
The Web Service Discovery Architecture

Wolfgang Hoschek
CERN IT Division

European Organization for Nuclear Research
1211 Geneva 23, Switzerland
wolfgang.hoschek@cern.ch∗

Abstract

In this paper, we propose the Web Service Discovery
Architecture (WSDA). At runtime, Grid applications
can use this architecture to discover and adapt to re-
mote services. WSDA promotes an interoperable web
service discovery layer by defining appropriate services,
interfaces, operations and protocol bindings, based on
industry standards. It is unified because it subsumes
an array of disparate concepts, interfaces and protocols
under a single semi-transparent umbrella. It is modu-
lar because it defines a small set of orthogonal multi-
purpose communication primitives (building blocks) for
discovery. These primitives cover service identifica-
tion, service description retrieval, data publication as
well as minimal and powerful query support. The ar-
chitecture is open and flexible because each primitive
can be used, implemented, customized and extended in
many ways. It is powerful because the individual prim-
itives can be combined and plugged together by specific
clients and services to yield a wide range of behaviors
and emerging synergies.

1 Introduction

An enabling step towards increased Internet and Grid
software execution flexibility is the web services vision
[1, 2, 3] of distributed computing where programs are
no longer configured with static information. Rather,
the promise is that programs are made more flexible,
adaptive and powerful by querying Internet databases
(registries) at runtime in order to discover informa-
tion and network attached third-party building blocks.
Services can advertise themselves and related meta-
data via such databases, enabling the assembly of dis-
tributed higher-level components.

For example, the European DataGrid (EDG) [4, 5]
is a global software infrastructure that ties together a

∗Proc. IEEE/ACM Supercomputing Conference (SC 2002),
Baltimore, USA, 0-7695-1524-X/02 $17.00 (c) 2002 IEEE

massive set of people and computing resources spread
over hundreds of laboratories and university depart-
ments. This includes thousands of network services,
tens of thousands of CPUs, WAN Gigabit networking
as well as Petabytes of disk and tape storage [6]. A
data-intensive High Energy Physics analysis applica-
tion sweeping over Terabytes of data looks for remote
services that exhibit a suitable combination of charac-
teristics, including appropriate interfaces, operations
and network protocols as well as network load, avail-
able disk quota, access rights, and perhaps Quality of
Service and monetary cost. It is thus of critical impor-
tance to develop capabilities for rich service discovery
as well as a query language that can support advanced
resource brokering. Examples of a service are:

• A replica catalog implementing an interface that,
given an identifier (logical file name), returns the
global storage locations of replicas of the specified
file.

• A replica manager supporting file replica cre-
ation, deletion and management as well as re-
mote shutdown and change notification via pub-
lish/subscribe interfaces.

• A storage service offering GridFTP transfer, an
explicit TCP buffer size tuning interface as well as
administration interfaces for management of files
on local storage systems. An auxiliary interface
supports queries over access logs and statistics
kept in a registry that is deployed on a central-
ized high availability server, and shared by multi-
ple such storage services of a computing cluster.

• A gene sequencing, language translation or an in-
stant news and messaging service.

As communications protocols and message formats
are standardized on the Internet, it becomes increas-
ingly possible and important to be able to describe
communication mechanisms in some structured way.

1

A service description language addresses this need by
defining a grammar for describing network services as
collections of service interfaces capable of executing op-
erations over network protocols to endpoints. Service
descriptions provide documentation for distributed sys-
tems and serve as a recipe for automating the details in-
volved in application communication [7]. In contrast to
popular belief, a web service is neither required to carry
XML [8] messages, nor to be bound to SOAP [9] or
the HTTP [10] protocol, nor to run within a .NET [11]
hosting environment, although all of these technologies
may be helpful for implementation. For clarity, service
descriptions in this paper are formulated in the Sim-
ple Web Service Description Language (SWSDL), as
introduced in our prior studies [1]. SWSDL describes
the interfaces of a distributed service object system.
It is a compact pedagogical vehicle trading flexibility
for clarity, not an attempt to replace the WSDL [7]
standard.

As an example, assume we have a simple scheduling
service that offers an operation submitJob that takes
a job description as argument. The function should
be invoked via the HTTP protocol. A valid SWSDL
service description reads as follows1:

<service>

<interface type = "http://gridforum.org/Scheduler-1.0">

<operation>

<name>void submitJob(String jobdescription)</name>

<allow> http://cms.cern.ch/everybody </allow>

<bind:http verb="GET"

URL="https://sched.cern.ch/submitjob"/>

</operation>

</interface>

</service>

It is important to note that the concept of a ser-
vice is a logical rather than a physical concept. For
efficiency, a so-called container of a virtual hosting en-
vironment such as the Apache Tomcat servlet container
may be used to run more than one service or interface
in the same process or thread. The service interfaces of
a service may, but need not, be deployed on the same
host. They may be spread over multiple hosts across
the LAN or WAN and even span administrative do-
mains. This notion allows speaking in an abstract man-
ner about a coherent interface bundle without regard
to physical implementation or deployment decisions.
We speak of a distributed (local) service, if we know
and want to stress that service interfaces are indeed

1To avoid name space collisions, an inter-
face type is a universally unique URI such as
http://gridforum.org/interface/Consumer-1.0. Interfaces
expressed with XML Schema [12] (e.g. WSDL based interfaces)
must use the XML namespace of that schema as type name.
Sometimes we omit prefixes and version postfixes for compact
exposition.

deployed across hosts (or on the same host). Typically,
a service is persistent (long lived), but it may also be
transient (short lived, temporarily instantiated for the
request of a given user).

In this paper we define a web service layer that pro-
motes interoperability for existing and future Internet
software. Such a layer views the Internet as a large
set of services with an extensible set of well-defined in-
terfaces. A discovery architecture defines appropriate
services, interfaces, operations and protocol bindings
for discovery. The key problems are:

• Can we define a discovery architecture that pro-
motes interoperability, embraces industry stan-
dards, and is open, modular, flexible, unified, non-
disruptive and simple yet powerful?

• What kind of query and data model as well as
query language can support simple and complex dy-
namic service and resource discovery with as few
as possible architecture and design assumptions?

This paper makes the following contributions: We
propose and specify a discovery architecture that ad-
dresses these problems, the so-called Web Service Dis-
covery Architecture (WSDA). WSDA subsumes an ar-
ray of disparate concepts, interfaces and protocols un-
der a single semi-transparent umbrella. It specifies a
small set of orthogonal multi-purpose communication
primitives (building blocks) for discovery. These primi-
tives cover service identification, service description re-
trieval, data publication as well as minimal and pow-
erful query support. The individual primitives can be
combined and plugged together by specific clients and
services to yield a wide range of behaviors and emerg-
ing synergies. An XML data model allows for struc-
tured and semi-structured data, which is important for
integration of heterogeneous content. An interface for
XQueries allows for powerful searching, which is crit-
ical for non-trivial applications. State maintenance is
based on soft state, which enables reliable, predictable
and simple content integration from a large number of
autonomous distributed content providers. A dynamic
data model allows for a wide range of dynamic content
freshness policies.

This paper is organized as follows. Section 2 de-
fines four interfaces, namely Presenter, Consumer,
MinQuery and XQuery. The Presenter interface al-
lows clients to retrieve the current (most up-to-date)
service description. The Consumer interface allows con-
tent providers to publish a tuple set to a consumer. The
MinQuery interface provides the simplest possible query
support (“select all”-style); It returns tuples including
or excluding cached content. The XQuery interfaces
provides powerful XQuery support.

2

Section 3 specifies default transport protocol bind-
ings for these interfaces. Section 4 describes how two
example services, the hypermin registry and the hyper
registry, use and combine these interfaces. Section 5
discusses the desirable properties the architecture ex-
hibits. Section 6 gives a detailed comparison with the
emerging Open Grid Services Architecture [2, 13]. Sec-
tion 7 compares our approach with other related work.
Section 8 concludes this paper. We also outline inter-
esting directions for future research.

2 Interfaces

Presenter. The Presenter interface allows clients
to retrieve the current (most up-to-date) service de-
scription. Clearly clients from anywhere must be able
to retrieve the current description of a service (sub-
ject to local security policy). Hence, a service needs to
present (make available) to clients the means to retrieve
the service description. To enable clients to query in a
global context, some identifier for the service is needed.
Further, a description retrieval mechanism is required
to be associated with each such identifier. Together
these are the bootstrap key (or handle) to all capabili-
ties of a service.

In principle, identifier and retrieval mechanisms
could follow any reasonable convention, suggesting the
use of any arbitrary URI. In practice, however, a fun-
damental mechanism such as service discovery can only
hope to enjoy broad acceptance, adoption and subse-
quent ubiquity if integration of legacy services is made
easy. The introduction of service discovery as a new
and additional auxiliary service capability should re-
quire as little change as possible to the large base of
valuable existing legacy services, preferable no change
at all. It should be possible to implement discovery-
related functionality without changing the core ser-
vice. Further, to help easy implementation the retrieval
mechanism should have a very narrow interface and be
as simple as possible.

Thus, for generality, we define that an identifier may
be any URI. However, in support of the above require-
ments, the identifier is most commonly chosen to be a
URL [14], and the retrieval mechanism is chosen to be
HTTP(S) [10]. If so, we define that an HTTP(S) GET
request to the identifier must return the current ser-
vice description (subject to local security policy). In
other words, a simple hyperlink is employed. In the
remainder of this paper, we will use the term service
link for such an identifier enabling service description
retrieval. Like in the WWW, service links (and con-
tent links, see below) can freely be chosen as long as
they conform to the URI and HTTP URL specification

[14]. Hence, they may contain the usual URL encoded
attribute-value pairs. Examples of links are:

urn:/iana/dns/ch/cern/cn/techdoc/94/1642-3

urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

http://sched.cern.ch:8080/getServiceDescription.wsdl

https://cms.cern.ch/getServiceDesc?id=4712&cache=disable

http://phone.cern.ch/lookup?query=

"select phone from phonebook where phone=0450-1234"

http://repcat.cern.ch/getPFNs?lfn="myLogicalFileName"

Because service descriptions should describe the es-
sentials of the service, it is recommended2 that the ser-
vice link concept be an integral part of the descrip-
tion itself. As a result, service descriptions may be
retrievable via the Presenter interface, which defines
an operation getServiceDescription() for this pur-
pose. The operation is identical to service descrip-
tion retrieval and is hence bound to (invoked via) an
HTTP(S) GET request to a given service link. Addi-
tional protocol bindings may be defined as necessary.

Consumer. The Consumer interface allows content
providers to publish a tuple set to a consumer (e.g. a
registry service), via the publish operation. A tuple
can embed arbitrary content such as a service descrip-
tion, Quality of Service description, a file, file replica
location, current network load, host information, stock
quotes, etc. A tuple follows the Dynamic Data Model
(DDM) (also see our prior studies [1]). It has as at-
tributes a content link, a type, a context, four soft state
time stamps, and (optionally) two arbitrary-shaped ex-
tensibility elements, namely metadata and content. A
tuple is an annotated multi-purpose soft state data con-
tainer that may contain a piece of arbitrary content
and allows for refresh of that content at any time, as
depicted in Figure 1 and 2.

Content (optional)

Link Type Context Timestamps Metadata

HTTP(S) GET(tuple.link) --> tuple.content
type(HTTP(S) GET(tuple.link)) --> tuple.type

Tuple :=

Semantics of
HTTP(S) link :=

currently unspecified
Semantics of
other URI link :=

Figure 1: Tuple is an annotated multi-purpose soft
state data container, and allows for dynamic refresh.

A content link (e.g. service link) is a URI. If it is
an HTTP(S) URL then the current (most up-to-date)
content can be retrieved (pulled) at any time via an

2In general, it is not mandatory for a service to implement
any “standard” interface.

3

<tupleset>

<tuple link="http://registry.cern.ch/getDescription"

type="service" ctx="parent"

TS1="10" TC="15" TS2="20" TS3="30">

<content>

<service>

<interface type="http://cern.ch/Presenter-1.0">

<operation>

<name>XML getServiceDescription()</name>

<bind:http verb="GET"

URL="https://registry.cern.ch/getDesc"/>

</operation>

</interface>

<interface type = "http://cern.ch/XQuery-1.0">

<operation>

<name> XML query(XQuery query)</name>

<bind:beep

URL="beep://registry.cern.ch:9000"/>

</operation>

</interface>

</service>

</content>

<metadata> <owner name="http://cms.cern.ch"/>

</metadata>

</tuple>

<tuple link="http://repcat.cern.ch/getDesc?id=4711"

type="service" ctx="child"

TS1="30" TC="0" TS2="40" TS3="50">

</tuple>

<tuple link="urn:uuid:f81d4fae-11d0-a765-00a0c91e6bf6"

type="replica" TC="65" TS1="60" TS2="70" TS3="80">

<content>

<replicaSet LFN="urn:/iana/dns/ch/cern/cms/myFile"

size="10000000" type="MySQL/ISAM"

creator="fred@cern.ch">

<PFN URL="ftp://storage.cern.ch/file123"/>

<PFN URL="ftp://se01.infn.it/file456"/>

</replicaSet>

</content>

</tuple>

</tupleset>

Figure 2: Tuple Set from Dynamic Data Model.

HTTP(S) GET request to the link, turning the em-
bedded tuple content into a cache. The type describes
what kind of content is being published. The context
describes why the content is being published or how
it should be used3. The optional metadata element

3For clarity of exposition, the examples given here use
short strings as values for type and context (e.g. service,

parent). However, strictly speaking, this is not legal. To avoid
namespace pollution and ambiguities, the value of a type must
be a universally unique URI [14], a MIME content-type [15]
(e.g. application/octet-stream, image/jpeg, audio/mpeg)
or the empty string. For XML content observing an XML
Schema [12] the type must equal the URI of the schema
namespace. The value of a context must be a URI or the
empty string. For example, a service description really is
of type http://gridforum.org/content-type/service-1.0

may further describe the content and/or its retrieval
beyond what can be expressed with the previous at-
tributes. For example it may describe retrieval from
an UDDI [16] registry, formulated in the Web Service
Inspection Language (WSIL) [17], or it may be a secure
digital XML signature [18].

Given this tuple information, a content retriever
module can retrieve the current content from the
provider. Content and metadata can be structured
or semi-structured data in the form of any arbitrary
well-formed XML document or fragment4. An individ-
ual element may, but need not, have a schema (XML
Schema [12]), in which case it must be valid accord-
ing to the schema. All elements may, but need not,
share a common schema. This flexibility is important
for integration of heterogeneous content.

Based on embedded soft state time stamps defining
life time, a tuple may eventually be discarded unless
refreshed by a stream of timely confirmation notifica-
tions. Within a tuple set, a tuple is uniquely identi-
fied by its tuple key, which is the pair (content link,
context). An existing tuple can be “updated” by pub-
lishing other values under the same tuple key. A tuple
set must not contain equal tuples. That is, it must
not contain tuples with the same tuple key. As usual,
the rules governing comparison and equality of content
links and contexts are the ones defined in the specifica-
tion of the relevant URI and URL schemes. URIs from
different schemes are never equal.

For detailed motivation, justification and discus-
sion of the Dynamic Data Model and the semantics
of soft state time stamps, see [1]. The dynamic data
model is open and allows for a wide range of powerful
caching policies. The publish operation has the signa-
ture (TS4, TS5) publish(XML tupleset).

MinQuery. The MinQuery interface provides the
simplest possible query support (“select all”-style). It
returns tuples including or excluding cached content.
As a minimum, clients can query by invoking mini-
malist query operations. The getTuples() query op-
eration takes no arguments and returns the full set
of all tuples “as is”. That is, query output format
and publication input format are the same (see Figure
2). If supported, output includes cached content. The

whereas the parent context really has the value
http://gridforum.org/content-context/parent-1.0.

4For clarity of exposition, the content is an XML element.
In the general case (allowing non-text based content types such
as image/jpeg), the content is a MIME [15] object. The XML
based publication input tuple set and query result tuple set is
augmented with an additional MIME multipart object, which is
a list containing all content. The content element of a tuple is
interpreted as an index into the MIME multipart object.

4

getLinks() query operation is similar in that it also
takes no arguments and returns the full set of all tu-
ples. However, it always substitutes an empty string for
cached content. In other words, the content is omitted
from tuples, potentially saving substantial bandwidth.
The second tuple in Figure 2 has such a form.

Advanced query support can be expressed on top of
the minimal query capabilities. Such higher-level capa-
bilities conceptually do not belong to a consumer and
minimal query interface, which are only concerned with
the fundamental capability of making a content link
(e.g. service link) reachable5 for clients. As an anal-
ogy, consider the related but distinct concepts of web
hyper-linking and web searching: Web hyper-linking is
a fundamental capability without which nothing else
on the Web works. Many different kinds of web search
engines using a variety of search interfaces and strate-
gies can and are layered on top of web linking. The
kind of XQuery support we propose below is certainly
not the only possible and useful one. It seems unrea-
sonable to assume that a single global standard query
mechanism can satisfy all present and future needs of
a wide range of communities. Multiple such mecha-
nisms should be able to coexist. Consequently, the
consumer and query interfaces are deliberately sepa-
rated and kept as minimal as possible, and an addi-
tional interface type (XQuery) for answering XQueries
is introduced below.

XQuery. The XQuery interface provides powerful
XQuery support, which is important for realistic ser-
vice and resource discovery use cases. For a detailed
motivation and justification, including a discussion of
a wide range of discovery queries and an evaluation
of various query languages, see our prior studies [1].
XQuery [19, 20] is the standard XML query language
developed under the auspices of the W3C. It allows
for powerful searching, which is critical for non-trivial
applications. Everything that can be expressed with
SQL [21] can also be expressed with XQuery. How-
ever, XQuery is a more expressive language than SQL,
for example, because it supports path expressions for
hierarchical navigation. Example XQueries for ser-
vice discovery are depicted in Figure 3. XQuery can
dynamically integrate external data sources via the
document(URL) function, which can be used to pro-
cess the XML results of remote operations invoked over
HTTP. For example, given a service description with
a getPhysicalFileNames(LogicalFileName) opera-

5Reachability is interpreted in the spirit of garbage collection
systems: A content link is reachable for a given client if there
exists a direct or indirect retrieval path from the client to the
content link.

tion, a query can match on values dynamically pro-
duced by that operation. The same rules that ap-
ply to minimalist queries also apply to XQuery sup-
port. An implementation can use a modular and simple
XQuery processor such as Quip [22] for the operation
XML query(XQuery query). Because not only con-
tent, but also content link, context, type, time stamps,
metadata etc. are part of a tuple, a query can also
select on this information.

Interface Summary. The four interfaces and their
respective operations are summarized in Table 1. Fig-
ure 4 depicts the interactions of a client with imple-
mentations of these interfaces.

3 Network Protocol Bindings

The operations of the interfaces are bound to (carried
over) a default transport protocol. The XQuery inter-
face is bound to the Peer Database Protocol (PDP)
proposed in our previous work [1, 23]. PDP support
database queries for a wide range of database architec-
tures and response models such that the stringent de-
mands of ubiquitous Internet discovery infrastructures
in terms of scalability, efficiency, interoperability, ex-
tensibility and reliability can be met. In particular, it
allows for high concurrency, low latency as well as early
and/or partial result set retrieval, both in pull and
push mode. For all other operations and arguments
we assume for simplicity HTTP(S) GET and POST
as transport, and XML based parameters. Additional
protocol bindings may be defined as necessary. An ex-
ample service description of a registry implementing
all four interfaces, formulated in SWSDL, is depicted
in Figure 5.

4 Services

In [24] we defined two kinds of example registry ser-
vices: The so-called hypermin registry must (at least)
support the three interfaces Presenter, Consumer and
MinQuery (excluding XQuery support). A hyper reg-
istry must (at least) support these interfaces plus the
XQuery interface. Put another way, any service that
happens to support, among others, the respective in-
terfaces qualifies as a hypermin registry or hyper reg-
istry. As usual, the interfaces may have endpoints that
are hosted by a single container, or they may be spread
across multiple hosts or administrative domains.

It is by no means a requirement that only dedicated
hyper registry services and hypermin registry services

5

Interface Operations Responsibility

Presenter XML getServiceDescription() Allows clients to retrieve the current description of a service and hence to bootstrap
all capabilities of a service.

Consumer (TS4,TS5) publish(XML

tupleset)

A content provider can publish a dynamic pointer called a content link, which in turn
enables the consumer (e.g. registry) to retrieve the current content. Optionally, a
content provider can also include a copy of the current content as part of publica-
tion. Each input tuple has a content link, a type, a context, some time stamps, and
(optionally) metadata and content.

MinQuery XML getTuples()

XML getLinks()

Provides the simplest possible query support (“select all”-style). The getTuples

operation returns the full set of all available tuples “as is”. The minimal getLinks
operation is identical but substitutes an empty string for cached content.

XQuery XML query(XQuery query) Provides powerful XQuery support. Executes an XQuery over the available tuple set.
Because not only content, but also content link, context, type, time stamps, metadata
etc. are part of a tuple, a query can also select on this information.

Table 1: WSDA Interfaces and their Respective Operations.

may implement WSDA interfaces. Any arbitrary ser-
vice may decide to offer and implement none, some or
all of these four interfaces. For example, a job scheduler
may decide to implement, among others, the MinQuery
interface to indicate a simple means to discover meta-
data tuples related to the current status of job queues
and the supported Quality of Service. The scheduler
may not want to implement the Consumer interface be-
cause its metadata tuples are strictly read-only. Fur-
ther, it may not want to implement the XQuery inter-
face, because it is considered overkill for its purposes.
Even though such a scheduler service does not qualify
as a hypermin or hyper registry, it clearly offers useful
added value. Other examples of services implementing
a subset of interfaces are consumers such as an instant
news service or a cluster monitor. These services may
decide to implement the Consumer interface to invite
external sources for data feeding, but they may not find
it useful to offer and implement any query interface.

In a more sophisticated scenario, the example job
scheduler may decide to publish its local tuple set also
to an (already existing) remote hyper registry service
(i.e. with XQuery support). To indicate to clients how
to get hold of the XQuery capability, the scheduler may
simply copy the XQuery interface description of the re-
mote registry service and advertise it as its own in-
terface by including it in its own service description.
This kind of virtualization is not a “trick”, but a fea-
ture with significant practical value, because it allows
for minimal implementation and maintenance effort on
the part of the scheduler.

Alternatively, the scheduler may include in its local
tuple set (obtainable via the getLinks() operation) a
tuple that refers to the service description of the re-
mote registry service. An interface referral value for
the context attribute of the tuple is used, as follows:

<tuple link="https://registry.cern.ch/getServiceDescription"

type="service" ctx="x-ireferral://cern.ch/XQuery-1.0"

TS1="30" TC="0" TS2="40" TS3="50">

</tuple>

5 Properties

WSDA has a number of key properties:

• Standards Integration. The architecture
embraces and integrates solid and broadly ac-
cepted industry standards such as XML [8], XML
Schema [12], the Simple Object Access Protocol
(SOAP) [9], the Web Service Description Lan-
guage (WSDL) [7] and XQuery [19]. It allows for
integration of emerging standards such as the Web
Service Inspection Language (WSIL) [17].

• Interoperability. WSDA promotes an interop-
erable web service layer on top of existing and fu-
ture Internet software, because it defines appro-
priate services, interfaces, operations and proto-
col bindings. We do not introduce new Internet
standards. Rather, we judiciously combine ex-
isting interoperability-proven open Internet stan-
dards such as HTTP(S) [10], URI [14], MIME [15],
XML [8], XML Schema [12] and BEEP [25, 26, 27].

• Modularity. The architecture is modu-
lar because it defines a small set of orthogonal
multi-purpose communication primitives (build-
ing blocks) for discovery. These primitives cover
service identification, service description retrieval,
publication, as well as minimal and powerful query
support. The responsibility, definition and evolu-
tion of any given primitive is distinct and indepen-
dent of that of all other primitives.

• Ease-of-use and Ease-of-implementation.
Each communication primitive is deliberately de-
signed to avoid any unnecessary complexity. The

6

• Find all (available) services.

RETURN /tupleset/tuple[@type="service"]

• Find all services that implement a replica catalog
service interface that CMS members are allowed to
use, and that have an HTTP binding for the replica
catalog operation “XML getPFNs(String LFN).

LET $repcat := "http://cern.ch/ReplicaCatalog-1.0"

FOR $tuple in /tupleset/tuple[@type="service"]

LET $s := $tuple/content/service

WHERE

SOME $op IN $s/interface[@type = $repcat]/operation

SATISFIES ($op/name="XML getPFNs(String LFN)" AND

$op/bindhttp/@verb="GET" AND

contains($op/allow, "http://cms.cern.ch"))

RETURN $tuple

• Find all replica catalogs and return their physical
file names (PFNs) for a given logical file name
(LFN); suppress PFNs not starting with “ftp://”.

LET $repcat := "http://cern.ch/ReplicaCatalog-1.0"

LET $s := /tupleset/tuple[@type="service"]

/content/service[interface@type = $repcat]

RETURN

FOR $pfn IN invoke($s, $repcat,

"XML getPFNs(String LFN)",

"http://myhost.cern.ch/myFile")

/tupleset/PFN

WHERE starts-with($pfn, "ftp://")

RETURN $pfn

• Return the number of replica catalog services.

RETURN count(/tupleset/content/service

[interface/@type="http://cern.ch/ReplicaCatalog-1.0"])

• Find all (execution service, storage service) pairs
where both services of a pair live within the same
domain. (Job wants to read and write locally).

LET $exeType := "http://cern.ch/executor-1.0"

LET $stoType := "http://cern.ch/storage-1.0"

FOR $exec IN /tupleset/tuple[content/service/

interface/@type=$exeType],

$stor IN /tupleset/tuple[content/service/

interface/@type=$stoType

AND domainName(@link) =

domainName($exec/@link)]

RETURN <pair> {$exec} {$storage} </pair>

Figure 3: Example XQueries for Service Discovery.

Presenter Consumer MinQuery XQuery

 Tuple 1 ... Tuple N

Content 1

Presenter N

Content N
...

Remote Client

HTTP GET or
getSrvDesc()

publish(...) getTuples()
getLinks()

query(...)

T1

...

Tn

Presenter 1

Invocation
Content Link

Interface

Legend

Figure 4: Interactions of Client with Interfaces.

<service>

<interface type = "http://cern.ch/Presenter-1.0">

<operation>

<name>XML getServiceDescription()</name>

<bind:http verb="GET"

URL="https://registry.cern.ch/getDescription"/>

</operation>

</interface>

<interface type = "http://cern.ch/Consumer-1.0">

<operation>

<name> (TS4,TS5) publish(XML tupleset)</name>

<bind:http verb="POST"

URL="https://registry.cern.ch/publish"/>

</operation>

</interface>

<interface type = "http://cern.ch/MinQuery-1.0">

<operation>

<name> XML getTuples()</name>

<bind:http verb="GET"

URL="https://registry.cern.ch/getTuples"/>

</operation>

<operation>

<name> XML getLinks()</name>

<bind:http verb="GET"

URL="https://registry.cern.ch/getLinks"/>

</operation>

</interface>

<interface type = "http://cern.ch/XQuery-1.0">

<operation>

<name> XML query(XQuery query)</name>

<bind:beep URL="beep://registry.cern.ch:9000"/>

</operation>

</interface>

</service>

Figure 5: SWSDL description of a registry service im-
plementing all four interfaces.

7

design principle is to “make simple and common
things easy, and powerful things possible”. In other
words, solutions are rejected that provision for
powerful capabilities yet imply that even simple
problems are complicated to solve. For example,
service description retrieval is by default based on
a simple HTTP(S) GET. Yet, we do not exclude,
and indeed allow for, alternative identification and
retrieval mechanisms such as the ones offered by
UDDI (Universal Description, Discovery and Inte-
gration) [16], RDBMS or custom Java RMI reg-
istries (e.g. via tuple metadata specified in WSIL
[17]). Further, tuple content is by default given in
XML, but advanced usage of arbitrary MIME [15]
content (e.g. binary images, files, MS-Word doc-
uments) is also possible. As another example, the
minimal query interface requires virtually no im-
plementation effort on the part of a client or server.
Yet, where necessary, also powerful XQuery sup-
port may, but need not, be implemented and used.

• Openness and Flexibility. WSDA is open and
flexible because each primitive can be used, imple-
mented, customized and extended in many ways.
For example, the interfaces of a service may have
endpoints spread across multiple hosts or admin-
istrative domains. However, there is nothing that
prevents all interfaces to be co-located on the same
host or implemented by a single program. Indeed,
this is often a natural deployment scenario. Fur-
ther, even though default network protocol bind-
ings are given, additional bindings may be defined
as necessary. For example, an implementation of
the Consumer interface may bind to (carry traffic
over) HTTP(S) [10], SOAP/BEEP [27], FTP [28],
or RMI [29]. The tuple set returned by a query
may be maintained according to a wide variety
of cache coherency policies, resulting in static to
highly dynamic behavior. A consumer may take
any arbitrary custom action upon publication of a
tuple. For example, it may interpret a tuple from
a specific schema as a command or an active mes-
sage [30], triggering tuple transformation and/or
forwarding to other consumers such as loggers. For
flexibility, a service maintaining a tuple set may be
deployed in any arbitrary way. For example, the
database can be kept in a XML file, in the same
format as returned by the getTuples query op-
eration. However, tuples can also be dynamically
recomputed or kept in a relational database.

• Expressive Power. The architecture is power-
ful because its individual primitives can be com-
bined and plugged together by specific clients and

services to yield a wide range of behaviors. Each
single primitive is of limited value all by itself.
The true value of simple orthogonal multi-purpose
communication primitives lies in their potential
to generate powerful emerging synergies. For ex-
ample, combination of WSDA primitives enables
building services for replica location, name resolu-
tion, distributed auctions, instant news and mes-
saging, software and cluster configuration manage-
ment, certificate and security policy repositories,
as well as Grid monitoring tools.

As another example, the consumer and query in-
terfaces can be combined to implement a Peer-to-
Peer (P2P) database network for service discovery.
In a large distributed system spanning many ad-
ministrative domains such as a DataGrid, it is de-
sirable to maintain and query dynamic and timely
information about active participants such as ser-
vices, resources and user communities. However,
in such a database system, the set of information
tuples in the universe is partitioned over multi-
ple distributed nodes, for reasons including auton-
omy, scalability, availability, performance and se-
curity. Here, P2P nodes maintain a local database
and implement the consumer and query interfaces.
Clients and P2P nodes publish (their) service de-
scriptions and/or other metadata to one or more
P2P nodes. Publication enables distributed node
topology construction (e.g. ring, tree or graph)
and at the same time constructs the database to be
searched. When any originator wishes to search
the P2P network with some query, it sends the
query to an agent node. The node applies the
query to its local database and returns match-
ing results; it also forwards the query to select
neighbor nodes. These neighbors return their local
query results; they also forward the query to select
neighbors, and so on. We have extensively dis-
cussed this in [1, 31, 23], where the Unified Peer-
to-Peer Database Framework (UPDF) and corre-
sponding Peer Database Protocol (PDP) are de-
vised, which are unified in the sense that they
allow to express specific applications for a wide
range of data types (typed or untyped XML, any
MIME type [15]), node topologies (e.g. ring, tree,
graph), query languages (e.g. XQuery, SQL),
query response modes (e.g. Routed, Direct and
Referral Response), neighbor selection policies (in
the form of an XQuery), pipelining characteristics,
timeout and other scope options.

• Uniformity. WSDA is unified because it
subsumes an array of disparate concepts, inter-

8

faces and protocols under a single semi-transparent
umbrella. It allows for multiple competing dis-
tributed systems concepts and implementations
to coexist and to be integrated. Clients can dy-
namically adapt their behavior based on rich ser-
vice introspection capabilities. Clearly there ex-
ists no solution that is optimal in the presence of
the heterogeneity found in real-world large cross-
organizational distributed systems such as Data
Grids, electronic market places and instant Inter-
net news and messaging services. Introspection
and adaption capabilities increasingly make it un-
necessary to mandate a single global solution to
a given problem, thereby enabling integration of
collaborative systems.

• Non-Disruptiveness. WSDA is non-disruptive
because it offers interfaces but does not mandate
that every service in the universe must comply to
a set of “standard” interfaces.

6 Comparison with Open Grid
Services Architecture

We have recently learned about the emerging Open
Grid Services Architecture (OGSA) [2, 13]. OGSA
exhibits striking similarities with our architecture, in
spirit and partly also in design. We stress that this pa-
per and OGSA have so far been mutually independent
work in their entirety. Future work is likely to be col-
laborative and convergent due to shared interest. Due
to the recent circulation of early OGSA material, our
understanding of it is limited and not necessarily ac-
curate. Nevertheless, in this section we attempt a pre-
liminary comparison of OGSA concepts with WSDA
concepts.

OGSA is work-in-progress, but an important first
step towards enabling powerful, flexible yet also in-
teroperable large cross-organizational Grid systems.
Like WSDA, OGSA defines and standardizes a set
of (mostly) orthogonal multi-purpose communication
primitives that can be combined and customized by
specific clients and services to yield powerful be-
havior. Like WSDA, OGSA embraces solid and
broadly accepted industry standards such as XML [8],
XML Schema [12], the Simple Object Access Proto-
col (SOAP) [9], the Web Service Description Language
(WSDL) [7] and XQuery [19].

Service Link, Service Description and Presen-
ter. In OGSA, a service instance is identified by a
Grid Service Handle (GSH), which is an immutable,

globally unique HTTP(S) URL that distinguishes a
specific service instance from all other service instances
that have existed, exist now, or will exist in the future.
By means of an HTTP GET or the HandleMap inter-
face, the handle can be resolved to a Grid Service Ref-
erence (GSR), which is typically a WSDL document
containing descriptions of all supported service inter-
faces. A reference may change over time. That is,
the contents of the WSDL document may change over
time. A reference is based on soft state, hence expires
unless periodically renewed.

A GSH corresponds to a WSDA service link. How-
ever, unlike a GSH, a service link is neither re-
quired to be immutable nor globally unique. A
GSR corresponds to a WSDA service description
given in WSDL. Both are soft state documents. Al-
though it is unclear from the complex presenta-
tion, it appears that a HandleMap corresponds to the
WSDA Presenter interface. In WSDA, the opera-
tion Presenter.getServiceDescription() or a sim-
ple HTTP(S) GET to a content link (e.g. service link)
may be used to retrieve the current content (e.g. ser-
vice description). WSDA allows arbitrary-shaped con-
tent retrieval via MIME encoding (e.g. textual, bi-
nary), including mapping a service link to a service
description. It appears that OGSA is restricted to
mapping a GSH to a GSR. Further not every legal
HTTP(S) URL is a legal GSH. In WSDA, every le-
gal HTTP(S) URL is a legal content link and hence
also a legal service link. OGSA defines implicit and
unclear URL suffix mapping and GSHomeHandleMapID
semantics that we believe would better be omitted or
expressed as part of the HandleMap interface. The
OGSA HandleMap operation GSR FindByHandle(GSH)
corresponds to the WSDA Presenter operation XML
getServiceDescription(). The additional GSH ar-
gument is unnecessary in our approach.

Tuple, Tuple Set and Query. In OGSA, a grid
service instance maintains so-called service data XML
elements. A service data element is a multi-purpose
soft state data container that may contain arbitrary
content. A service data element has a name attribute
and three soft state time stamp attributes (goodFrom,
goodUntil, notGoodAfter) and may contain an arbi-
trary extensibility element as content. In contrast, a
WSDA tuple follows the Dynamic Data Model (DDM).
It has as attributes a content link, a type, a con-
text, four soft state time stamps, and (optionally) two
arbitrary-shaped extensibility elements, namely meta-
data and content. A WSDA tuple is an annotated
multi-purpose soft state data container that may con-
tain a piece of arbitrary content and allows for refresh

9

of that content at any time (see Figure 1).
The dynamic nature of our data model allows keep-

ing access control for security sensitive content in the
hands of the authoritative content provider. While it
may be harmless that potentially anybody can learn
that some content exists (content link), stringent trust
delegation policies may dictate that only a few select
clients, not including Consumers and registries, are al-
lowed to retrieve the content from a provider. Consider
for example, that a detailed service description may be
helpful for launching well-focused security attacks. A
data model that is not dynamic, on the other hand,
requires trust delegation, which potentially opens the
door for a malicious audience to learn detailed enough
service descriptions to launch well-focused virus or de-
nial of service attacks.

A collection of OGSA service data elements corre-
sponds to a WSDA tuple set. In WSDA, publication
input data and query output is uniformly expressed as
a tuple set6.

The OGSA operation FindServiceData of the
GridService interface allows querying the collection
of service data elements (roughly corresponding to the
WSDA MinQuery and XQuery interfaces). It attempts
to support multiple query languages by accepting and
returning an arbitrary XML element. The schema of
the input XML element indicates the query language.
If the service instance supports the desired query lan-
guage, the query is executed against the collection of
service data elements. Every OGSA grid service must
support a simple query “language” that returns a list
of all service data elements whose name equals a given
name (exact match). The name “root” is reserved and
must return at least a list of “standard” service data
elements such as handle, reference, primary key, a list
of the supported query languages, etc.

The OGSA FindServiceData operation takes arbi-
trary XML input and returns arbitrary XML output.
It remains to be seen how useful it is to coerce dis-
tinct query capabilities into a single generic operation.
Consider that modern software systems rarely coerce
distinct capabilities into a single generic handler func-
tion of the form Object do(Object). Further con-
sider that the very purpose of separate interface types
and names is to allow for independence, separate evolu-
tion, flexibility, clarity, predictability, type safety and
straightforward introspection. In essence, this is what
web services and service descriptions are about. In this
light, generic functions for distinct capabilities appear
counter-intuitive to the spirit of web services.

6The output tuple set of a constructive query may contain
arbitrary content, whereas all other queries output a tuple set
with tuples from the dynamic data model.

For comparison, in WSDA, trivial and powerful
query support are cleanly separated. The MinQuery
interface is indeed minimal and requires only the sim-
plest possible query support (“select all”-style) via the
operations getTuples() and getLinks(). The WSDA
XQuery interface, on the other hand, allows extremely
powerful queries. Finally, it is unclear from the ma-
terial whether OGSA intends in the future to support
either or both XQuery, XPath, or none.

Data Publication. An OGSA registry service in-
stance maintains a collection of handles. Typically,
an OGSA registry service offers a Registry interface,
which supports registering and unregistering handles.
The registerService operation takes as input a han-
dle, a timeout, and optionally, an abstract and an arbi-
trary extensibility element. The unregisterService
operation takes as input the handle to be removed.

In contrast, a WSDA consumer and query can
accept and return arbitrary textual and binary soft
state data in the form of a tuple set, including con-
tent links, service links (handles), cached content and
metadata (e.g. a WSIL [17] fragment). The OGSA
registerService operation roughly corresponds to
the WSDA publish operation. However, the latter
operation is a unified multi-purpose operation, sup-
porting a set of arbitrary-shaped soft state tuples.
The functionality to publish information other than
handles (e.g. references) to a registry or service cur-
rently appears to be missing from OGSA. The OGSA
notification interface appears only useful for interac-
tion patterns based on subscription by notification
sinks. Invitation for subscription appears to be miss-
ing. The unregisterService operation is not neces-
sary in WSDA, because a tuple is based on soft state.
Explicit (immediate) unregistration can be achieved by
using the WSDA publish operation with tuples carry-
ing zero-valued soft state time stamps.

An OGSA registry service supports discovery
queries via the FindServiceData operation of the
GridService interface. The relationship between dis-
covery queries and the maintained collection of handles
is unclear. More precisely, it is unclear whether handles
are maintained as service data elements, and if they can
be queried in the same way as described above.

The OGSA NotificationSource and
NotificationSink interfaces allow for publish-
subscribe functionality based on message type and
interest statements. A notification source may offer a
set of topics, which notification sinks may use for sub-
scription. A notification source may send notification
messages to a subscribed notification sink. Subscrip-
tion requests are soft state based and expire unless

10

Concept OGSA WSDA

Interfaces GridService, NotificationSource, Notification-
Sink, Registry, Factory, PrimaryKey, Han-
dleMap

Presenter, Consumer, MinQuery, XQuery

Interfaces required to be im-
plemented by every service

GridService interface; defines operations for
query and life cycle maintaince

None

Service identifier Grid Service Handle (GSH) Service link (i.e. content link)
Service description Grid Service Reference (GSR) (e.g. WSDL) Service description (e.g. WSDL)
Service description retrieval via HTTP(S) GET or

HandleMap.findByHandle(GSH)

via HTTP(S) GET or
Presenter.getServiceDescription()

Multi-purpose data container Service data Tuple
Set of data containers Service data list Tuple set
Query capability GridService.FindServiceData(XML query) MinQuery.getLinks(), MinQuery.getTuples(),

XQuery.query(XQuery)

Data publication Registry.RegisterService(handle),
NotificationSink.deliverNotification(sdata)

Consumer.publish(XML tupleset)

Table 2: Open Grid Services Architecture vs. Web Service Discovery Architecture.

periodically renewed. The OGSA NotificationSink
interface corresponds to the WSDA Consumer inter-
face. However, it appears that it is not foressen that
an OGSA notification message may carry a set of more
than one service data elements7. In contrast, a WSDA
consumer message explicitly carries zero or more
tuples in a tuple set, resulting in potentially much
improved efficiency. Consider that all production
quality database management systems we are aware
of support batching of tuples over the network. This
is because inserting a million tuples (e.g. CPU load
samples) into a database should not involve the same
number of network round-trips. In addition to effi-
ciency by design, WSDA offers an open and precisely
specified dynamic data model that allows for a wide
range of powerful caching policies. We are working on
a multi-purpose interface for persistent XQueries (i.e.
server-side trigger queries), which will roughly corre-
spond to the OGSA NotificationSource interface,
albeit in a more general and powerful manner. The
Peer Database Protocol [23] already supports, in a
unified manner, all messages and network interactions
required for efficient implementations of Peer-to-Peer
publish-subscribe and event trigger interfaces (e.g.
synchronous pull and asynchronous push, as well as
invitations and batching).

Grid Service. In OGSA, a GridService interface
supports discovery queries (findServiceData),
setting and prolonging of shutdown time
(setTerminationTime) as well as explicit (imme-
diate) shutdown of the service (destroy). OGSA
mandates that every grid service must implement

7Nesting service data elements inside a service data element
is possible but undefined and left without semantics.

the GridService interface. In contrast, WSDA does
not require a service to implement any “standard”
interface. A specific service (e.g. a registry service)
may, of course, mandate implementation of certain
interfaces, but there is no global requirement that any
and all services in the universe must satisfy. Historical
evidence suggests that the acceptance of ubiquituous
Internet infrastructures and their flexible and success-
ful evolution strongly depends on being conservative
with the term MUST. A design rarely turns out right
the first time. Typically, several design revisions and
refactorings over time are needed. Consider that once
a fundamental interface is introduced as mandatory,
one is “stuck” with it forever, at least if compatibility
and stability are of concern.

The problem is subtle and comparable to the de-
sign of the base class of single-rooted object oriented
programming languages. A uniform and well designed
base class clearly offers strong advantages because ev-
eryone can safely assume certain essential features to
be available everywhere. Many C++ reusability prob-
lems stem from the fact that the C++ language has no
single common base class. For example, integration of
third-party frameworks is problematic at best. On the
other hand, a controversial or flawed base class feature
such as the (potentially very useful) clone() method of
the Java base class is bound to lead to dissatisfaction.

Another comparable problem-in-the-large is the def-
inition of the Java platform. Typically, Java interfaces
and frameworks are not designed, specified, revised,
standardized and hardened within the Java platform.
Rather, they are born and live externally for some two
years to allow enough time for a community process,
deployment feedback from reference implementations,
and for separation of wheat from chaff. Only then may
some of them be considered to be merged into the core

11

Java platform definition.
It is often desirable to include features only if consid-

ered non-disruptive and absolutely essential for a wide
range of communities. While certainly interesting and
often useful, justification is missing why query, shut-
down and other lifetime maintenance of services should
be absolutely essential for every service. Further, while
certainly well designed, justification is missing why the
chosen definition of these features is superior to other
approaches. Consider that a large variety of server ad-
ministration and monitoring products with related but
not equivalent interfaces has been introduced and mar-
keted in the past [32]. In addition, the OGSA query
interface certainly is, just like our query interfaces, not
the only possible and useful one. Finally, we believe
that a main idea behind web services is service descrip-
tion introspection and dynamic adaption. This capa-
bility increasingly makes it unnecessary to mandate a
global “service base class or interface”.

Other. The OGSA Factory interface supports dy-
namically creating short or long-lived service instances.
An OGSA service instance may be associated with a
primary key, which is used to locate and shut down
service instances created by a factory. It is unclear
what the added value of a primary key over a handle is.
The concept may perhaps be related to the WSDA tu-
ple key, which is the pair (content link, context),
uniquely identifying a tuple within a tuple set.

Table 2 summarizes the comparison of correspond-
ing OGSA and WSDA concepts.

7 Other Related Work

WSDL. The Simple Web Service Description Lan-
guage (SWSDL) describes the interfaces of a dis-
tributed service object system. For simplicity, it offers
neither a class concept nor interface inheritance. Ser-
vice descriptions could also be formulated in the Web
Service Description Language (WSDL) [7]. WSDL is
a rigorous, expressive and flexible industry standard.
However, WSDL trades clarity for expressiveness and
flexibility. The example stated in [7] requires 66 XML
lines and 7 levels of XML nesting even though it merely
describes a stock quote service with a trivial operation
that returns the trading price of a given stock. We esti-
mate that WSDL based service descriptions are about
one order of magnitude larger in size and structural
complexity than corresponding SWSDL based descrip-
tions. We stress that SWSDL is a pedagogical vehicle,
not an attempt to replace the standard. All features
of SWSDL can be (and in practice will be) mapped

to WSDL. Both languages are not mutually exclusive.
SWSDL is more useful in the high-level architecture
and design phase of a software project whereas WSDL
is more useful for the detailed specification and imple-
mentation phase.

LDAP and MDS. The Lightweight Directory Ac-
cess Protocol (LDAP) [33] defines a network protocol
in which clients send requests to and receive responses
from LDAP servers. LDAP is an extensible network
protocol, not a discovery architecture. It does not offer
a dynamic data model, is not based on soft state and
does not follow an XML data model. The expressive
power of the LDAP query language is insufficient for
realistic service discovery use cases [1].

The Metacomputing Directory Service (MDS) [34]
is a specific service based on LDAP. As a result, its
query language is insufficient for service discovery, and
it does not follow an XML data model. MDS does not
offer a dynamic data model. However, it is based on
soft state. MDS is not a web service, because it is not
specified by a service description language. It does not
offer interfaces and operations that may be bound to
multiple network protocols. However, it appears that
MDS is being recast to fit into the OGSA architecture.
Indeed, the OGSA registry and notification interfaces
could be seen as new and abstracted clothings for MDS.

UDDI. UDDI (Universal Description, Discovery and
Integration) [16] is an emerging industry standard that
defines a business oriented access mechanism to a reg-
istry holding XML based WSDL service descriptions.
UDDI is a definition of a specific service class, not a
discovery architecture. It does not offer a dynamic data
model. It is not based on soft state, which limits its
ability to dynamically manage and remove service de-
scriptions from a large number of autonomous third
parties in a reliable, predictable and simple way. Query
support is rudimentary. Only key lookups with prim-
itive qualifiers are supported, which is insufficient for
realistic service discovery use cases.

ANSA and CORBA. The ANSA project was an
early collaborative industry effort to advance dis-
tributed computing. It defined trading services [35]
for advertizement and discovery of relevant services,
based on service type and simple constraints on at-
tribute/value pairs. The CORBA Trading service [36]
is an evolution of these efforts.

Jini, SLP, SDS, INS. The Jini Lookup Service [37]
is located by Java clients via a UDP multicast. The
network protocol is not language independent because

12

it relies on the Java-specific object serialization mech-
anism. Publication is based on soft state. Clients and
services must renew their leases periodically. Content
freshness is not addressed. The query “language” al-
lows for simple string matching on attributes, and is
even less powerful than LDAP.

The Service Location Protocol (SLP) [38] uses mul-
ticast, softstate and simple filter expressions to adver-
tize and query the location, type and attributes of ser-
vices. The query “language” is more simple than Jini’s.
An extension is the Mesh Enhanced Service Location
Protocol (mSLP) [39], increasing scalability through
multiple cooperating directory agents. Both assume a
single administrative domain and hence do not scale to
the Internet and Grids.

The Service Discovery Service (SDS) [40] is also
based on multi cast and soft state. It supports a simple
XML based exact match query type. SDS is interesting
in that it mandates secure channels with authentication
and traffic encryption, and privacy and authenticity of
service descriptions. SDS servers can be organized in a
distributed hierarchy. For efficiency, each SDS node in
a hierarchy can hold an index of the content of its sub-
tree. The index is a compact aggregation and custom
tailored to the narrow type of query SDS can answer.
Another effort is the Intentional Naming System [41].
Like SDS, it integrates name resolution and routing.

8 Conclusions

We propose and specify an open discovery architec-
ture, the so-called Web Service Discovery Architecture
(WSDA). WSDA views the Internet as a large set of
services with an extensible set of well-defined inter-
faces. The architecture has a number of key properties.
It promotes an interoperable web service layer on top of
existing and future Internet software, because it defines
appropriate services, interfaces, operations and proto-
col bindings. It embraces and integrates solid industry
standards such as XML, XML Schema, SOAP, WSDL
and XQuery. It allows for integration of emerging stan-
dards such as the Web Service Inspection Language
(WSIL). It is modular because it defines a small set
of orthogonal multi-purpose communication primitives
(building blocks) for discovery. These primitives cover
service identification, service description retrieval, data
publication as well as minimal and powerful query sup-
port. Each communication primitive is deliberately de-
signed to avoid any unnecessary complexity.

The architecture is open and flexible because each
primitive can be used, implemented, customized and
extended in many ways. It is powerful because the
individual primitives can be combined and plugged to-

gether by specific clients and services to yield a wide
range of behaviors and emerging synergies. It is unified
because it subsumes an array of disparate concepts, in-
terfaces and protocols under a single semi-transparent
umbrella. It is non-disruptive because it offers inter-
faces but does not mandate that every service in the
universe must comply to a set of “standard” interfaces.
Finally, we compare in detail the properties of WSDA
with the emerging Open Grid Services Architecture.

The results presented in this paper open three inter-
esting research directions.

First, it would be valuable to rigourously assess, re-
view and compare the Web Service Discovery Architec-
ture and the Open Grid Services Architecture in terms
of concepts, design and specifications. A strong goal is
to achieve convergence by extracting best-of-breed so-
lutions from both proposals. Future collaborative work
could further improve current solutions, for example in
terms of simplicity, orthogonality and expressiveness.

Second, Tim Berners-Lee designed the World Wide
Web as a consistent interface to a flexible and chang-
ing heterogeneous information space for use by CERN’s
staff, the High Energy Physics community, and, of
course, the world at large. The WWW architecture
[42] rests on four simple and orthogonal pillars: URIs
as identifiers, HTTP for retrieval of content pointed
to by identifiers, MIME for flexible content encoding,
and HTML as the primus-inter-pares (MIME) content
type. Based on our Dynamic Data Model (DDM), we
hope to proceed further towards a self-describing meta
content type that retains and wraps all four WWW pil-
lars “as is”, yet allows for flexible extensions in terms
of identification, retrieval and caching of content. Ju-
dicious combination of the four WWW pillars, DDM,
WSDA, the Hyper Registry [24], the Unified Peer-to-
Peer Database Framework (UPDF) [31] and its asso-
ciated Peer Database Protocol (PDP) [23] are used to
define how to bootstrap, query and publish to a dy-
namic information space maintained by self-describing
network interfaces.

Third, we are starting to build a system prototype
with the aim of reporting on experience gained from
application to an existing large distributed system such
as the European DataGrid.

Acknowledgments. We would like to thank Pe-
ter Kunszt for an early high-level analysis. Ben Segal
supported this work with great enthusiasm, encourage-
ment and proof-reading.

13

References
[1] Wolfgang Hoschek. A Unified Peer-to-Peer Database

Framework for XQueries over Dynamic Distributed Con-
tent and its Application for Scalable Service Discovery.
PhD Thesis, Technical University of Vienna, March 2002.

[2] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke.
The Physiology of the Grid: An Open Grid Services Archi-
tecture for Distributed Systems Integration, January 2002.

[3] P. Cauldwell, R. Chawla, Vivek Chopra, Gary Damschen,
Chris Dix, Tony Hong, Francis Norton, Uche Ogbuji, Glenn
Olander, Mark A. Richman, Kristy Saunders, and Zoran
Zaev. Professional XML Web Services. Wrox Press, 2001.

[4] Ben Segal. Grid Computing: The European Data Grid
Project. In IEEE Nuclear Science Symposium and Med-
ical Imaging Conference, Lyon, France, October 2000.

[5] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar,
Heinz Stockinger, and Kurt Stockinger. Data Management
in an International Data Grid Project. In 1st IEEE/ACM
Int’l. Workshop on Grid Computing (Grid’2000), Banga-
lore, India, December 2000.

[6] Large Hadron Collider Committee. Report of
the LHC Computing Review. Technical report,
CERN/LHCC/2001-004, April 2001. http://lhc-
computing-review-public.web.cern.ch/lhc-computing-
review-public/Public/Report final.PDF.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1.
W3C Note 15, 2001. www.w3.org/TR/wsdl.

[8] World Wide Web Consortium. Extensible Markup Lan-
guage (XML) 1.0. W3C Recommendation, October 2000.

[9] World Wide Web Consortium. Simple Object Access Pro-
tocol (SOAP) 1.1. W3C Note 8, 2000.

[10] R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
IETF RFC 2616. UC Irvine, Digital Equipment Corpora-
tion, MIT.

[11] Oracle. J2EE and Microsoft .NET, April 2002. Oracle
Corp., White Paper.

[12] World Wide Web Consortium. XML Schema Part 0:
Primer. W3C Recommendation, May 2001.

[13] Steven Tuecke, Karl Czajkowski, Ian Foster, Jeffrey Frey,
Steve Graham, and Carl Kesselman. Grid Service Specifi-
cation, February 2002.

[14] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Re-
source Identifiers (URI): Generic Syntax. IETF RFC 2396.

[15] N. Freed and N. Borenstein. Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies. IETF RFC 2045, November 1996.

[16] UDDI Consortium. UDDI: Universal Description, Discovery
and Integration. www.uddi.org.

[17] P. Brittenham. An Overview of the
Web Services Inspection Language, 2001.
www.ibm.com/developerworks/webservices/library/ws-
wsilover.

[18] World Wide Web Consortium. XML-Signature Syntax and
Processing. W3C Recommendation, February 2002.

[19] World Wide Web Consortium. XQuery 1.0: An XML Query
Language. W3C Working Draft, December 2001.

[20] World Wide Web Consortium. XML Query Use Cases. W3C
Working Draft, December 2001.

[21] International Organization for Standardization (ISO). In-
formation Technology-Database Language SQL. Standard
No. ISO/IEC 9075:1999, 1999.

[22] Software AG. The Quip XQuery processor.
http://www.softwareag.com/developer/quip/.

[23] Wolfgang Hoschek. A Unified Peer-to-Peer Database Proto-
col. Technical report, DataGrid-02-TED-0407, April 2002.

[24] Wolfgang Hoschek. A Database for Dynamic Distributed
Content and its Application for Service and Resource Dis-
covery. In Int’l. IEEE Symposium on Parallel and Dis-
tributed Computing (ISPDC 2002), Iasi, Romania, July
2002.

[25] Marshall Rose. The Blocks Extensible Exchange Protocol
Core. IETF RFC 3080, March 2001.

[26] Marshall Rose. Mapping the BEEP Core onto TCP. IETF
RFC 3081, March 2001.

[27] E. O’Tuathail and M. Rose. Using the Simple Object Access
Protocol (SOAP) in Blocks Extensible Exchange Protocol
(BEEP). IETF RFC 3288, June 2002.

[28] J. Postel and J. Reynolds. File Transfer Protocol (FTP).
IETF RFC 959, October 1985.

[29] Madhusudhan Govindara, Aleksander Slominski, Venkatesh
Choppella, Randall Bramley, and Dennis Gannon. Require-
ments for and Evaluation of RMI Protocols for Scientific
Computing. In Supercomputing Conference (SC’00), Dal-
las, Texas, November 2000.

[30] David Culler, Kim Keeton, Lok Tim Liu, Alan Mainwaring,
Rich Martin, Steve Rodrigues, Kristin Wright, and Chad
Yoshikawa. The Generic Active Message Interface Specifi-
cation, August 1994. Computer Science Division, University
of California at Berkeley, White Paper.

[31] Wolfgang Hoschek. A Unified Peer-to-Peer Database Frame-
work and its Application for Scalable Service Discovery.
In Proc. of the 3rd Int’l. IEEE/ACM Workshop on Grid
Computing (Grid’2002), Baltimore, USA, November 2002.
Springer Verlag.

[32] Maite Barroso. Grid Fabric Management Work Package
Report on Current Technology. Technical report, DataGrid-
04-TED-0101, May 2001.

[33] W. Yeong, T. Howes, and S. Kille. Lightweight Directory
Access Protocol. IETF RFC 1777, March 1995.

[34] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl
Kesselman. Grid Information Services for Distributed Re-
source Sharing. In Tenth IEEE Int’l. Symposium on
High-Performance Distributed Computing (HPDC-10), San
Francisco, California, August 2001.

[35] Ashley Beitz, Mirion Bearman, and Andreas Vogel. Service
Location in an Open Distributed Environment. In Proc.
of the Int’l. Workshop on Services in Distributed and Net-
worked Environements, Whistler, Canada, June 1995.

[36] Object Management Group. Trading Object Service. OMG
RPF5 Submission:, May 1996.

[37] J. Waldo. The Jini architecture for network-centric com-
puting. Communications of the ACM, 42(7), July 1999.

[38] Erik Guttman. Service Location Protocol: Automatic Dis-
covery of IP Network Services. IEEE Internet Computing
Journal, 3(4), 1999.

14

[39] Weibin Zhao, Henning Schulzrinne, and Erik Guttman.
mSLP - Mesh Enhanced Service Location Protocol. In Proc.
of the IEEE Int’l. Conf. on Computer Communications and
Networks (ICCCN’00), Las Vegas, USA, October 2000.

[40] Steven E. Czerwinski, Ben Y. Zhao, Todd Hodes, An-
thony D. Joseph, and Randy Katz. An Architecture for
a Secure Service Discovery Service. In Fifth Annual Int’l.
Conf. on Mobile Computing and Networks (MobiCOM ’99),
Seattle, WA, August 1999.

[41] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan,
and Jeremy Lilley. The design and implementation of an
intentional naming system. In Proc. of the Symposium on
Operating Systems Principles, Kiawah Island, USA, Decem-
ber 1999.

[42] Roy Thomas Fielding. Architectural Styles and the Design
of Network-based Software Architectures. PhD Thesis, Uni-
versity of California, Irvine, 2000.

15

