An ebXML Infrastructure Implementation through UDDI

Registries and RosettaNet PIPs

Asuman Dogac, Yusuf Tambag, Pinar Pembecioglu, Sait Pektas,

Gokce Laleci, Gokhan Kurt, Serkan Toprak, Yildiray Kabak

Software Research and Development Center
Middle East Technical University (METU)
06531 Ankara Turkiye

email: asuman@srdc.metu.edu.tr

Abstract

Today’s Internet based businesses mneed a level of interoperability which will allow trading
partners to seamlessly and dynamically come together and do business without ad hoc and pro-
prietary integrations. Such a level of interoperability involves being able to find potential busi-
ness partners, discovering their services and business processes, and conducting business “on the
fly”. This process of dynamic interoperation is only possible through standard B2B frameworks.
Indeed a number of B2B electronic commerce standard frameworks have emerged recently. Al-
though most of these standards are overlapping and competing, each with its own strenghts and
weeknesses, a closer investigation reveals that they can be used in a manner to complement one
another. In this paper we describe such an implementation where an eb XML infrastructure is
developed by exploiting the Universal Description, Discovery and Integration (UDDI) registries
and RosettaNet Partner Interface Processes (PIPs).

ebXML is an ambitious effort and produced detailed specifications of an infrastructure both
for B2B and B2C. However a public ebXML compliant registry/repository mechanism is not
available yet. On the other hand, UDDI’s approach to developing a registry has been a lot sim-
pler and public registries are available. In ebXML, trading parties collaborate by agreeing on
the same business process with complementary roles. Therefore there is a need for standardized
business processes. In this respect, exploiting the already developed expertise through RosettaNet
PIPs becomes indispensible. We show how to create and use ebXML “Binary Collaborations”
based on RosettaNet PIPs and provide a GUI tool to allow users to graphically build their eb XML
business processes by combining RosettaNet PIPs. In ebXML, trading parties reveal essential
information about themselves through Collaboration Protocol Profiles (CPPs). To conduct busi-

ness, an agreement between parties is necessary and this is expressed through a Collaboration

Protocol Agreement (CPA). To help with this process, a tool is implemented to automate the pro-
cess of configuring a Collaboration Protocol Agreement (CPA) from given Collaboration Protocol
Profiles (CPPs).

Being eb XML compliant mandates the messages exchanged to conform to eb XML messaging
architecture. Furthermore since ebXML business processes may include several “Binary Collab-
orations”, there is a need for a workflow enactment service to keep track of the execution. As a
part of the infrastructure developed, we provide a server implementation which handles eb XML

messages as well as keeping track of the data and control flow in the ebXML business processes.

1 Introduction

As businesses move more and more to the Web, it becomes increasingly important to improve the
mechanisms of doing business over the Web. This basically involves developing standard ways of
discovering the potential partners and automating the business processes among them.

Electronic business processes include both interactions between trading partners (public pro-
cesses) and the private processes within a company (private processes). A public business process
involves predefined message and document formats exchanged between the partners, the sequence
of message exchange as well as some other mechanisms like the transport and security protocol.

A number of B2B standards have emerged [10] supporting the discovery and automation of
public business processes over the Web. The basic functionalities of some of these standards are as

follows:

e RosettaNet [13] provides a framework and predefined business processes called Partner In-
terface Processes (PIPs) for IT supply chain partners. This is a successful standard that has
become a model for other industries as well. Compliance with RosettaNet framework implies
automation of business processes among the partners over the Web. Although RosettaNet
provides a Business Dictionary, since this is not a public registry, it is difficult to discover
other potential partners. In fact the emphasis of RosettaNet framework is not transacting

business “on-the-fly” but rather automating business among existing partners.

e UDDI [14], on the other hand, provides a public registry to discover businesses and their
services. However UDDI concentrates on the services and does not address public business
processes explicitly. A service is an atomic unit of processing; whereas a business process
involves collaboration and hence the exchange of a sequence of messages according to a

predefined choreography of interactions with well defined roles for the involved partners.

e Whereby ebXML [3] allows arbitrary public business processes to be defined in XML and

complements the framework with a registry where both trading partners and their public

Company A
B2B SERVER

Workflow eBXML
Enacment Message
Service Handler
\

Creates Business Pr!

Register Company
Profile (CPP)
GUI Service & BPS
® e
CPA Generator \ Agreeon
Service I .
A Trading Agreement @
A (CPA) Do Business
Transactions
Company B
B2B SERVER
Workflow eBXML
Enacment Message
Service Handler

Figure 1: An Overview of the System Architecture

business processes can be discovered. ebXML also has a comprehensive message passing
architecture that relies on SOAP with attachments and provides for the security and reliability
of the messages. Furthermore ebXML defines a repository and well defined interfaces to query

it. Unfortunately a public ebXML registry/repository is not available yet.

These B2B interoperating frameworks are competing and at the same time overlapping stan-
dards each with its own strengths and weaknesses. In this paper, we show how these standards
can be used to complement one another by using the powerful aspects of each. The infrastructure
we have developed exploits RosettaNet’s well defined public processes; UDDI’s public registry and
ebXML’s secure, reliable message passing mechanism. The infrastructure also provides a number
of add-on services to the combined framework to facilitate conducting business on the Web.

The over all architecture and the contributions of the system can be summarized as follows:

o The well defined RosettaNet PIPs are used to describe eb XML public business processes. In
ebXML, trading parties collaborate by agreeing on the same business process with comple-
mentary roles. If every partner develops its own business process, collaboration becomes very
difficult. Therefore there is a need for standardized business processes. In this respect, ex-

ploiting the already developed expertise by RosettaNet through PIPs becomes indispensible.

In order to use RosettaNet PIPs as ebXML business processes, it is necessary to map the

PIP definitions into ebXML business process documents conforming to the DTD provided

by ebXML. Since RosettaNet PIPs are defined in Unified Modelling Language (UML), it is
possible to automate this conversion. In fact there are tools, such as [11] that generate XML
output from UML diagrams through XML Metadata Interchange [19]. On the otherhand
mapping RosettaNet PIPs into ebXML processes manually is not a difficult task. We show

how to map ebXML public business processes into the RosettaNet Partner Interface Processes

(PIPs).

A GUI tool is developed which allows users to graphically build their eb XML business processes
by combining RosettaNet PIPs. A RosettaNet PIP corresponds to a “Binary Collaboration”
in ebXML. Business processes, however, can include more than one “Binary Collaboration”
and there could be more than two party involved (multiparty collaboration). Therefore there
is a need for a tool to help with the design of the choreography of multiple “Binary Collabo-
rations” into a business scenario. We provide a GUI which allows users to graphically built
their ebXML business processes by combining RosettaNet PIPs. The tool is registered to

UDDI as a service to facilitate its discovery.

A UDDI registry is used to store ebXML documents like business processes, CPPs and CPAs
and mechanisms are provided to facilitate their discovery. In UDDI, businesses and services
can specify the categories to which they belong in their category bags to facilitate their
discovery. An item in a category bag contains a tModel key. tModels provide the ability to
describe compliance with a specification, a concept, or a shared design. When a particular
specification is registered with the UDDI as a tModel, it is assigned a unique key, which is

then used in the description of service instances to indicate compliance with the specification.

There are more than a hundred PIPs and a trading party may include any number of these
PIPs into its business process specification (Note however that the order of PIPs can not be
arbitrary; for example it does not make sense is a Purchase Order Request (PIP3A4) follows

an Invoice Notification (PIP3C3)).

To facilitate the discovery of a business process, we have defined “tModels” for each of the
RosettaNet PIPs. A business process specification includes the tModels of the involved PIPs
into its catagory bag. In this way a trading party can discover other parties with compliant
business processes by checking their catagory bags to see whether they contain the same PIPs

as its own.

A tool is provided to automate the process of configuring a Collaboration Protocol Agreement
(CPA) from given Collaboration Protocol Profiles (CPPs). In ebXML a CPA is derived
from the intersection of two CPP’s. A Collaboration Protocol Profile (CPP) in ebXML

framework contains essential information about the trading partner like contact information,
industry classification, supported business processes and messaging service requirements. A
CPA describes the Messaging Service and the Business Process requirements that are agreed
upon by both partners. Therefore to configure a CPA, the tool matches Process Specification,
Roles, Transport and Transport Security and Document Security levels of the CPPs. This

tool is stored as a service in the UDDI registry.

o A B2B server is developed to provide mechanisms for properly processing eb XML messages as
well as keeping track of the data and control flow in the ebXML business processes. ebXML
business partners need to have software components at their sites to automatically process
incoming ebXML messages as well as keeping track of business scenarios they are involved in.
We developed a generic B2B Server implementation for this purpose. The server provides an
ebXML Messaging Service infrastructure and workflow capabilities to keep track of business

processes. The tool itself is available as a service from the UDDI registry.

Figure 1 demonstrates the overall architecture of the system. To be able to use the infrastruc-
ture developed, the trading parties need to install the B2B server implementation at their sites.
This server has two main functionalities: handling the ebXML messages which basically involves
preparing, sending, receiving and routing the messages, and keeping track of data and control flow
in ebXML business processes. The next step to become an ebXML compliant business is to create
ebXML business processes. We provide a GUI to help with this step which is available as a service
from the UDDI registry. The graphical tool helps combine ebXML “Binary Collaborations” to de-
fine complex, multiparty ebXML business processes. These “Binary Collaborations” are obtained
from RosettaNet PIPs. The trading parties can use this tool to form their business process. To
become ebXML compliant, a business also needs to create its CPP and point it to the business
process defined. Once all the necessary documents, that is, CPPs, business processes and business
documents are created, they are registered to the UDDI registry.

The business parties can use UDDI registry to discover the potential eb XML compliant parties
and their CPPs. To facilitate the discovery process we associate a tModel with each PIP and store
the related tModel keys in the category bags of business processes.

Once the potential partners are discovered, it is necessary to reach an agreement on the way
to carry out the business transactions. It is the Collaboration Protocol Agreement (CPA) that
specifies the details of how two trading parties have agreed to conduct business electronically. A
CPA is formed by combining the involved CPPs. We also provide a tool to facilitate this step which
tries to match corresponding elements like Process Specification, Transport and Roles in CPPs to

create a CPA.

:Buyer :Seller

I START

<<RequestConfirmActivity>> <<SecureFlow>>
Request Purchase Order Purchase Order Confirmation

\L[SUCCESS] \L[FAIL] A
(®enp (® FaiLED

<<SecureFlow>>
Purchase Order Request [— — 7] - -

Confirm Purchase Order]

Figure 2: RosettaNet Business Process Flow Diagram for PIP3A4

After each company configures their B2B servers, the system becomes ready for operation and
the parties can conduct their business transactions in an ebXML compliant way.

The paper is organized as follows: Section 2 gives an overview of the B2B standards addressed in
this work, namely, RosettaNet, UDDI and ebXML. In Section 3 we show how to map RosettaNet
PIPs into ebXML business processes. Section 4 presents the GUI Tool developed for flexibly
constructing ebXML business processes from RosettaNet PIPs. Registering ebXML documents to
UDDI registries is described in Section 5. Section 6 summarizes the tool automating the process
of configuring the CPA given two CPPs. The details of the B2B server is presented in Section 7.

Finally Section 8 concludes the paper.

2 An Overview of the B2B Frameworks Addressed

A B2B interoperability standard, in general, involves the description of the message formats ex-
changed (e.g. purchase order), bindings to transport protocols (e.g. HTTP), the sequencing (e.g.
after sending a purchase order message, an acknowledgment message must be received), the pro-
cess (e.g. after a purchase order is accepted, the goods must be delivered to the buyer), and the
security to be provided (like encryption, non-repudiation) [1]. Currently there are many Business-
to-Business (B2B) electronic commerce standards based on XML [10]. The aim of this section is
to briefly summarize the B2B electronic commerce frameworks addressed in this paper, namely,

RosettaNet, UDDI and ebXML.

Message Exchange Controls - Request Purchase Order
£ .
8 5%
& |s |< |& 3
g 8.2 |2 &8s |¢
E =23 o T1 3 2
8 25| ¢ E| §| B &
£E2 1528 |l 38 |¢
c D c 8 g- S| N &« [
o <Ele |55 g% e
eg | 28| ¢ B | £l 5¢
QB 0o T o 8| 5| 65 (EB’ =
IS E 8| E S| <|Z2F g
Name =2 F<|F sl eleoex| 2x
Purchase Order
Request Action 2hrs N/A - |24hrs 1Y Y Y Y
1.1. |Receipt N/A N/A INA |[Y |Y | Y Y
Acknowledgment
1.2, |Purchase Order 2hrs | NIA |NIA |Y | Y | Y Y
Confirmation
Action
1.2.1. | Receipt N/A N/A [INNA N |Y | Y Y
Acknowledgment

Figure 3: RosettaNet Message Exchange Controls for PIP3A4 (Request Purchase Order)

2.1 RosettalNet

Founded in 1998, RosettaNet [13] is an independent, self-funded, non-profit consortium dedicated
to the development of XML-based standard electronic commerce interfaces to align the processes
between supply chain partners on a global basis. The RosettaNet consortium includes I'T companies
like IBM, Microsoft, EDS, Netscape, Oracle, SAP, Cisco systems, Compaq and Intel.

RosettaNet Framework [13] consists of Partner Interface Processes (PIPs), a master dictionary
and an implementation framework, the relationship among which can be expressed with the follow-
ing analogy: RosettaNet dictionaries provide the words, the RosettaNet Implementation Framework
(RNIF) acts as the grammar, and RosettaNet Partner Interface Processes (PIP) form the dialog.

RosettaNet dictionaries provide a common vocabulary platform for conducting business within

the trading network:

e The RosettaNet Business Dictionary contains information about the trading partners like
Business Properties (e.g. business address), Business Data Entities (like Actionldentity), and
Fundemental Business Data Entities (e.g. BusinessTaxIdentifier, AccountNumber). There is
only one business dictionary that encompasses all supply chains like Electronic Components

(EC), Information Technology (IT), etc.

Business Document Description

Purchase Order Request A request to accept a purchase order for fulfillment

Purchase Order Confirmation Formally confirms the status of line item(s) in a Purchase

Order. A Purchase Order lineitem may have one of the

follwing states: accepted, rejected, or pending.

Figure 4: RosettaNet Business Documents for PIP3A4

PARTNER ROLE DESCRIPTION
Role -

Name Role Description Role Type

Buyer | Anemployee or organization that buys Functional
products for a partner type in the
supply chain

Seller | Anorganization that sells productsto Organizational
partnersin the supply chain

Figure 5: Partner Role Descriptions for PIP3A4

e The RosettaNet Technical Dictionary (RTD) provides properties for describing products and
services. Note that the RTD integrated the two formerly distinct dictionaries, namely EC
Technical Dictionary and IT Technical Dictionary.

The RosettaNet framework enables supply chain business partners to execute interoperable elec-
tronic business (e-business) processes by developing and maintaining PIP implementation guide-
lines. RosettaNet distributes PIPs to the trading partners, who use these guidelines as a road
map to develop their own software applications. PIPs include all business logic, message flow, and
message contents to enable alignment of two processes.

In order to do electronic business within the RosettaNet framework, there are a number of
steps the partners have to go through. First, the supply chain partners come together and analyze
their common inter-company business scenarios (i.e., public processes), that is, how they interact
to do business with each other, which documents they exchange and in what sequence. These
inter-company processes are in fact, the “as-is” scenarios of their way of doing business with each
other. Then they re-engineer these processes to define the electronic processes to be implemented
within the scope of the RosettaNet Framework.

An electronic business process includes both the interactions between partner companies, and
the private processes within the company. The interactions between supply chain partners are

analyzed to create RosettaNet’s Partner Interface Processes (PIPs). Note that each partner imple-

Acknowledgment
of Receipt

Time to Acknowledge

Is Non-Repudiation
Acceptance

Required?

Timeto
Non-Repudiation of
Origin and Content?

Timeto Perform
Is Authorization

Required?

Acknowledge
Retry Count

RoleName |Activity Name

Buyer Purchase Order
Request

w
<
<

2hrs | N/JA (24 hrs

<

Figure 6: Business Activity Performance Controls for PIP3A4

ments its own private processes. RosettaNet provides guidelines only for PIPs which are the public
part of the inter-company processes.

To have a manageable framework in developing PIPs, RosettaNet has grouped supply chain
processes into clusters, which are further grouped into segments. For example, Cluster 3 is “Order
Management” and “Segment 3A” in this cluster is about “Quote and Order Entry”. As an example
of the PIPs in this segment, “PIP3A4: Manage Purchase Order” has the purpose of supporting a
process between trading partners that involves issuing a purchase order and acknowledging that
purchase order. This PIP also supports the capability to cancel or change the purchase order based
on the acknowledgement response.

The choreography, that is, the sequence of steps within a PIP is given in the “blueprint” which
is a business process flow diagram. The blueprint for “PIP3A4: Manage Purchase Order” is given
in Figure 2. A number of tables provide accompanying information as presented in Figures 3, 4,
5,and 6. The information provided in these figures are used in mapping PIPs to ebXML “Binary

Collaborations” as explained in Section 3.

2.2 UDDI

UDDI [14] is jointly proposed by IBM, Microsoft and Ariba. It is a service registry architecture
that presents a standard way for businesses to build a registry, discover each other, and describe
how to interact over the Internet. Currently IBM and Microsoft are running public registries [15]
and Hewlett-Packard is expected to launch a third one. An example screenshot from UDDI registry
is shown in Figure 7.

The UDDI information model, defined through an XML schema, identifies five core types of

information. These core types are business, service, binding, service specifications information and

43 1BM UDDI Inquiry: Find a Business - Microsoft Internet Explorer =8 =
J File Edit View Favortes Took Help i
J HBack + = - @ o | @Sea'rch' [l Favorites @Hisfor'yl | %v =1 H - @ i3
J,ﬂddf_ess |@ hittp: w3, ibm, comjservicesfuddiffindbusiness? actior=inic j P “Lin_k's'»
=
Home Products & services | Support & downloads My account
= Select a country 1BM Carporation = Services/JDDI = Find
UDDI Business Registry
UDDI Business Universal Description, Discovery, and Integration

Registry
Find Find a Business

Entervalues to search on for ane or mare of the criteria below then press the Find hutton to begin the
© search. You may use the "%' symbol as a wildeard that matches any character.

Business Name

Starting with IA|

Identifier

Identifier |—58|8d— =

Starting with I

Locator

Categary IUNSPSC Vl

Starting with |43 Select

Service Type Name

Starting with |A

Discovery URL

Starting with |

-

& ’_’_|° Inkernet
o A€ QA SEEEREESRKO | BofT o Bl el | 0 | Fr.| (wEES rom

Figure 7: A Screenshot from UDDI Registry

relationship information between two parties. Through these data structures, business entities
describe information about businesses like their name, description, services offered and contact
data. Business services provide more detail on each service being offered. Services can then have
multiple binding templates, each describing a technical entry point for a service (e.g., mailto, http,
ftp, phone, etc.). These structures use category bags for categorization purposes. An item in a
category bag contains a tModel key and an associated OverviewDoc element.

tModels provide the ability to describe compliance with a specification, a concept, or a shared
design. When a particular specification is registered with the UDDI as a tModel, it is assigned a
unique key, which is then used in the description of service instances to indicate compliance with
the specification. The specification is not included in the tModel itself. The “OverviewDoc” and
“OverviewURL” elements of tModels are used to point at the actual source of a specification. More

precisely, the use of tModels in UDDI is two-fold:

10

e Defining the technical fingerprint of services: The primary role that a tModel plays is to
represent a technical specification on how to invoke a registered service, providing information
on the data being exchanged, the sequence of messages for an operation and the location of the
service. Examples of such technical specifications include Web Services Description Language

(WSDL) [18] descriptions.

e Providing abstract namespace references: In UDDI, businesses, services and tModels can
specify the categories to which they belong in their category bags. Categorization facilitates
to locate businesses and services by relating them to some well-known industry, product or
geographic categorization code set. Currently UDDI uses the North American Industrial
Classification Scheme (NAICS) [9] taxonomy for describing what a business does; the Univer-
sal Standard Products and Services Classification (UNSPSC) [17] for describing products and
services offered; and ISO 3166, a geographical taxonomy for determining where a business is

located. It should be noted that any number of categories can be referenced in category bags.
The functionality provided by UDDI can be summarized as follows:

e It is possible to locate businesses and their services by their names published in the UDDI

registry.

e The categories referenced in the category bags can be used to find businesses or services of a
particular category. For example a user looking for a service for a particular product type can
first obtain the product code from one of the defined taxonomies, like NAICS [9] or UNSPSC
[17]. Assuming that the user wants to access the services related with optical computer
disks, he obtains the UNSPSC code of “Magneto optical disks” which is “43.18.16.07.00”
and searches the UDDI registry by using the APIs provided to find the businesses and their
services that contain this code in their category bags. However if a business fails to provide

this exact code in its category bag, it becomes impossible to locate it in this way.

e UDDI expresses the compliance of businesses and services that reference the same tModel in

their descriptions.
A comprehensive semantic framework improving service discovery through UDDI is presented in

2].

2.3 ebXML

ebXML [3] is an initiative from OASIS [10] and United Nations Centre for Trade Facilitation
and Electronic Business (UN/CEFACT) [16]. ebXML aims to provide the exchange of electronic

11

business data in Business-to-Business (B2B) and Business-to-Customer (B2C) environments. The
vision of ebXML is to create a single set of internationally agreed upon technical specification that
consists of common XML semantics and related document structures to facilitate global trade. It
should be noted that ebXML is not about creating standard schemes or DTDs for common business
documents such as purchase orders or invoices, but instead is about creating an infrastructure.

The ebXML architecture specifies the following functional components:

e Trading Partner Information: The Collaboration Protocol Profile (CPP) provides the defini-
tion (DTD and W3C XML Schema) of an XML document that specifies the details of how
an organization is able to conduct business electronically. It specifies such items as how to
locate contact and other information about the organization, the types of network and file
transport protocols it uses, network addresses, security implementations, and how it does
business (a reference to a Business Process Specification). The Collaboration Protocol Agree-
ment (or CPA) specifies the details of how two organizations have agreed to conduct business

electronically. It is formed by combining the CPPs of the two organizations.

e Business Process Specification Schema (BPSS): The Specification Schema [7] provides the
definition of an XML document (in the form of an XML DTD) that describes how an or-
ganization conducts its business. While the CPA/CPP deals with the technical aspects of
how to conduct business electronically, the Specification Schema deals with the actual busi-
ness process. The process specification document defines, among other things, the request
and response messages for each business transaction and the order in which the business

transactions should occur.

e Messaging Service: ebXML messaging service [6] provides a standard way to exchange mes-
sages between organizations reliably and securely. It does not dictate any particular file

transport mechanism, such as SMTP, HTTP, or FTP.

e Core Components: ebXML provides a core component architecture where a core component

is a general building block that basically can be used to form business documents.

o Registry/Repository: A registry is a mechanism where business documents and relevant meta-
data can be registered such that a pointer to their location, and their metadata can be re-
trieved as a result of a query. A registry can be established by an industry group or standards
organization. A repository is a location (or a set of distributed locations) where a document
pointed at by the registry reside and can be retrieved by conventional means (e.g., http or

ftp). An ebXML Registry [4, 8] provides a set of services that manage the repository and

12

<BusinessTransaction name="REQUEST_PurchaseOrder">
<RequestingBusinessActivity isNonRepudiationRequired="true" timetoAcknowledgeReceipt="PT2H">
<DocumentEnvelope businessDocument=’//BusinessDocument [@name="PurchaseOrderRequest"]’/>
</RequestingBusinessActivity>
<RespondingBusinessActivity isNonRepudiationRequired="true" timeToAcknoewledgeReceipt="PT2H">
<DocumentEnvelope businessDocument=’//BusinessDocument [@name="PurchaseOrderConfirmation"]’/>
</RespondingBusinessActivity>
</BusinessTransaction>

00 ~N O U WN =

©

<BinaryCollaboration name=REQUEST_PurchaseOrder" timeToPerform= "PT24H">
10. <InitiatingRole name="Buyer"/>
11. <RespondingRole name="Seller"/>
12. <BusinessTansactionActivity name= "RequestPurchaseOrder" businessTransaction ’
// businessTransaction[@name= REQUEST_PurcahseOrder"]’
fromAuthorizedRole="../Buyer" toAuthorizedRole="../Seller"/>
13. <Start toBusinessState=’../BusinessTransactionActivity [@name= "RequestPurchaseOrder"]’/>
14. <Success fromBusinessState=’../BusinessTransactionActivity [@name= "RequestPurchaseOrder"]’
guardCondition="Success" guardExpression=’//PurchaselOrderConfirmation/
GlobalDocumantationCode="Accept"/>
15. <Failure fromBusinessState=’../BusinessTransactionActivity[@name= RequestPurchaseOrder"]’
guardCondition="BusinessFailure" guardExpression=’//Purchaselrderconfirmation/
GlobalDocumentCode=’Reject"’/>
16. <BinaryCollaboration>

Figure 8: An Example ebXML Binary Collaboration Document

enable the sharing of information between trading partners. Note that business processes,
CPPs, business document desciptions and core components are published and retrieved via
ebXML Registry Services. A trading partner may discover other trading partners by search-
ing for the CPPs in the registry. The ebXML Messaging Service is used as the transport

mechanism for all communication into and out of the Registry.

The ebXML infrastructure is modular, and with few exceptions these infrastructure components
may be used somewhat independently; they are loosely related. The elements of the infrastructure
may interact with each other, but in most cases are not required to. The CPP, CPA and Business
Process Specifications may be stored in an ebXML compliant Registry, but this is not required. An
ebXML compliant Registry may store any type of object, including non-XML objects. However,

all communications with the registry must use the ebXML messaging service [12].

3 Mapping RosettaNet PIPs into ebXML Business Processes

Both the RosettaNet PIPs and the ebXML Binary Collaborations define dialogs between e-Business

partners and include the following information:

e the sequence of steps required to execute an atomic business process between two trading

partners

13

the activities involved

the roles of the partners

the specification of structure and content of the business documents exchanged

the security, authentication, time and performance constraints on the interactions.

In other words RosettaNet PIPs correspond to ebXML Binary Collaborations. The difference
is on how this information is expressed. In RosettaNet, PIPs are defined in Unified Modelling
Language (UML) and in ebXML, Binary Collaborations are XML documents conforming to given
XML DTDs. Mapping RosettaNet PIPs into ebXML Binary Collaborations is straight forward
and can easily be automated by mapping the UML output to an XML document through XMI
[19]. However this can also be done manually. In this section we describe this process through an
example.

Mapping a RosettaNet PIP into an ebXML “Binary Collaboration” implies filling in the tem-
plate XML document (with a given ebXML DTD) from RosettaNet Business Process Flow Dia-
grams and associated Tables for a PIP.

As an example, consider the XML document given in Figure 8. This is an ebXML Binary
Collaboration document conforming to ebXML Business Process Specification DTD. This document
expresses the semantics of RosettaNet PIP3A4, namely, Request Purchase Order. In this figure,
the BusinessTransaction name in line 1 is obtained from the corresponding RosettaNet Business
Process Flow Digram given in Figure 2. The values of attributes given in line 2 and line 5,
namely, isNonRepudiationRequired and timetoAcknowledge receipt are available from Table 3 which
provides the message exchange controls for “RequestPurchaseOrder” PIP in RosettaNet. The
businessDocument names in lines 3 and 6 are obtained from Table 4 which describes the Business
Documents for the PIP in question. The BinaryCollaboration name given in line 9 is the name of
the PIP and the timeToPerform attribute are obtained from Table 6 describing Business Activity
Performance controls. The roles given in lines 10 and 11 are available from Table 5 which describes
“Partner Role Descriptions” for this PIP. Finally, the information in lines 12 through 15 is again
available form Business Process Flow Digram given in Figure 2.

It is clear that creating an ebXML “Binary Collaboration” corresponding to RosettaNet PIP
involves filling in the ebXML business process template with data obtained from the corresponding
RosettaNet PIP which is a straight forward task. As mentioned earlier it is also possible to automate
this task by directly mapping RosettaNet PIPs expressed in UML to XML by using tools such as

the one given in [11].

14

4 GUI Tool for Building ebXML Business Process Specifications

from Binary Collaborations

A business process in ebXML describes how trading partners take on roles, relationships and
responsibilities to facilitate interaction with other trading partners. The interaction between roles
takes place as a choreographed set of “Binary Collaborations”.

Consider, for example, a scenario where a buyer requests the price and availability of some
products from a seller (PTP3A2). After receiving the response, the buyer initiates a Purchase
Order Request (PIP3A4). The seller, on the other hand, after acknowledging the Purchase Order
Request, sends an invoice notification (PIP3C3) to the buyer. There is a third party in this scenario,
which is a shipper. The seller sends a transportation request (PIP3B1) to the shipper. The shipper,
after shipment of the goods, sends the status of the shipment (PIP3B3). When buyer receives the
shipment, it sends a shipment receipt notification (PIP4B2) to the seller. Finally, the seller prepares
a billing statement and notifies the buyer (PIP3C5).

To facilitate the process of building such complex ebXML business scenarios, we have developed
a GUI tool which makes it possible to graphically construct ebXML business processes specifications
from Binary Collaborations obtained through RosettaNet PIPs. Figure 9 shows how the described
scenario is defined through the GUI tool.

The tool allows the user to select PIPs; drag them onto the canvas and draw the transitions
among them. After a PIP is placed onto the canvas the user specifies one of the defined roles as
the InitiatingRole in the PIP. A condition expression in XPath language may be inserted for the
transitions from one PIP to the other. This expression forms the ConditionExzpression element
which is checked to decide whether Business Transaction Activity will be executed. Another useful
attribute of the PIP on the canvas is the URLs of the Binary Collaborations. This attribute is also
assigned by the user. A partial output of the GUI tool for the example process definition given

above is shown in Figure 10.

5 Registering ebXML CPPs to UDDI Registry

To facilitate the process of conducting eBusiness, potential trading partners need a mechanism
to publish information about the business processes they support along with specific technology
implementation details about their capabilities for exchanging business information. In ebXML,
this information is available through the Collaboration Protocol Profile (CPP). The CPP contains
essential information about the trading partner like contact information, industry classification,

supported Business Processes, Interface requirements, etc.

15

f&f’inpplet Yiewer: Appletl.class = | I:IIE[

Applet
Open Insert ,E@ |
' g Blocks | Lines | Other

Publish Code

Business .
= ‘ p_rng

=l <

[PIP3A2 -
[y FIF3A4 : %|7
[y PIP3C3 .
[PIP3C4 | pmacs
[y PIP3EM
[y FIF2B3 = 2
[PIF4E2 PISEL P34
[y FIF4B3 @7
3
PIP3E:
%
P]I'-!-E!E
=

| il

Figure 9: An example business process definition with GUI tool

In the infrastructure developed, ebXML compliant documents are registered to UDDI. While
registering CPPs to UDDI registry, a mechanism is necessary to facilitate their discovery. Cur-
rently there is “uddi-org:types” taxonomy where, for example, Web Services Description Language
(WSDL) is classified as “wsdlSpec”. It would help to discover CPPs whose business process speci-
fications are based on RosettaNet PIPs if RosettaNet is classified with “uddi-org:types” taxonomy
like WSDL.

In our implementation we have defined tModels for each of the PIPs to help with their discovery.
By deveoping a tModel for each PIP and including the keys of these tModels in the category bags
of the related CPPs, we facilitate the discovery of CPPs referencing business processes conforming
to RosettaNet PIPs.

Other documents registered at UDDI include the business documents exchanged by the parties.
The business documents we use in our implementation are based on the DTDs provided by Roset-
taNet. However, it is possible to use a common document library like Universal Business Language

(UBL) as announced by OASIS when it becomes available in the future.

16

<ProcessSpecification name="buysell">
<BusinessDocument name="PriceandAvailabilityRequest"/> <BusinessDocument name="PriceandAvailabilityResponse"/>
<BusinessDocument name="PurchaseOrderRequest"/> <BusinessDocument name="PurchaseOrderConfirmation"/>
<BusinessDocument name="InvoiceNotification"/> <BusinessDocument name="InvoiceRejectNotification"/>
<BusinessDocument name="TransportationProjectionNotification"/> <BusinessDocument name="ShipmentStatusNotification"/>
<BusinessDocument name="ShipmentReceiptNotification"/> <BusinessDocument name="BillingStatementNotification"/>
<MultiPartyCollaboration name=abc>
<BusinessPartnerRole name="Buyer">
<Performs initiatingRole=’//BinaryCollaboration[@name="REQUESTPriceandAvailability"]/InitatingRole
[@name="Customer"]’ />
<Performs initiatingRole=’//BinaryCollaboration[@name="REQUESTPurchaseOrder"]/InitatingRole
[@name="Buyer"]’/>
<Performs RespondingRole=’//BinaryCollaboration[@name="NOTIFYofInvoice"]/RespondingRole
[@name="InvoiceReceiver"]’/>
<Performs RespondingRole=’//BinaryCollaboration[@name="NOTIFYofInvoiceReject"]/RespondingRole
[@name="InvoiceRejectReceiver"]’/>
<Performs RespondingRole=’//BinaryCollaboration[@name="DISTRIBUTEShipmentStatus"]/RespondingRole
[@name="IntransitInformationUser"]’/>
<Performs initiatingRole=’//BinaryCollaboration[@name="NOTIFYShipmentReceipt"]/InitatingRole
[@name="Consignee"]’/>
<Transition fromBusinessState=’//BinaryCollaboration[@name="REQUESTPriceandAvailability"]
/BusinessTransactionActivity[@name="PriceandAvailabilityRequest"]’
toBusinessState=’//BinaryCollaboration[@name="REQUESTPurchaseOrder"]
/BusinessTransactionActivity[@name="RequestPurchaseOrder"]’/>
<Transition fromBusinessState=’//BinaryCollaboration[@name="REQUESTPurchaseQOrder"]
/BusinessTransactionActivity[@name="RequestPurchaseOrder"]’
toBusinessState=’//BinaryCollaboration[@name="NOTIFYofInvoice"]
/BusinessTransactionActivity[@name="Notify0fInvoice"]’>
<ConditionExpression expressionLanguage="xpath" expressionCondition=’//DocumentSpecification/
BusinessDocument [@name=\PurchaseOrderConfirmation"]/PurchaseOrder
/GlobalPurchaseOrderStatusCode="Accept"’/> </Transition>
<Transition fromBusinessState=’//BinaryCollaboration[@name="NOTIFYShipmentReceipt"]
/BusinessTransactionActivity[@name="ShipmentReceiptNotification"]”’
toBusinessState=’//BinaryCollaboration[@name="NOTIFYofBillingStatement"]
/BusinessTransactionActivity[@name="Notify0fBillingStatement"]’/>
</BusinessPartnerRole>

<BusinessPartnerRole name="Seller">... </BusinessPartnerRole>

<BusinessPartnerRole name="Shipper">... </BusinessPartnerRole>
<MultiPartyCollaboration/>
<BusinessTransaction name="REQUESTPriceandAvailability">... </BusinessTransaction>
<BinaryCollaboration name="REQUESTPriceandAvailability" timeToPerform="PT24H">... </BinaryCollaboration>
<BusinessTransaction name="REQUESTPurchaseOrder">... </BusinessTransaction>
<BinaryCollaboration name="REQUESTPurchaseOrder" timeToPerform="PT24H">... </BinaryCollaboration>
<BusinessTransaction name="NOTIFYofInvoice">... </BusinessTransaction>

<BinaryCollaboration name="NOTIFYofInvoice">
<InitiatingRole name="InvoiceProvider"> </InitiatingRole>
<RespondingRole name="InvoiceReceiver"> </RespondingRole>
<BusinessTransactionActivity businessTransaction="//BusinessTransaction[@name="NOTIFYofInvoice"]"
fromAuthorizedRole="../InvoiceProvider" name="NotifyOfInvoice"
toAuthorizedRole="../InvoiceReceiver">
</BusinessTransactionActivity>
<Start toBusinessState="../BusinessTransactionActivity[@name="NotifyOfInvoice"]"> </Start>
<Success fromBusinessState="../BusinessTransactionActivity[@name="NotifyOfInvoice"]" guardCondition="Success">
</Success>
<Failure fromBusinessState="../BusinessTransactionActivity[@name="NotifyOfInvoice"]"
guardCondition="BusinessFailure"> </Failure>
</BinaryCollaboration>

<BusinessTransaction name="NOTIFYofInvoiceReject">... </BusinessTransaction>

<BinaryCollaboration name="NOTIFYofInvoiceReject">... </BinaryCollaboration>

<BusinessTransaction name="DISTRIBUTETransportationProjection">... </BusinessTransaction>

<BinaryCollaboration name="DISTRIBUTETransportationProjection" timetoPerform="PT2H">... </BinaryCollaboration>
<BusinessTransaction name="DISTRIBUTEShipmentStatus">... </BusinessTransaction>

<BinaryCollaboration name="DISTRIBUTEShipmentStatus">... </BinaryCollaboration>

<BusinessTransaction name="NOTIFYofBillingStatement">... </BusinessTransaction>

<BinaryCollaboration name="NOTIFYofBillingStatement" timetoPerform="PT2H">... </BinaryCollaboration>

</ProcessSpecification>

Figure 10: An ebXML Business Process Specification produced by the GUI tool (partial)

17

6 An Automated Tool for Configuring the CPA given CPPs

A Collaboration Protocol Agreement (CPA) describes the Messaging Service and the Business
Process requirements that are agreed upon by both partners. The intent of the CPA is to provide
a high-level specification that can be easily comprehended by humans and yet is precise enough for
enforcement by computers.

The information in the CPA is used to implement Business Service Interfaces (BSI) to enable
exchange of messages with trading parties. The ebXML Message Service Handler specification is
used to implement the exchange of messages.

ebXML provides the guidelines to generate a Collaboration Protocol Agreement (CPA) from
given Collaboration Protocol Profiles (CPPs) which involves the following [5]:

e Matching business processes and the roles
e Matching transport and transport security

e Matching document packaging and document security

6.1 Matching Business Processes and the Roles

As an initial requirement to creating a CPA, the Process Specification elements of the two parties
must match. To facilitate this matching we use the tModels defined for RosettaNet PIPs.
Matching the roles in two CPP implies checking whether the roles of the partners given in the
CPPs are complementary. “Partylnfo” element in a CPP contains a subtree of elements called
“CollaborationRole”. These sets in the CPPs are compared to find out whether the roles are
complementary within the specified BusinessCollaboration. As an example, the roles “buyer” and

“seller” are complementary in a “Request Purchase Order” business process specification.

6.2 Matching Transport and Transport Security

Matching transport means matching the SendingProtocol capabilities of one party with the Receiv-
ingProtocol capabilities of the other party in a complementary role. The CPP DTD (or Schema) has
a ServiceBinding element that points to the relevant information through the “channelld” attribute.
“channelld” attribute’s value defines the DeliveryChannels within each CPP. The DeliveryChannel
has a transportld attribute that specifies the relevant Transport subtrees.

As an example, suppose that a buyer’s CPP has the following Transport entry:

<Transport transportId = "buyerid001">
<SendingProtocol>HTTP</SendingProtocol>
<ReceivingProtocol> FTP </ReceivingProtocol>
<Endpoint uri = "https://www.buyername.com/

18

po-response" type = "allPurpose"/>

<TransportSecurity>
<Protocol version = "1.0">TLS</Protocol>
<CertificateRef certId = certid001">BuyerName</CertificateRef>
</TransportSecurity>
</Transport>

Assume further that a seller’s CPP has the following Transport entry:

<Transport transportld = "sellid0O01">
<SendingProtocol>FTP</SendingProtocol>
<ReceivingProtocol> HTTP </ReceivingProtocol>
<Endpoint uri = "https://www.sellername.com/
os_here" type = "allPurpose"/>
<TransportSecurity>
<Protocol version = "3.0">SSL</Protocol>
<CertificateRef certId ="certid002">Sellername</CertificateRef>
</TransportSecurity>
</Transport>

It is clear from the example that the transport elements of the two CPPs match since the
“SendingProtocol” and the “ReceivingProtocol” in the complementary roles match; one is HTTP
and the other is FTP. If such a match can not be found, then the available exception handling
mechanisms will be activated.

Matching transport security involves finding an agreement between the versions and the values
of the security protocols specified in the “Protocol” element. To facilitate this process, we provide a
Transport Security lookup table that keeps track of compatible protocols and versions. For example
if SSL.-3 and TLS-1 are defined to be compatible protocols, the examples given above will result in

a match in transport security.

6.3 Matching Document Packaging and Document-Level Security

In ebXML messaging structure, message payloads are packaged using the MIME multipart /related
content type. MIME is used as a packaging solution because of the diverse nature of information
exchanged between partners in eBusiness environments. For example, a complex business trans-
action between two or more trading partners might require a payload that contains an array of
business documents (XML or other document formats), binary images, or other related business
information. And due to this possible complexity of the document packaging, checking matches
is not a straight forward process. The need to check the document-level security of the involved
documents where each might have a radically different security mechanism adds to the complexity
of the problem.

“ServiceBindings” elements in CPPs contain the the packaging structure. An example ebXML

payload package is given in Figure 11. The CPA tool provided first tries to match the simple

19

<Packaging id="I1001">

<ProcessingCapabilities parse = "true" generate = "true"/>

<SimplePart id = "P1" mimetype = "text/xml"/>

<NamespaceSupported location

= "http://schemas.xmlsoap.org/soap/envelope/" version = "1.1">
http://schemas.xmlsoap.org/soap/envelope

</NamespaceSupported>

<NamespaceSupported location =
"http://www.ebxml.org/namespaces/messageHeader"

version = "1.0">
http://www.ebxml.org/namespaces/messageHeader
</NamespaceSupported>

<NamespaceSupported location =
"http://www.w3.0rg/2000/09/xmldsig#"

version = "1.0">
http://www.w3.0rg/2000/09/xmldsig#
</NamespaceSupported>
<SimplePart id = "P2" mimetype = "application/xml"/>
<CompositeList>
<Composite mimetype = "multipart/related" id = "P3"
mimeparameters = "type=text/xml">
<Constituent idref = "P1"/>
<Constituent idref = "P2"/>
</Composite>
</CompositeList>
</Packaging>

<Packaging id="I12001">
<ProcessingCapabilities parse = "true" generate = "true"/>
<SimplePart id = "P11" mimetype = "text/xml"/>
<SimplePart id = "P12" mimetype = "application/xml"/>
<CompositeList>
<Composite mimetype = "multipart/related" id = "P13"
mimeparameters = "type=text/xml">
<Constituent idref = "P11"/>
<Constituent idref = "P12"/>
</Composite>
</CompositeList>
</Packaging>

Figure 11: An Example ebXML Payload Package

parts in the packaging and then proceeds with “CompositeList”. For matching the document level

security, the tool seeks for human assistance due to the complexity involved in this process.

7 A B2B Server Implementation for ebXML Business Process

Support

For businesses to become ebXML compliant, they should be able to process incoming ebXML
messages. This necessitates a software component at the site of the ebXML compliant partner for
handling ebXML messages.

Furthermore, UDDI provides a registry mechanism mainly for describing and invoking Web

20

B2B Server (Company A) B2B Server (Company B)

ebXML ebXML
@ Message Service Message Service

e
M Handler (MSH) Handler (MSH)

Company | @
K Message copy Message con XML
Enactment N < Enactment on ent M o Sevice
Service 7P ebXML ‘8‘6 Service P
Interface (MSl)

ebXML Envelope @

\@ Message Service @
ebX . E”Velope Interface (MSI)

Application Application
Handler Handler

Figure 12: Architecture of the B2B Server

services. In contrast, ebXML, through CPPs, point to the public business processes. The main
difference between a service and a business process is as follows: A service is an atomic unit of
processing; it is invoked either by passing a message or invoking one or more Remote Procedure
Calls (RPCs). Whereas a business process involves collaboration and hence exchange of a sequence
of messages according to a predefined choreography of interactions with well defined roles for
the involved partners. In ebXML, the atomic unit of interaction between the trading partners is a
“Binary Collaboration”, and an ebXML public business process may involve more than one “Binary
Collaboration” and more than two parties. That is, multi party collaboration is possible.

Therefore, although UDDI registry can be used to discover ebXML CPPs, further mechanisms
are necessary at ebXML compliant partners’ sites to keep track of the message traffic.

Hence, providing an ebXML infrastructure implies providing mechanisms to ebXML trading
partners for properly processing ebXML messages as well as keeping track of the data and control
flow in the ebXML business processes. We developed a generic B2B Server implementation for this
purpose. The main functionalities of the server are to implement an ebXML Messaging Service

infrastructure and to provide workflow capabilities to keep track of business processes.

7.1 ebXML Messaging Service Implementation

An ebXML Message Service mechanism [6] is implemented as a component of B2B server. An
ebXML message consists of an optional transport protocol specific outer envelope which contains
a protocol independent ebXML Message Envelope as its payload. The ebXML Message Envelope
is packaged using the MIME multipart/related content type.

21

The ebXML Message Service may be conceptually broken down into following three parts: (1)
an abstract Service Interface, (2) functions provided by the Message Service Handler (MSH), and
(3) the mapping to underlying transport service(s).

The ebXML message processing involves the following;:

e Header Processing - the creation of the SOAP Header elements for the ebXML message.

e Header Parsing - extracting or transforming information from a received SOAP Header or

Body element into a form that is suitable for processing by the MSH implementation.

e Security Services - digital signature creation and verification, authentication and authoriza-

tion.

e Reliable Messaging Services - handles the delivery and acknowledgment of ebXML messages

sent with delivery semantics of “Once And Only Once”.

e Message Packaging - the final enveloping of an ebXML Message (SOAP Header or Body

elements and payload) into its SOAP Messages with Attachments container.

e Error Handling - this component handles the reporting of errors encountered during MSH or

Application processing of a message.

e Message Service Interface - an abstract service interface that applications use to interact with
the MSH to send and receive messages and which the MSH uses to interface with applications

that handle received messages.

The Message Service Handler is implemented in Java using Apache SOAP library. Apache
SOAP implementation provides for adding MIME attachments to the SOAP messages. Messaging
Service Implementation provides an API to facilitate preparing ebXML messages. The APT includes
interfaces to form the fields of an ebXML message, to construct the envelope of the message and
to prepare a SOAP message. The software developed also provides a transport mechanism to send
prepared message to the destination according to the related protocol (e.g. HTTP, SMTP, FTP).
It uses the corresponding protocols of SOAP messaging service for this purpose. Note that the
transport protocol to be used is specified in the CPA.

The Message Service Interface implemented interacts with the Message Service Handler to send,
receive and route the messages. The routing information that is, locating the software to process
the message is obtained from the “eb:Service” element in the ebXML message header. Note that
the “eb:Service” element is originally contained in the CPA. Since the B2B server handles all the
message traffic and locates the applications to be invoked, the type attribute of “eb:Service” element

in the CPAs using this infrastructure should be “b2bserver”.

22

7.2 Workflow Enactment Service

Enactment service component of the B2B server handles the CPA and the ebXML business processes
running at trading partners’ sites. Note that the CPA and the process specification document
that it references define a conversation between two parties. The conversation represents a single
unit of business as defined by the “Binary Collaboration” component of the Process-Specification
document. The conversation consists of one or more “Business Transactions”, each of which is a
request message from one party and zero or one response message from the other party.

The initiating party in each business process starts an instance of the business process by sending
a special message to the B2B server. This message includes the business process id, type (e.g. binary
or multiparty) and the name of the collaboration to be executed. Upon receiving this message,
B2B server activates the enactment service, and the process instance is started. Enactment service
assigns a unique id and a conversation id to each business process instance created. Conversationld
together with the CPAId, uniquely identifies the instance at all the sites involed.

As described in Section 7.1, B2B server receives messages from other parties through ebXML
messaging service and passes it to the enactment service. Enactment service in turn, parses the
ebXML message, and locates the related business process instance and its state using the informa-

tion provided in the message.

7.3 How the System Works

The architecture of B2BServer is shown in Figure 12. Assuming that Company A has the Initiat-
ingRole in the business process, an instance of a business process is started by sending a special
message to the B2B Server of Company A. The ebXML Message Service Handler (MSH) component
of the B2B Server receives the message and forwards it to the ebXML Message Service Interface
(MSI), which is the component responsible for sending and receiving ebXML Messages on behalf
of the Enactment Service component. Upon receiving the ebXML message, MSI decomposes the
message into its parts (e.g. message header, message body, attachments, etc.) and sends these
parts to the Enactment Service via TCP/IP. Enactment Service then locates the related business
process and starts a new instance.

It should be noted that an electronic business process includes both the interactions between
partner companies, and the private processes within the company. Each Party executes its own
internal processes and interfaces them with the Business Collaboration as described by the CPA
and Process Specification documents. The execution of a private business process may involve
activating some internal processes (Business Transaction Activity, BTA, in ebXML terminology)

at the trading partner’s site. To automate the invocation of Business Transaction Activities, the

23

B2B server provides a mechanism through its configuration file to assign applications to the BTAs
specified in business processes.

After the completion of internal private processes, the Enactment Service sends a message to the
B2B Server of the other party to inform the result. To send a message, Enactment Service contacts
Message Service Interface (MSI) by sending an ebXML envelope prepared using the messaging API
provided. MSI then sends this message to the specified party using SOAP protocol. Finally the
Enactment Service checks the transitions of the related business process and proceeds to the next
state (if any). Company B, on the other hand, has the responding role and processes the messages

it receives according to the process definition exactly in the same way.

8 Conclusions

In this paper, a hybrid B2B infrastructure is described that exploits the strengths of some of the
existing standards, namely ebXML, UDDI and RosettaNet. An UDDI registry is used to store
ebXML documents including ebXML business processes that are obtained through RosettaNet
PIPs. A number of add-on services to facilitate B2B e-commerce are also provided by the system
developed, like a GUI to construct ebXML compliant business processes; an enactment service to
keep track of data and control flow in the execution of these processes; a tool to assist the derivation
of CPAs given two CPPs; and an ebXML messaging infrastructure.

A prototype of the system developed within the scope of the ebXML project is available from
“http://www.srdc.metu.edu.tr/ebXML” upon request. The prototype is implemented in Java JDK
1.2. Xerces XML parser is used to parse necessary XML documents. Jakarta Tom Cat servlet
Engine is used for Servlet related operations. Apache SOAP, javamail-1.2 and jaf-1.0.1 are used
together to implement the ebXML Messaging Service. Visual Cafe is used to implement the GUI
tool for Building ebXML business processes.

UDDI provides a publicly available registry. However, with the current specification of UDDI,
the data pointed by the registry are scattered all over the Web, which makes it difficult and
sometimes even impossible to access them. The hosting site may go down or data may be deleted.
To address this problem, there is a need for a “repository” associated with the UDDI registry.

ebXML’s repository specification, when implemented can fill this void.

References

[1] Bussler, C., “B2B Protocol Standards and their Role in Semantic B2B Integration Engines”,
IEEE Bulletin of the TC on Data Engineering, http://www.research.microsoft.com/research/
db/debull /issues-list.htm, Vol. 24, No. 1, March 2001.

24

[2] Dogac, A., Cingil, 1., Tambag, Y., Laleci, G.B., Kabak, Y., “Describing the Semantics of Web

Services and UDDI”, submitted for publication.
[3] ebXML, http://www.ebxml.org/

[4] ebXML Registry Services Specification v1.0, http://www.ebxml.org/specs/ebiRS.pdf, May
2001.

[5] ebXML Collaboration Protocol Profile and Agreement Specification, http://www.
ebxml.org/specs/ebCCP.pdf.

[6] ebXML Message Service Specification v1.0, http://www.ebxml.org/specs/ebMS.pdf, May 2001.

[7] ebXML Business Process Specification Schema v1.0, http://www.ebxml.org/specs/ebBPSS.pdf,
May 2001.

[8] ebXML Registry Information Model v1.0, http://www.ebxml.org/specs/ebRIM.pdf, May 2001.
[9] North American Industrial Classification Scheme (NAICS) codes http://www.naics. com.

[10] OASIS, http://www.oasis-open.org/cover/siteIndex.html

[11] Objecteering, http://www.objecteering.com/us/produits_pe.htm

[12] Rawlins, M., “Overview of the ebXML architectures”, http://rawlinsecconsulting.com/

[13] RosettaNet, http://www.rosettanet.org/

[14] UDDI: Universal Description, Discovery and Integration, http://www.uddi.org, 2001.

[15] UDDI Registry, http://www-3.ibm.com/services/uddi/

[16] UN/CEFACT, http://www.diffuse.org/fora.html#CEFACT

[17] Universal Standard Products and Services Classification (UNSPSC), http://eccma.org/unspsc
[18] Web Service Description Language (WSDL), http://www.w3.org/TR/wsdl

[19] XML Metadata Interchange (XMI), http://www-4.ibm.com/software/ad/library/standards
/xmi.html

25

