Model is a tuple W = 〈P;Jo;Ja;So;Sa;A;Trans;Name〉
where P is a set of process elements which can be further divided into disjoint
sets of OR-Joins Jo, AND-Joins Ja, XOR-Splits So, AND-Splits Sa, and ac-
tivities A; Trans ⊆ P × P is a transition relation between process elements and
Name:A→ N is a function assigning names to activities taken from some given
set of names N containing special label �.

Activities without names1 are referred to as null activities. Joins have an out-
degree of at most one, while splits have an indegree of at most one. Activities
have an indegree and outdegree of at most one. Finally, we will call activities
with an indegree of zero initial items (I ⊆ A) and all process elements with an
outdegree of zero - �nal items (F ⊆ P). 2

As a shorthand representation for PW (the set of process elements P of a Standard
Workow Model W) we will use just P if the model W is obvious from the context.
Additionally we will use the notation W = 〈P;Trans;Name〉 whenever there is no
need to distinguish between the di�erent types of process elements.

1For an activity a without a name we have Name(a) = �

100 CHAPTER 4. FORMAL FOUNDATIONS

In De�nition 4.1.1 we have imposed as few as possible syntactic restrictions. In this
respect the following is worth noting:

• It may seem to be very restrictive to require that activities have an indegree and
outdegree of at most one (and similar restrictions for the splits). This approach
has been chosen to avoid possible ambiguities. For example, an activity with an
indegree of two is sometimes interpreted as an AND-Join and sometimes as an
OR-Join. It is trivial to map any language with such implicit semantics to our
explicit notation.

• Most languages would require that the indegree of joins is at least one. Similarly
they would require the outdegree of splits to be at least one. We have decided
not to impose these restrictions as by not introducing these restrictions we can
greatly simplify our de�nition as well as some further proofs without loosing
any generality.

De�nition 4.1.2
Let W = 〈P;Trans;Name〉 be a Standard Workow Model and e ∈ P a process
element of W. Input elements of e are given by in(e) = {x ∈ P | x Trans e}
and output elements of e by out(e) = {x ∈ P | e Trans x}. 2

De�nition 4.1.3
Given a Standard Workow Model W = 〈P;Jo;Ja;So;Sa;A;Trans;Name〉, the
corresponding labelled Petri net PNW = 〈PW ; TW ; FW ; LW〉 is de�ned by:

PW = {rx;y | x ∈ P ∧ y ∈ in(x)}∪ #\ready" places#
{cx;y | x ∈ P ∧ y ∈ out(x)}∪ #\completed" places#
{rx | x ∈ I} #\initial" places#

TW = {Xx;y | x ∈ So ∧ y ∈ out(x)}∪ #XOR-Split#
{Rx | x ∈ Sa}∪ #AND-Split#
{Kx | x ∈ Ja}∪ #AND-Join#
{Qx;y | x ∈ Jo ∧ y ∈ in(x)}∪ #OR-Join#
{Ax | x ∈ A}∪ #activity#
{Lx;y | x Trans y} #connecting trans.#

LW = {(Ax;Name(x)) | x ∈ A}∪ #activities#
{(t; �) | t ∈ TW ∧ ¬∃x∈A [t = Ax]} #other trans#

FW = {(rx; Ax) | x ∈ I}∪ #initial places#

4.1. CLASSIFICATION OF WORKFLOW MODELS 101

{(rx;y; Ax) | x ∈ A ∧ y ∈ in(x)}∪
{(Ax; cx;y) | x ∈ A ∧ y ∈ out(x)}∪ #activity#
{(rx;y; Kx) | x ∈ Ja ∧ y ∈ in(x)}∪
{(Kx; cx;y) | x ∈ Ja ∧ y ∈ out(x)}∪ #AND-Join#
{(rx;y; Rx) | x ∈ Sa ∧ y ∈ in(x)}∪
{(Rx; cx;y) | x ∈ Sa ∧ y ∈ out(x)}∪ #AND-Split#
{(rx;y; Qx;y) | x ∈ Jo ∧ y ∈ in(x)}∪
{(Qx;z; cx;y) | x ∈ Jo ∧ y ∈ out(x) ∧ z ∈ in(x)}∪ #OR-Join#
{(rx;y; Xx;z) | x ∈ So ∧ y ∈ in(x) ∧ z ∈ out(x)}∪
{(Xx;y; cx;y) | x ∈ So ∧ y ∈ out(x)}∪ #XOR-Split#
{(cx;y; Lx;y) | x Trans y}∪
{(Lx;y; ry;x) | x Trans y} #connecting#

2

De�nition 4.1.4
Given a Standard Workow Model W, the corresponding net system of W is
a pair (PNW ;M0) where PNW is the corresponding net and M0 is an initial
marking that assigns a single token to each of the places in {rx | x ∈ I}. 2

We will often refer to Petri nets resulting from the translation of Standard Workow
Models as Standard Workow Nets.

Though the de�nition of a Standard Workow Model may look complicated, it is con-
structed from a number of elementary building blocks, which can be isolated through
De�nition 4.1.5 if required.

De�nition 4.1.5
Let W = 〈P;Trans;Name〉 be a Standard Workow Model and

PNW = 〈PW ; TW ; FW ; LW〉 its corresponding net. The associated net of a pro-
cess element e ∈ P, PN e

W = 〈P e
W ; T

e
W ; F

e
W ; L

e
W〉, is a subnet of PNW and is

de�ned by:

P e
W =

� {re;i | i ∈ in(e)}∪{ce;o | o ∈ out(e)} if e �∈ I
{re}∪{ce;o | o ∈ out(e)} if e ∈ I

T e
W = {t ∈ TW | •t ⊆ P e

W ∧ t• ⊆ P e
W}

F e
W = FW ∩(P e

W × T e
W ∪T e

W × P e
W)

Le
W = LW [T e

W]

2

102 CHAPTER 4. FORMAL FOUNDATIONS

O
R

A

A

B

C

D

A
N

D

X
O

R

A
N

D
B

C

D

Figure 4.5: Sample Standard Workow Model and its corresponding Petri net

Example 4.1.1 As an example of the application of De�nitions 4.1.3 and 4.1.5
consider the Standard Workow Model and its corresponding mapping along
with associated nets in Figure 4.5. 2

Having formally de�ned Standard Workow Models, it is now possible to precisely
de�ne properties of such models, which have been informally referred to earlier in this
chapter. First it is useful to be able to talk about running instances of workows.

De�nition 4.1.6
An instance of a Standard Workow Model W is a marking reachable from the
initial marking of its corresponding net system. 2

The next de�nition formally de�nes what it means to enable a process element and
�re a process element.

De�nition 4.1.7
Let W = 〈P;Trans;Name〉 be a Standard Workow Model and e ∈ P a process
element ofW. We say that e is enabled in an instanceM ofW if any transition
of its associated net PN e

W is enabled in marking M . Similarly �ring a process
element e means �ring any transition of its associated net. 2

4.1. CLASSIFICATION OF WORKFLOW MODELS 103

Execution of a (�nite) Standard Workow Model leads either to a successful termi-
nation or to a deadlock or to an in�nite loop from which the empty marking cannot
be reached. More formally:

De�nition 4.1.8
An instance of a Standard Workow Model W is in deadlock i� it is not the
empty marking and no transition is enabled. 2

De�nition 4.1.9
An instance of a Standard Workow Model W is in an in�nite loop i� it is not
the empty marking and there is no �ring sequence that leads to either the empty
marking or to a deadlock. 2

De�nition 4.1.10
A Standard Workow Model W is deadlock-free i� none of its instances is in a
deadlock. 2

De�nition 4.1.11
A Standard Workow Model W is terminating i� from all its instances the
empty marking can be reached. 2

Terminating Standard Workow Models are similar to the class of WorkFlow Nets
(WF-nets, cf. [Aal98c]). One of the di�erences is that WF-nets have an explicit
termination place, i.e., a place which once it gets marked corresponds to a terminated
workow.

In previous chapters we have referred to the term multiple instances as the situation
in which one activity may have many instances of it running concurrently. Based on
our de�nition of the semantics of Standard Workow Nets, we can provide a more
formal de�nition.

De�nition 4.1.12
A Standard Workow Model does not have multiple instances i� for every place
p of its corresponding net system and for every reachable markingM , M(p) ≤ 1.
We will call such models safe. 2

Finally we will refer to Standard Workows that are safe and terminating as well-
behaved.

De�nition 4.1.13
A Standard Workow Model W is well-behaved i� it is safe and it is terminat-
ing.

2

104 CHAPTER 4. FORMAL FOUNDATIONS

4.1.2 Safe Workow Models

The main di�erence between Safe Workow Models and Standard Workow Models
is the behaviour of the OR-Join. As the WfMC does not de�ne what should happen
if more than one thread input to the OR-Join is concurrently active, some workow
management systems (e.g. Sta�ware, HP Changengine, Fujitsu's i-Flow) have been
based on the assumption that subsequent active threads should never reach the OR-
Join. Hence, their engines will never create multiple concurrent instances of the
activity following the OR-Join. Though the actual solution is di�erent for di�erent
products, from a conceptual point of view, the result is the same: there is no direct
support for multiple instances.

To formally characterise such languages, two approaches could have been taken. One
way would be to de�ne the Petri net semantics of activities such that an activity's
READY place can never hold more than one token. In that case it is guaranteed that
the corresponding Petri net will be safe. This approach would try to formalize the
observable behaviour of languages such as Sta�ware.

Following our discussions with vendors who have chosen the safe evaluation strategy,
we have decided to take a di�erent approach. It is based on the assumption that
processes resulting in multiple active threads input to an OR-Join are considered to
be awed and their semantics is unde�ned.

This allows us to simply view Safe Workow Models as a subclass of Standard Work-
ow Models.

De�nition 4.1.14
A Safe Workow Model is a Standard Workow Model such that its correspond-
ing net system is safe.

2

4.1.3 Structured Workows Models

The philosophy behind the third class of languages, namely Structured Workow
Models, is that the workow user should not be allowed to model processes that
result in semantical ambiguities such as in situations where an AND-Split is followed
by an OR-Join. To achieve that, they take a more stringent view on the allowable
relations between di�erent workow model constructs.

In this approach the semantics of the individual workow constructs is exactly the
same as for Standard Workow nets, however, there are a number of syntactical
restrictions. Intuitively a structured workow is a workow where each XOR-Split

4.1. CLASSIFICATION OF WORKFLOW MODELS 105

has a corresponding OR-Join and each AND-Split has a corresponding AND-Join and
arbitrary cycles are not allowed.

De�nition 4.1.15

1. A Proper Structure is a Standard Workow Model inductively de�ned as
follows:

(a) A single activity is a Proper Structure. This activity is both the initial
and the �nal activity of this Proper Structure.

(b) Let X and Y be Proper Structures. The concatenation of these work-
ows, where the �nal activity of X has a transition to the initial ac-
tivity of Y , then also is a Proper Structure. The initial activity of this
Proper Structure is the initial activity of X and its �nal activity is the
�nal activity of Y .

(c) Let X1; : : : ; Xn be Proper Structures and let J be an OR-Join and S a
XOR-Split. The workow with as initial activity S and �nal activity J
and transitions between S and the initial activities of Xi, and between
the �nal activities of Xi and J, is then also a Proper Structure. The
initial activity of this Proper Structure is S and its �nal activity is J.

(d) Let X1; : : : ; Xn be Proper Structures and let J be an AND-Join and S
an AND-Split. The workow with as initial activity S and �nal activity
J and transitions between S and the initial activities of Xi, and between
the �nal activities of Xi and J, is then also a Proper Structure . The
initial activity of this Proper Structure is S and its �nal activity is J.

(e) Let X and Y be Proper Structures and let J be an OR-Join and S a
XOR-Split. The workow with as initial activity J and as �nal activity
S and with transitions between J and the initial activity of X, between
the �nal activity of X and S, between S and the initial activity of
Y , and between the �nal activity of Y and J, is then also a Proper
Structure. If X is a null activity, then graphically it is not explicitly
represented; an arrow is drawn directly from S to J. Similarly, if Y is
a null activity then an arrow is drawn directly from J to S. The initial
activity of this Proper Structure is J and its �nal activity is S.

2. A Proper Structure with an activity as the inital item and an activity as
the �nal item is a Structured Workow Model.

2

The above de�nition is illustrated in Figure 4.6. Note that clause (e) of the de�nition
would correspond to a classic WHILE-loop if X is a null activity and to a classic

106 CHAPTER 4. FORMAL FOUNDATIONS

REPEAT-UNTIL-loop if Y is a null activity. If n = 2, the clause (c) corresponds to
a classic IF-THEN-ELSE.

X Y

A

Sequence

Atomic
Task

X

Y

XOR OR

Decision Structure

X

Y

AND AND

Parallel Structure

X

Y

OR XOR

Structured Loop

Figure 4.6: Illustration of Structured Workow Models

As is clear from de�nition 4.1.15, every Structured Workow Model is also a Standard
Workow Model. The reader may also note that every Structured Workow Model
will always have one initial and one �nal task.

Examples of commercial products that �t this category are FileNet's Visual WorkFlo
and SAP R/3 Workow. In both languages it is possible to design structured models
only. These models resemble the de�nition provided earlier very closely with some
minor exceptions such as that in Visual WorkFlo the loops can only be of the form
\WHILE p DO X". In SAP R/3 Workow the modeller has a choice between a
\WHILE" loop and an \UNTIL" loop.

Example 4.1.2 Figure 4.7 presents an example of a Structured Workow Model.
2

4.1.4 Synchronizing Workow Models

Synchronizing Workow Models form a fourth class of workow languages based on
yet another, fundamentally di�erent, interpretation of the WfMC de�nitions of the
basic control ow constructs. The intuitive reasoning here is as follows. An AND-
Join typically follows an AND-Split and can be seen as a construct that synchronizes
a number of active threads. An OR-Join on the other hand, typically follows an
exclusive XOR-Split. While there is only one active thread of execution in that case,

4.1. CLASSIFICATION OF WORKFLOW MODELS 107

D

B

C

F

OR

AND

AND

A

E

OR G

XOR

XOR

Figure 4.7: Example of a Structured Workow Model

the OR-Join can still be seen as a construct that synchronizes threads: one active
and the others inactive. The active thread propagates a \True" token, while an
inactive thread propagates a \False" token. Hence both types of joins synchronize a
number of threads of execution. With slight modi�cations, this view was successfully
implemented by IBM's MQSeries Workow (formerly known as FlowMark). Note
that a synchronizing strategy prevents the use of arbitrary cycles (as that would
immediately lead to a deadlock). Later it will be proven that Synchronizing Workow
Models never deadlock.

The semantics of Synchronizing Workow Models is very naturally captured using
Coloured Petri nets [Jen87] or Predicate/Transition nets [Gen87], as they allow for
typed tokens with identity. However, in order to facilitate a formal comparison with
Standard Workow Models, we provide a formal semantics in terms of standard Petri
nets.

In Synchronizing Workow Models, an activity can receive two types of tokens, a
true token or a false token. Receipt of a true token should enable the activity, while
receipt of a false token should lead to the activity being skipped and the token to be
propagated. To capture this in standard Petri nets, we divide the set of places into
places that capture the receipt of true tokens (\true places") and places that capture
the receipt of false tokens (\false places"). This leads to the semantics represented in
Figure 4.8.

Each activity x has a place rtx;y in its corresponding Petri net (where y corresponds
to the input element of x, if existing) that will hold a token if the activity received a
true token from y, and a place rfx;y that will hold a token if the activity received a
false token from y. As is clear from the net in Figure 4.8, a token in a \true" place

108 CHAPTER 4. FORMAL FOUNDATIONS

A

T A

F

T

F

Figure 4.8: Activity semantics for Synchronizing Workow Models

will lead to the transition labelled with A being enabled, while a token in its \false"
place will lead to the non-labelled transition being enabled, and hence nothing, other
than propagation of the token, will happen.

The semantics of the XOR-Split and the AND-Split is relatively straightforward.
When a true token arrives, a XOR-Split will pass on a true token to one of its outgoing
branches and false tokens for all the other outgoing branches. When a true token
arrives for an AND-Split, true tokens are passed on to all its outgoing branches. Both
splits behave similar when receiving a false token; it is simply passed on to all outgoing
branches. This semantics is captured in Figure 4.9.

f

t

f

A XOR

C

B

A AND

C

B

t

t2

f2

t1

f1

t1

f1

t2

f2

A

B

C

A

B

C

Figure 4.9: Split semantics for Synchronizing Workow Models

More interesting is the semantics of the join constructs. As noted earlier, in Synchro-
nizing Workow Models a join construct always waits for a token to arrive from every
incoming transition. The only di�erentiator between di�erent types of joins could be
the type of tokens expected. In this thesis we will follow MQSeries/Workow in that
we will distinguish two cases - an ANY-Join which passes on a true token if it received
at least one true token (otherwise it passes on a false token) and the ALL-Join which
passes on a true token if it received true tokens from all incoming branches (otherwise
it passes on a false token). Later, in Section 5.4, we will show how the Synchronizing
Workow's ANY-Join and ALL-Join correspond to the Standard and Safe Workow's
OR-Join and AND-Join.

4.1. CLASSIFICATION OF WORKFLOW MODELS 109

In Figure 4.10, the semantics of the joins is shown in the context of Synchronizing
Workow Models.

t

f
t2

f2

t1

f1

One True token

t

f
t2

f2

t1

f1

All True tokens

CANY

B

A

CALL

B

A

A

B

C

A

B

C

Figure 4.10: Join semantics for Synchronizing Workow Models

Free-choice Petri net is a net in which the choice between two enabled transitions is
never inuenced by the rest of the system. On a structural level it means that Petri
net is free-choice i� for every place and transition of this net if there is an arc from
a place p to a transition t, then there must be an arc from any input place of t to
any output transition of s (see Appendix B for a formal de�nition of a free-choice
Petri net). One important characterisation of Synchronizing Workow Models is that
the Petri net representation of the join constructs is not free-choice (see [DE95] for
a detailed discussion of free-choice Petri nets). In Section 5.4 it will be shown that
some Synchronizing Workow Models are inherently non free-choice.

Having informally established the semantics of Synchronizing Workow Models, Def-
inition 4.1.16 formally de�nes their syntax, while De�nition 4.1.18 formally de�nes
their semantics.

De�nition 4.1.16

A Synchronizing Workow Model is a tupleW = 〈P;Jo;Ja;So;Sa;A;Trans;Name〉
where P is a set of process elements which can be further divided into disjoint
sets of ANY-Joins Jo, ALL-Joins Ja, XOR-Splits So, AND-Splits Sa, and ac-
tivities A; Trans ⊆ P × P is a transition relation between process elements and
Name:A → N is a partial function assigning names to activities taken from
some given set of names N containing special label �.

110 CHAPTER 4. FORMAL FOUNDATIONS

Activities without names are referred to as null activities. Joins have an indegree
of at least one and an outdegree of one, while splits have an indegree of one and
an outdegree of at least one. Activities have an indegree and outdegree of at most
one. Finally, we will call activities with an indegree of zero initial items (I ⊆ A)
and conversely, activities with an outdegree of zero - �nal items (F ⊆ A).

2

Note that the syntax of Synchronizing Workow Models is very similar to the syntax
of Standard Workow Models. The only di�erence is that joins and splits cannot have
indegree or outdegree of zero (this is to allow simpli�cation of the semantics).

The following de�nition provides auxiliary functions and predicates that facilitate the
speci�cation of the formal semantics.

De�nition 4.1.17
LetW = 〈P;Trans;Name〉 be a Synchronizing Workow Model and p ∈ P a pro-
cess element. The input elements of p are given by in(p) = {x ∈ P | x Trans p}
and output elements of p by out(p) = {x ∈ P | p Trans x}. Further, if
b ∈ {t; f}A is a function with domain A (which is nonempty), then alltrue(b)
holds i� ∀a∈A [b(a) = t] and allfalse(b) holds i� ∀a∈A [b(a) = f]. 2

De�nition 4.1.18
Given a Synchronising Workow ModelW, the corresponding labelled Petri net
PNW = (PW ; TW ; FW ; LW) is de�ned by:

PW = {rtx;i | x ∈ P ∧ i ∈ in(x)}∪ #\ready" true#
{rfx;i | x ∈ P ∧ i ∈ in(x)}∪ #\ready" false#
{ctx;o | x ∈ P ∧ o ∈ out(x)}∪ #\completed" true#
{cfx;o | x ∈ P ∧ o ∈ out(x)}∪ #\completed" false#
{rtx | x ∈ I}∪ #\initial" true#
{rfx | x ∈ I} #\initial" false#

TW = {XTx;o | x ∈ So ∧ o ∈ out(x)}∪{XFx | x ∈ So}∪ #XOR-Split#
{RFx | x ∈ Sa}∪{RTx | x ∈ Sa}∪ #AND-Split#
{Kb

x | x ∈ Ja ∧ b ∈ {t; f}in(x)}∪ #ALL-Join#
{Qb

x | x ∈ Jo ∧ b ∈ {t; f}in(x)}∪ #ANY-Join#
{AFx | x ∈ A}∪{ATx | x ∈ A}∪ #activity#
{LTx;y | x Trans y}∪{LFx;y | x Trans y} #connecting trans.#

LW = {(ATx;Name(x)) | x ∈ A}∪ #activities#
{(t; �) | t ∈ TW ∧ ¬∃x∈A [t = ATx]} #other trans#

4.1. CLASSIFICATION OF WORKFLOW MODELS 111

FW = {(rtx; ATx) | x ∈ I}∪
{(rfx; AFx) | x ∈ I}∪ #initial places#
{(rtx;i;ATx) | x ∈ A ∧ i ∈ in(x)}∪
{(ATx; ctx;o) | x ∈ A ∧ o ∈ out(x)}∪
{(rfx;i;AFx) | x ∈ A ∧ i ∈ in(x)}∪
{(AFx; cfx;o) | x ∈ A ∧ o ∈ out(x)}∪ #activity#
{(rtx;i;RTx) | x ∈ Sa ∧ i ∈ in(x)}∪
{(RTx; ctx;o) | x ∈ Sa ∧ o ∈ out(x)}∪
{(rfx;i;RFx) | x ∈ Sa ∧ i ∈ in(x)}∪
{(RFx; cfx;o) | x ∈ Sa ∧ o ∈ out(x)}∪ #AND-Split#
{(rfx;i;XFx) | x ∈ So ∧ i ∈ in(x)}∪
{(XFx; cfx;o) | x ∈ So ∧ o ∈ out(x)}∪
{(rtx;i;XTx;o) | x ∈ So ∧ i ∈ in(x) ∧ o ∈ out(x)}∪
{(XTx;o1; cfx;o2) | x ∈ So ∧ {o1; o2} ⊆ out(x) ∧ o1 �= o2}∪
{(XTx;o1; ctx;o1) | x ∈ So ∧ o1 ∈ outx}∪ #XOR-Split#
{(rtx;i; Kb

x) | x ∈ Ja ∧ i ∈ in(x) ∧ b(i) = t}∪
{(Kb

x; ctx;o) | x ∈ Ja ∧ o ∈ out(x) ∧ alltrue(b)}∪
{(rfx;i; Kb

x) | x ∈ Ja ∧ i ∈ in(x) ∧ b(i) = f}∪
{(Kb

x; cfx;o) | x ∈ Ja ∧ o ∈ out(x) ∧ ¬alltrue(b)}∪ #ALL-Join#
{(rtx;i; Qb

x) | x ∈ Jo ∧ i ∈ in(x) ∧ b(i) = t}∪
{(Qb

x; ctx;o) | x ∈ Jo ∧ o ∈ out(x) ∧ ¬allfalse(b)}∪
{(rfx;i; Qb

x) | x ∈ Jo ∧ i ∈ in(x) ∧ b(i) = f}∪
{(Qb

x; cfx;o) | x ∈ Jo ∧ o ∈ out(x) ∧ allfalse(b)}∪ #ANY-Join#
{(ctx;y;LTx;y) | x Trans y}∪
{(LTx;y; rty;x) | x Trans y}∪
{(cfx;y;LFx;y) | x Trans y}∪
{(LFx;y; rfy;x) | x Trans y} #connecting ready/completed#

2

De�nition 4.1.19
Given a Synchronizing Workow Model W, the corresponding net system of W
is a pair (PNW ;M0) where PNW is the corresponding net of W and M0 is an
initial marking that assigns a single token to each of the places in {rtx | x ∈ I}.

2

We will often refer to Petri nets resulting from the translation of Synchronizing Work-
ow Models as Synchronizing Workow Nets.

112 CHAPTER 4. FORMAL FOUNDATIONS

Example 4.1.3 As an example of the application of De�nition 4.1.18 consider the
Synchronizing Workow Model and its corresponding mapping in Figure 4.11.

2

rtX,A

rfX,A ctX,C

cfX,C

ctX,B

cfX,B

A

B

C

XOR

rfA

ctA,X

cfA,X

rtB,X

rfB,X

rtC,X

rfC,X

Subnet associated with
XOR

rtA

A

B

C

Figure 4.11: Synchronizing Workow Model and its corresponding Petri net

Similarly to Standard Workow Models, Synchronizing Workow Models are con-
structed from a number of elementary building blocks, which can be isolated through
De�nition 4.1.20.

De�nition 4.1.20
Let W = 〈P;Trans;Name〉 be a Synchronizing Workow Model and PNW =
〈PW ; TW ; FW ; LW〉 its corresponding Petri net. Let e ∈ PW be a process element.
The associated net, PN e

W = 〈P e
W ; T

e
W ; F

e
W ; L

e
W〉, a subnet of PNW, is de�ned by:

P e
W =

8<
:
{rte;i | i ∈ in(e)}∪{rfe;i | i ∈ in(e)}∪
{cte;o | o ∈ out(e)}∪{cfe;o | o ∈ out(e)} if e �∈ I
{rte; rfe}∪{cte;o | o ∈ out(e)}∪{cfe;o | o ∈ out(e)}∪ if e ∈ I

T e
W = {t ∈ TW | •t ⊆ P e

W ∧ t• ⊆ P e
W}

F e
W = FW ∩(P e

W × T e
W ∪T e

W × P e
W)

Le
W = LW [T e

W]

2

Example 4.1.4 The associated net for the XOR-Split is illustrated in Figure 4.11.
2

4.1. CLASSIFICATION OF WORKFLOW MODELS 113

Synchronizing Workow Models have a more complicated Petri net translation be-
cause each process element can receive a \true" or a \false" token, and for that
reason we introduce two input and two output places for each incoming and outgoing
transition respectively. We will refer to places that can receive \true" tokens as \true"
places of the net and places that can receive \false" tokens as \false" places of the
net. This is captured formally in the following de�nition.

De�nition 4.1.21
Let W = 〈P;Trans;Name〉 be a Synchronizing Workow Model and PNW its
corresponding Petri net. The set of its true places is de�ned by

True
W = {rtx;i | x ∈ P ∧ i ∈ in(x)}∪{ctx;o | x ∈ P ∧ o ∈ out(x)}∪{rti | i ∈ I};

while the set of its false places is given by:

False
W = {rfx;i | x ∈ P ∧ i ∈ in(x)}∪{cfx;o | x ∈ P ∧ o ∈ out(x)}∪{rfi | i ∈ I}:

2

In an informal discussion earlier in this section we have often referred to the propaga-
tion of a \true" token or a \false" token. Formally we will call any token in a \true"
place a \true" token and any token in a \false" place a \false" token.

Each incoming and outgoing transition of a process element has exactly one \true"
place and one \false" place. The following de�nition captures the relationship between
true and false places of the same workow construct:

De�nition 4.1.22
Let W be a Synchronizing Workow Model and PNW its corresponding net. If
p is a true place in the net PNW, then its corresponding false place p is rfx;y if
p = rtx;y, rfx if p = rtx and it is cfx;y if p = ctx;y. Similarly, p will yield the
corresponding true place if p is a false place. 2

The de�nition of a workow instance, deadlock and termination for Synchronizing
Workow Models are analogous to that of Standard Workow Models. However,
given the di�erent Petri net translation the notion of a process element being enabled
is slightly di�erent and informally it means that for each incoming branch exactly one
of the two (true or false) corresponding input places holds a token.

De�nition 4.1.23
Let W = 〈P;Trans;Name〉 be a Synchronizing Workow Model. A process ele-
ment e ∈ P is enabled in a marking M of its associated net PN e

W i� for all x
such that x ∈ in(e)

(M(rte;x) = 1 ∧M(rfe;x) = 0) ∨ (M(rte;x) = 0 ∧M(rfe;x) = 1);

114 CHAPTER 4. FORMAL FOUNDATIONS

and for all y such that y ∈ out(e)

M(cte;y) = 0 ∧M(cfe;y) = 0:

2

In the context of Synchronizing Workow Models it is also useful to talk about a
process element being completed, which then means that for each outgoing branch
exactly one of the two (true or false) corresponding output places holds a token.

De�nition 4.1.24
Let W = 〈P;Trans;Name〉 be a Synchronizing Workow Model. A process ele-
ment e ∈ P is completed in a marking M of its associated net PN e

W i� for all
x such that x ∈ in(e)

M(rte;x) = 0 ∧M(rfe;x) = 0;

and for all y such that y ∈ out(e)

(M(cte;y) = 0 ∧M(cfe;y) = 1) ∨ (M(cte;y) = 1 ∧M(cfe;y) = 0):

2

rt

rf

ct

cf

ct

cf

rt

rf

ct

cf

ct

cf

Enabled XOR-Split Completed XOR-Split

Figure 4.12: Enabled and completed XOR-Split

Example 4.1.5 Figure 4.12 shows markings in which an XOR-Split is enabled and
completed. 2

Finally, the following de�nition de�nes what it means to �re a process element.

4.2. EQUIVALENCE IN THE CONTEXT OF CONTROL FLOW 115

De�nition 4.1.25
Let W = 〈P;Trans;Name〉 be a Synchronizing Workow Model and e ∈ P a
process element which is enabled in marking M of its associated net PN e

W.
Firing e means �ring an enabled transition t of PN e

W . 2

The careful reader may notice that the de�nition of enabled process element for a
Synchronizing Workow Model is more restrictive than the similar de�nition for a
Standard Workow Model. This is due to the fact that the execution model for both
workows is fundamentally di�erent. This issue will be further explored in Section 5.4.

4.2 Equivalence in the Context of Control Flow

Often workow designers are faced with the task of transforming workow speci�ca-
tions, for example to meet the particular requirements of a speci�c workow engine.
Naturally, such transformations should not alter the semantics of the original work-
ow, and as such they should be equivalence preserving. Similarly, when assessing the
expressive power of a given workow language the issue of equivalence is crucial. If
one would like to prove that for a certain workow a corresponding workow in an-
other language does, or does not, exist, this all depends on the notion of equivalence
chosen.

For processes many di�erent equivalence notions exist (e.g. trace, readiness, possible
futures, fully concurrent bisimulation etc.). In fact, a whole area of research is devoted
to this topic, referred to as comparative concurrency semantics (for an overview of
many equivalence notions, refer to e.g. [Gla90, Gla93, PRS92]).

In the context of workows, the choice of the \right" notion of equivalence is very much
an open issue. The equivalence notion chosen should not be too restrictive as that
would mean that workows that one would like to consider as behaving identically,
would be considered to be fundamentally di�erent. Similarly, an equivalence notion
should not be too relaxed, as it would identify workows that behave fundamentally
di�erently. Naturally this issue, to some extent, is open for debate as it depends on
intuition as regards workow execution and on what one considers to be a \workable"
enough de�nition.

Consider the workows A1 and A2 in Figure 4.13. These workows produce identical
traces, namely ab and ac. In other words they are trace equivalent. From a practical
point of view, however, one would not like to consider them to be equivalent, as the
moment of choice in both workows is di�erent. The choice for activity B or activity
C may be inuenced by the data produced by activity A in the left workow, but not
in the right. Clearly trace equivalence is not strong enough to distinguish these two

116 CHAPTER 4. FORMAL FOUNDATIONS

B C

A

XOR

B

XOR

C

AA

Workflow A1 Workflow A2

Figure 4.13: Two trace equivalent processes

workows. Equivalence notions that take into account decision points are typically
referred to as equivalence notions preserving branching time (as opposed to linear
time). There are many equivalence notions that satisfy this criterion.

Considering only equivalence notions preserving branching time, we face a choice
between interleaving semantics and the more complex concurrent semantics. In in-
terleaving semantics, a process consisting of two tasks, A and B which run in parallel
is equivalent to a process that chooses between running sequentially A followed by B
or B followed by A. In other words, there is no true concurrency. As an example
consider the two Petri nets, PN1 and PN2 of Figure 4.14. These two nets are equiv-
alent under any interleaving equivalence notion. However we would like to consider
workows B1 and B2 of this Figure to be semantically di�erent. The standard way
of dealing with this problem (see e.g [BW90]) is to split a task into two observable
transitions. Firing the �rst transition indicates starting of the task and �ring the
second transition indicates completion of the task. Having two parallel tasks A and
B it is possible to obtain a trace ASBSAFBF where AS and BS indicate start of tasks
A and B respectively and AF and BF completion of tasks A and B respectively. This
mapping is shown in Figure 4.14. Clearly workows B1 and B2, given the presented
mapping to Petri nets are not even trace equivalent. As the mappings to Petri nets,
as presented in Sections 4.1.1 and 4.1.4 map tasks to a subnet containing one labelled
transition, for two workows to be equivalent we will require that (a) their corre-
sponding Petri nets be equivalent and (b) the begin-end re�nements of these Petri
nets be equivalent where the begin-end re�nement is a re�nement that replaces every
labelled transition with two labelled transitions and a place that is an output to the
�rst transition and an input to the second transition (as in Figure 4.14).

Next consider Workows C1 and C2 of Figure 4.15. Careful analysis of control ow
taking into consideration the conditions of each of the XOR-Splits may lead to the
conclusion that these workows are equivalent. However, the Petri net mapping does

4.2. EQUIVALENCE IN THE CONTEXT OF CONTROL FLOW 117

Workflow B1

Workflow B2

A B

AND

AFAS

BS BF

A B

XOR

B A

AS BSAF BF

BS ASBF AF

A

B

A

B

PN 1 PN 2

A

B

Figure 4.14: Interleaving vs. concurrent activity invocation

Workflow C1

Workflow C2

∼α α

C B

XOR

D

∼α

α
C XOR

D

XOROR B
α

∼α

A
A

OR

Figure 4.15: Equivalence in the context of data ow

not take conditions of XOR-Splits into account and Petri net representations of these
two workows are not equivalent (as in Workow C2, after executing activity B it is
still possible to �re transition D, which is not a possibility in Workow C1). At this

118 CHAPTER 4. FORMAL FOUNDATIONS

point the careful reader may notice that in real-world workows activity B can change
the value of � and, indeed, in Workow C2 it may be possible to invoke activity D
after activity B. As our thesis focuses exclusively on control ow and we do not take
data into consideration (except for the discussion in section 6.5), we are assuming that
these two workows are not equivalent as we have no knowledge about the possible
interdependencies between the two XOR-Splits in Workow C2. In other words we
are always treating XOR-Splits as non-deterministic constructs, i.e. any decision can
always be taken at any point in time.

So far we have explored di�erent notions of equivalence in a very informal manner.
Our goal was to choose an equivalence notion that is relatively simple yet powerful
enough to be able to distinguish workows that need to be considered \di�erent". To
be able to establish theoretical expressiveness boundaries of di�erent workow classes,
we need to de�ne our equivalence notion in a formal, precise manner.

B D

A

B C

XOR

XOR

D

A

B C

XOR

XOR

Workflow E1 Workflow E2

Figure 4.16: Weak bisimulation vs. branching bisimulation

The standard equivalence notion that is based on the interleaving assumption and
preserves branching time is that of bisimulation. Bisimulation is extensively studied,
primarily in the context of process graphs but also in the context of Petri nets. As the
Petri nets that correspond to workow models contain many silent transitions, focus
is on weak bisimulation, where one abstracts from silent steps, i.e., silent steps may
be executed but their execution is not visible for an external observer. As pointed
out by van Glabbeek in [Gla94], Milner's notion of weak bisimulation in [Mil89] does
not actually preserve branching time for silent transitions. This observation led to
his introduction of the notion of branching bisimulation. Consider for example the
two workows of Figure 4.16. They are equivalent under Millner's weak bisimulation
notion however they are di�erent under van Glabbeek's branching bisimulation notion
due to the fact that in workow E1 there is a point where the observable run of ab
diverges from the runs of ac and ad which is not the case in workow E2. From a

4.2. EQUIVALENCE IN THE CONTEXT OF CONTROL FLOW 119

workow point of view we would like to consider these two workows to be equivalent
due to the fact that there is no additional data available for the second XOR-Split,
therefore the moment of choice for activity B is irrelevant.

Finally, it is important that the equivalence notion distinguishes processes that suc-
cessfully terminate from the ones that deadlock. As Millner's classical de�nition of
bisimulation does not take it into account, our de�nition di�ers slightly from it, and
was adapted from [Jan94].

Before we introduce bisimulation formally, we would like to present a weaker equiv-
alence notion, namely simulation. Understanding simulation equivalence helps with
understanding bisimulation equivalence and sometimes proving simulation equiva-
lence precedes proving bisimulation. Processes that are bisimulation equivalent are
also simulation equivalent, but the reverse does not always hold.

De�nition 4.2.1
Let PN = 〈P; T; F; L〉 be a Petri net where L is a mapping that associates to
each transition t ∈ T a label L(t) taken from some given set of actions A. For
any a ∈ A;M a

=⇒PN M ′ means that M
�−→PN M ′ for some sequence � of

transitions, one of them being labelled with a, the others with �; in case a = �,
the sequence can be empty. 2

De�nition 4.2.2 (simulation)
Given two labelled Petri nets PN1 = 〈P1; T1; F1; L1〉 and PN2 = 〈P2; T2; F2; L2〉,
a binary relation R ⊆ INP1 × INP2 is a simulation i�

1. For all (M1;M2) ∈ R and for each a ∈ A and M ′
1 such that M1

a
=⇒PN1

M ′
1

there is M ′
2 such that M2

a
=⇒PN2

M ′
2 and (M ′

1;M
′
2) ∈ R

2. (M1;M2) ∈ R⇒ (M1 −→M∅

PN1
⇒M2 −→ M∅

PN2
)

Net system (PN1;M0) can be simulated by net system (PN2;M
′
0) if there is a

simulation relation R relating their initial markings.

Two labelled net systems (PN1;M0) and (PN2;M
′
0) are simulation equivalent if

(PN1;M0) can be simulated by (PN2;M
′
0) and (PN2;M

′
0) can be simulated by

(PN1;M0). 2

De�nition 4.2.3 (weak bisimulation)
Given two labelled Petri nets PN1 = 〈P1; T1; F1; L1〉 and PN2 = 〈P2; T2; F2; L2〉,
a binary relation R ⊆ INP1 × INP2 is a bisimulation i�

1. For all (M1;M2) ∈ R:

120 CHAPTER 4. FORMAL FOUNDATIONS

(a) For each a ∈ A and M ′
1 such that M1

a
=⇒PN1

M ′
1 there is M ′

2 such
that M2

a
=⇒PN2

M ′
2 and (M ′

1;M
′
2) ∈ R, and conversely

(b) For each a ∈ A and M ′
2 such that M2

a
=⇒PN2

M ′
2 there is M ′

1 such
that M1

a
=⇒PN1

M ′
1 and (M ′

1;M
′
2) ∈ R.

2. (M1;M2) ∈ R⇒ (M1 −→M∅

PN1
⇔M2 −→ M∅

PN2
)

Two labelled net systems are bisimilar if there is a (weak) bisimulation relating
their initial markings. 2

De�nition 4.2.4 (begin-end transformation)
Given a labelled Petri net PN = 〈P; T; F; L〉 and T l = {t ∈ T | L(t) �= �}, the
net PN∗ = 〈P ′; T ′; F ′; L′〉 with

P ′ = P ∪{pt | t ∈ T l};
T ′ = T ∪{st|t ∈ T l}∪{ft|t ∈ T l} − T l

F ′ = F [P ′ × T ′ ∪T ′ × P ′]∪
{(p; st) | p ∈ •t ∧ t ∈ T l}∪{(st; pt) | t ∈ T l}∪
{(pt; ft) | t ∈ T l}∪{(ft; q) | q ∈ t • ∧t ∈ T l}

L′ = {(t; �) | t �∈ T l}∪{(st; L(t)S) | t ∈ T l}∪{(ft; L(t)F) | t ∈ T l}
is the begin-end transformation of PN . 2

De�nition 4.2.5 (workow equivalence)
Workow models W1 and W2 are equivalent i� the begin-end transformations
of their corresponding net systems are bisimilar. 2

Sometimes we will compare workow models with net systems. In that case we will
say that a workow model W is equivalent to a net system PN i� the begin-end
transformations of the corresponding net system of W and PN are bisimilar.

Another, simpler and more intuitive (albeit less formal) way of looking at bisimulation
is through a so-called bisimulation game. Below we present a bisimulation game in
the context of two workow processes, adapted from [Jan94] where it was presented
in the context of Petri nets:

1. There are two players, Player A and Player B, each of which having a workow
model speci�cation (Workow A and Workow B respectively).

2. Player A starts the initial activities in his workow model speci�cation. Player
B responds by starting the initial activities in his workow model speci�cation
(which should correspond exactly to those of player A).

4.3. SUMMARY 121

3. Player A may choose to �nish any of its activities and start a corresponding
subsequent activity. Player B responds accordingly by �nishing and starting an
activity with the same label (possibly performing some internal, non-labelled,
steps �rst).

4. If Player B cannot imitate the move of Player A, he looses. By imitating we
mean that at any point in time the same set of activities in workow B should
be completed and started as in workow A.

5. After each move, players can \switch sides", and instead of player B imitating
player A, it is player's A challenge to imitate player B's move.

6. Player B wins if he can terminate his workow once Player A has terminated
his workow. Similarly Player B wins if he can deadlock his workow once
Player A has deadlocked his workow. The case of an in�nite run of the game
is considered to be successful for the defending player.

If there is a strategy for defending player (Player B) to always prevent Player A from
winning then we say that workow B can simulate workow A. If the reverse applies
as well (workow A can simulate workow B) then we consider the two workow
speci�cations to be equivalent.

4.3 Summary

In this chapter we have provided the theoretical foundation for establishing expres-
siveness results related to four di�erent classes of workow modelling techniques. It
is important to understand that participation in one of these classes is not a full char-
acterization of a given language's expressive power. There are many other factors to
consider, and some of these are presented in more detail in Chapter 6. However, these
classes try to capture the underlying philosophy behind given workow engines.

Table 4.1 provides a classi�cation of the workow engines evaluated in this thesis
according to the four classes introduced in this chapter.

122 CHAPTER 4. FORMAL FOUNDATIONS

Product Evaluation Strategy

FileNet's Visual WorkFlo Structured
Fort�e Conductor Standard
HP Changengine Safe
Sta�ware Safe
Fujitsu i-Flow Safe
MQSeries Workow Synchronised
Verve Standard
SAP R/3 Workow Structured

Table 4.1: Classi�cation of workow products according to evaluation strategy

Chapter 5

Basic Expressiveness Results

This chapter will establish precise characterizations of the expressive power of Stan-
dard Workow Models (Section 5.1), Safe Workow Models (Section 5.2), Structured
Workow Models (Section 5.3) and Synchronizing Workow Models (Section 5.4).

5.1 Standard Workow Models

This section focuses on the expressive power of Standard Workow Models. It is easy
to verify that the corresponding Petri net system of a Standard Workow Model is
free-choice and one may wonder if these models have the same expressive power as
free-choice Petri nets. This turns out not to be true. Standard Workow Models
are in fact less expressive than free-choice Petri nets. This result is not merely of
theoretical importance. We will show that Pattern 16 (Deferred Choice) introduced
in Chapter 3 is not possible to model using Standard Workow Models.

Theorem 5.1.1 Standard Workow Models are less expressive than free-choice Petri
nets.

Proof:
First observe that any corresponding net of a Standard Workow Model is free-
choice. To complete the proof, we have to �nd a free-choice Petri net that
does not have an equivalent Standard Workow net. Such a net is shown in
Figure 5.1. As can be seen, this free-choice Petri net, which we will refer to as
PNd, is very simple, yet its inherent properties may be overlooked in workow
analysis.

123

124 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

A

B C

Figure 5.1: Free-choice Petri net with deferred choice

Suppose there exists a Standard Workow net, say PNs, equivalent to PNd.
Let us focus on marking Md

1 where there is a token in the place input to the
transitions labelled B and C. If PNd is to be bisimulation equivalent to PNs,
there should be a marking M s

1 that is related through the bisimulation relation
to Md

1 (see Figure 5.2). The �rst observation is that in M s
1 it is not possible

that both B and C are enabled. The reason for this is that although markings
in Standard Workow Models can exist which enable more than one labelled
transition, it is not possible that the �ring of one labelled transition leads to
other labelled transitions being disabled. Hence, if both transitions B and C

are enabled in M s
1 , they will both be executed at some stage, and as this is not

the case for Md
1 , these two markings cannot be related through a bisimulation

relation.

Ms
0

Ms
1

Ms
b Ms

c

Md
0

Md
1

Md
2 Md

3

Ms
2 Ms

3

a λ∗ aλ∗

b c λ∗λ∗

λ∗ bλ∗ λ∗ cλ∗

Figure 5.2: Illustration of bisimulation relations between markings

For M s
1 then to be related to Md

1 through the bisimulation relation, it should

5.1. STANDARD WORKFLOW MODELS 125

be possible to reach markings that enable B and markings that enable C. As
transitions labelled B and C cannot be enabled at the same time, we have that
at least one silent step is needed (from M s

1) to reach either a marking in which
a transition labelled B is enabled or a marking in which a transition labelled C
is enabled. Without loosing generality, we can assume that at least one silent
step is needed to reach a marking in which a transition labelled B is enabled.
Let us refer to such a marking as M s

b . Through the bisimulation relation, this
particular marking has to be related to markingMd

1 in PNd. However, inM
d
1 the

transition labelled C is enabled, while in M s
b C cannot be performed anymore.

Contradiction. 2

Naturally, the previous result immediately raises the question as to what the exact
expressive power of Standard Workow Models is. Before we provide a complete
characteristic of the expressive power of Standard Workow Models let us focus on
some of the most basic properties of theses models.

The following lemma states that once a process element becomes enabled, it cannot
be disabled by �ring any other process element but itself and can be proved by case
distinction.

Lemma 5.1.1 LetW = 〈P;Trans;Name〉 be a Standard Workow Model and e; p ∈
P enabled process elements of W in a given instance of W (e �= p). After �ring
p, e is still enabled.

From all the process elements only activities contain labelled transitions. The next
theorem proves that for a free-choice Petri net to have a bisimulation equivalent Stan-
dard Workow Net it is suÆcient that all its labelled transitions, once they become
enabled, cannot be disabled by �ring any other transitions but themselves.

We will refer to such a subclass of free-choice Petri nets as Free-Choice Deterministic
Action Nets.

De�nition 5.1.1
A Free-Choice Deterministic Action Net (FCDA net) PN = 〈P; T; F; L〉 is a
labelled free-choice Petri net, i.e.

∀t∈T;p∈P [(p; t) ∈ F ⇒ •t× p• ⊆ F] ;

where every labelled transition has exactly one input place and that place is not
an input to any other transition:

∀t∈T [L(t) �= �⇒ ∀t′∈T [•t ∩ •t′ �= ∅ ⇒ t = t′]]:

2

126 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

Theorem 5.1.2 Standard Workow nets are as expressive as FCDA net systems.

Proof:
As every Standard Workow net is an FCDA net, we can focus on proving
that every FCDA net has a bisimilar Standard Workow net. This will be
achieved in a constructive way, i.e. the proof will focus on the translation of
any arbitrary FCDA net to a Standard Workow net. The organization of
the proof is as follows: given an FCDA net, PN we will perform a number of
bisimulation-preserving transformations on it eventually deriving a net, PN1.
At the same time we will construct a Standard Workow ModelW for which its
corresponding Petri net PNW is identical to PN1. This will conclude the proof.

The translation takes a number of steps. In intermediate stages, instead of a pure
Petri net notation we will use a shorthand representation of Petri net subnets
using workow construct notation. This serves two purposes: (1) it dramatically
simpli�es the complexity of the derived net and (2) it allows us to construct the
desired Standard Workow Model. An example of a shorthand notation is shown
in Figure 5.3, which shows three places linked to a hybrid Activity and AND-
Join construct. AND-Split, XOR-Split and OR-Join constructs are derived in a
similar manner. All presented translations will make sure that hybrid constructs
will always be linked to places or to each other. Let us de�ne two sets, T ∗ and
P ∗ representing the sets of transitions and places respectively that are part of
the hybrid net but not part of a hybrid structure. Initially T ∗ := T and P ∗ := P .
Each transformation step aims to reduce the number of elements in T ∗ or P ∗

(or both) until all transitions and places are part of a hybrid structure. For
example, in Figure 5.3 T ∗ = ∅ while P ∗ = {P1; P2; P3}.
For the construction to be meaningful, it is required that every transformation
step preserves equivalence. This is easy to check for each of the steps presented.

The following steps describe the procedure to transform any arbitrary FCDA
system into a bisimulation equivalent Standard Workow net.

1. Replace all places with initial tokens with the structure shown in diagram
(a) of Figure 5.4. The number of null activities should correspond to the
number of tokens. If there is only one token then the OR-Join is redundant
and can be omitted. After this step there are no tokens in any of the places
of the net. This step does not a�ect T ∗ or P ∗.

2. A labelled transition has exactly one input place that is not shared with any
other transition. Diagram (a) of Figure 5.5 presents the transformation for
a labelled transition with one output place and diagram (b) of that Figure
presents the transformation for a labelled transition with many output

5.1. STANDARD WORKFLOW MODELS 127

P1

P1 A

A

P2

P3

A
N

D

P2

P3

Figure 5.3: Interpretation of a sample hybrid net

O
R...

Figure 5.4: Translation of marked places

places. After this step, there are no labelled transitions anymore, i.e. T ∗ :=
{t ∈ T ∗ | L(t) = �}.

3. Replace transitions with no input or output places and places with no
input or output transitions by corresponding structures as shown in Fig-
ure 5.6. Note that the semantics of Splits without incoming transitions
and Joins without outgoing transitions is such that these transformations
are equivalence preserving. After that step

T ∗ = {t ∈ T | L(t) = � ∧ |t • | ≥ 1 ∧ | • t| ≥ 1}
P ∗ = {p ∈ P | |p • | ≥ 1 ∧ | • p| ≥ 1}

4. Replace transitions that have the same, nonsingular, set of input places

I ...
O1

...

A
N

D

A OIa) OI A

A AIb)

On

O1

On

Figure 5.5: Translations of labelled transitions

128 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

AND AND XOR OR

...

...

...

...

...

...

...

...

Figure 5.6: Translations of transitions/places without input or output

...

R11

R1m

...

I1

In
R21

R2q

O1

...

Op

...

R21

...

R11

...

O
R

A
N

D
A

N
D

O1

...

Op

A
N

D

A
N

D

I1

In

X
O

R...

R1m

R2q

Figure 5.7: Removal of transitions sharing nonsingular set of input places

with the structure shown in Figure 5.7. E�ectively, from this step onwards,
if transitions share any input places, they share exactly one (remember that
an FCDA net is free-choice). Note that if any of the transitions have only
one output place, the AND-Split can be omitted. Formally we now have
that

T ∗ = {t ∈ T | L(t) = � ∧ |t • | ≥ 1 ∧ | • t| ≥ 1∧
∀t′∈T [•t∩•t′ �= ∅ ⇒ (t = t′ ∨ | • t| = 1)]}

P ∗ = {p ∈ P | |p • | ≥ 1 ∧ | • p| ≥ 1}

5. At this stage it is still possible that transitions share input places, output
places, or both. In Figure 5.8 the removal of such transitions is de�ned in
diagrams (a), (b) and (c). Again, in all these transformations, if any of the
transitions have only one input or one output place, the AND-Joins and

5.1. STANDARD WORKFLOW MODELS 129

O1

a) b) c)

R11

R1p

...

R21

R2r

...

...

...

I1n

I11

I21

I2m

...

...

I1n

I11

I21

I2m

...

R11

R1n

...

R21

R2m

I

R11

R1n

...

A
N

D

R21

R2m

...

A
N

D

X
O

R

I

I

R21

R2p

...

R11

R1n

...

X
O

R

O
R

A
N

D
A

N
D

I

...

Oq

O1

R11

R1n

...

R21

R2p

...

...

Om

O1

...

Om

A
N

D

A
N

D
A

N
D

R21

R2r

...

R11

R1p

...

O
R

A
N

D
A

N
D

O1

...

Oq

A
N

D

Figure 5.8: Removal of transitions sharing input or output places

AND-Splits respectively can be omitted. After this step:

T ∗ = {t ∈ T | L(t) = � ∧ |t • | ≥ 1 ∧ | • t| ≥ 1∧
∀t′∈T [(•t∩•t′ �= ∅ ∨ t • ∩ t′• �= ∅)⇒ t = t′]}

P ∗ = {p ∈ P | |p • | ≥ 1 ∧ | • p| ≥ 1}

O1

O2

I1

O1

O2

I1

A
N

D

O1

I1

I2

I1

I2

A
N

D O1

O1

O2

I1

I2

I1

I2

A
N

D

O1

O2

A
N

D

P1P1

P

...

...

...

...

... ...

Figure 5.9: Removal of transitions

130 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

6. In this step all remaining transitions are removed as shown in Figure 5.9.
There are four possibilities - the transition may have one input place and
many output places, many input places and one output place, many input
and many output places, or one input place and one output place. After
this step

T ∗ = ∅

P ∗ = {p ∈ P | |p • | ≥ 1 ∧ | • p| ≥ 1}
7. Now that all transitions are removed, places can only be linked to workow

constructs. They can subsequently be removed according to the schema
shown in Figure 5.10. Again, as with the previous step, there are only four
possibilities. After this step the net consists entirely of hybrid constructs,
i.e. T ∗ = ∅ and P ∗ = ∅ .

P P P

X
O

R

O
R

O
R

X
O

R

P

Figure 5.10: Removal of places

As every step that we have taken so far is equivalence preserving, the hybrid net
that we have constructed, PNH, is equivalent to our source FCDA net, PN . As
PNH consists entirely of hybrid structures, it is possible to construct a Stan-
dard Workow ModelW by replacing hybrid structures with the corresponding
workow constructs. The corresponding Petri net PNW of the Standard Work-
ow Model W constructed in such a manner is identical to PNH . As PNH is
equivalent to PN , it follows that W is equivalent to PN which concludes the
proof.

2

Example 5.1.1 An example of the transformation described in the proof of The-
orem 5.1.2 of an FCDA net to a Standard Workow Model is shown in Fig-
ure 5.11. Obviously, the Standard Workow Model can be further reduced (the
�nal AND-Join is redundant and can be removed), however, this is of no impor-
tance in this context. Note that the FCDA net and the Petri net corresponding

5.2. SAFE WORKFLOW MODELS 131

to the Standard Workow Model (see Figure 4.5) are indeed weak bisimulation
equivalent. 2

X
O

R

A

A

B

C

D

A
N

D

X
O

R

A
N

D

B

D

C

Figure 5.11: FCDA net with equivalent Standard Workow Model

5.2 Safe Workow Models

As explained in Section 4.1, the main di�erence between Standard Workow Models
and Safe Workow Models is in the interpretation of the OR-Join in case it is triggered
by more than one incoming branch (as could e.g. happen in case an OR-Join follows
an AND-Split).

In this section we would like to answer the question whether this evaluation strategy
limits the expressive power of the workow engine. Formally, this translates to the
question as to whether it is possible to transform any given Standard Workow Model
to an equivalent Safe Workow Model. A technique typically required for this is node
replication (illustrated in Figure 5.12).

Node replication can be compared to net unfolding as described in for example [GV87].
The unfolded net can be thought of as the safe version of the original net. Unfolding
as described in [GV87] preserves bisimulation equivalence.

It is immediately clear that if the original net is not bounded, then the unfolding
is in�nite. Hence, it is impossible to convert a Standard Workow Model that may

132 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

A

B C

D

A

B C

D D

ANDAND

OR
Multi-merge

Figure 5.12: Node replication

result in an unlimited number of multiple instances of some activity, into a �nite Safe
Workow Model. Therefore, let us focus on bounded workow models.

It is always possible to convert a bounded Petri net into an equivalent safe Petri net
by unfolding. However, from a workow perspective, the fundamental problem with
this technique is that unfolding as presented in [GV87] may transform a free-choice
Petri net into a net which is not free-choice. The next theorem demonstrates that
this is a true problem which cannot be circumvented. There exist bounded Standard
Workow speci�cations that do not have a safe equivalent.

Before presenting a proof we would like to introduce two lemmas. The �rst one
captures one of the important characteristics of free-choice nets. This lemma will be
used in several subsequent proofs and it states that if there is a path from a place
q to a place p, and [p] is a home marking (i.e. a marking which is reachable from
every reachable marking), then if q contains a token it can be moved to p by a �ring
sequence containing all transitions on the path between q and p.

Lemma 5.2.1 Let PN = (P; T; F;M0) be a live and bounded free-choice Petri net
with a home marking M0 = [p] (i.e. the state marking a place p). Let M be a
reachable marking which marks place q and let x =< p1; t1; p2; t2; :::; tn−1; pn >

with p1 = q and pn = p be an acyclic directed path. Then there is a �ring
sequence � such that M

�−→ [p], each of the transitions {t1; :::; tn−1} is executed
in the given order, and none of the intermediate markings marks p.

Proof:
If p = q then the lemma holds. If p �= q then there is a �ring sequence removing
the token from q (since [p] is a home marking). Let �1t be the �ring sequence
removing the token from q, i.e. t ∈ q•. Let M1 be the marking enabling t, i.e.
M

�1−→ M1. As the net is free-choice and t is enabled in M1, t1 is also enabled

5.2. SAFE WORKFLOW MODELS 133

in M1 (recall that q ∈ •t1 and q ∈ •t implies •t1 = •t). It is therefore possible
to �re t1, i.e. M1

t1−→M2. In M2 place p2 is marked (as p2 ∈ t1•).
By recursively applying the argument to the remaining places and transitions
it is possible to construct a �ring sequence � such that each transition in
{t1; :::; tn−1} occurs and M

�−→ [p], i.e. it is possible to execute the transitions
in the order of the directed path between q and p.

Remains to prove that none of the intermediate markings reached by executing
� marks p. Suppose that p was marked before completing �. There is a token
moving from q to p via path < q; t1; p2; t2; :::; tn−1; p >. Therefore, for any inter-
mediate marking there is a token in one of the places {p2; :::; pn−1}. However,
if p and some other place are marked at the same time the net is unbounded.
This contradiction completes the proof. 2

p

q

t1

t2

p

q

t1

t2

PN1 PN2

Figure 5.13: Illustration of Lemma 5.2.1

Figure 5.13 illustrates two Petri nets, PN1 being a free-choice net, and PN2 not.
Place p is a home marking for both nets. Let us concentrate on the path from place
q to place p containing transitions t1 and t2. In net PN1, from any marking having
a token in place q it is possible to �re transitions t1 and t2. In net PN2 that is not
always the case as the marking shown illustrates.

The second lemma introduces a construct that we would like to refer to as a \selective
synchronizer". Such a synchronizer has three incoming transitions. In the context
shown in Figure 5.14 the Selective Synchronizer awaits completion of activity A and
either activity B or activity C. Depending on whether B or C completes, activity D

134 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

A B C

D

AND

XOR

E

SSynch

PO1 PO2

PI1

Selective Synchronizer

PI2 PI3

t1

PI0

t2

t3 t4

Figure 5.14: Illustration of Lemma 5.2.2

or activity E respectively is enabled. It is worth noticing that the desired behaviour
is not achievable using standard workow constructs. For example, had we put an
OR-Join after activities B and C, it would not be possible to make a correct choice
between D and E. On the other hand any attempts to use a standard AND-Join
construct leads to a deadlock.

The following lemma de�nes the \selective synchronizer" in a formal way and proves
that this construct is inherently non free-choice.

Lemma 5.2.2 Let PN = 〈P; T; F 〉 be the Petri net as shown (in bold lines) in the
right diagram of Figure 5.14. The Selective Synchronizer construct cannot be
free-choice if:

• Any marking with tokens in any of the places pO1, or pO2 has one token in
exactly one of these places and no other places. Such markings are called
output markings;

• { From pI1 + pI2, the only reachable output marking is pO1;

{ From pI1 + pI3, the only reachable output marking is pO2.

Proof:
Consider the Selective Synchronizer net augmented with place pI0, transitions
t1, t2, t3 and t4 and arrows as shown with dashed lines in Figure 5.14. The
resulting Petri net is called the short-circuited net. Clearly, [pI1; pI2], [pI1; pI3],
[pO1] and [pO2] are home markings. We can assume that the Selective Synchro-
nizer construct contains no dead transitions and that the short-circuited net is
strongly connected. Places and transitions without any input and/or output

5.2. SAFE WORKFLOW MODELS 135

arcs are either inactive and do not contribute to the external behaviour or are
conicting with the requirements. As a result, the short-circuited net is live and
bounded with home markings [pI1; pI2], [pI1; pI3], [pO1] and [pO2].

As the marking pI1 + pI2 is followed by [pO1], we can conclude that there must
be a path from pI1 to pO1 and from pI2 to pO1. Similarly there must be a path
from pI1 to pO2 as the marking pI1 + pI3 is followed by [pO2].

Suppose that the selective synchronizer is a free-choice construct. The whole
net is then free-choice too. According to Lemma 5.2.1 if there is a path from
pI1 to pO2, then there is also a �ring sequence leading from pI1+pI2 to pO2. But
this is contradictory with the assumptions. 2

Finally we are ready to present a theorem that shows the expressiveness limitation of
the safe evaluation strategy.

Theorem 5.2.1 (limited power of the safe evaluation strategy) There exist bounded
Standard Workow Models without a deadlock, for which there exists no equiv-
alent Safe Workow Model.

X

PNS

BA DC

E

AND

OR OR

A

B

C

D

E

E

Workflow W

tE1

tE2

Figure 5.15: Multiple instances speci�cation

Proof:
Consider the deadlock free and bounded Standard Workow Model W in Fig-
ure 5.15. There are four initial activities named A, B, C, and D. The activity
named E can be �red after either A and C have been completed, or A and D,
or B and C or B and D. Subsequently activity E can be �red for the second
time when the remaining activities are completed.

Let S be a Standard Workow Model that is bisimulation equivalent to W and
PNS be the corresponding net of S. For S to be bisimulation equivalent to
W, PNS needs to have transitions labelled A, B, C, and D as well as at least

136 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

two transitions labelled E. The last requirement comes from the fact that in
workow W it is possible to enable and �re the transition labelled E twice in a
concurrent manner.

InW it is possible to enable activities A, B, C and D concurrently. Hence there
must be a reachable marking M of PNS that enables transitions labelled A, B,
C and D and no other labelled transitions. Let us call these transitions tA, tB,
tC and tD respectively.

In W it is possible to �re activities A and C followed by activity E. Thus in
net PNS there must be a path from tA and tC to a transition labelled E. Let
us call this transition tE1.

Similarly there must be paths from transitions tA and tD to a transition labelled
E as well as paths from tB, tC and tB, tD to transitions labelled E. Let us call
these transitions tE2, tE3 and tE4 respectively.

Consider transitions tE1, tE2 and tE4. Transitions tE1 and tE4 cannot be the
same (otherwise the net would not be safe) whereas it is possible that tE1 = tE2

or tE4 = tE2. Without loss of generality, suppose that tE2 is such that tE1 �= tE2.

Any labelled transition in PNS needs to have exactly one input and one output
place. Output places of transitions tA, tC , tD and input places of transitions tE1

and tE2 along with the subnet X shown in the right diagram of Figure 5.15 form
a subnet that ful�ls the requirements of Lemma 5.2.2 (Selective Synchroniser),
hence the subnet X and subsequently net PNS cannot be free-choice. This
contradicts the assumption that PNS is the corresponding net of a Standard
Workow Model. 2

Theorem 5.2.1 shows that the choice for a safe execution strategy limits the expressive
power of the corresponding workow engine, even if one is only interested in bounded
deadlock-free workows. A practical example of a process that might need the type of
synchronisation shown in Figure 5.15 is a process in which activities A and B represent
the manufacturing of an item of type X, activities C and D the manufacturing of an
item of type Y and activity E represents the assembling of an item of type X and an
item of type Y .

5.3 Structured Workow Models

The de�nition of Structured Workow Models guarantees these types of workows to
have certain properties, namely they never deadlock and they never result in multiple
instances.

5.3. STRUCTURED WORKFLOW MODELS 137

Theorem 5.3.1 Structured Workow Models are deadlock free and safe.

Proof:
The proof uses structural induction on the construction of Structured Workow
Models as per De�nition 4.1.15. The basis of the induction are models con-
sisting of single activities, which obviously cannot deadlock and are safe. An
investigation of De�nition 4.1.15 yields that:

1. A sequential execution of two workows that do not deadlock and are safe
also does not deadlock and is safe (induction).

2. An XOR-Split and OR-Join combination does not deadlock and is safe
as long as each of its branches does not deadlock and is safe (induction).
Similarly for an AND-Split and AND-Join combination.

3. A loop cannot deadlock and is safe as the body of the loop cannot deadlock
and is safe (again by induction).

2

As each Structured Workow is well-behaved, the Structured Workows form a proper
subclass of Standard Workows. An important question that needs to be answered
is whether any well-behaved Standard Workow has an equivalent Structured form.
The next theorem proves that that is not the case, and Structured Workows form a
proper subset of well-behaved Standard Workows.

Theorem 5.3.2 There are well-behaved, Standard Workow Models that do not
have an equivalent structured form.

Proof:

Consider the well-behaved Standard Workow Model W shown in Figure 5.16.
This workow model contains multiple exits from a loop and as such is unstruc-
tured.

Suppose that there is a Structured Workow Model S with a �nite number of
process elements that is bisimulation equivalent to W. As a trace of S may
contain an in�nite number of occurrences of B and C, S must contain at least
one structured loop. Let us refer to this loop as l.

Suppose that l does not contain any labelled activities with a label other than
B. It is then possible, for each number n to produce a trace with a substring
containing n consecutive occurrences of B. Such a trace is impossible in W.

138 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

BOR

D

C

E

XOR

XOR

A

D

E

XOROR

Loop Structure containing
B and C

B

C

Figure 5.16: Exit from a loop structure

Similarly C cannot be the only label used for activities in l. Furthermore as all
traces of W have at most one occurrence of A, D or E it follows that l cannot
contain any activities having one of these labels. We therefore conclude that
l must contain at least one activity labelled with B and at least one activity
labelled with C and no activities with other labels. Let tB be a transition
labelled with B and tC a transition labelled with C.

Consider a reachable marking M ′
B of the corresponding net system of S such

that tB is enabled (such a marking is possible as it follows from the inductive
structure of Structured Workows that for every process element of a Structured
Workow Model there is a reachable marking that enables this process element).
For S to be bisimulation equivalent to W there must be a reachable marking

M ′
D such that M ′

B

b
=⇒ M ′

D and M ′
D is a marking of S that enables a transition

labelled D and no other labelled transitions. Let us call this transition tD. We
conclude that there must be a path from tB to tD that does not contain any
labelled transitions.

Using the same reasoning applied to the labels C and E we can conclude that
there must be a path from a transition labelled C in l to a transition labelled
E that does not contain any labelled transitions. Let us call this transition tE.

Because tB and tC are part of l, and tD and tE are not, given the structure of a
Structured Workow Model we have that in S there is a path from tB to tE that
does not contain any labelled activities (this path is marked bold in the right
diagram of Figure 5.16) and thus it is possible to enable tE after completing tB
without �ring any other labelled transitions. As this execution scenario is not
possible in W, this contradicts the assumption that W and S are bisimulation
equivalent.

5.3. STRUCTURED WORKFLOW MODELS 139

2

Having established that Structured Workow Models are a proper subclass of well-
behaved Standard Workow Models, it is important to establish a class of Standard
Workow Models that can be transformed to a structured form. The remainder of
this section focuses on to what extent such transformations are possible.

The organisation is as follows. First we concentrate on workows that do not contain
parallelism (to be more precise, we consider workows that do not contain AND-
Join and AND-Split constructs). Then we concentrate on workows that do contain
parallelism, but do not have any cycles. Finally we will consider workow models
with both loops and parallelism.

5.3.1 Simple Workows without Parallelism

Workows that do not contain parallelism are simple models indeed. Their semantics
is very similar to elementary ow charts that are commonly used for procedural pro-
gram speci�cation. The XOR-Split corresponds to selection (if-then-else statement)
while the activity corresponds to an instruction in the ow chart. Transformations of
an unstructured ow chart to a structured form has been studied extensively in the
past and in this section we will revisit some of these transformation techniques and
present and analyse them in the context of workow models.

Following [Wil77] we will say that the process of reducing a workow model consists
of replacing each occurrence of a base model (i.e. one of the four shown in Figure 4.6)
within the workow model by a single activity box. This is repeated until no further
replacement is possible. A process that can be reduced to a single activity box repre-
sents a Structured Workow Model. Each transformation of an irreducible workow
model should allow us to reduce the model further and in e�ect reduce the number
of activities in the model.

The strong similarity of simple workow models and ow diagrams suggests that if
we do not consider parallelism, there are only four basic causes of unstructuredness
(see e.g. [Wil77, Oul82]):

• Exit from a decision structure

• Entry into a decision structure

• Entry into a loop structure

• Exit from a loop structure

140 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

Entry into any structure is modelled in a workow environment by an OR-Join con-
struct. Similarly, an exit is modelled by a XOR-Split. Once parallelism is introduced
we will also consider synchronised entry and parallel exit modelled by AND-Join and
AND-Split constructs respectively.

As was shown in Theorem 5.3.2, models containing an exit from a loop structure
cannot be transformed to equivalent Structured Workow Models. For the remain-
ing causes of unstructuredness the transformations are possible and are shown in
Figures 5.17, 5.18 and 5.19 All transformations are using a technique called node

Workflow A1

C

ED

F

B

XOROR

A

XOR

Workflow A2

C

ED

F

B

A

XOR

F

OR

XOR

OR

Figure 5.17: Exit from a decision structure

Workflow B1

E

C

DF

B

OR

XOR

OR

A

Workflow B2

E

C

D

F

B

OR

XOR

OR

A

D

Figure 5.18: Entry into a decision structure

duplication and are adapted from [Oul82]. The transformation shown in Figure 5.17
should be used when a workow model contains an exit from a decision structure, the

5.3. STRUCTURED WORKFLOW MODELS 141

Workflow C1 Workflow C2

B

A

CF

E

OR

OR

XOR

BA

CF

OR

XOR

A

E

Figure 5.19: Entry into a loop structure

transformation in Figure 5.19 when a model contains an entry into a decision struc-
ture and �nally the transformation in Figure 5.19 when a model contains an entry
into a loop structure. It should be noted that all models shown in these �gures are
intended to be fragments of workows, rather than complete workows in themselves.
The reader should verify for themselves that all transformations yield workows that
are indeed bisimulation equivalent.

As shown in [Oul82] repeated application of the transformations discussed in this
section can remove all forms of unstructuredness from a workow as long as an exit
from a loop structure is not encountered. Thus all unstructured workows without
parallelism and exit from a loop structure have an equivalent structured form. Finally,
it should be kept in mind that the transformations shown here use only basic control
ow constructs - it is possible to derive some additional transformations using auxiliary
variables, i.e. augmenting XOR-Splits with data predicates. We will come back to this
issue in Section 6.5.

5.3.2 Workows with Parallelism but without Loops

Addition of parallelism immediately introduces problems related to deadlock and mul-
tiple instances. As Theorem 5.3.1 shows, Structured Workow Models never result
in deadlock nor multiple instances of the same activity at the same time and in the
remainder of this section we will focus on well-behaved Standard Workow Models.

Theorem 5.3.2 shows that workows containing an exit from a loop structure cannot be
transformed to a structured form. As the next theorem shows, parallelism introduces
other possible causes of unstructuredness that make the workows impossible to model
in a structured form.

142 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

Theorem 5.3.3 There are well-behaved Standard Workow Models that do not
contain cycles, that cannot be modelled as Structured Workow Models.

C

B

A AND

AND

F

E

D

AND

AND

B

AND

E

D

AND

C

Split Structure S

AB AD

AC AE

Figure 5.20: Arbitrary workow and illustration of its essential causal dependencies

Proof:
Suppose that there is a fully structured workow S that is bisimulation equiva-
lent toW. As it is possible inW that both activitiesB and C are simultaneously
enabled, S must contain a split-structure such that one branch contains an ac-
tivity labelled B and the other branch contains an activity labelled C (as this is
the only way B and C can be simultaneously enabled in any structured work-
ow). Let us refer to this split-structure as s and to these activities as AB and
AC respectively.

Applying the bisimulation game yields that there must be a path from AC to
an activity labelled E. Let us refer to this activity as AE. As there is a marking
of W that enables both activities B and E, there must be a marking in S such
that AB and AE are both enabled. But as there is a path from AC to AE we
conclude that AE is on the same branch of s as AC .

Similarly we have that there must be a path from AB to an activity labelled D.
Let us refer to this activity as AD. As there is a marking of W that enables
both activities D and E, there must be a marking in S such that AD and AE

are both enabled. But as there is a path from AB to AD we conclude that AD

is on the same branch of s as AB.

5.3. STRUCTURED WORKFLOW MODELS 143

As in S activities D and E are in di�erent branches of s (see Figure 5.20), there
is a marking of S such that it enables both AD and AE. As there is no marking
of W enabling both D and E, this contradicts the assumption that W and S
are bisimulation equivalent.

2

To �nd out which Standard Workow Models can be e�ectively transformed into
Structured Workow Models, let us concentrate on the causes of unstructuredness
that can occur when parallelism is added. If loops are not taken into account, these
causes are:

• Entry into a decision structure

• Exit from a decision structure

• Entry into a parallel structure

• Exit from a parallel structure

• Synchronised entry into a decision structure

• Parallel exit from a decision structure

• Synchronised entry into a parallel structure

• Parallel exit from a parallel structure

In the remainder of this section we will concentrate on which of these structures can
be transformed to a Structured Workow Model.

Entries and exits from decision structures are dealt with in section 5.3.1 and can
obviously be transformed to a structured model.

As a synchronised entry into a decision structure and an exit from a parallel structure
leads to a potential deadlock (i.e. there are instances of the model that will dead-
lock), it follows that if the original workow contains any of these patterns, generally
speaking it cannot be transformed into a Structured Workow Model.

Parallel exits from and synchronised entries into a parallel structure are dealt with in
theorem 5.3.3. The reasoning of this theorem can typically be applied to a model that
contains these patterns. Hence such models, even though they may be well-behaved,
cannot be transformed into a structured form.

Before analysing the two remaining structures let us de�ne a syntactical structure
called an overlapping structure. This structure has been previously introduced (and

144 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

XOR

A

ED

AND

B

GF

AND

C

I J

K

OR OR

AND

XOR

A

ED

AND

B

GF

AND

C

K

AND AND

OR

JI JI

Figure 5.21: Overlapping structure

named) in the context of workow reduction for veri�cation purposes in [SO99]. A
speci�c instance of it is shown in Figure 5.21. An overlapping structure consists of
a XOR-Split followed by i instances of AND-Splits, followed by j instances of OR-
Joins and �nally by an AND-Join. The structure of Figure 5.21 has both i and
j degrees equal to two. The overlapping structure contains both an entry into a
parallel structure and a parallel exit from a decision structure and it never results
in a deadlock. It is possible to transform an overlapping structure into a Structured
Workow Model as shown in Figure 5.21.

In [SO99] an analysis of the causes of deadlock and multiple instances for a subclass
of Standard Workow Models is provided. This subclass consists of workows that do
not contain cycles and have only one �nal task. This work leads to the conclusion that
Standard Workow Models that have only one �nal task and contain a parallel exit
from a decision or an entry into a parallel structure will cause a potential deadlock or
multiple instances unless these causes of unstructuredness are part of an overlapping
structure. In [LZLC02] and [AHV02] it has been shown that more complex structures
similar to an overlapping structure exist. The examples provided in both [LZLC02]
and [AHV02] can also be easily tranformed to an equivalent structured form. These
observations have led us to the following conjecture:

5.3. STRUCTURED WORKFLOW MODELS 145

Conjecture 5.3.1 For every acyclic, well-behaved Standard Workow Model that
has only one �nal task and does not have a parallel exit from a parallel structure
or a synchronised entry into a parallel structure there is an equivalent Structured
Workow Model.

For some well-behaved Standard Workow Models that have more than one �nal task
it is also possible to �nd an equivalent Structured Workow Model. An example of
such equivalent models is given in Figure 5.22.

C

ED

F

B

ANDOR

A

XOR

C

ED

F

B

A

XOR

F

OR

AND

AND

Figure 5.22: Transformation of a workow with parallel exit from decision structure

Table 5.1 gives an overview of the main results of this section.

Pattern Transformation Possibility

Entry into parallel structure Transformation is possible for well-behaved models
Exit from parallel structure No transformation possible as models result in dead-

lock
Synchronized entry into a deci-
sion

No transformation possible as models result in dead-
lock

Parallel exit from a decision Transformation is possible for well-behaved models
Synchronized entry into a parallel
structure

Transformation is typically impossible

Parallel exit from a parallel struc-
ture

Transformation is typically impossible

Entry into decision Transformation is possible
Exit from decision Transformation is possible

Table 5.1: Transformations of Structured Workow Models with parallelism but with-
out loops

146 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

5.3.3 Workows with Parallelism and Loops

Finding out whether a workow can deadlock or not in the context of loops is much
more complex . To expose potential diÆculties let us concentrate on what kind of
loops we can encounter in a workow model once AND-Join and AND-Split constructs
are used. Every cycle in a graph has an entry point that can be either an OR-Join
or an AND-Join and an exit point that can be either an AND-Split or a XOR-Split.
Cycles without an entry point cannot start and cycles without an exit point cannot
terminate. The latter case can be represented by a cycle with an exit point where the
exit condition on the XOR-Split is set to false.

Most cycles will have OR-Joins and XOR-Splits as entry and exit points respectively
(note that there may be many exit and entry points in the cycle) provided that the
workow is well-behaved. The transformation of such cycles is straightforward using
transformations as presented earlier in this section.

If the cycle has an AND-Join as an entry point, the workow will most likely deadlock.
Examples of two workows containing cycles with AND-Join as an entry-point that
do not deadlock are shown in Figure 5.23 (note that these cycles can be seen as having
OR-Joins as entry points and containing a synchronised entry into them).

Workflow A

Workflow B

AND

DC

G

FE

OR

BA

H XOR

AND

OR

AND

DC

G

FE

OR

BA

KXOR

AND

OR

H I AND

J

AND

Figure 5.23: Two workow models with arbitrary loops

Conversely, most workows that have an AND-Split as an exit point will most likely
result in multiple instances. Our previous observation that any workow resulting in
deadlock or multiple instances cannot be modelled as a structured workow certainly

5.4. SYNCHRONIZING WORKFLOW MODELS 147

holds whether or not the workow has loops. The major impact of introducing loops
though is that �nding out if the workow deadlocks or results in multiple instances
becomes a non-trivial task (see [HOR98, HO99]1).

In rare cases when a cycle has an AND-Join as entry and an AND-Split as exit
point and the workow involved does not deadlock nor result in multiple instances,
theorem 5.3.3 is helpful when determining if such a workow can be remodelled as a
structured workow. In Figure 5.23 for example, workow A can be remodelled as a
structured workow whereas we conjecture that workow B cannot. The equivalent
workow to workow A is shown in Figure 5.24.

Workflow A

A

AND

D

C

AND

B

E

AND

D

C

F

GOR XOR

AND

OR

HXOR

Figure 5.24: Structured version of leftmost workow of Figure 5.23

5.4 Synchronizing Workow Models

This section concentrates on a precise characterization of the expressive power of Syn-
chronizing Workow Models. To this end, we start with discussing some elementary
properties.

First it is important to observe that arbitrary loops would cause problems in Synchro-
nizing Workow Models. Consider for example an activity A which is to trigger an
activity B, while there is a trigger back from B to A. Activity A can only be executed
if all its incoming triggers have been evaluated. However, one of these triggers de-
pends on activity B, which on its turn depends on activity A resulting in immediate
deadlock. For this reason only acyclic Synchronizing Workow Models are considered
in the remainder of this section.

Synchronizing Workow Models have the property that every process element will
receive exactly one token, true or false, for each of its input branches, and as a result

1These papers overlook the fact that Task Structures without decomposition are less expressive
than Petri nets (as it is suggested otherwise) hence some complexity results need to be reconsidered.

148 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

it will produce a token for each of its outgoing branches. In Petri net terms this means
that for every process element e of the model, exactly one of the corresponding transi-
tions ATe or AFe will �re once. This result then e�ectively shows that Synchronizing
Workow Models are safe and never deadlock. Before the proof is presented let us
�rst present some fundamental properties of Synchronizing Workow Nets.

The following lemma can be proved by case distinction.

Lemma 5.4.1 Let W = 〈P;Trans;Name〉 be a Synchronizing Workow Model and
e ∈ P be a process element of W that is enabled in a reachable marking M of
the corresponding net system of W, then:

1. There is always a transition of the associated net of e which is enabled;

2. Firing this transition results in a marking where e is completed.

While the above lemma provides a suÆcient condition for at least one of the transitions
associated with a process element to be enabled, the following lemma shows that this
condition is also necessary (again the proof can be given using case distinction).

Lemma 5.4.2 Let W = 〈P;Trans;Name〉 be a Synchronizing Workow Model, e ∈
P a non-initial process element of W and x ∈ in(e). Then for any marking M
of the corresponding net of W such that M(rte;x) = 0 ∧M(rfe;x) = 0, none of
the transitions in T e

W is enabled.

Theorem 5.4.1 Let W = 〈P;Trans;Name〉 be a Synchronizing Workow Model.
Any process element e ∈ P in this model will �re exactly once.

Proof:
By induction over the depth n of process elements, where the depth of the
process element is de�ned as the longest path from this process element to a
process element without incoming transitions.

The case of n = 0 is obvious. Indeed, any process element with no incoming
branches is initially enabled, and they will �re exactly once as they cannot be
enabled again after they have �red.

For the induction step consider an arbitrary process element p at depth n. All its
input elements have a depth less than n, hence it can be assumed that they will
�re exactly once. According to Lemma 5.4.2, process element p cannot �re before
all input elements have actually �red. Once this has happened, process element
p is enabled (Lemma 5.4.1). As an enabled process element cannot be disabled
by �ring other process elements, process element p will indeed eventually �re.
It cannot be re-enabled as its input elements will never �re again. Hence it can
be concluded that process element p will �re exactly once. 2

5.4. SYNCHRONIZING WORKFLOW MODELS 149

Corollary 5.4.1 Synchronizing Workow Models are safe.

Corollary 5.4.2 Synchronizing Workow Models do not have a deadlock.

Alternative proofs of these two corollaries were given in [HK99].

In the remainder of this section focus is on the expressive power of Synchronizing
Workows in relation to Standard Workows. We will show that for any acyclic,
well-behaved Standard Workow Model there is an equivalent Synchronizing Work-
ow Model. Focus is on acyclic models as in our de�nition of Synchronizing Workow
Models cycles are not allowed and we have not made provision for the formal spec-
i�cation of iterative behaviour through decomposition2. Similarly only well-behaved
models are considered as according to Theorem 5.4.1 Synchronizing Workow Models
never result in deadlock and are always safe.

De�nition 5.4.1
A WB-system is a labelled Petri net system which corresponds to an acyclic,
well-behaved Standard Workow Model. 2

The following proposition captures the formal properties of WB-systems (which can
easily be veri�ed).

Proposition 5.4.1 A WB-system P = 〈P; T; F; L;M0〉 has the following properties:

• There are no sink places (i.e. a place p such that p• = ∅);

• The net is free-choice;

• Every node x ∈ P ∪ T is on a path from a source place (i.e. a place p such
that •p = ∅);

• The net is safe starting from the initial marking with just tokens in source
places;

• There are no dead transitions starting from the initial marking with just
tokens in source places;

• From any marking reachable from the initial marking with just tokens in
source places, it is possible to reach the empty marking.

2Iterative behaviour in Synchronizing Workow Models is typically realized through decomposi-
tion and arguments related to such a solution are similar to those presented in the discussion on
loops in Structured Workow Models.

150 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

The results that follow summarise some important characteristics of WB-systems.
These will be useful for providing a formal relationship between acyclic well-behaved
Standard Workow Models and Synchronizing Workow Models.

De�nition 5.4.2
Let P be a WB-system and SP the set of its sink transitions, i.e. SP = {t ∈ T |
t• = ∅}. For any s ∈ SP , P s is the set of places from which s is reachable by
following the arcs in F , i.e. for each place p ∈ P s there is a directed path from
p to s, and T s is the set of transitions which consumes tokens from P s but does
not produce any token for P s. 2

�
Places in P S

�
�

S

��Transitions in T S

Figure 5.25: Example of sets P s and T s

Example 5.4.1 A simple example of the above de�nition is depicted in Figure 5.25.
2

Lemma 5.4.3 Let P be a WB-system. Whenever a place p ∈ P s is marked, s can
�re, i.e. there is a �ring sequence enabling s.

Proof:
LetM be a marking that marks place p. If p ∈ •s then the lemma holds since, as
the net does not deadlock and is free-choice it is always possible to �re transition
s. Let x =< p1; t1; :::; pn; tn > be a directed path with p1 = p and tn = s. As
the net does not deadlock and is free-choice, there must be a �ring sequence
that enables transition t1. Firing t1 marks place p2. By recursively applying the
argument to the remaining places and transitions it is possible to construct a
�ring sequence � such that M

�−→M ′, and M ′ is a marking that marks a place
q such that q ∈ •s. 2

Lemma 5.4.4 Let P be a WB-system. Transitions in SP can �re only once.

5.4. SYNCHRONIZING WORKFLOW MODELS 151

Proof:
If a sink transition can �re twice, it is possible to delay the �rst �ring until the
second one and clearly the WB-system is not safe in that case. 2

Lemma 5.4.5 Let P be a WB-system. Firing a transition from T s permanently
disables s.

Proof:
This lemma is the most complex one. To prove this it is shown that the places
in P s become unmarked after �ring a transition in T s. Consider a place p1 ∈ P s

which contains a token which can be removed by �ring a transition t in T s and
another place p2 ∈ P s which remains marked after �ring t. Suppose that t �res,
then, based on Lemma 5.4.3, there is a �ring sequence enabling s. If t does
not �re, the same �ring sequence is enabled. However, this implies that after
executing this sequence, p1 is still marked, and based on Lemma 5.4.3, s could
�re again. This is not possible as indicated by Lemma 5.4.4. Therefore, all
places in P s become unmarked after �ring a transition in T s. 2

O
R

Standard

A

X
O

R

B

C

Synchronizing

D

A
N

DA

A
N

D
B

C

D

A
N

YA

X
O

R

B

C

D

A
N

YA

A
N

D

B

C

D

Figure 5.26: Equivalent Standard and Synchronizing Workows

In order to examine the expressive power of Synchronizing Workow Models, it is
important to fully understand the expressive power of its ANY-Join construct. To this
end, consider the workow depicted in Figure 5.26. It is easy to see that the workows
on the left are bisimulation equivalent, as are the workows on the right. Note that
both the OR-Join and the AND-Join have the ANY-Join as their equivalent. Given
the fundamentally di�erent semantics of the OR-Join and the AND-Join in Standard
Workows this may come as a surprise. It can even be taken further in the sense
that replacing all OR-Joins and AND-Joins in any acyclic well-behaved Standard
Workow Model with ANY-Joins as well as replacing all other constructs in Standard

152 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

Workows with their equivalent representations in Synchronizing Workows results
in an equivalent model (formally captured in Theorem 5.4.2). This provides a �rst
indication of the expressive power of Synchronizing Workows.

De�nition 5.4.3
Let W = 〈P;Jo;Ja;So;Sa;A;Trans;Name〉 be an acyclic well-behaved Stan-
dard Workow Model. The corresponding Synchronizing Workow Model S =
〈P;Jo;Ja;So;Sa;A;Trans;Name〉 is de�ned by:

AS = AW # same activities #
SS
o = SW

o # same XOR-Splits #
SS
a = SW

a # same XOR-Splits #
JS
o = JW

a ∪ JW
o # ANY-Joins for each of the OR-Joins & AND-Joins#

JS
a = ∅ # no ALL-Joins#

Trans
S = Trans

W # same transitions#
Name

S = Name
W # same labeling#

2

The next step is to show that for any Standard Workow Model the corresponding
Synchronizing Workow Model is indeed bisimulation equivalent. This is complex
and requires some preparation.

First an essential property of well-behaved Standard Workow Models is formally
captured. This is the fact that in any reachable marking of a Standard Workow net
for any marked place, there is no other marked place on a path from an initial place
to that marked place.

Proposition 5.4.2 Let W be an acyclic, well-behaved Standard Workow Model,
(PNW ;M0) its corresponding net system and let x =< p1; t1; p2; t2; :::; tn−1; pn >

with p1 = p and pn = q be an acyclic directed path. For any reachable marking
M we have M(q) = 1⇒M(p) = 0.

Proof:
If p were marked, another token can be produced for q according to Lemma 5.4.3.
Hence the net would not be safe. Contradiction. 2

A similar result holds for Synchronizing Workow Models, except that a distinction
needs to be made between true places and false places.

5.4. SYNCHRONIZING WORKFLOW MODELS 153

Proposition 5.4.3 LetW be a Synchronizing Workow Model, (PNW ;M0) its cor-
responding net system and M a reachable marking of (PNW ;M0). Let p be a
true place and p its corresponding false place, and q another true place and q

its corresponding false place such that there is a direct, acyclic path from p to
either q or q then

(M(q) = 1 ∨M(q) = 1)⇒ (M(p) = 0 ∧M(p) = 0):

Proof:
In Synchronizing Workow ModelW, if the place p or p contains a token, there
is a �ring sequence producing a token for either place q or q (Theorem 5.4.1). If
one of these places already has a token (suppose it is a true place), according to
the Monotonicity Lemma (see e.g. p.22 of [DE95]) through application of this
�ring sequence a second token can be produced for this place or its corresponding
false place. 2

Having established some basic properties of well-behaved Standard Workows and
Synchronizing Workows, it is possible to show that any Synchronizing net can be
simulated by a WB-system and vice versa, thus demonstrating that they are simu-
lation equivalent. Having achieved this, it is possible to give a bisimulation relation,
thus proving that they are in fact bisimulation equivalent.

The main diÆculty in simulating a Standard Workow Model by a Synchronizing
Workow Model is that the latter essentially propagates two types of tokens. For
every �ring of a process element of a Standard Workow Model (propagation of a
true token) we may need to �re a number of process elements in the correspond-
ing Synchronizing Workow Model in order to propagate some false tokens. Such
a need typically arises when we want to �re an OR-Join in a Standard Workow
Model . The corresponding ANY-Join in the Synchronizing Workow Model requires
tokens for each of its inputs, hence some false tokens may need to be propagated.
Lemma 5.4.6 guarantees that this is always possible. First however it is necessary to
de�ne the notion of workow instances being true-token-equivalent which informally
equates a marking of a Standard Workow Model W with a marking of the corre-
sponding Synchronizing Workow Model S if for every token in the associated net of
a process element of W there is a token in the true place of the associated net of the
corresponding process element of S.

De�nition 5.4.4
Let W be a Standard Workow Model and S its corresponding Synchronizing
Workow Model and let PNW and PNS be the corresponding Petri net systems
of these models respectively. LetM1 be a reachable marking of PNW . A reachable

154 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

marking M2 of PNS is said to be true-token-equivalent with M1 i� for all places
p ∈ True

S ;M2(p) = 1 ⇐⇒ M1(h(p)) = 1, where h is an injection from True
S

to the corresponding places in PNW , i.e. h(rtx;y) = rx;y; h(ctx;y) = cx;y and
h(rtx) = rx. 2

Lemma 5.4.6 Let W be a Standard Workow Model and S its corresponding Syn-
chronizing Workow Model and let PNW and PNS be the corresponding Petri
net systems of these models respectively. Let M1 be a reachable marking of
PNW andM2 a true-token equivalent marking of PNS , then there exists a (pos-
sibly empty) �ring sequence � = t1t2:::tn of �-transitions in the Synchronizing
Workow Model such that M2

�−→ M ′
2 where M ′

2 is a marking such that for
every enabled OR-Join in W the corresponding ANY-Join in S is enabled.

Proof:
Without loss of generality we can focus on an enabled OR-Join with two in-
coming transitions in a marking M1. As the Standard Workow net is safe,
only one ready place of the associate net of this OR-Join can hold a token (and
one token only). As the marking M2 in the corresponding Synchronizing Net is
true-token-equivalent, the corresponding true place of the associated net of the
ANY-Join will hold a token. According to Theorem 5.4.1, a token will have to
arrive for the other branch of the ANY-Join. More formally, let p be the true
ready place of this branch of the associated net of this ANY-Join. Then there
is a marking M such that p or p is marked.

In the Standard Workow net, according to Proposition 5.4.2, there cannot be a
token on a path from an initial activity to the OR-Join (otherwise the OR-Join
could �re twice). As M1 and M2 are true-token-equivalent, in M2 there cannot
be a token in a true place on any path from an initial activity of S to either p or
p. Hence on a path from an initial activity to place p or p there must be a false
place that contains a token (there can be more than one such token). Moving
such tokens involves the �ring of �-transitions only (note that there cannot be
ANY-Joins on such a path with true-tokens waiting, as that would mean that
in the Standard Workow net there is a token for the corresponding OR-Join in
contradiction to Proposition 5.4.2). Note that �ring these transitions will result
in marking in which p is marked (p cannot be marked). 2

Lemma 5.4.7 LetW be an acyclic well-behaved StandardWorkow Model, (PNW ;M0)
its corresponding net system, S its corresponding Synchronizing Workow Model
and (PNS ;M0) its net system, then PNW and PNS are simulation equivalent.

5.4. SYNCHRONIZING WORKFLOW MODELS 155

Proof:
First focus is on simulating the Synchronizing Workow Model by the Standard
Workow Model. This is achieved through induction on the number n of �rings
of process elements. The case of n = 0 follows from the fact that the initial
markings of these workow models are true-token-equivalent. Assume that after
�ring n process elements, marking M1 of the Synchronizing Workow Net and
marking M2 of the Standard Workow Net are true-token-equivalent. We then
�re a process element p in the Synchronizing Workow Model which results in
marking M ′

1.

We will show that eitherM ′
1 andM2 are true-token-equivalent or it is possible to

�re a corresponding element of the Standard Workow Model and the resulting
marking M ′

2 and M2 are true-token-equivalent.

This is achieved through a straightforward case distinction:

1. If p was enabled with only false tokens, �ring it resulted in a marking that
is true-token-equivalent to M2. No action needs to be performed in the
Standard Workow Model. From this moment on we assume that at least
one of the enabling tokens of p was a true token.

2. If p is an activity, the corresponding activity in the Standard Workow
Model can be performed.

3. If p is a Split, the corresponding Split in the Standard Workow Model can
be performed, and the resulting marking is again true-token-equivalent.

4. If p is an ANY-Join with more than one true token, one can conclude that
the corresponding Join in the Standard Workow Model has to be an AND-
Join, as otherwise this workow would not be safe. Firing this AND-Join
results again in true-token-equivalent markings.

5. If p is an ANY-Join with one true and the rest false tokens, one can con-
clude that the corresponding Join in the Standard Workow Model has to
be an OR-Join, as otherwise there would be a deadlock (as according to
Proposition 5.4.3 there are no tokens in places above). Firing this OR-Join
results again in true-token-equivalent markings.

The opposite, simulating the Standard Workow Model by the corresponding
Synchronizing Workow Model, uses a similar case distinction. The only real
problem is that Lemma 5.4.6 is needed in order to guarantee that if an OR-Join
is performed in the Standard Workow net, the corresponding ANY-Join in the
Synchronizing Workow Model can be performed. 2

Corollary 5.4.3 LetW be an acyclic well-behaved Standard Workow Model, PNW
its corresponding net, S its corresponding Synchronizing Workow Model and

156 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

PNS its net, then for every reachable marking M of PNW there is a reachable
marking M ′ of PNS which is true-token-equivalent to M . Similarly for every
reachable marking M of PNS there is a reachable marking M ′ of PNW true-
token-equivalent to M .

Theorem 5.4.2 LetW be an acyclic well-behaved Standard Workow Model, PNW
its corresponding net, S its corresponding Synchronizing Workow Model and
PNS its net, then PNW and PNS are bisimulation equivalent.

Proof:
Before de�ning a bisimulation relation, we introduce labels for all transitions,
except those that just propagate false tokens. The reason for this is that we
would like the bisimulation relation to maintain the relationship between the
execution of the various corresponding joins and splits in the two nets. Naturally,
by showing that the resulting nets are equivalent, it follows that the original nets
with fewer labels, are also equivalent. The bisimulation relation is just made a
bit more strict.

We now de�ne a relation R between the reachable markings of both nets and
show that it is a bisimulation relation. Formally, R relates two markings if
and only if they are true-token-equivalent. From Corollary 5.4.3 it then follows
that for every reachable marking M1 of the Standard Workow net, there is a
reachable markingM2 of the Synchronizing Workow net such that (M1;M2) ∈
R and vice versa.

Let (M1;M2) ∈ R. First it will be shown that for every label a and marking
M ′

1 of the Standard Workow net such that M1
a

=⇒ M ′
1 there is a marking M ′

2

in the Synchronizing Workow net with M2
a

=⇒ M ′
2 and (M ′

1;M
′
2) ∈ R. This

requires the following case distinction:

1. If the label corresponds to an activity, then the corresponding activity can
be performed in the Synchronizing Workow net.

2. If the label corresponds to a split, then the corresponding split can be
performed in the Synchronizing Workow net.

3. If the label corresponds to an AND-Join then the corresponding join in the
Synchronizing Workow net can be performed, as all input branches will
have true tokens.

4. The case where the label corresponds to an OR-Join is the most interesting
one. In the Synchronizing Workow net, the corresponding join will have
exactly one true token. If all other branches have false tokens, then the
join can be performed directly. If not, then according to Lemma 5.4.6, false
tokens can be propagated using �-transitions only.

5.4. SYNCHRONIZING WORKFLOW MODELS 157

Note that in all the above cases, the resulting markings are true-token-equivalent
to the resulting marking in the Standard Workow net, hence related in R.

Now it will be shown that for every label a and markingM ′
2 of the Synchronizing

Workow net such that M2
a

=⇒ M ′
2 there is a marking M ′

1 in the Standard
Workow net with M1

a
=⇒ M ′

1 and (M ′
1;M

′
2) ∈ R. This requires a similar case

distinction (note that we do not need to consider transitions propagating false
tokens, as such transitions are unlabelled):

1. If the label corresponds to an activity, then the corresponding activity can
be performed in the Standard Workow net.

2. If the label corresponds to a split, then the corresponding split can be
performed in the Standard Workow net.

3. If the label corresponds to an ANY-Join with more than one true token,
then this join corresponds to an AND-Join in the Standard Workow net
(otherwise the workow would not be safe). This AND-Join can be per-
formed as all its input branches will have tokens.

4. If the label corresponds to an ANY-Join with one true token and the rest
false tokens, then this join corresponds to an OR-Join in the Standard
Workow net (otherwise deadlock would occur). Again, this OR-Join can
then �re.

Note that in all the above cases the resulting markings are true-token-equivalent
to the resulting marking in the Synchronizing Workow net, hence related in R.
Therefore, and given that R relates the initial markings of both systems, R is a
bisimulation relation. 2

Theorem 5.4.2 has important practical rami�cations, as it e�ectively demonstrates
that the choice for a true/false token evaluation strategy when developing a workow
engine does not compromise the expressive power of the workow language involved
as long as well-behaved workows with structured loops only are considered. One
advantage of this approach is that workow analysts need not worry about deadlock,
as all their speci�cations are guaranteed to be deadlock free.

Having established which Standard Workow Models can be captured as Synchroniz-
ing Workow Models, one may wonder whether all Synchronizing Workow Models
have a Standard Workow equivalent. Intuitively, the fact that the Petri net represen-
tation of both ANY-Join and ALL-Join is non-free-choice hints at the possibility that
Synchronizing Workow Models may exist which do not have a Standard Workow
equivalent. The next theorem proves this fact formally.

158 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

Theorem 5.4.3 There exist Synchronizing Workow Models for which no Stan-
dard Workow Model can be found such that the corresponding Petri nets are
bisimulation equivalent.

Proof:
Consider the Synchronizing Workow Model W of Figure 5.27. We will show
that no free-choice net system exists that is equivalent to this workow. This
then concludes the proof as the corresponding net system of any Standard Work-
ow Model is free-choice.

B D

A

C

XOR

E

ALL

F

AND

ALL

E

X

PNX

F

B C D
tB tDtC

tE tF

Figure 5.27: ALL-Join adds expressive power

Let PNW be the corresponding net of Synchronizing Workow Model W. Let
X be a Standard Workow Model that is equivalent to W and PNx its corre-
sponding net.

Playing the bisimulation game we have that in PNx there must be a reachable
marking M1 that enables a transition labelled A and a transition labelled B

and does not enable any transitions labelled C, D, E or F . Let us refer to the
enabled transitions as tA and tB respectively.

For PNx to be bisimulation equivalent to PNW there must be a marking M2

such that M1
a

=⇒ M2 and M2 is a marking that enables tB and a transition
labelled C and does not enable any transitions labelled A, D, E or F . Let us
refer to the enabled transition labelled C in M2 as tC .

Similarly must be a marking M3 such that M1
a

=⇒ M3 and M3 is a marking
that enables tB and a transition labelled D and does not enable any transitions

5.5. SUMMARY 159

labelled A, C, E or F . Let us refer to the enabled transition labelled D in M3

as tD.

The bisimulation game further yields that there must be a markingM4 such that

M2
bc
=⇒ M4 and M4 is a marking that enables a transition labelled E and does

not enable any other labelled transitions. Let us refer to the enabled transition
labelled E in M4 as tE.

Similarly there must be a marking M5 such that M2
bd
=⇒ M5 and M5 is a

marking that enables a transition labelled F and does not enable any other
labelled transitions. Let us refer to the enabled transition labelled F in M5 as
tF .

As PNx is the corresponding net of a Standard Workow Model, transitions tB,
tC , tD, tE and tF have exactly one input and one output place. A subnet of PNx

along with transitions tB, tC , tD, tE and tF with marking M2 is schematically
shown as the right diagram of Figure 5.27. The subnet comprising output places
of transitions tB, tC and tD, input places of transitions tE, tF and subnet X of
Figure 5.27 full�ls the assumptions of Lemma 5.2.2 (Selective Synchronizer)
hence PNx cannot be free-choice which contradicts the assumption that PNx is
the corresponding net of a Standard Workow Model. 2

Summarizing, as opposed to Standard Workow Models, Synchronizing Workow
Models are always safe, they never result in deadlock, and they do not allow for
direct speci�cation of arbitrary cycles. Synchronizing Workow Models can express
all Standard Workow Models that do have these properties (i.e. well-behaved, acyclic
models). There are Synchronizing Workow Models though that are inherently non
free-choice and hence do not have a Standard Workow equivalent.

5.5 Summary

In this Chapter we have presented some fundamental results concerning theoretical ex-
pressiveness limits of the four language classes introduced in Chapter 4. The following
is a summary of the results with practical implications for the workow modeller:

1. Standard Workow Models are less expressive than free-choice Petri nets. This
is a serious expressiveness limitation of models comprising activities, OR-Joins,
AND-Joins, XOR-Splits and AND-Splits. There is no good solution to overcome
this problem though. One approach is to base the modelling of workow process
entirely on Petri nets. However, the resulting model is much more complex and

160 CHAPTER 5. BASIC EXPRESSIVENESS RESULTS

may not be suitable for end-users (examples of commercial workow manage-
ment systems based on Petri nets are COSA [SL99] and Income [Pro98]). The
common alternative for certain scenarios is to use data ow as an augmentation
to control ow. This is discussed in more details in section 6.5. Another ap-
proach is to enhance the modelling language with some additional constructs.
The downside is that there is no consensus in industry what advanced con-
structs should be added to the basic set of process modelling elements thus
making model interchange between di�erent products hard or impossible. Some
of these advanced constructs and their relative expressive power will be pre-
sented in Chapter 6.

2. Safe Workow Models are less expressive than Standard Workow Models. This
relates to the fact that Standard Workow Models can be unbounded as well
as the fact that it is possible to use an AND-Join construct in a way beyond
the expressive power of Safe Workow Models. We believe there is no reason to
restrict the power of a workow modelling language to safe models only.

3. Structured Workow Models are less expressive than Safe Workow Models.
Transformations of arbitrary models are hard or impossible. Again, we believe
that there is no reason to restrict the power of a workow modelling language
to structured models only.

4. Synchronizing Workow Models and Standard Workow Models are incompa-
rable. However, intuitively it seems that Synchronized Models are far more
restrictive than Standard Workow Models. First of all with Synchronizing
Workow Models it is awkward to model loops and decomposition needs to be
used. Secondly it is not possible to model multiple instances which is a serious
limitation. Some extra expressive power of Synchronizing Models does not seem
to o�set their obvious limitations and this can perhaps be overcome by aug-
menting Standard Workow Models with some additional advanced modelling
construct.

We believe that we have provided strong arguments for the choice of Standard Work-
ow modelling evaluation strategy over alternative workow evaluation approaches.
It is therefore most surprising that this evaluation approach does not seem to be a
common choice amongst workow vendors. As much as we cannot deduct the exact
reasoning behind the choice of a particular approach by a given vendor, we believe
that there may be two primary reasons for that:

• The attempt to keep the modelling language simple and, in particular, to pre-
vent workow models from having undesirable deadlocks and multiple instances.
There are some e�orts in academia (e.g. [SO99, AHV97]) to derive veri�cation

5.5. SUMMARY 161

engines that could analyse workow models for possible errors before they are
deployed. We are unaware, however, of any commercial vendor utilizing such a
veri�cation engine.

• The lack of anticipation for certain business requirements, in particular for the
need for multiple instances. This seems to be particularly true for products
that have chosen the Safe Workow Modelling approach. Indeed, support for
multiple instances requires more complex engineering e�orts and that could have
been overlooked in the early years of workow technology.

Chapter 6

Advanced Expressiveness Results

The di�erent evaluation strategies and the semantics of the basic control ow con-
structs are not the only areas not precisely addressed by the WfMC. In this Chapter
we would like to investigate some other issues associated with choices that workow
engine designers are likely to face.

When de�ning syntax and semantics for workow models, it was assumed that there
may be multiple �nal activities in a workow model. There are some workow engines
(e.g. Verve Workow, Fort�e Conductor, etc.) for which this assumption does not hold.
In Section 6.1 the consequences associated with this design decision are explored.

The execution of Standard Workow Models (as opposed to Synchronizing and Struc-
tured Workow Models) may result in deadlock. Typically this is viewed as an un-
desirable situation. In Section 6.2 we consider the possibility of using deadlock
intentionally to express certain task dependencies and determine whether this can
enhance the expressive power of Standard Workow Models.

Some workow languages support constructs, not part of the basic control ow con-
structs, which clearly have practical signi�cance. One such construct is considered in
Section 6.3, where it is shown that it cannot be simulated using the basic control ow
constructs.

In [Wor99b] WfMC de�nes a subprocess as a \process that is enacted or called from
another (initiating) process (or sub process), and which forms part of the overall
(initiating) process". Similarly to de�nitions of other control ow constructs this
de�nition leaves room for di�erent interpretations. In Section 6.4, decomposition and
some of its many uses, are studied in more depth.

Finally in Section 6.5 we provide some insight into the use of data ow for augmenting
control ow speci�cations in workow models.

163

164 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

6.1 Termination

Termination refers to the state where no work remains to be done. Often, this situ-
ation is referred to as successful termination to distinguish it from deadlock. While
the presented de�nition of termination in Section 4.1.1 seem straightforward, and
languages supporting the synchronizing evaluation strategy employ it (e.g. MQSeries
Workow), most workow engines in practice, especially those supporting standard
or safe workows (a notable exception here is Sta�ware), have a di�erent view on
termination. In these engines, for every workow, one or more �nal tasks need to be
speci�ed. The workow then is considered to be terminated when the �rst of these
�nal tasks have completed.

This termination policy is particularly problematic when a (or the) �nal task is reached
while some other parallel threads are still running. What the workow engine will
do in such a situation di�ers from product to product but typically the remaining
threads are abruptly aborted leaving the workow in a potentially inconsistent state.
Hence we are interested in workows where this situation cannot occur and we will
refer to them as terminating strictly.

De�nition 6.1.1 (strictly terminating workows)
Let (PNW ;M0) be the corresponding system of Standard Workow Model W.
We will call W terminating strictly i� for every sink transition t and every
reachable marking M of PNW that enables t, we have for all places p:

M(p) =

�
1 if p ∈ •t
0 if p �∈ •t

2

De�nition 6.1.2 (uniquely terminating workows)
A Standard Workow Model W is terminating uniquely i� it has exactly one
�nal task and is terminating strictly. 2

Clearly, there exist non-safe Standard Workow models for which there is no strictly
terminating equivalent workow model. A simple example of such a model is shown
in Figure 6.1 and the practical usefulness of a relaxed termination strategy is evi-
dent when considering patterns involving multiple instances (see Section 3.4). Stan-
dard Workow models that are well-behaved, on the other hand, have a terminating
uniquely equivalent workow model.

To prove this result we will show that for every well-behaved Standard Workow model
W, it is possible to transform its corresponding Petri net, PN into a bisimulation

6.1. TERMINATION 165

B

C

A DOR XORAND

Figure 6.1: Sample Standard Workow Model utilising relaxed termination policy

equivalent net PN ′ that has only one sink transition (i.e. a transition without output
places). It is then possible to convert PN ′ back to a terminating uniquely workow
speci�cation that is equivalent to W.

Theorem 6.1.1 Every well-behaved Standard Workow Model has an equivalent
workow model that is terminating uniquely.

Proof:
Let W be a well-behaved Standard Workow model and PN = 〈P; T; F 〉 be
its corresponding WB-net with SPN , P

s and T s as de�ned in De�nition 5.4.2.
Then,

PN ′ = (P ∪{ps|s ∈ SPN};
T ∪{tf};
F ∪{(t; ps)|s ∈ SPN ∧ t ∈ T s}∪{(ps; tf)|s ∈ SPN})

is a WB-net with one sink transition tf .

Clearly, tf is a sink transition. There are no other sink transitions because all
(former) sink transitions in SPN have an output place in {ps|s ∈ SPN} (Note
that s ∈ T s and s• = {ps}). Moreover, the source places of PN are still the
only source places of PN ′, PN ′ is free-choice, and has no sink places (all new
places have an input and output transition). It is also easy to see that every
node is on a path from a source place. To prove the last three properties stated
in Proposition 5.4.1, we show that from any reachable state it is possible to
reach the empty state, i.e., enable and �re tf .

Consider a (former) sink transition s ∈ SPN . As long as P s contains tokens,
there is a �ring sequence enabling s (Lemma 5.4.3). If a transition in T s �res,
the last token in P s is consumed. Moreover, s can �re only once (Lemma 5.4.4).
Note that s ∈ T s and exactly one source place is in P s. On the one hand, only
one transition of T s can �re. Therefore, it is not possible to mark ps more than
once. On the other hand, at least one of the transitions of T s will �re (assuming

166 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

fairness: initially the unique source place in P s is marked and it is possible to
reach the empty marking). Therefore, ps will be marked at least once. Hence,
the place ps is marked once. Therefore, all places in {ps|s ∈ SPN} are marked
once and sink transition tf will produce the empty marking.

As the resulting PN ′ net is an FCDA-net (as per De�nition 5.1.1) it is straight-
forward to transform PN ′ back to a workow model using transformations pre-
sented in Theorem 5.1.2.

It remains to be shown that PN ′ is bisimulation equivalent to PN . Let M be
a reachable marking of PN . We will call a reachable marking M ′ of PN ′ an
associated marking of M i� M ′[P] = M (in other words it should have exactly
the same number of tokens in every place of the original net, the markings of the
introduced places does not matter). From the construction of PN ′ it is easy to
check that a relation R that relates every markingM of PN to all its associated
markings in PN ′ is indeed a bisimulation relation.

2

F

D

E

C

B

XOR

A

AND

AND

AND

XOR

m

~m

Figure 6.2: Sample Standard Workow model with two �nal tasks

Example 6.1.1 As an example of the construction used in the proof of Theo-
rem 6.1.1, consider the workow of Figure 6.2. This workow has two �nal
tasks, named E and F . In every instance, the task named F is executed while
the task named E is executed only if condition m evaluates to false. By fol-
lowing the construction presented in the proof we end up with the workow
presented in Figure 6.3. Note that this workow is indeed equivalent to the
one of Figure 6.2. Also note that from a comprehensibility point of view, the
workow with the unique �nal task is much more complicated and its control
ow would be much harder to understand for an end-user. 2

Remark 6.1.1
Naturally, the equivalent of Theorem 6.1.1 for Synchronizing Workow models is

6.2. DEADLOCK 167

F

D

E

C

B

OR

A

XOR AND

AND

OR

AND
AND

AND

m

~m

Figure 6.3: Terminating uniquely equivalent workow to workow of Figure 6.2

trivial, as for every Synchronizing Workow Model W with more than one �nal
task, the Synchronizing Workow Model which simply adds an ANY-Join with
input transitions from all the �nal tasks followed by a null activity is equivalent
to W. 2

6.2 Deadlock

This section takes a closer look at the issue of deadlock in workows. As Synchronizing
Workow models cannot deadlock, focus is on Standard Workows exclusively.

Imagine a workow management system that has the ability to detect deadlock at
runtime (from a programming point of view this is fairly easy to achieve). Moreover,
imagine that the workow analyst could instruct the workow engine what to do
when it encounters a deadlock. Speci�cally, (s)he could instruct the engine to treat
deadlock as a normal, successful, termination1. The question that we would like to
address is whether such a feature would increase the expressive power of a workow
engine. More formally, this question boils down to determining whether any Standard
Workow model with a deadlock has an \equivalent" deadlock free Standard Workow
model. As our equivalence notion will always distinguish a speci�cation that deadlocks
from a speci�cation that does not deadlock, a relaxed equivalence notion is required.

De�nition 6.2.1
Workow models W1 and W2 are execution equivalent i� the begin-end trans-
formations of their corresponding systems are bisimilar according to De�ni-
tion 4.2.3 excluding the second clause.

2

168 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

B C

D

AND

A

B C

AXOR

OR

Figure 6.4: Two execution equivalent processes

Example 6.2.1 The two workow processes depicted in Figure 6.4 are execution
equivalent even though the left-most process deadlocks whilst the right-most
process always terminates successfully. 2

Theorem 6.2.1 (dynamic deadlock resolution adds expressive power) There exist Stan-
dard Workow models for which no deadlock free execution equivalent Standard
Workow model exists.

F

A

B

C

XOR

AND

AND

AND

E

D

E

X

PNX

F

B C D
tB tDtC

tE tF

Figure 6.5: Standard Workow Model with a deadlock

1We are not aware of any commercial workow engine with this capability.

6.3. ADVANCED SYNCHRONIZATION 169

Proof:
Consider the Standard Workow modelW of Figure 6.5. The semantics of this
workow speci�cation is as follows. After completing activity A a choice is made
between activities C and D. At the same time activity B can be performed. If
C is chosen and completed along with B, activity E can be performed. If D is
chosen and completed along with B, activity F can be performed.

The rest of the proof is analogous to the proof of Theorem 5.4.3. Using the same
argumentation we have that in any net PNx that is bisimulation equivalent toW
there must be transitions labelled B, C, D, E and F (let us call these transitions
tB, tC , tD, tE and tF). Furthermore if M1 is a reachable marking of PNx such
that it enables transitions tB and tC and no other labelled transitions there must
be a �ring sequence �1 such that M1

�1=⇒ M2 and M2 is a marking that enables
transition tE and no other labelled transition. Similarly if M3 is a reachable
marking of PNx such that it enables transitions tB and tD and no other labelled
transitions there must be a �ring sequence �2 such that M3

�2=⇒ M4 and M4

is a marking that enables transition tF and no other labelled transition (this is
shown in the right diagram of Figure 6.5). The subnet X of this diagram ful�ls
the conditions of Lemma 5.2.2 (Selective Synchronizer) and we have that PNx

cannot be free-choice or it deadlocks.

2

Theorem 6.2.1 may strike the reader as controversial as deadlock in a speci�cation
would always seem to be undesirable. However, the theorem shows that from an
expressiveness point of view it is advantageous to be able to instruct a workow
engine what to do in case it encounters a deadlock at runtime. If this option were
present in the engine, deadlock could be used as a constructive tool to help design
processes that otherwise can not be speci�ed.

6.3 Advanced Synchronization

Standard Workow models support two types of merge constructs: the AND-Join
and the OR-Join. There exist business patterns though that are hard or impossible
to capture using these types of merges only. An example of such a pattern is the
discriminator introduced in Section 3.2.

The discriminator is a merge construct with a fairly straightforward intuitive seman-
tics. It behaves like an OR-Join in the sense that it is nonsynchronizing, an incoming
branch can �re the activity following the discriminator, but it is di�erent in the sense
that the subsequent activity should not be �red by every incoming branch, only by
the one that �nishes �rst.

170 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

Consider the simplest process model using the discriminator construct shown in the
left diagram of Figure 6.6. In this model, from the initial marking enabling activities
A and B the following scenarios are possible:

1. Activity A is completed. Activity C gets enabled and the process �nishes when
both activities B and C are completed.

2. Activity B is completed. Activity C gets enabled and the process �nishes when
both activities A and C are completed.

3. Activities A and B are completed before activity C is started. The process
�nishes once activity C completes. Note that activity C is enabled as soon as
either A or B completes.

The important feature of the discriminator in this model is that activity C can be
done only once. Formally this behaviour can be captured by the Petri net system
PND in Figure 6.6 (note that this net system is not free-choice).

The following theorem shows that the discriminator adds expressive power to Standard
Workow Models, as it is inherently non free-choice.

Theorem 6.3.1 (the discriminator adds expressive power) There is no StandardWork-
ow Model equivalent to the Petri net system PND of Figure 6.6.

Proof:
Suppose that there is a deadlock-free, free-choice Petri net that is bisimulation
equivalent toW. Let us refer to this net as S. This net has to have a transition
labelled A and a transition labelled B. We will call these transitions tA and tB
respectively.

Let MAB be a reachable marking of S that enables transitions tA and tB. Ap-
plication of the bisimulation game yields that there must be be �ring sequence

�1 such that MAB
tA�1−→ MBC and MBC is a marking of S that enables transition

tB and a transition labelled C (let us call it tC1) but does not enable tA (or any
other transition labelled with A).

Similarly there must be �ring sequence �2 such that MAB
tB�2−→ MAC and MAC

is a marking of S that enables transition tA and a transition labelled C (let us
call it tC2) but does not enable tB.

Consider now the simulation scenario in which from marking MAB of S, the
�ring sequence tB�2 is performed resulting in marking MAC (see net PNX of
Figure 6.6). If it was possible from markingMAC to perform the �ring sequence

6.3. ADVANCED SYNCHRONIZATION 171

A B

C

Discr.

A B

C C

σ1 σ2

tA tB

tC1 tC2

A B

C
PND

PNX

Figure 6.6: Illustration of the discriminator proof

tA�1, it would be possible to �re both transitions tC1 and tC2 (if tC1 = tC2 then
it would be possible to �re that transition twice). As that would make S not
equivalent to W, consider the �rst transition in �1 that cannot be �red. If it is
possible to enable it by �ring some other non-labelled transitions, consider the
next transition in �1 for which this is impossible. Let us refer to this transition
as tq. This transition must have at least one token in one of its input places.
But as S is free-choice, any other transition that shares its input places with tq
must share all its input places with tq and therefore it cannot be �red either.
As there is no possibility to remove the token from one of the input places of tq,
there is a �ring sequence from the markingMAC that results S to be in deadlock
and hence it is not equivalent to W.

2

Considering the semantics of the discriminator in the more general case raises the
question as to how it should behave in loops. The simplest solution would be to allow
the �rst incoming branch to trigger the activity following the discriminator and ignore
all the other branches from then on. Clearly though this causes a deadlock when the
discriminator is used in a loop. A more sophisticated approach would be to allow the
�rst incoming branch to trigger the activity following the discriminator, and to keep
track of the other branches. Once all branches have completed, the discriminator is

172 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

\reset" and the next incoming branch to �nish can again trigger it. This semantics is
captured formally by the Petri net shown in Figure 6.7.

SB
d

WB
d

CB
d

SA
d

Rd
x

Start d

WA
d

CA
d

A

GA
d HA

d GB
d HB

d

Reset d

B

X

Figure 6.7: Petri net semantics of the discriminator

In Figure 6.7 two activities A and B are shown, which are input to a discriminator
d (the schema extends in a natural way to the case of n incoming branches). The
place named Startd initially contains a token (this place is a status place as used in
De�nition 6.3.3). This represents the situation that the discriminator is waiting for
one of its incoming branches to �nish. When the �rst incoming branch �nishes, say
activity A, activity X is enabled, a token is produced for the place WB

d to represent
the fact that the discriminator still needs to wait for activity B before it can be reset,
and a token is placed in place SA

d so that the fact is remembered that the branch with
activity A was already \seen". The completion of B now does not lead to another
instance of activity X, rather a token is removed from WB

d and put in SB
d . As both

branches have now been executed, tokens can be removed from SA
d and SB

d and a
token can be put in Startd, representing the fact that the discriminator is reset and
ready for another iteration. Note that this semantics works well for models that are
not guaranteed to be safe, for example the completion of two instances of activity
A before an instance of activity B is completed, simply results in the �rst instance
enabling activity X, and the second instance having to wait for an instance of B
before it can enable activity X again.

6.3. ADVANCED SYNCHRONIZATION 173

De�nition 6.3.1
Syntactically, a Standard Workow model with discriminators, is a Standard
Workow model W with a nonempty set D of discriminators. Each discrimina-
tor has an indegree of at least two and an outdegree of one.

2

De�nition 6.3.2
Given a Standard Workow model W with discriminators from D, the cor-
responding, marked, labelled, Petri system PNW = 〈P ′

W ; T
′
W ; F

′
W ; L

′
W ;M

′
W〉 is

de�ned by:

P ′
W = PW ∪

{wx
d | d ∈ D ∧ x ∈ in(d)}∪ #\waiting" places#

{sxd | d ∈ D ∧ x ∈ in(d)}∪ #branches already seen#
{Startd | d ∈ D} #\start" places#

T ′
W = TW ∪

{Gx
d | d ∈ D ∧ x ∈ in(d)}∪ #transitions to trigger discriminator#

{Hx
d | d ∈ D ∧ x ∈ in(d)}∪ #transitions not to trigger discriminator#

{Resetd | d ∈ D} #\reset" transitions#

L′
W = LW

F ′
W = FW ∪

{(Startd; Gx
d) | d ∈ D ∧ x ∈ in(d)}∪

{(Resetd; Startd) | d ∈ D}∪
{(cxd; Gx

d) | d ∈ D ∧ x ∈ in(d)}∪
{(cxd; Hx

d) | d ∈ D ∧ x ∈ in(d)}∪
{(Gx

d; w
y
d) | y �= x ∧ d ∈ D ∧ y ∈ in(d) ∧ x ∈ in(d)}∪

{(Gx
d; s

x
d) | d ∈ D ∧ x ∈ in(d)}∪

{(Gy
d; r

d
x) | d ∈ D ∧ y ∈ in(d) ∧ x ∈ out(d)}∪

{(wx
d ; H

x
d) | d ∈ D ∧ x ∈ in(d)}∪

{(Hx
d ; s

x
d) | d ∈ D ∧ x ∈ in(d)}∪

{(sxd;Resetd) | d ∈ D ∧ x ∈ in(d)}
The initial marking M ′

W assigns a single token to each of the places in {ix | x ∈
I} and to each of the places in {Startd | d ∈ D}. 2

De�nition 6.3.1 raises an interesting question regarding the termination of a workow
model containing a discriminator. According to de�nition 4.1.11, any workow con-
taining a discriminator will never terminate as the token in place Startd cannot be
removed.

174 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

When faced with constructs utilizing tokens that keep track of the state of these
constructs, rather than the state of the process, the de�nition of termination needs
to be adapted.

De�nition 6.3.3 (relaxed termination for advanced workows)
Refer to places that contain tokens in the initial marking of the corresponding
Petri net of some workow speci�cation, but do not correspond to initial places
of workow elements, as status places. The workow speci�cation can terminate
i� from the initial marking of its corresponding Petri net system a marking can
be reached, where only status places contain tokens. 2

It is possible to assign a meaningful semantics to the concept of a discriminator
for synchronizing languages. However, there are multiple choices. One could de�ne
the discriminator such that it passes on the �rst token that it receives and ignores
tokens from the other activities (till every such activity has generated a token in
which case the next cycle could start), or it could be de�ned in such a way that
it passes on the �rst true-token and waits for tokens from the other activities, but
generates a false-token when it receives false-tokens from each of its input activities.
Other interpretations are possible as well, but as to the best of our knowledge there
is no commercially available workow system that uses a synchronizing strategy and
provides a support for the discriminator, this issue will not be explored further.

6.4 Decomposition

Most process modelling techniques support a form of decomposition. The notion of
decomposition is however overloaded and used to achieve, among others, the following:

• The ability to structure the model, making it more e�ective for communication
purposes;

• The ability to specify iterative structures. This is particularly important for
synchronizing languages as they cannot directly support loops (see Section 5.4);

• The ability to specify recursion. As shown in [HO99], recursive decomposition
adds expressive power as it allows for the speci�cation of some context-free
languages (e.g. the language of palindromes) that are not Petri net languages;

• The ability to synchronize multiple instances properly. This is, however, linked
to the termination strategy supported and as such is not necessarily something
speci�c for decomposition; This issue will be explored in more depth in this
section;

6.4. DECOMPOSITION 175

• The ability to thread multiple instances. This issue will also be further explored
in the remainder of this section.

Clearly, decomposition is worthy of an in-depth study in itself. Serving so many
purposes, it is likely that multiple fundamentally di�erent concepts are at its roots.
In the context of this thesis, we will not provide a formal treatment of this notion,
but illustrate how it is used to deal with issues related to multiple instances. A
formal semantics for decomposition that behaves properly in the context of multiple
instances is non trivial. Decomposition as found in various variants of Petri nets, such
as Hierarchical Colored Petri nets (see e.g. [Jen98]) or hierarchical nets as presented
in [CK81], cannot synchronize properly on multiple instances and do not create mul-
tiple threads for each instance of a decomposed activity (hence di�erent threads may
interfere). This is not to say that a formal semantics of decomposition cannot be
given in e.g. Colored Petri nets, it is just that the characteristics of decomposition are
very di�erent and lead to relatively complicated formal semantics.

Sd BAND A

C

OR

S

XOR

Figure 6.8: A decomposed activity with multiple instances

Let us �rst focus on the issue of multiple instances. To this end, consider the workow
represented in Figure 6.8. In this workow, a decomposed activity is followed by an
activity named C. The decomposition contains a loop, which, if entered, starts an
activity A (followed by an activity B), and in parallel starts the beginning of the loop
again. Assuming a lazy termination strategy, the trace set of this workow is the set
of strings consisting of an equal number of a's and b's followed by a single c. Every
pre�x of any such string has at least as many occurrences of a as of b. Clearly, for
every natural number n the string anbnc is an element of the trace set of this workow.
Such a string is called a counter and it is well known that there is no �nite Petri net
that can generate it (see e.g. [Tau89] p. 120; the theorem goes back to [Age75]). This
shows, informally, that hierarchical decomposition combined with a lazy termination
strategy adds expressive power.

Another aspect of decomposition is the ability to thread multiple instances. To explain
this concept consider Figure 6.9. In the Standard Workow model shown in the
lefthand side of this �gure, two initial activities are followed by an OR-Join and an

176 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

D

S2S1

OR

A

XOR

B C

AND D

S2S1

OR
A

XOR

B C

AND

Figure 6.9: Two workow models which are not equivalent

activity named A. Assuming that this is a Standard Workow model, during execution
this will lead to two instances of activity A being created. After activity A, a choice is
made for activities B or C. ActivityD then awaits completion of both these activities.
The workow shown in the right-hand side of Figure 6.9 looks similar, except that
decomposition is used for the remainder of the workow following the OR-Join.

The fundamental issue separating both workows is deadlock. According to the se-
mantics assigned to Standard Workow models, execution of the workow on the
left-hand side does not always lead to a deadlock: both instances of the XOR-Split
may lead to a di�erent outcome, in which case the AND-Join will trigger activity D.
Some workow engines (e.g. Verve Workow), even though they generate multiple
instances of activity A (hence it would seem that they follow the standard workow
execution semantics) will deadlock for all possible workow instances. The reason
for this is that once a new instance of activity A is created, it is executed in its
own \thread". Every subsequent activity will also be executed in this thread, which
means that in this case two instances of the AND-Join will be created (each of which
will deadlock). In other words, the semantics is as in the workow model shown in
the right-hand side of Figure 6.9. In this model every instance has a deadlock as
every execution of the decomposed activity occurs in its own space, and communi-
cation/synchronization between di�erent instances is not possible. The ability to do
this multi-threading is often desirable and it is not clear how it can be supported
without the use of special block structures.

6.5. TRANSFORMATIONS USING DATA FLOW 177

6.5 Transformations Using Data Flow

So far throughout this thesis the focus was exclusively on control ow. In this section
we would like to hint on the issue of data ow in the context of workow execution.
The following informal discussion is not intended to be exhaustive, it rather tries to
underline several important issues related to data ow.

A

B

C

ORXOR

D

E

ORXOR F

B

m

~m

m

~m

C

D

E

Figure 6.10: Speci�cation using data ow and its Petri net semantics

Consider the simple workow model depicted in the top diagram of Figure 6.10. There
are two choices (XOR-Splits), the �rst being between performing activities B or C,
the second one between performing activities D or E. By using some data predicates
these choices are related though. Assuming that only activity A can set the value of
m, the traces abef and acdf are not possible. The Petri net representation of this
workow as presented so far in this thesis does not capture the proper behaviour of
this workow model.

The bottom diagram of Figure 6.10 shows a Petri net that better captures the se-
mantics of the workow. The important feature of this net is the fact that the choice
between �ring transitions D and E is not free (and consequently, the whole net is not
free-choice).

As every Standard Workow Net is free-choice, the above observation hints on the
possibility that usage of data ow to inuence control ow of a workow process
can increase the expressiveness. However this comes at a price. Data ow usage
decreases workow processes' suitability. Many workow engines conceal conditions
of XOR-Splits from end-users. It is therefore unclear that there is some extra logic in

178 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

a business process diagram and that may often lead to confusion. Furthermore data
ow usage makes veri�cation of workows much harder if not impossible. For tools
that perform veri�cation through translation to Petri nets (e.g. Woan, [AHV97]) it
is needed that the translation of a workow process to a Petri net takes data-related
dependencies into account. This is very diÆcult to do in general case. On the other
hand, Flowmake ([SO99]) that performs veri�cation at the workow process level
is unable to take data-related dependencies into account during its workow model
analysis.

A

B

C

XOR

D

E

OR F

Figure 6.11: Simpli�ed workow equivalent to workow of Figure 6.10

For processes where it is possible to �nd an equivalent representation without con-
cealed data ow dependencies, we strongly advocate that this be done. As an example,
Figure 6.11 shows a workow model equivalent to that of Figure 6.10. There are sit-
uations though where this is not possible and this is explored in more details in the
remainder of this section.

The common use of data is when transforming of standard workow models to struc-
tured workow models needs to be performed. In Section 5.3.1 we have presented
several transformations useful for this purpose. These transformations rely on node
duplication and may result in disproportionally large diagrams. The use of data ow
provides workow modellers with additional transformations. Alternative transforma-
tions using data ow for workows containing entry into a loop structure, exit from a
decision structure and entry into a decision structure are shown in Figures 6.12, 6.13
and 6.14 respectively.

As it was shown in Theorem 5.3.2, models containing an exit from a loop structure
cannot be transformed to an equivalent structured workow model using only control
ow constructs. The transformation using data ow is depicted in Figure 6.15.

In all these transformations it is important to observe that auxiliary variables (� and
�) are needed to preserve the original values of � and � in case any activities in the
model change them.

6.6. SUMMARY 179

α

∼α
Φ

∼Φ

∼Φ

Φ
B

A

CF

E

OR

OR

XOR

B

A

F

OR

Φ:=True

E

Φ:=False

CΦ:=α

XOR

OR

XOR

Figure 6.12: Entry into a loop structure

α∼α

∼Φ
Φ

β

∼β

C

E

D

F

B

OR

A

XOR α∼α

E

B

A

XOR

C

XOR

OR

D

ORXORF
∼Φ

Φ

Φ:=β

Φ:=TrueXOR

Figure 6.13: Exit from a decision structure

6.6 Summary

In this Chapter we have presented several issues that focus on more advanced aspects
of workow speci�cation beyond the use of standard control ow constructs such as
AND-Joins, AND-Splits, OR-Joins and OR-Splits. In Section 6.1 we argue against a
strict termination policy which is commonly deployed by workow vendors. Addition-
ally we present a transformation that can be used to transform well-behaved models
that have more than one �nal task into models with one �nal task. This transforma-
tion is useful to any workow modeller working with a language that requires a unique
�nal task in a workow process. In Section 6.2 we present theoretical arguments for

180 CHAPTER 6. ADVANCED EXPRESSIVENESS RESULTS

∼Φ Φ

Φ

∼Φ

α∼α

E

C

DF

B

OR

XOR

OR

A

EC

D

B

OR

XOR

OR

A

Φ:=True

F

Φ:=α

XOR

OR

Figure 6.14: Entry into a decision structure

α

∼α

Workflow D1 Workflow D2

∼ΦΦ

β

∼β Θ ∼Θ Φ

∼Φ

A

OR

B

C

F

E

XOR

XOR

E

C

A Φ:=α

B

F

Θ:=βΘ:=False

OR

XOR

OR

XORXOR

Figure 6.15: Exit from a loop structure

adopting an active deadlock resolution strategy. We are not aware of any workow
language that employs such a strategy. In Section 6.3 we provide a proof that a Dis-
criminator construct is not possible to implement using Standard Workow Models.
We consider it to be a good argument for adoption of the discriminator construct in a
modern workow modelling language. In Section 6.4 decomposition is studied in more
depth and �nally in Section 6.5 we provide an insight into using data ow to aug-
ment control ow speci�cations of workow models. Additionally we present several
transformations that can be useful when transforming Standard Workow Models to
Structured Workow Models.

Chapter 7

Conclusions

Workow technology, with the advancement of electronic commerce, business-to-
customer and business-to-business interactions and an increasing pressure to stream-
line and automate processes of any enterprise that wants to stay competitive, has
become more ubiquitous than ever.

As of the beginning of 2002, the Workow Management Coalition, arguably the most
prominent standardisation body for workow technology, lists over 280 members,
many of them being workow engine providers. The Workow and Reengineering
International Association (WARIA)1, a non-pro�t organization that closely monitors
the workow market, lists over 70 workow vendors, and undoubtly there are many
workow products that escape its classi�cation.

It is not surprising then, given the lack of a well-established formal foundation to
workow modelling, that many di�erent approaches towards workow modelling have
been proposed and implemented in commercial products. In this Thesis we present
eight di�erent commercial products. As we have demonstrated in Chapter 2 through
a simple test harness consisting of a set of workow processes that were then run
in every evaluated product, there are substantial di�erences in interpretation of even
the most basic concepts that are used to de�ne the control ow part of a workow
speci�cation.

It is therefore surprising that in discussions on workow products, emphasis is hardly
ever on the workow languages used, rather focus is almost exclusively on operational
and architectural aspects. The standardization e�orts of the Workow Management
Coalition with respect to process modelling have fallen short in achieving its stated
goal of providing a common process interchange format. In [Wor99a] the WfMC
presents WPDL, Workow Process De�nition Language, that, once generated by pro-

1http://www.waria.com

181

182 CHAPTER 7. CONCLUSIONS

cess design tools, is \capable of interpretation in di�erent workow run-time prod-
ucts". As we have shown through the test harness, the interpretation of seemingly
well-understood concepts, varies greatly from product to product.

We feel that one of the fundamental reasons for the existence of many incompatible
modelling techniques is a lack of deep understanding of the implications of various
approaches to specifying control ow in workows. In this Thesis we have embarked on
the task of providing a milestone for such knowledge and the approach we have taken
focuses on three principles of a good modelling technique: suitability, expressiveness
and formality.

In Chapter 3 we have indicated requirements for workow languages through the use
of \workow patterns". To our knowledge no other attempts have been made to
collect a structured set of workow patterns and, as we have demonstrated in that
chapter, no workow product that we have evaluated, supports all identi�ed patterns.

It is diÆcult to gather quantitative data about the occurrence frequency of each
pattern, however given that we have provided real-life examples for each of these
patterns, it is likely that some business processes may be hard to automate using the
current crop of workow technology. Patterns involving multiple instances (presented
in Section 3.4) and state-based patterns (presented in Section 3.5) seem to present the
biggest challenge for workow products. It is our consulting experience that patterns
belonging to the �rst group (patterns involving multiple instances) are frequently
encountered in real-life.

The other goal that we have tried to achieve with our patterns work was to suggest
di�erent implementation strategies for each of the patterns. These solutions have
various degrees of suitability and in some cases no solution can be presented hinting
at the lack of expressive power in a given modelling language.

In Chapter 4, in order to formally investigate the expressive power of di�erent mod-
elling approaches, we have presented a Petri net based formal foundation along with
an equivalence notion that can be used to compare di�erent process models. Then in
Chapter 5 we have evaluated the four most common evaluation strategies with respect
to their expressive power. The following strategies were identi�ed.

1. Standard. This strategy is used by Verve and Fort�e Conductor. It allows for
creation of concurrent multiple instances of an activity using a standard OR-Join
construct and it allows for speci�cation of arbitrary cycles. The main downside
is that models employing this strategy may deadlock.

2. Safe. This strategy is similar to Standard, the main di�erence being lack of
support for concurrent multiple instances of an activity. This strategy is used
by HP Changengine, Sta�ware and Fujitsu i-Flow. Again, models employing
this strategy may deadlock.

7.1. TOWARDS A BETTER DESIGN OF A WORKFLOW LANGUAGE 183

3. Structured. This strategy imposes syntactical restrictions on a workow model.
It is not possible to model arbitrary cycles and the use of standard control
ow modelling constructs such as joins and splits is restricted. The advantage
of this approach is that models employing this strategy never deadlock, nor
do they result in creation of concurrent multiple instances. The fundamental
disadvantage is a decreased expressive power when compared to other strategies.

4. Synchronizing. This strategy takes a fundamentally di�erent view to workow
execution and from a theoretical point of view its expressive power is not com-
parable to the Standard Strategy. This approach is used by MQSeries Workow.

Finally in Chapter 6 we have investigated some other issues associated with choices
that workow engine designers are likely to face. More speci�cally we have shown
that it is possible to convert any workow model that does not deadlock and does
not create concurrent multiple instances into an equivalent workow model that has
only one �nal task. The resulting model, however, is more complex and cluttered,
hence less suitable. Then we have shown that from an expressiveness point of view
it is desirable for a workow engine to dynamically detect deadlocks. None of the
workow engines evaluated in the course of this work has this facility. Then we have
demonstrated that some more advanced control construct, notably the discriminator,
increases the expressive power of a workow language. Finally we have suggested
possible issues related to the use of decomposition in a workow speci�cation and
provided a discussion on the use of data ow to enhance control ow speci�cation.
It is our contention that models that do not use data ow to a�ect control ow
speci�cation are more suitable and are easier understood, however, we concede that
faced with limitations in expressive power, sometimes it is necessary to use data ow
to model certain processes.

It is our hope that the results presented in this thesis will aid both workow analysts
and workow engine designers as well as provide a \bridge" between academia and
industry. For workow analysts the results, among others, will allow them to under-
stand the inherent limitations of the languages they need to specify their workows
in. For workow engine designers the results suggest directions for improving the
expressive power of their engine. For researchers this work may provide an insight
into formal foundations of workow speci�cations.

7.1 Towards a Better Design of a Workow Lan-

guage

As indicated in the introduction to this thesis, it was never our intention to provide
a speci�cation for a new workow speci�cation language. Nevertheless the results

184 CHAPTER 7. CONCLUSIONS

presented in the thesis provide valuable suggestions for designers of new workow
engines. With a view of achieving greater expressiveness and suitability the following
is a list of suggestions for the design of the control ow perspective of a new workow
speci�cation language.

1. A workow language should use an explicit notation for control ow constructs.
Languages allowing implicit notation (for example an activity with more than
one outgoing transition implements an AND-Split while an activity with more
than one incoming transition implements an OR-Split) may cause interpretation
problems for end-users thus reducing their suitability.

2. The workow engine should employ the Standard Workow Model evaluation
strategy which is formally given in Section 4.1.1. As discussed in Chapter 5
this evaluation strategy has a distinctive advantage over alternative strategies
in terms of the expressiveness of the model. It is more expressive than the Safe
and Structured evaluation strategies and even though it is not comparable to
the Synchronizing strategy, we feel that it is much less restrictive allowing for
the usage of arbitrary loops in a workow model as well as providing a natural
approach to modelling multiple instances.

3. An XOR-Split construct should be used instead of an OR-Split. Given the
choice of the Standard evaluation strategy, the OR-Split construct does not have
a corresponding join construct that will not deadlock or not result in unwanted
multiple instances. In practice it is possible to use the data predicates to ensure
that an OR-Split has the semantics of an XOR-Split or an AND-Split, however
we believe that providing these two constructs explicitly adds to the suitability
of the language and enhances the potential for automated veri�cation.

4. The workow engine should exploit the full expressive power of the Standard
evaluation strategy and not impose any unnecessary syntactical restrictions, e.g.
restrictions on cycles in a workow graph or rules dictating allowable combina-
tions of splits and joins. As shown in Sections 5.3 and 6.5 transformation of
arbitrary models to structured models may not always be possible and if they
can be done, they usually a�ect the model's suitability.

5. The workow engine should have a relaxed termination policy (see Section 6.1),
in other words the workow speci�cation language should not mandate the use
of special \terminal" tasks. Rather, the execution of a workow model should be
considered complete when there are no remaining active threads. This allows for
simpler models as well as a natural way of achieving synchronisation of multiple
instances (see Pattern 15 in Section 3.4).

7.1. TOWARDS A BETTER DESIGN OF A WORKFLOW LANGUAGE 185

6. The workow engine should support active deadlock detection (see Section 6.2)
and allow workow designers to specify in advance what the workow engine
should do in case of runtime deadlock. In particular, this allows treating dead-
lock as successful termination and it was shown that such a feature increases
the expressive power of the language.

7. The workow engine should support a notion of decomposition that allows for
thread separation and employs a relaxed termination strategy in order to syn-
chronise multiple instances (see Section 6.4). We feel that decomposition should
not be the only mechanism through which iterative structures can be speci�ed.

8. The multiple instances of a single activity invoked as a result of, for example, an
OR-Join preceded by an AND-Split construct should run in the same thread (as
noted above decomposition can be used to provide thread separation, if needed).
This allows, for example, in a process where two instances of an activity A

need to be synchronized with two instances of an activity B to synchronize any
instance of A with any instance of B (see Figure 5.15 in Section 5.2).

9. The workow engine should support advanced synchronisation constructs such
as the discriminator. We concede that while adding more advanced constructs
may increase suitability and expressive power, the veri�cation becomes more
problematic and care should be taken to balance expressiveness and simplicity
of the language. To this end the inclusion of the basic discriminator construct
(which enhances the expressive power of the Standard evaluation strategy) and
omission of the more general n-out-of-m merge (which does not add an extra
expressive power over the discriminator) may be a viable approach.

10. The workow engine should support the deferred choice construct (see Sec-
tion 3.5). As indicated in the Introduction, some authors propose the use of
Petri nets for workow speci�cation. In particular, in [Aal98a] van der Aalst
provides three reasons for such an approach, namely the fact that Petri nets
are formal, that they have associated analysis techniques, and they support an
explicit notion of state. Our approach has been to use Petri nets as a formal
foundation for workows rather than as a workow speci�cation language in it-
self. This increases suitability while maintaining the bene�ts of having a formal,
rigorous semantics and being able to leverage from existing results of Petri net
theory. Our approach does not provide an explicit notion of state, however, as
we have demonstrated in Section 3.5, the inclusion of the deferred choice as part
of the speci�cation language allows for the successful implementation of many
state-based patterns.

186 CHAPTER 7. CONCLUSIONS

7.2 Future Work

In this Thesis focus was on the control ow perspective only, apart from short dis-
cussion in Section 6.5. We believe that it is important that control ow and data
ow are separated out as much as possible, as workows become harder to (formally)
analyse and understand, the moment part of their control ow is \hidden" in the
data ow. Hence, it is imperative to �rst understand expressiveness issues within the
control ow perspective before considering data ow. Nevertheless, the inclusion of
data ow and its implications for expressiveness are considered an important avenue
for further research. Other perspectives, in particular the resource perspective dealing
with organizational aspects of workow speci�cations are also worth considering.

For the theoretical framework presented in this Thesis we have made several assump-
tions that may be worth re-considering in the future. For example our choice of an
equivalence notion can be argued as too relaxed/restrictive and it will be interesting
to know how the choice of equivalence a�ects the results presented in Chapters 5
and 6. We have also assumed that the execution of an activity is atomic - in real life
workows it may be possible that some activities are long-running, possibly for many
months, whilst some are short, lasting no more than few milliseconds. This aspect
of workow execution introduces another layer of complexity for control ow speci-
�cation. For long-running activities it may be imperative to capture their execution
state in a more detailed manner hence opening up a new avenue for more advanced
control ow dependencies and execution patterns.

The patterns work, by de�nition, is never complete. As part of this research we have
started a community website2 where we have published all the patterns presented in
this thesis as well as invited all people interested in the topic to contribute their own
patterns. The response has been very encouraging and we are trying to make every
e�ort to keep the pattern collection up-to-date with suggestions from workow users.
Another interesting avenue for future work related to workow patterns is to gather
quantitative data related to the popularity of each of the patterns thus prioritising the
de�ciencies in the current approaches towards modelling of workows. Such work has
already begun by Wil van der Aalst through the evaluation of �ve workow projects
conducted by ATOS/Origin (Utrecht, The Netherlands).

2http://tmitwww.tm.tue.nl/research/patterns/

Appendix A

Product Evaluation

187

188 APPENDIX A. PRODUCT EVALUATION

Pattern Score Motivation

1 (seq) + Directly supported.
2 (par-spl) + Supported using \Static Split" construct.
3 (synch) + Supported using \Rendezvous" construct.
4 (ex-ch) + Supported using \Branch" construct.

5 (simple-m) + Supported using \Branch" construct.
6 (m-choice) +/- Indirectly supported through the combination of other con-

structs.
7 (sync-m) - Not supported.
8 (multi-m) - Not supported.
9 (disc) - Not supported.
10 (arb-c) - Very limited support using \Goto" construct.
11 (impl-t) - Not supported.
12 (mi-no-s) + Supported through the \Release" construct.
13 (mi-dt) + Supported through a combination of Splits and Joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) - Supported through the \Terminate" construct.

Table A.1: Visual WorkFlo

189

Pattern Score Motivation

1 (seq) + Directly supported.
2 (par-spl) + Supported through an activity with many outgoing transi-

tions having no associated conditions.
3 (synch) + Supported through a \Synchronizer" construct.
4 (ex-ch) +/- Supported through an activity with many outgoing transi-

tions having associated conditions such that only one eval-
uates to \true" during runtime.

5 (simple-m) + Supported through an activity with more than one incom-
ing transition.

6 (m-choice) + Supported through an activity with more than one outgo-
ing transition.

7 (sync-m) - Not supported.
8 (multi-m) + Supported through an activity with more than one incom-

ing transition.
9 (disc) + Supported through a \Discriminator" construct.
10 (arb-c) + Directly supported.
11 (impl-t) - Not supported.
12 (mi-no-s) + Directly supported.
13 (mi-dt) + Directly supported.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) + Supported through a �nal activity.

Table A.2: Verve Workow

190 APPENDIX A. PRODUCT EVALUATION

Pattern Score Motivation

1 (seq) + Directly supported.
2 (par-spl) + Supported through an activity with multiple outgoing tran-

sitions.
3 (synch) + Supported through a Wait Step.
4 (ex-ch) + Supported through a Decision Step.

5 (simple-m) + Supported through an activity with multiple incoming
transitions.

6 (m-choice) +/- Supported through a combination of AND-Splits and XOR-
Splits.

7 (sync-m) - Not supported.
8 (multi-m) - Not supported.
9 (disc) - Not supported.
10 (arb-c) + There are some syntactical limitations. However, it is pos-

sible to have multiple intertwined cycles.
11 (impl-t) + Directly supported. The workow instance terminates if

all of the corresponding branches have terminated.
12 (mi-no-s) - Not supported.
13 (mi-dt) + Supported through a combination of Splits and Joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) +/- There is no state concept. However it is possible to use the

\withdraw" facility to achieve approximate solution.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) + Supported through a \withdraw" facility.
20 (can-c) - Not supported.

Table A.3: Sta�ware

191

Pattern Score Motivation

1 (seq) + Directly supported.
2 (par-spl) + Supported through an activity with many outgoing transi-

tions having no associated conditions.
3 (synch) + Supported through an activity with many incoming tran-

sitions.
4 (ex-ch) +/- Supported through an activity with many outgoing transi-

tions having associated conditions such that only one eval-
uates to \true" during runtime.

5 (simple-m) + Supported through an activity with many incoming tran-
sitions.

6 (m-choice) + Supported through an activity with more than one outgo-
ing transition.

7 (sync-m) + Supported through an activity with many incoming tran-
sitions.

8 (multi-m) - Not supported.
9 (disc) - Not supported.
10 (arb-c) - Not supported.
11 (impl-t) + Directly supported. The workow instance terminates if

all of the corresponding branches have terminated.
12 (mi-no-s) - Not supported.
13 (mi-dt) + Supported through a combination of Splits and Joins.
14 (mi-rt) - Used to be supported through a special construct called a

\bundle". Sadly, the bundle construct is curiously missing
in the latest version of the product.

15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) - Not supported.

Table A.4: MQSeries Workow

192 APPENDIX A. PRODUCT EVALUATION

Pattern Score Motivation

1 (seq) + Directly supported.
2 (par-spl) + Supported through an activity with many outgoing transi-

tions having no associated conditions.
3 (synch) + Supported through an activity with many incoming tran-

sitions. This activity needs to have a trigger condition
de�ned so that it synchronises incoming threads.

4 (ex-ch) + Supported through an activity with many outgoing transi-
tions and a switch that allows only one of the transitions
to �re.

5 (simple-m) + Supported through an activity with many incoming tran-
sitions. This activity needs to have a special trigger condi-
tion de�ned so that it merges incoming threads.

6 (m-choice) + Supported through an activity with many outgoing transi-
tions and a switch that allows multiple transitions to �re.

7 (sync-m) - Not supported.
8 (multi-m) + Supported through an activity with many incoming tran-

sitions. This activity needs to have a trigger condition
de�ned so that it merges incoming threads.

9 (disc) +/- Supported through an activity with many incoming transi-
tions. This activity needs to have a custom trigger de�ned.

10 (arb-c) + Directly supported.
11 (impl-t) - Not supported.
12 (mi-no-s) + Directly supported.
13 (mi-dt) + Directly supported.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) + A Final, terminating, task could be use to terminate a

process instance.

Table A.5: Fort�e Conductor

193

Pattern Score Motivation

1 (seq) + Directly supported.
2 (par-spl) + Supported through a Route Node with more than one out-

going transition.
3 (synch) + Supported through a Route Node with more than one in-

coming transition and a rule such that synchronization is
achieved.

4 (ex-ch) + Supported through a Route Node with more than one out-
going transition.

5 (simple-m) + Supported through a Route Node with more than one in-
coming transition and a rule such that merging is achieved.

6 (m-choice) + Supported through a Route Node with more than one out-
going transition.

7 (sync-m) - Not supported.
8 (multi-m) - Not supported.
9 (disc) + Supported through a Route Node with more than one in-

coming transition and a rule such that merging is achieved.
10 (arb-c) + Directly supported.
11 (impl-t) - Not supported.
12 (mi-no-s) - Not supported.
13 (mi-dt) + Supported through a combination of Splits and Joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) + Supported through an Abort Node.

Table A.6: HP Changengine

194 APPENDIX A. PRODUCT EVALUATION

Pattern Score Motivation

1 (seq) + Directly supported.
2 (par-spl) + Supported through an OR Node with many outgoing tran-

sitions.
3 (synch) + Supported through an AND node.
4 (ex-ch) + Supported through a Conditional Node.

5 (simple-m) + Supported through an activity with many incoming tran-
sitions.

6 (m-choice) +/- Supported through a combination of OR Node and Condi-
tional Node.

7 (sync-m) - Not supported.
8 (multi-m) - Not supported (no concurrent multiple instances are per-

mitted).
9 (disc) - Not supported.
10 (arb-c) + Directly supported.
11 (impl-t) - Not supported.
12 (mi-no-s) + Supported through a Chained-Process Node.
13 (mi-dt) + Supported through a combination of Splits and Joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) - Not supported.

Table A.7: Fujitsu i-Flow

195

Pattern Score Motivation

1 (seq) + Directly supported.
2 (par-spl) + Supported through a \fork" construct.
3 (synch) + Supported through a \join" construct.
4 (ex-ch) + Supported through a \condition" construct.

5 (simple-m) + Supported through a \condition" construct.
6 (m-choice) +/- Supported through a combination of \fork" and \condi-

tion" .
7 (sync-m) - Not supported.
8 (multi-m) - Not supported.
9 (disc) + Supported by a \join" construct. With SAP one can spec-

ify the number of incoming transitions to be waited for in a
\fork" construct. The processing continues once the spec-
i�ed number of paths is completed. Note though that the
remaining, un�nished, paths are terminated.

10 (arb-c) - Not supported.
11 (impl-t) - Not supported.
12 (mi-no-s) - Not supported.
13 (mi-dt) + Supported through a combination of Splits and Joins.
14 (mi-rt) +/- Supported through the use of the so-called \table-driven

dynamic parallel processing". This is a very implicit tech-
nique for specifying the desired behaviour of this pattern.

15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) + Supported through a \workow control" construct.
20 (can-c) + Supported through a \workow control" construct.

Table A.8: SAP R/3 Workow

Appendix B

Petri Nets: Notations and

De�nitions

This section introduces basic Petri net terminology and notations and is adapted
from [Pet81] and [DE95]. Readers familiar with Petri nets can skip this section.

The classical Petri net is a directed bipartite graph with two node types called places
(graphically represented by circles) and transitions (graphically represented by thick
lines). The nodes are connected via directed arcs.

A net is a tuple PN = 〈P; T; F 〉 where P and T are �nite disjoint sets of places and
transitions respectively, and F ⊂ (P × T) ∪ (T × P) is a set of arcs (ow relation).

A place p is called an input place of a transition t i� there exists a directed arc from p

to t. Place p is called an output place of transition t i� there exists a directed arc from
t to p. We use •t to denote the set of input places for a transition t. The notations
t•, •p and p• have similar meanings, e.g. p• is the set of transitions sharing p as an
input place.

At any time a place contains zero or more tokens, drawn as black dots. The state M ,
often referred to as marking, is the distribution of tokens over places, i.e. M ∈ P →
IN. We will represent a state as follows: 1p1 + 2p2 + 1p3 + 0p4 is the state with one
token in place p1, two tokens in p2, one token in p3 and no tokens in p4. We can also
represent this state as follows: p1 + 2p2 + p3. To compare states, we de�ne a partial
ordering. For any two states M1 and M2, M1 ≤ M2 i� for all p ∈ P : M1(p) ≤M2(p)

The number of tokens may change during the execution of the net. Transitions are
the active components in a net: they change the state of the net according to the
following �ring rule:

(1) A transition t is said to be enabled i� each input place p of t contains at least
one token.

197

198 APPENDIX B. PETRI NETS: NOTATIONS AND DEFINITIONS

(2) An enabled transition may �re. If transition t �res, then t consumes a token
from each input place p of t and produces a token for each output place p of t.

A Petri net system (or net system) is a tuple N = (PN;M0), where PN is a Petri
net and M0 is an initial marking.

A labeled Petri net is a tuple 〈P; T; F; L〉 where (P; T; F) is a Petri net and L is a
mapping that associates to each transition t a label L(t) taken from some given set
of actions A.
Given a labeled Petri net PN = (P; T; F; L) and a state M1, we have the following
notations:

- M1
t−→PN M2: transition t is enabled in state M1 and �ring t in M1 results in

state M2

- M1−→PNM2: there is a transition t such that M1
t−→PN M2

- M1
PN−→PN Mn: the �ring sequence PN = t1t2t3 : : : tn−1 ∈ T ∗ leads from state

M1 to state Mn, i.e. M1
t1−→PN M2

t2−→PN :::
tn−1−→PN Mn

- M1
a−→PN M2: there is a transition t labeled a, i.e. L(t) = a that is enabled in

state M1 and �ring t in M1 results in state M2

A state Mn is called reachable from M1 (notation M1
∗−→PN M2) i� there is a �ring

sequence PN = t1t2 : : : tn−1 such that M1
PN−→PN Mn. The subscript PN is omitted if

it is clear which Petri net is considered. Note that the empty �ring sequence is also
allowed, i.e. M1

∗−→PN M1.

We use (PN ;M0) to denote a Petri net system PN with an initial state M0. A state

M is a reachable state of (PN ;M0) i� M0
∗−→M .

A marking Mh is a home marking i� for every reachable marking M , M
∗−→Mh.

A marking M is an empty marking i� for every place s we have M(s) = 0. We will
use the symbol M∅ for the empty marking.

A Petri net is safe if M(s) ≤ 1 for every place s and every reachable marking M.

A Petri net is bounded if the set of reachable markings is �nite.

A Petri net is free-choice i�, for all transitions t1; t2 ∈ T , either •t1 ∩ •t2 = ∅ or
•t1 = •t2.

Bibliography

[AAA+95] G. Alonso, Divyakant Agrawal, Amr El Abbadi, C. Mohan, Roger Gun-
thor, and Mohan Kamath. Exotica/FMQM: A Persistent Message-Based
Architecture for Distributed Workow Managemen. In Proceedings of the
IFIP WG8.1 Working Conference on Information Systems Development for
Decentralized Organizations. Trondheim, Norway, August 1995., 1995.

[AAH98] N. R. Adam, V. Atluri, and W. Huang. Modeling and analysis of workows
using Petri nets. Journal of Intelligent Information Systems (JIIS), Special
Issue on Workow and Process Management, 10(2):131{158, March/April
1998.

[Aal98a] W.M.P. van der Aalst. Chapter 10: Three Good reasons for Using a Petri-
net-based Workow Management System. In T. Wakayama et al., editor,
Information and Process Integration in Enterprises: Rethinking documents,
The Kluwer International Series in Engineering and Computer Science,
pages 161{182. Kluwer Academic Publishers, Norwell, 1998.

[Aal98b] W.M.P. van der Aalst. Formalization and veri�cation of event-driven pro-
cess chains. Technical Report Computing Science Reports 98/01, Eindhoven
University of Technology, Eindhoven, the Netherlands, 1998.

[Aal98c] W.M.P. van der Aalst. The Application of Petri Nets to Workow Man-
agement. The Journal of Circuits, Systems and Computers, 8(1):21{66,
1998.

[ABHK00] W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kie-
puszewski. Advanced Workow Patterns. In O. Etzion and P. Scheuermann,
editors, Fifth IFCIS International Conference on Cooperative Information
Systems (CoopIS'2000), volume 1901 of Lecture Notes in Computer Science,
pages 18{29, Eilat, Israel, September 2000. Springer-Verlag.

199

200 BIBLIOGRAPHY

[Age75] T.K.M. Agerwala. Towards a theory for the analysis and synthesis of sys-
tems exhibiting concurrency. PhD thesis, The John Hopkins University,
Baltimore, Maryland, 1975.

[AHH94] W.M.P. van der Aalst, K.M. van Hee, and G.J. Houben. Modelling and
Analysing Workow using a Petri-net based approach. In G. De Miche-
lis and C. Ellis, editors, Proceedings of Second Workshop on Computer-
supported Cooperative Work, Petri nets related formalisms,, pages 31{50,
1994.

[AHKB00] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workow Patterns. Technical Report WP 47, BETA Research
Institute, Eindhoven University of Technology, Eindhoven, The Nether-
lands, August 2000. Submitted for publication in Distributed and Parallel
Databases.

[AHV97] W.M.P. van der Aalst, D. Hauschildt, and H.M.W. Verbeek. A Petri-net-
based Tool to Analyze Workows. In B. Farwer, D. Moldt, and M.O. Stehr,
editors, Proceedings of Petri Nets in System Engineering (PNSE'97), pages
78{90, Hamburg, Germany, September 1997. University of Hamburg (FBI-
HH-B-205/97).

[AHV02] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An Alternative
Way to Analyze Workow Graphs. In Proceedings of the 14th International
Conference on Advanced Information Systems Engineering (CAiSE'02),
Berlin, Germany, 2002.

[AMP94] A. Agostini, G. De Michelis, and K. Petruni. Keeping Workow Models as
simple as possible. In Proceedings of the workshop on CSCW, Petri-Nets and
related formalism. 5th International Conference on Allpication and Theory
of Petri-nets, pages 11{29, Zaragoza, Spain, June 1994.

[AW91] D.E. Avison and A.T. Wood-Harper. Information Systems Development
Research: An Exploration of Ideas in Practice. The Computer Journal,
34(2):98{112, April 1991.

[BK84] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communi-
cation. Information and Control, 60:109{137, 1984.

[BW90] J.C.M. Baeten andW.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cam-
bridge, United Kingdom, 1990.

BIBLIOGRAPHY 201

[BW95] P. Bartheless and J. Wainer. Workfow Systems: a few de�nitions, a few
suggestions. In Proceedings of the Conference on Organizational Computing
Systems, Milpitas, CA. USA, November 1995.

[Cas98] R. Casonato. Gartner group research note 00057684, production-class work-
ow: A view of the market. http://www.gartner.com, 1998.

[CCPP95] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modeling of Work-
ows. In M.P. Papazoglou, editor, Proceedings of the OOER'95, 14th In-
ternational Object-Oriented and Entity-Relationship Modelling Conference,
volume 1021 of Lecture Notes in Computer Science, pages 341{354, Gold
Coast, Australia, December 1995. Springer-Verlag.

[CCPP98] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workow Evolution. Data &
Knowledge Engineering, 24(3):211{238, January 1998.

[CK81] L.A. Cherkasova and V.E. Kotov. Structured Nets. In J. Gruska and
M. Chytil, editors, Proceedings 10th Symposium on Mathematical Foun-
dations of Computer Science, volume 118 of Lecture Notes in Computer
Science, pages 242{251, Strbsk�e Pleso, Czechoslovakia, 1981. Springer.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cam-
bridge, United Kingdom, 1995.

[DKTS98] A. Do�ga�c, L. Kalinichenko, M. Tamer �Ozsu, and A. Sheth, editors. Work-
ow Management Systems and Interoperability, volume 164 of NATO ASI
Series F: Computer and Systems Sciences. Springer, Berlin, Germany, 1998.

[Ell79] C.A. Ellis. Information Control Nets: A Mathematical Model of OÆce
Information Flow. In Proceedings of the Conference on Simulation, Mea-
surement and Modeling of Computer Systems, pages 225{240, Boulder, Col-
orado, 1979. ACM Press.

[EN93] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workow Systems.
In M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993,
volume 691 of Lecture Notes in Computer Science, pages 1{16, Berlin, Ger-
many, 1993. Springer-Verlag.

[Fil97] FileNet. Visual WorkFlo Design Guide. FileNet Corporation, Costa Mesa,
CA, USA, 1997.

[Fil99] FileNet. Panagon Visual WorkFlo Architecture. FileNet Corporation, Costa
Mesa, CA, USA, 1999.

202 BIBLIOGRAPHY

[For98] Fort�e. Fort�e Conductor Process Development Guide. Fort�e Software, Inc,
Oakland, CA, USA, 1998.

[Fow97] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley,
Reading, Massachusetts, 1997.

[Fuj99] Fujitsu. i-Flow Developers Guide. Fujitsu Software Corporation, San Jose,
CA, USA, 1999.

[Gen87] H. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986 Part I, volume 254 of Lecture Notes in Com-
puter Science, pages 207{247. Springer-Verlag, Berlin, Germany, 1987.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1995.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workow
Management: From Process Modelling to Workow Automation Infrastruc-
ture. Distributed and Parallel Databases, 3(2):119{153, April 1995.

[Gla90] R.J. van Glabbeek. The linear time-branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings of CONCUR'90. Theories of
Concurrency: Uni�cation and Extension, pages 278{297, Berlin, Germany,
1990. Springer-Verlag.

[Gla93] R.J. van Glabbeek. The linear time { branching time spectrum II; the
semantics of sequential systems with silent moves (extended abstract). In
E. Best, editor, Proceedings CONCUR'93, 4th International Conference on
Concurrency Theory, Hildesheim, Germany, August 1993, volume 715 of
Lecture Notes in Computer Science, pages 66{81. Springer, 1993.

[Gla94] R.J. van Glabbeek. What is branching time semantics and why to use
it? In M. Nielsen, editor, The Concurrency Column, pages 190{198. Bul-
letin of the EATCS 53, 1994. Also available as Report STAN-CS-93-1486,
Stanford University, 1993, and by ftp at ftp://Boole.stanford.edu/-

pub/branching.ps.gz.

[Gri82] J.J. van Griethuysen, editor. Concepts and Terminology for the Conceptual
Schema and the Information Base. Publ. nr. ISO/TC97/SC5/WG3-N695,
ANSI, 11 West 42nd Street, New York, NY 10036, 1982.

BIBLIOGRAPHY 203

[GV87] R.J. van Glabbeek and F.W. Vaandrager. Petri net models for algebraic the-
ories of concurrency (extended abstract). In J.W. de Bakker, A.J. Nijman,
and P.C. Treleaven, editors, Proceedings PARLE, Parallel Architectures and
Languages Europe, Vol. II: Parallel Languages, volume 259 of Lecture Notes
in Computer Science, pages 224{242, Eindhoven, The Netherlands, June
1987. Springer Verlag.

[HHSW96] Y. Han, J Himminghofer, T. Schaaf, and D. Wikarski. Management of
Workow Resources to Support Runtime Adaptibility and System Evalua-
tion. In Proceedings of PAKM96 Internaltional Conference on Knowledge
Engineering, Basel, Switzerland, Oct 1996.

[HK99] A.H.M. ter Hofstede and B. Kiepuszewski. Formal Analysis of Deadlock
Behaviour in Workows. Technical Report FIT-TR-1999-03, Queensland
University of Technology/Mincom, Brisbane, Australia, April 1999.

[HN93] A.H.M. ter Hofstede and E.R. Nieuwland. Task structure semantics through
process algebra. Software Engineering Journal, 8(1):14{20, January 1993.

[HO99] A.H.M. ter Hofstede and M.E. Orlowska. On the Complexity of Some
Veri�cation Problems in Process Control Speci�cations. Computer Journal,
42(5):349{359, 1999.

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains.
PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, 1993.

[HOR98] A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse. Veri�cation Prob-
lems in Conceptual Workow Speci�cations. Data & Knowledge Engineer-
ing, 24(3):239{256, January 1998.

[HP00] HP. HP Changengine Process Design Guide. Hewlett-Packard Company,
Palo Alto, CA, USA, 2000.

[IBM99] IBM. IBM MQSeries Workow - Getting Started With Buildtime. IBM
Deutschland Entwicklung GmbH, Boeblingen, Germany, 1999.

[Jab94] S. Jablonski. Mobile: A modular workow model and architecture. In
Proceedings of 4th International Conference on Dynamic Modeling and In-
formation Systems, Netherlands, 1994.

[Jan94] P. Jan�car. Decidability Questions for Bismilarity of Petri Nets and Some
Related Problems. In P. Enjalbert, E.W. Mayr, and K.W. Wagner, editors,
STACS 94, 11th Annual Symposium on Theoretical Aspects of Computer
Science, volume 775 of Lecture Notes in Computer Science, pages 581{592,
Caen, France, February 1994. Springer-Verlag.

204 BIBLIOGRAPHY

[JB96] S. Jablonski and C. Bussler. Workow Management: Modeling Concepts,
Architecture, and Implementation. International Thomson Computer Press,
London, United Kingdom, 1996.

[Jen87] K. Jensen. Coloured Petri Nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, Advances in Petri
Nets 1986 Part I, volume 254 of Lecture Notes in Computer Science, pages
248{299, Berlin, Germany, 1987. Springer-Verlag.

[Jen98] Kurt Jensen. An introduction to the practical use of coloured petri nets.
In G. Rozenberg and W. Reisig, editors, Lectures on Petri Nets II: Ap-
plications, volume 1492 of Lecture Notes in Computer Science. Springer,
1998.

[KG99] M. Kradolfer and A. Geppert. Dynamic Workow Schema Evolution based
on Workow Type Versioning and Workow Migration. In Proccedings
of the Fourth IFCIS International Conference on Cooperative Information
Systems (CoopIS99), Edinburgh, Scotland, Sep 1999.

[KHA01] B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Funda-
mentals of Control Flow in Workows. Technical Report FIT-TR-2001-01,
Queensland University of Technology/Mincom, Brisbane, Australia, Jan-
uary 2001. Conditinally accepted for publication in Acta Informatica.

[KHB00] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured
Workow Modelling. In B. Wangler and L. Bergman, editors, Proceedings
of the 12th International Conference on Advanced Information Systems En-
gineering (CAiSE'00), volume 1789 of Lecture Notes in Computer Science,
pages 431{445, Stockholm, Sweden, June 2000. Springer.

[Kou95] T.M. Koulopoulos. The Workow Imperative. Van Nostrand Reinhold, New
York, 1995.

[KT98] G. Keller and Th. Teufel. SAP R/3 Process Oriented Implementation.
Addison-Wesley Longman, Harlow, United Kingdom, 1998.

[Lav00] H. Lavana. A Universally Con�gurable Architecture for Taskow-Oriented
Design of a Distributed Collaborative Computing Environment . PhD thesis,
Department of Computer Science, North Carolina State University, Raleigh,
NC, USA, 2000.

[Law97] P. Lawrence, editor. Workow Handbook 1997, Workow Management
Coalition. John Wiley and Sons, New York, 1997.

BIBLIOGRAPHY 205

[Lon98] J. Lonchamp. Process Model Patterns for Collaborative Work. In Proceed-
ings of the 15th IFIP World Computer Congress, Telecooperation Confer-
ence, Telecoop'98, Vienna, Austria, July 1998.

[Low01] D. Lowe et al. BizTalk Server: The Complete Reference. McGraw-Hill
Professional Publishing, 2001.

[LR99] F. Leymann and D. Roller. Production Workow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, 1999.

[LZLC02] H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph Reduction Algo-
rithm to Identify Structural Conicts. In Proceedings of the 35th Annual
Hawaii International Conference on System Sciences (HICSS'02), Big Is-
land, Hawaii, January 2002.

[MAGK95] C. Mohan, Gustavo Alonso, Roger Gunthor, and Mohan Kamath. Ex-
otica: A Research Perspective on Workow Management Systems. Data
Engineering Bulletin, 18(1):19{26, 1995.

[Mak96] P. Makey, editor. Workow: Integrating the Enterprise. Report of the
Butler Group, June 1996.

[MB97] G. Meszaros and K. Brown. A Pattern Language for Workow Systems.
In Proceedings of the 4th Pattern Languages of Programming Conference,
Washington University Technical Report 97-34 (WUCS-97-34), 1997.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood
Cli�s, New Jersey, 1989.

[Mil99] R. Milner. Communicating and Mobile Systems: the �-calculus. Cambridge
University Press, Cambridge, United Kingdom, 1999.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings
of the IEEE, 77:541{580, 1989.

[Oul82] G. Oulsnam. Unravelling Unstructured Programs. Computer Journal,
25(3):379{387, 1982.

[Pet81] J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-
Hall, Englewood Cli�s, New Jersey, 1981.

[Pro98] Promatis. Income Workow User Manual. Promatis GmbH, Karlsbad,
Germany, 1998.

206 BIBLIOGRAPHY

[PRS92] Lucia Pomello, Grzegorz Rozenberg, and Carla Simone. A survey of equiv-
alence notions of net based systems. In G. Rozenberg, editor, Advances
in Petri Nets, volume 609 of Lecture Notes in Computer Science, pages
410{472. Springer, 1992.

[RD97] M. Reichert and P. Dadam. ADEPTex - Supporting Dynamic Changes of
Workow without losing control. Journal of Intelligent Information Systems
(JIIS), Special Issue on Workow and Process Management, 1997.

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, Germany, 1985.

[RR98] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Mod-
els, volume 1491 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1998.

[RZ96] D. Riehle and H. Z�ullighoven. Understanding and Using Patterns in Soft-
ware Development. Theory and Practice of Object Systems, 2(1):3{13, 1996.

[SAP97] SAP. WF SAP Business Workow. SAP AG, Walldorf, Germany, 1997.

[Sch96] T. Sch�al. Workow Management for Process Organisations, volume 1096
of Lecture Notes in Computer Science. Springer, 1996.

[SH96] P. Straub and C. Hurtado. Business Process Behavior is (Almost) Free-
Choice. In Proceedings of the IMACS-IEEE Multiconference on Computa-
tional Engineering in Systems Applications (CESA'96), Lille, France, July
1996.

[SL99] Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim,
Germany, 1999.

[SO99] W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques
for Identifying Structural Conicts in Process Models. In Proceedings of
the 11th Conf on Advanced Information Systems Engineering (CAiSE'99),
pages 195{209, Hildeberg, Germany, June 1999.

[Sta00] Sta�ware. Sta�ware 2000 / GWD User Manual. Sta�ware plc, Berkshire,
United Kingdom, 2000.

[Tau89] Dirk Taubner. Finite Representations of CCS and TCSP Programs by Au-
tomata and Petri Nets, volume 369 of Lecture Notes in Computer Science.
Springer Verlag, Berlin, Germany, 1989.

BIBLIOGRAPHY 207

[Ver00] Verve. Verve Component Workow Engine Concepts. Verve, Inc., San
Francisco, CA, USA, 2000.

[WAH00] H. Weigand, A. de Moor, and W.J. van den Heuvel. Supporting the Evo-
lution of Workow Patterns for Virtual Communities. Electronic Markets,
10(4):264{271, 2000.

[Wil77] M. H. Williams. Generating structured ow diagrams: the nature of un-
structuredness. Computer Journal, 20(1):45{50, 1977.

[Wor99a] Workow Management Coalition. Interface 1: Process De�nition Inter-
change Process Model. Document Number WfMC TC-1016-P, Document
Status - Version 1.1, October 1999. www.wfmc.org.

[Wor99b] Workow Management Coalition. Terminology & Glossary. Document
Number WFMC-TC-1011, Document Status - Issue 3.0, February 1999.
www.wfmc.org.

