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Abstract. The ability to rapidly locate useful on-line services (e.g. software ap-
plications, software components), as opposed to simply useful documents, is
becoming increasingly critical in many domains. Current service retrieval tech-
nology is, however, notoriously prone to low precision. This paper describes a
novel service retrieval approached based on the sophisticated use of process
ontologies. Our preliminary evaluations suggest that this approach offers quali-
tatively higher retrieval precision than existing (keyword and table-based) ap-
proaches without sacrificing recall and computational tractability/scalability.

1 The Challenge: High Precision Service Retrieval

Increasingly, on-line repositories such as the World Wide Web are being called upon
to provide access not just to documents that collect useful information, but also to
services that describe or even provide useful behavior. Potential examples of such
services abound:

•  Software applications such as web services that can be invoked remotely by people
or software. E.g., www.salcentral.com.

•  Software components that can be downloaded for use when creating a new appli-
cation. E.g., www.mibsoftware.com, www.compoze.com.

•  Best practice repositories that describe how to achieve some goal. E.g., proc-
ess.mit.edu/eph/, www.bmpcoe.com.

•  Individuals or organizations who can perform particular functions, E.g., guru.com,
elance.com, and freeagent.com.

As the number of such services increase it will become increasingly important to
provide tools to quickly find the services they need, while minimizing the burden for
those who wish to list their services with these search engines [1]. Current service
retrieval approaches have, however, serious limitations with respect to meeting these
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challenges. They either perform relatively poorly or make unrealistic demands of
those who wish to index or retrieve services. This paper first reviews these ap-
proaches and then presents as well as evaluates a novel service retrieval approach
based on the sophisticated use of process ontologies. It closes with a discussion of
open challenges for future work.

2 The State of the Art

Current service retrieval technology has emerged from several communities. The
information retrieval community has focused on the retrieval of natural language
service descriptions and has as a result emphasized keyword-based approaches. The
software agents and distributed computing communities have developed simple ‘ta-
ble-based’ approaches for ‘matchmaking’ between tasks and on-line services. The
software engineering community has developed by far the richest set of techniques for
service retrieval [2]. We can get a good idea of the relative merits of these approaches
by placing them in a precision/recall space (Figure 1):
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Fig. 1. State of the art in service retrieval

Most search engines, including service repositories such as www.salcentral.org,
look for items that contain the keywords in the query, which are sometimes prioritized
using techniques such as TFIDF to increase effective precision [3]. Keyword-based
approaches are, however, prone to both low precision, as irrelevant items may, e. g.,
contain the keyword, and imperfect recall due issues such as the use of synonyms
(sometimes addressed with pre-enumerated vocabularies [4], semantic nets [5] and
partial matching). The key underlying problem is that keywords are a poor way to
capture the semantics of a query or item.

Table-based approaches [6] [7] [8] [9] [10] [11] typically use a fixed number of
attribute value pairs describing the properties of a service. Figure 2, e.g., shows a
table-based model for an integer averaging service:

Description find the average of a list of integers
Input Integers
Output Real
Duration number of inputs * 0.1 msec

Fig. 2. A table-based description of an integer sorting service
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Both items and queries are described as tables: matches represent items whose
property values match those in the query. All the commercial service search technolo-
gies we are aware of (e.g., Jini™, eSpeak, Salutation, UDDI/WSDL, [12]) use this
approach. The more sophisticated search tools emerging from the research community
[13] [14] use ontologies and semantic nets to increase recall, e.g. returning a match if
the input type of a service is equal to or a generalization of the input type specified in
the query. Table-based models, however, do little to increase precision because of the
impoverished range of information they capture, as they typically include a detailed
description of how to invoke the service (i.e., parameter types, return types, etc.), but
don’t describe what the service actually does. This information is of limited value for
search purposes because services with different goals (e.g., services that compute
averages, medians, quartiles, etc.) can share similar call signatures.

Other approaches (such as deductive retrieval [15] or execution-based retrieval
[16]) are usually only suitable for limited application domains, as they are, typically,
to complex (both from a computational and a usability perspective).

3 Our Approach: Exploiting Process Ontologies

Our challenge can thus be framed as being able to capture enough service and query
semantics to substantively increase precision without reducing recall or making it
unrealistically difficult for people to express these semantics. Our central claim is
that these goals can be achieved through the sophisticated use of process ontologies
[17]. In our approach, the salient behavior of a service is captured using process mod-
els, and these process models, as well as their components (subtasks, resources, etc.),
are placed in the appropriate locations in the process ontology. Queries can then be
defined (using a process query language – PQL) to find all the services whose process
models include a given set of entities and relationships. The greater expressiveness of
process models, as compared to keywords or tables, offers the potential for substan-
tively increased retrieval precision, at the cost of requiring that services be modeled in
this more formal way. As we will see below, our preliminary evaluations suggest that
the process-based approach offers qualitatively increased retrieval precision, and we
will argue that this can be achieved with a reasonable expenditure of service modeling
effort. Our approach has the functional architecture shown in Figure 3, which we will
consider below.

Model service 
as a process

Index service model 
into process ontology Define query

Find matches

Fig. 3. Functional architecture



Discovering services: Towards High-Precision Service Retrieval      263

3.1 Modeling Services as Process Models

The first step in our approach is to capture service behavior as process models. Why
process models? To understand this choice, we need to understand more precisely the
causes of imperfect precision. One cause is that a component of the service model is
taken to have an unintended role. For example, a keyword-based query to find mort-
gage services that deal with “payment defaults” (a kind of exception) would also
match descriptions like “the payment defaults to $100/month” (an attribute value).
The other cause for false positives occurs when a service model is taken to include an
unintended relationship between components. For example, we may be looking for a
mortgage service where insurance is provided for payment defaults, but a keyword
search would not distinguish this from a service that provides insurance for the home
itself. The trick to increasing retrieval precision, therefore, comes down to ensuring
that important roles and relationships are made explicit in both the query and the
service model, so unintended meanings (and therefore false positives) can be avoided.
Process modeling languages are well suited for this as they have been designed to
capture the essence of different behaviors in a compact intuitive way, and have be-
come ubiquitous for a very wide range of uses.
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Fig. 4. Process model formalism

We use for our purposes a process modeling formalism (see Figure 4) that, similar
to other processes modeling languages, includes the following components:

•  Attributes: capture such information as a textual description, typical performance
values (e.g., execution time), etc.

•  Decomposition:  A process can be modeled as a collection of processes that can in
turn be broken down (“decomposed”) into sub-processes.

•  Resource Flows: All process steps can have input and output ports through which
resources flow allowing us to model consumed, and produced resources.

•  Mechanisms: Processes can be annotated with the resources they use (as opposed
to consume or produce). E.g., the Internet can serve as a mechanism for a process.
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•  Exceptions: Processes typically have characteristic ways they can fail and associ-
ated schemes for anticipating and avoiding or detecting and resolving them. Our
approach captures these schemes by annotating processes with their characteristic
‘exceptions’, and mapping these exceptions to processes describing how these ex-
ceptions can be handled [18].

Let us consider a simple example to help make this more concrete (Figure 5):
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Fig. 5. An example of a process-based service model

This represents the process model for a service for selling items electronically. The
plain text items represent entities (such as exceptions, ports, etc.), while the italicized
items represent relationships between these entities. The substeps in this service
model include ‘identify potential customers via data mining’, ‘inform customers’
(which uses the Internet as a mechanism), and ‘take orders’. The potential exception
of sending out unwanted solicitations is avoided by filtering out the names of indi-
viduals who have placed their names on ‘opt-out’ lists. Each of the entities can have
attributes (not shown) that include their name, description, and so on.

Formally, any database of process descriptions (using the formalism above) can be
defined as a typed graph:

Ont (Entities, Relationships) (1)

where entities are the nodes in the graph and relationships are the graph edges.
Furthermore, the following specifications apply:
•  A node can only have one type (⊕  denoting exclusive-or):

x ∈  Entities ≡ (x ∈  Task) ⊕  (x ∈  Resource) ⊕  (x ∈  Port) ⊕  (x ∈  Exception)
⊕  (x ∈  Attribute) ⊕  (x ∈  Value)

(2)

•  A relationship can only have one type and it connects nodes of certain types:
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This representation is similar, and equivalent in expressiveness, to other full-
fledged process modeling languages (e.g. IDEF [19], PIF [20], PSL [21] and
CIMOSA [22]) and substantially more expressive than the keyword and table-based
languages used in previous service retrieval efforts, by virtue of adding the important
concepts of resource flows, task decompositions, and exceptions. It does not however,
include primitives oriented at expressing control semantics, i.e. that describe when
each subtask gets enacted. Such primitives were excluded for two reasons. First, most
of the variation between process modeling languages occurs when representing con-
trol semantics, and we wanted a formalism to which a wide range of existing process
models could easily be translated. Second, our experience to date that most service
queries are concerned with what a process does, rather than when the parts of the
process gets enacted.

Modeling service behaviors as process models of course involves manual effort,
but we argue this need not be a major barrier. Because process formalisms are so
widely used, many services already have process models defined for them, e.g., as
part of their specification. The expertise needed to create such models is widely avail-
able. Process ontologies (see below) can reduce the modeling effort involved. Also,
service providers will likely be motivated to create such process models, since they
often differentiate themselves in the marketplace by how they provide their services,
and process models make this explicit. Process models, finally, enable important uses
other than search, such as automatic service composition.

3.2 Indexing Service Models into the Process Ontology

The second step of our approach is to index service models into a process ontology in
order to facilitate later retrieval. An ontology consists, in general, of a hierarchy of
entity descriptions ranging from the abstract at one end to the specific at the other.
Items with similar semantics (e.g. processes with similar functions) appear close to
each other, the way books with similar subjects appear close to each other in a library.
Indexing a service comes down to placing the associated process model, as well as all
of its components (attributes, ports, dependencies, subtasks and exceptions) on the
appropriate branch in the ontology. Using an ontology is valuable for several reasons.
It can reduce the burden of modeling a service, since one need only find the most
similar process model in the ontology and then modify it to model a new service.
Ontologies can increase recall, since similar services are co-located, one is apt to find
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relevant services simply by browsing the ontology near the matches one has already
found. In addition, an ontology helps us find matches that are described using differ-
ent, but semantically equivalent, terminology.

We build for this purpose on the MIT Process Handbook project, a process ontol-
ogy, which has been under development at the Center for Coordination Science (CCS)
for the past ten years [23] [24]. The growing Handbook database currently includes
roughly 5000 process descriptions ranging over such areas as supply chain logistics,
hiring, etc. The Handbook project has developed sophisticated tools that allow a
knowledgeable user to index a process model in a matter of minutes. We believe that
the Handbook ontology represents an excellent starting point for indexing many
services because it is focused on business processes, which is what a high proportion
of such services are likely to address.

3.3 Defining Queries

It is of course imaginable that we could do without queries entirely once services have
been indexed into an ontology. One could simply browse the ontology to find the
services that one is interested in, as in [25]. Our experience suggests however that
browsing can be slow and difficult for all except the most experienced users. This
problem is likely to be exacerbated when, as with online services, the space of serv-
ices is large and dynamic. To address this challenge we have defined a query lan-
guage called PQL (the Process Query Language) designed for retrieving process
models indexed in an ontology. Process models can be straightforwardly viewed as
entity-relationship diagrams made up of entities like tasks characterized by attributes
and connected by relationships like ‘has-subtask’. PQL queries are built up as combi-
nations of three primitive clause types that check for these elements:

•  Entity <entity> isa <entity type>
•  Relation <source entity> <relationship type>  <target entity> [*]
•  Attribute <attribute> of <entity> {includes | equals} <value>

The ‘entity’ clause matches any entity of a given type (the entity types include
task, resource, port and so on). The ‘relation’ clause matches any relationship of a
given type between two entities (the relationship types include has-subtask, has-
specialization, has-port, and so on). The optional asterisk finds the transitive closure
of this relationship. The ’attribute’ clause looks for entities with attributes that have
given values. Any bracketed item <> can be replaced by a variable (with the format
?<string>) that is bound to the matching entity and passed to subsequent query
clauses.

The ‘When’-clause allows to group clauses into sub-queries:

•  When {exists | does-not-exist} <query>

Let us consider a simple example to help make this more concrete. The query be-
low searches for a sales service that uses the internet to inform customers:

attribute "Name" of ?sell includes "sell"
relation ?sell has-specialization ?process *
when exists (relation ?process has-subtask ?subtask *
                 attribute "Name" of ?subtask includes "inform"
                 attribute "Description" of ?subtask includes “internet")
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The first clause searches for a processes in the ontology whose name includes
“sell”, the second finds all specializations of this, and the third checks if any subtasks
of these services are “inform” processes with “internet” in their description. A PQL
query is thus equivalent to a typed sub-graph pattern, and any search for a process
model can then be treated as finding the nodes of type task, which match the graph
pattern that represents the query.

The three clause types of PQL, and their variants, can be formalized as follows:

Relation x rel-type y
is defined as:  (x,y) ∈  rel-type, where rel-type ∈  {has-specialization, has-subtask, …}

Relation x rel-type y *
is formalized using  a fixpoint/recursive definition, as:
((x, y) ∈  rel_type) ∨  (∃ z : ((x,z) ∈  rel_type) ∧  rel_type(z,y)* )

Entity entity isa entity-type
is defined as:
entity ∈  entity-type, where entity-type ∈  {Task, Port, Resource, Exception, Attribute, …}

Attribute attribute of entity equals value
is shorthand for two relationships, as follows:
has_attribute(entity, attribute) ∧  has_value(attribute, value)

Attribute attribute of entity includes value
is defined as:
has_attribute(entity, attribute) ∧  has_value(attribute, v1) ∧  IsSubString(value, v1)

Note that PQL includes built-in functions, such as IsSubString, comparable to
those in other query languages such as SQL. If any of the parameters to a predicate
are preceded by a question mark (e.g., ?y), then it denotes a variable that needs to be
bound to a value from the database/model that can fulfill its place.

The ‘when’ construct serves two roles. If used with the “exists” operator then it
simply groups sub-queries in an intuitive way, and does not add any expressive power
to PQL. For example:

Relation ?x Has_subtask ?y
When exists ((Relation ?y Has_subtask a))
is formalized equivalently with or without the “when” operator, as:
Has_subtask(?x,?y) ∧  Has_subtask(?y, a)

If the when-statement is used with the “does-not-exist” option then it will only return
a result if <query> does not. This introduces a form of negation into PQL, so:

When does-not-exist query
is defined as ¬∃  xi= 1 ..k: xi= 1 ..k ∈ Entities : <query>
where: xi= 1 ..k are the unbound variables in query.

The question of how to add negation to a query language is a non-trivial issue, as it
may have major implications on its computational tractability. As will become obvi-
ous in section 5 below, the type of negation introduced here is consistent with an
inflationary fixpoint approach, ensuring that the resulting language is bounded by
polynomial time.

As a final example, let us consider how our original example PQL query is for-
malized:
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Has_attribute(?sell, “Name”) ∧  Has_value(“Name”, ?v1) ∧  IsSubString(“sell”, ?v1) ∧
Has_Specialization(?sell, ?process) ∧
Has_attribute(?process, “service?”) ∧  Has_value(“service?”, “yes”) ∧
( Has_subtask(?process, ?subtask) ∧
  Has_attribute(?subtask, “Name”)∧ Has_value(“Name”, ?v2)∧ IsSubString(“inform”, ?v2) ∧
  Has_attribute(?subtask, “Description”) ∧  Has_value(“Description”, ?v3) ∧
   IsSubString(“inform”, ?v3) )

PQL has been used successfully to represent a wide range of queries drawn from
many different domains. Some other examples include “find a loan process that uses
the internet, takes real estate as collateral, and has loan default insurance”, “find all
processes that take oil as an input and are prone to cause environmental damage”, and
so on.  Our preliminary assessment is that PQL is sufficiently expressive to capture all
queries describable in process-oriented terms.

3.4 Finding Matches

The algorithm for retrieving matches given a PQL query is straightforward. The
clauses in the PQL query are tried in order, each clause executed in the variable
binding environment accumulated from the previous clauses. The bindings that sur-
vive to the end represent the matching services. While we have not yet evaluated
PQL’s performance in detail yet, we do show (see below) that queries are within
polynomial time complexity.

4 Empirical Evaluation

An initial version of the PQL interpreter has been implemented, and we have per-
formed some preliminary evaluations of its precision and recall compared to existing
(keyword and table-based) approaches. The following scheme was used for all of the
evaluations described below. The roughly 5000 processes in the Process Handbook
process ontology were treated as service models, which is reasonable since they all
represent functions used in business contexts and many could imaginable be per-
formed remotely. We then defined keyword and process-based queries that use the
same keywords, operate over the same database of service models, and differ only in
whether they use the role and relationship information encoded in the service models.
We did not define a separate set of table-based service models and queries for this
evaluation because, from the standpoint of retrieval precision, the keyword and table-
based approaches are equivalent. The fact that table-based models differentiate name
and description attributes does not help since descriptions almost invariably reprise
the keywords included in the service name, and none of the queries we used made use
of I/O specifications. In any case, if we had used queries that refer to such I/O specs,
it would not change the relative precision of table- and process-based queries since
both can use I/O information. We tested simple keyword search as well as TFIDF, the
latter because its potentially greater effective precision makes it a dominant scheme
for keyword-based search. All the queries in our evaluation had perfect recall, be-
cause of the consistency in the use of keywords in the process descriptions. While we
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do not anticipate that process-based search will differ significantly in recall from
keyword and table-based, this remains a subject for future evaluation. The queries
below, clearly, are only illustrative, since a complete evaluation would require exe-
cuting a representative range of many queries.

Since our goal was to determine whether process-based retrieval improves on ex-
isting approaches, our evaluation focused on the value of the additional information
captured by process-based service models as compared to keyword- and table-based
models. This additional information falls into five categories: task decompositions,
port connectivity, exception handling, task mechanisms, and specializations. We ex-
amine each category in the sections below.

4.1 Task Decomposition

Our process-based service model allows us to explicitly describe the subtasks that
make up a service’s behavior. This can help avoid confounding information that refers
to different subtasks. Imagine, for example, that we are searching for a sales service
that informs customers using the Internet. We can frame this query as follows:

Table 1. Query types and actual Queries

Type Query
Keyword-based “Sell”  “inform “internet”
Process-based attribute "Name" of ?service includes "sell"

when exists (relation ?service has-subtask ?subtask *
        attribute “Name” of ?subtask includes "inform"
        attribute ?attr of ?subtask includes “internet")

The keyword and table-based service models are not able to distinguish cases
where “inform” and “internet” (or their synonyms) belong to the same subtask from
cases where these keywords belong to different subtasks (and thus are probably not
relevant). We would thus predict false positives and therefore lower precision for
these approaches, and this is in fact what happens. There were 13 correct matches for
this query, including such processes as “Sell travel services via electronic auction”,
“Sell books via electronic store” and so on. The PQL query had 13 correct matches
out of the 18 it returned, for a precision of 72%. A simple keyword-based search had
280 returns, for a precision of roughly 5%. TFIDF did not improve much upon simple
keyword search in this case: its precision reached a maximum of 6% (at match 163),
and its’ overall precision was lower because it allowed partial matches and therefore
generated more total returns,

4.2 Task Mechanisms

Our process-based service model allows us to describe the mechanisms used by a
task, thereby avoiding false positives due to the appearance of the same keyword with
a different role. We can, for example, refine the PQL query given above so that  it
only matches services where the keyword “internet” appears as a mechanism (the
added clauses are bold type):
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attribute "Name" of ?service includes "sell"
when exists (relation ?service has-subtask ?subtask *
                 attribute “Name” of ?subtask includes "inform"
                 relation ?subtask uses-mechanism ?mechanism
                 attribute “Name” of ?mechanism includes “Internet”)

This query had 13 correct matches, as above, but this time out of 16 responses, for an
improved precision of 81%.

4.3 Specialization

The has-specialization relationship enabled by our inclusion of a process ontology can
be used to avoid false positives by ensuring that the service, and its components,  have
the semantics that we desire. For example, we can use this to refine the query pre-
sented above to only accept services whose subtask is a specialization of the generic
“Inform” task, thereby pruning out services with subtasks that include the string “in-
form’ in their name for unrelated reasons (e.g. the subtask named “Collect configura-
tion information using Internet”):

attribute "Name" of ?service includes "sell"
when exists (relation ?service has-subtask ?subtask *
                 attribute “Name” of ?subtask includes "inform"
                 relation ?subtask uses-mechanism ?mechanism
                 attribute “Name” of ?mechanism includes “Internet”
                 attribute “Name” of ?class equals “Inform”
                 relation ?class has-specialization ?subtask)

With this refinement, the query returns 13 correct matches out of 13 total, for an accu-
racy of 100%.

Similar ontologies have of course been made available for table-based service re-
trieval engines. UDDI, for example, provides the UNSPSC taxonomy of product and
service categories and the NAICS taxonomy of industry codes, among others. The
particular value of the ontology we utilize is that it captures functions that a business
might require at a much finer grain than the taxonomies mentioned above. We believe
this will be helpful for service retrieval since many queries will, no doubt, be looking
for services to support business functions. At the time of writing our database did not
categorize services using these other taxonomies, so we were unable to evaluate their
relative merits.

4.4 Exception Handling

Our process-based service model allows us to explicitly delineate the exceptions faced
by a service, as well as the handlers available for dealing with each exception. Imag-
ine, for example, that we wish to find a sales service that informs customers via the
internet but avoids the exception of sending unwanted solicitations (e.g. by filtering
out the names that appear on “opt-out” lists). We can, for this purpose, refine the
query described above as follows shown in Table 2.

We would expect the keyword- and table-based models to incur false positives by
finding services that have the same keywords in different roles, that have that excep-
tion but do not have a handler for it, or that use a different handler (e.g. allowing
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recipients to remove their name from subsequent solicitations) for the same exception.
In this case, there was one correct match. PQL returned only that item, for a precision
of 100%. Keyword-based search returned 188 matches (0.53% precision), and TFIDF
did not do any better, returning 248 documents, with a maximum precision at 0.4%.

Table 2. Query types and Query for exception handling Query

Type Query
Keyword-based “Sell” “inform” “internet” “avoid” “unwanted” “opt-out”
Process-based attribute "Name" of ?service includes "sell"

when exists (relation ?service has-subtask ?subtask *
                 attribute “Name” of ?subtask includes "inform"
                 relation ?subtask uses-mechanism ?mechanism
                 attribute “Name” of ?mechanism includes “Internet”
                 attribute “Name” of ?class equals “Inform”
                 relation ?class has-specialization ?subtask
                 relation ?subtask has-exception ?exception
                 attribute “Name” of ?exception includes “unwanted”
                 relation ?exception is-avoided-by ?handler
                 relation ?attr of ?handler includes “opt-out”)

4.5 Port Connectivity

The final category of information uniquely provided by process-based service models
is port connectivity, which captures the resource flow relationships between tasks. We
may, for example, want a service that generates the lists of potential customers to
inform by applying data-mining techniques, which implies that the output of a data
mining subtask is an input to the inform customers subtask. This would imply a PQL
query like the following:

attribute "Name" of ?sell includes "sell"
when exists (relation ?process has-subtask ?sub1

attribute "Name" of ?sub1 includes "inform"
relation ?sub1 has-port ?port1
entity ?port1 isa input-port
relation ?process has-subtask ?sub2
attribute "Name" of ?sub includes “mining”
relation ?sub2 has-port ?port2
entity ?port2 isa output-port
relation ?port1 is-connected-to ?port2)

A query like this can avoid false positives wherein a data-mining subtask exists in
the service model, but it does not provide information to the inform customers step.
The data-mining subtask may be applied instead, for example, to the database of sales
generated by this service. We would therefore expect the keyword- and slot-based
retrieval queries to demonstrate lower precision than PQL. At the time of writing we
were unable to evaluate this because the Process Handbook ontology did not include
sufficient port connectivity information; this will be addressed in future work.

While a wider range of queries and services needs to be evaluated, these test cases
strongly suggest that the greater expressiveness of process-based service models can
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in fact result in qualitatively higher retrieval precision. Even a PQL query that only
took advantage of the subtask relationships in the process-based models produced
retrieval precision more than 10 times greater than keyword-based approaches. The
relative advantage of PQL, moreover, increased radically as the number of relation-
ships specified in the query increased.

4.6 Retrieval Complexity

One of the major considerations for any retrieval capability is that it must return an-
swers in a timely way. The speed at which queries get returned should be comparable
to that of existing document retrieval mechanisms, which manage to search millions
of documents in seconds. Even though our experience with the prototype implemen-
tation has been favorable (i.e., queries generally take several seconds at most without
exploiting well-known performance-enhancing techniques such as query optimiza-
tion) there is still the question of how the performance will scale with the size of the
database. As we have shown elsewhere [26] PQL can be mapped to DATALOG¬ ,
which has been shown to be bounded by polynomial time [27]. Consequently, we
have every reason to believe that PQL will perform comparably to other database
query languages.

5 Contributions of This Work

High retrieval service precision is widely recognised as a critical enabler for impor-
tant uses that range from finding useful software components or applications, to find-
ing best practice models, to tracking down people or organisations with the skills you
need. Our work can be viewed as representing a new class of service retrieval tech-
nique that helps achieve these goals (Figure 6).

Our evaluations to date suggest that process-based queries produce retrieval preci-
sion qualitatively greater than that of existing service retrieval approaches, while
retaining polynomial complexity for query enactment. This work represents a signifi-
cant contribution to work on pattern matching over generic graph-like representations,
such as graph grammars [28], object-oriented query languages [29], and XQuery (a
query language for XML; see http://www.w3.org/TR/xquery/). The unique value of
our work comes from exploiting the more constrained semantics of process models to
enable higher-precision service retrieval.

Another line of related work comes from the semantic web community. These ef-
forts use RDF [30] (or DAML+OIL [31]) to model services (e.g., [32]), and apply
standard RDF (or DAML+OIL) query engines such as RDFSuite [33] or TRIPLE [34]
to retrieve services. This work differs from ours in several important respects. Our
work takes advantage of a more expressive process model, which as we have seen
potentially translates into higher retrieval precision. All of these approaches capture
task inputs and outputs. Only DAML-S [35] and our approach, however, captures how
a service works (i.e. the subtasks in the service process model), and only our approach
captures exceptions and their handlers. Another important difference concerns the
nature of the process ontology used to index service models. The Handbook ontology,



Discovering services: Towards High-Precision Service Retrieval      273

unlike that underlying RDF and DAML+OIL, allows one to "default" (i.e. delete)
inherited features [36]. It has been shown that this form of inheritance is easier to
understand by non-specialists [37], thereby making it easier for them to classify serv-
ices. It is our hope that the insights we are exploring will lead to the enhancement of
the semantic web standards and the ability to exploit these ideas using off-the-shelf
query engines.
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Fig. 6. The contribution of process-based service retrieval technology

6 Next Steps

While our preliminary results are promising, many important challenges remain. First
and foremost, PQL needs to be evaluated for a wide range of queries in order to assess
its precision and recall performance as compared to existing approaches, and to sug-
gest refinements in the language and associated interpreter. Second, we hope to ex-
plore recall-enhancing techniques such as ontology-based query rewriting. Third,
there is a need to minimize the manual effort involved in listing new services with the
search engine by developing automatic indexing techniques. And finally, we will have
to develop intuitive user interfaces for PQL.
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