
Conversations + Interfaces = Business Logic

Harumi Kuno1, Mike Lemon1, Alan Karp1, and Dorothea Beringer2

1 Hewlett-Packard Laboratories
1501 Page Mill Road, MS 1U-14

Palo Alto, CA 94304 USA
2 Hewlett-Packard Co.

19320 Pruneridge Avenue, MS 49b-26
Cupertino, CA 95014 USA

{harumi kuno,mike lemon,alan karp,dorothea beringer}@hp.com

Abstract. In the traditional application model, services are tightly cou-
pled with the processes they support. For example, whenever a server’s
process changes, existing clients using that process must also be updated.
However, electronic commerce is moving toward e-service based interac-
tions, where corporate enterprises use e-services to interact with each
other dynamically, and a service in one enterprise could spontaneously
decide to engage a service fronted by another enterprise. We clarify here
the relationship between currently developing standards such as UDDI,
WSDL, and WSCL, and propose a conversation controller mechanism
that leverages such standards to direct services in their conversations. We
can thus treat services as pools of methods, independent of the conversa-
tions they support. Even method names can be decided on independently
of the conversations. Services can spontaneously discover each other and
then engage in complicated interactions without the services themselves
having to explicitly support conversational logic. The dynamism and
flexibility enabled by this decoupling is the essential difference between
applications offered over the web and e-services.

1 Introduction

Electronic commerce is moving towards a model of e-service based interactions,
where corporate enterprises use e-services to interact with each other dynam-
ically [1]. For example, a procurement service in one enterprise could sponta-
neously decide to engage a storefront service fronted by another enterprise. These
services can communicate by exchanging messages using some common transport
(e.g., HTTP) and message format (e.g., SOAP).

However, suppose that the storefront service expects the message exchanges
to follow a specific pattern (conversation), such as the conversation depicted in
Figure 1 (shown from the perspective of the storefront service). Service devel-
opers must now address several issues. How does the client service know what
conversations the storefront service supports? Does the storefront service devel-
oper have to code the conversation-controlling logic directly into the service? If

F. Casati, D. Georgakopoulos, M.-C. Shan (Eds.): TES 2001, LNCS 2193, pp. 30–43, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Conversations + Interfaces = Business Logic 31

<<ReceiveSend>>

In: LoginRQ
Out: LoginRS
Out: InvalidLoginRS

 Login

 Registration
In: RegistrationRQ
Out: RegistrationRS

<<ReceiveSend>>

<<ReceiveSend>>
 Quote
In: QuoteRQ
Out: QuoteRS

<<ReceiveSend>>
 CatalogInquiry
In: CatalogRQ
Out: CatalogRS

<<ReceiveSend>>
 Purchase
In: PurchaseRQ

Out: InvalidPaymentRS

[O
u

tO
fS

to
ckR

S
]

Out: PaymentAcceptedRS

Out: OutOfStockRS

<<Send>>
 Shipping
Out: ShippingInformation

[In
valid

L
o

g
in

R
S

]

[V
alid

L
o

g
in

R
S

]

[PurchaseAcceptedRS]

[InvalidPaymentRS]

Fig. 1. An Example Conversation Depicted as a UML Activity Diagram. Inter-
actions are represented as action states.

so, do developers have to re-implement the client and storefront services each
time a new message exchange is added to the supported conversation?

A model of dynamic service interactions thus imposes the following require-
ments:

1. Services must be able to describe themselves, and clients must be able to
discover them.

2. A service must be able to describe its abstract interfaces and protocol bind-
ings so that clients can figure out how to invoke it.

3. A service must be able to describe the kinds of interactions (conversations)
that it supports (e.g., that it expects clients to login before they can request
a catalog) so that clients can engage in complex exchanges with the service.

The Universal Description Discovery and Integration (UDDI) [2,3,4] specifi-
cations address the first problem by defining a way to publish and discover infor-
mation about Web services. The Web Services Description Language (WSDL) [5]
addresses the second problem, defining a general purpose XML language for
describing the interface and protocol bindings of network services. The Web
Services Conversation Language (WSCL)1 [6,7] addresses the last problem, pro-
viding a standard way to model the public processes of a service, thus enabling
network services to participate in rich interactions. Together, UDDI, WSDL, and
WSCL enable developers to implement web services capable of spontaneously
engaging in dynamic and complex inter-enterprise interactions.

In this paper, we describe how these standards enable us to separate interface
logic from conversation logic. We begin by discussing our perspective of e-services
as pools of functional endpoints that can be composed using conversations (Sec-
tion 2). In Section 3 we provide a brief overview of UDDI, WSDL, and WSCL,
1 WSCL was originally named the Conversation Definition Language (CDL).

32 Harumi Kuno et al.

and describe how they enable the creation of specifications describing service
endpoints and conversations. We have implemented a prototype conversation
controller that leverages service interface descriptions and conversation specifi-
cations expressed using WSCL and WSDL, which we describe in Section 4. We
present related work in Section 5, and summarize our conclusions and discuss
future directions in Section 6.

2 Approach

E-services are much more loosely coupled than traditional distributed appli-
cations. This difference impacts both the requirements and usage models for
e-services. E-services are deployed on the behalf of diverse enterprises, and the
programmers who implement them are unlikely to collaborate with each other
during development. However, the primary function of e-services is to enable
business-to-business interactions. Therefore, e-services must support very flexi-
ble, dynamic bindings. E-services should be able to discover new services and in-
teract with them dynamically without requiring programming changes to either
service. This distinction is what separates e-services from applications delivered
over the web.

In our model, e-services interact by exchanging messages. Each message can
be expressed as a structured document (e.g., using XML) that is an instance of
some document type (e.g., expressed using XML Schema). A message may be
wrapped (nested) in an encompassing document, which can serve as an envelope
that adds contextual (delivery or conversation specific) information (e.g., using
SOAP).

We define a conversation to be a sequence of message exchanges (interactions)
between two or more services. We define a conversation specification (also known
as a conversation policy) to be a formal description of “legal” message type-based
conversations that a service supports. Our goal is to enable e-services developed
by different enterprises to engage in flexible and autonomous, yet potentially
quite complex, business interactions (conversations).

We advocate a service-centric perspective that separates service interfaces
from conversation specifications. This approach allows us to treat services as
pools of interfaces that can be specified by individual participants and then
later composed using separate conversation specifications. We can then create
conversation controller services that can use conversation and interface speci-
fications to direct services in their interactions, thus freeing service developers
from having to explicitly program conversational logic. Such a single third-party
conversation controller could leverage “reflected” XML-based specifications to
direct the message exchanges of e-services according to protocols without the
service developers having to implement protocol-based flow logic themselves.
The conversation controller can assume responsibility for the conversation logic,
leaving service developers free to focus on service-specific logic. For example, the
controller would handle exceptions due to message type errors, while the service
would be responsible for handling exceptions related to message content.

Conversations + Interfaces = Business Logic 33

The advantage of this approach is that it enables services to be easily and
flexibly composed with a minimum of programming effort. In order to participate
in a given conversation type, a service need only to be able to accept and produce
messages of the appropriate types. This allows services and clients to discover
each other and interact dynamically using published specifications.

That is to say, because the conversation policies are not service-specific, ser-
vices and clients can interact even if they were not built to use precisely matching
conversation policies, as long as both parties are capable of sending and receiv-
ing appropriate messages. Furthermore, because the service interfaces and the
conversation policies are decoupled, different instances of a service could name
their methods independently, e.g., a client could use the same conversation spec-
ification to talk to two different book-selling services, despite the fact that one
service supports a Login method while the other uses a corresponding Sign-on
method.

Finally, this approach gives us a scalable mechanism for handling the ver-
sioning (evolution) of conversation policies. Services would not necessarily have
to be updated in order to support new or modified conversation policies. For
example, suppose that the conversation in Figure 1 were updated to allow the
client to send a quote request before it has requested a catalog. We could ef-
fect this change by simply updating the conversation specification; we would not
have to modify either the storefront or the procurement services’ code.

3 Currently Developing Standards for Service
Communication Specifications

The prevalent model for e-service communication is that e-services will pub-
lish information about the specifications that they support. UDDI facilitates the
publication and discovery of e-service information. The current version of WSDL
(1.0) is an XML-based format that describes the interfaces and protocol bind-
ings of web service functional endpoints. WSDL also defines the payload that
is exchanged using a specific messaging protocol; SOAP is one such possible
messaging protocol. However, neither UDDI nor WSDL currently addresses the
problem of how a service can specify the sequences of legal message exchanges
(interactions) that it supports. (We use the term “conversation” to refer to a
legal sequence of message exchanges.)

The Web Services Conversation Language (WSCL) addresses this issue, pro-
viding an XML schema for defining legal sequences of documents that e-services
can exchange. WSCL and WSDL are highly complimentary – WSDL specifies
how to send messages to a service and WSCL specifies the order in which such
messages can be sent. The advantage of keeping the two distinct is that do-
ing so allows us to decouple conversational interfaces (represented by WSCL)
from service-specific interfaces (represented by WSDL). This means that a sin-
gle conversation specification can be implemented by any number of services,
independent of the protocols supported by the various implementations.

34 Harumi Kuno et al.

3.1 UDDI Registries

A UDDI business registration is an XML document that describes a business
entity and its web services. The UDDI XML schema defines four core types of
service information: business information (such as business name and contact
information), business service information (general technical and business de-
scriptions of web services), binding information (specific information needed to
invoke a service), and service specification information (associating a service’s
binding information with the business service information it implements).

Programmers and programs can use the UDDI Business Registry to locate
technical information about services, such as the protocols and specifications
that they implement. More importantly, the UDDI Business Registry also serves
as a registry for abstract (service-independent) specifications. Services can refer
indirectly to the UDDI registrations for specifications they implement, which
makes it straightforward to identify the business service information that repre-
sents a given service.

The UDDI tModel is a meta-data construct that uniquely identifies reusable
service-related technical specifications for reference purposes. A service publishes
tModelInstanceDetails, which is a list of tModelInfo elements that refer to the
tModels that the service supports. A UDDI tModel data structure includes a
unique key (tModelKey attribute), a name element, an optional description, and
an overviewDoc element in which we can store a URL for the actual specification
document.

For example, suppose we wanted to register a WSCL specification of the
“storefront” conversation depicted in Figure 1 in a UDDI registry. We would
create a tModel entry within the UDDI registry that referred to the actual
WSCL specification document in its overviewDoc element. Figure 2 shows a
UDDI tModel reference for a WSCL specification for a service conversation.

<tModel authorizedName="XXXX" operator="YYYY" tModelKey="ZZZZ">

<name>storefrontConversation</name>

<description xml:lang="en">

WSCL description of a simple storefront conversation

</description>

<overviewDoc>

<description xml:lang="eng">WSCL source document.</description>

<overviewURL>http://foo.org/specs/storefrontWSCL.xml</overviewURL>

</overviewDoc>

</tModel>

Fig. 2. A UDDI tModel Referencing a WSCL Specification.

This “storefront conversation” tModel can now be referenced by the tMod-
elInstanceInfo of any service that implements that conversation type (Figure 3.

Conversations + Interfaces = Business Logic 35

<businessService>

(. . .)

<bindingTemplates>

<bindingTemplate>

(. . .)

<accessPoint urlType="http">http://www.foo.com/</accessPoint>

<tModelInstanceDetails>

<tModelInstanceInfo tModelKey="ZZZZ">

(. . .)

</tModelInstanceInfo>

</tModelInstanceDetails>

(. . .)

<bindingTemplate>

(. . .)

<bindingTemplates>

</businessService>

Fig. 3. A tModelInstanceInfo Referencing a Conversation tModel.

3.2 Web Service Conversation Language

WSCL addresses the problem of how to enable services (often called web services
or e-services in this context) from different enterprises to engage in flexible and
autonomous, yet potentially quite complex, business interactions. It adopts an
approach from the domain of software agents, modeling protocols for business
interaction as conversation policies, but extends this approach to exploit the
fact that Service messages are XML-based business documents and can thus be
mapped to XML document types. Each WSCL specification describes a single
type of conversation from the perspective of a single participant. A service can
participate in multiple types of conversations. Furthermore, a service can en-
gage in multiple simultaneous instances of a given type of conversation or even
conversations of different types.

WSCL specifies the public interface to web-services, but does not specify how
the conversation participants will handle and produce the documents received
and sent. A conversation definition is thus service independent, and can be used
by any number of services with completely different implementations. A conver-
sation developer (e.g. a vertical standards body) can create a WSCL description
of some conversation, and publish it in a UDDI directory. A service provider who
wanted to create a service that supported that conversation description could
create and document service endpoints that support the messages specified by
the WSCL document. Any software developer who wants to create an applica-
tion using the published web-service can download the WSCL files describing
the conversations supported, and implement the necessary methods accordingly.
Ideally, software developers creating and using web-services will be supported by
tools that allow them to map easily and quickly from the interactions outlined
in the conversation definition to any existing applications and back-end logic,

36 Harumi Kuno et al.

while separating cleanly between the public and the private processes. Without
any formal definition of the conversations, such tool support will not be possible.

Figure 1 depicts a UML diagram of a simple purchase conversation defini-
tion from the perspective of the seller. A service that supports this conversation
definition expects a conversation to begin with the receipt of a LoginRQ or a
RegistrationRQ document. Once the service has received one of these documents,
it answers with a ValidLoginRS, a InvalidLoginRS, or a RegistrationRS, depend-
ing on the type and content of the message received. Although this conversation
is defined from the perspective of the seller, it can be used to determine the
appropriate message types and sequences for both the seller and the buyer. The
buyer simply derives his conversation definition by inverting the direction of the
messages’ halves of a conversation.

There are four elements to a WSCL specification:

– Document type descriptions specify the types (schemas) of XML documents
that the service can accept and transmit in the course of a conversation.
The schemas of the documents exchanged are not specified as part of the
WSCL specification document; the actual document schemas are separate
XML documents and are referenced by their URL in the interaction elements
of the conversation specification.

– Interactions model the actions of the conversation as document exchanges
between conversation participants. WSCL currently supports four types of
interactions: Send (the service sends out an outbound document), Receive
(the service receives an inbound document), SendReceive (the service sends
out an outbound document, then expects to receive an inbound document
in reply), and ReceiveSend (the service receives an inbound document and
then sends out an outbound document).

– Transitions specify the ordering relationships between interactions. A tran-
sition specifies a source interaction, a destination interaction, and optionally
a document type of the source interaction as additional condition for the
transition.

– The Conversation element lists all the interactions and transitions that make
up the conversation. It also contains additional information about the con-
versation like its name, and with which interaction the conversation may
start and end. A conversation can also be thought of as being one of the
interfaces or public processes supported by a service. Yet in contrast to in-
terfaces as defined by CORBA IDE or Java interfaces, conversations also
specify the possible ordering of operations, i.e. the possible sequences in
which documents may be exchanged.

Although WSCL specifies the valid inbound and outbound document types
for an interaction, it does not specify how the conversation participants will
handle and produce these documents; it only specifies the abstract interface,
the public process. The WSCL specification of a conversation is thus service-
independent, and can be used (and reused) by any number of services. We can
use the tModel structure to register WSCL conversation specifications in UDDI
registries (as illustrated above).

Conversations + Interfaces = Business Logic 37

Table 1. Comparison of Aspects of WSDL and WSCL.

WSDL WSCL

Abstract choreography out of scope Transition
Interfaces messages Operation Interaction

Protocol Bindings Binding out of scope

Concrete Services Service out of scope

3.3 Web-Service Definition Language (WSDL)

As noted before, WSCL specifications are conversation-specific. WSCL describes
the structures (types) of documents a service expects to receive and produce (by
either explicitly including or else by referring to the document type definitions),
as well as the order in which document interchanges will take place, but does
not specify how to dispatch received documents to the service. This is partially
addressed by WSDL. WSDL documents describe the abstract interface and pro-
tocol bindings of a network service. WSDL specifications that describe abstract
protocol interfaces are reusable and thus are registered as UDDI tModels.

A reusable WSDL document consists of four components: document type,
message, portType (named set of abstract operations and messages involved with
those operations), and binding definitions (define message format and protocol
details for a specified portType’s operations and messages). For example, the
“storefront” conversation shown in Figure 1 requires that a service implementing
the “Start” interaction provide some sort of endpoint that can accept a LoginRQ
or RegistrationRQ document and output either a LoginRS or a RegistrationRS
document.

3.4 Mapping between WSDL and WSCL

We identify three main aspects of web services. The abstract interface (public
process, business model) describes the messages or documents (business payload)
a service can exchange, as well as the order in which they are exchanged. The
protocol binding represents the protocols used for exchanging documents. Finally,
the service itself consists of a particular location that implements a set of abstract
interfaces and protocol bindings.

Table 1 shows how these three different aspects are covered by WSDL and
WSCL. We can map the corresponding terminology used by WSDL and WSCL
to describe operations and interactions as shown in Table 2. It is evident that
the only overlap between WSDL and WSCL exists in the specification of the
documents being exchanged.

There are a number of ways that we could extend WSDL or WSCL to make
explicit the mapping between WSDL port types/operations and WSCL inter-
actions. For example, we could add protocol bindings in WSDL that refer to
WSCL conversation specifications or we could add choreography to WSDL port
type descriptions. However, to do so by extending WSDL or WSCL would couple
these specifications. Instead, we advocate that services should use other methods

38 Harumi Kuno et al.

Table 2. Comparison of Terminology of WSDL and WSCL.

WSDL WSCL

Port Type Conversation

Operations: Interactions:
One-way Receive
Request-response ReceiveSend
Solicit-response SendReceive
Notification Send

Input InboundXMLDocument

Output, Fault OutboundXMLDocument

Names of Operation, ID of Interaction, InboundXML Document
Input, Output, Fault OutboundXMLDocument

Message URL of XML schema (WSCL delegates the
specification of the payload entirely to an external
XML schema, whereas WSDL directly uses XML data types)

of mapping between the WSDL and WSCL specifications that they support. For
example, one option is that when a service populates its UDDI businessService
entry, it creates tModelInstanceInfo records for the WSDL and WSCL specifi-
cations that it supports. The mappings between these specifications can then
be deduced by document type (mapping WSDL input message types to WSDL
InboundXMLDocument schemas). Alternatively, a separate mapping document
could be created to map explicitly between WSCL interactions and WSDL op-
erations and port types.

4 Dynamic Conversation Controller for E-Services

Thus far we have shown how WSDL and WSCL can be used to specify the
conversational and functional interfaces of e-services. We have implemented a
prototype conversation controller that leverages these specifications to direct
services in their conversations. (This prototype is described more fully in [8].)
We exploit the fact that e-service messages are XML-based business documents
and can thus be mapped to XML document types. Our conversation controller
can act as a proxy to an e-service, and track the state of an ongoing conversa-
tion based on the types of messages exchanged. Specifically, the Conversation
Controller requires two pieces of information: a specification of the structure of
the conversations supported by the service (interactions, valid input and out-
put message types of interactions, and transitions between interactions), and a
specification of the service’s interfaces, mapping document types to appropriate
service entry points (for given interactions).

Our Conversation Controller is designed to act as a proxy to a service. Once
it has received a message on behalf of an e-service, the Conversation Controller
can dispatch the message to the appropriate service entry point, based on the
state of the conversation and the document’s type.

Conversations + Interfaces = Business Logic 39

When forwarding the response from the e-service to the client, the Conver-
sation Controller includes a prompt indicating valid document types that are
accepted by the next stage of the conversation. This prompt can optionally be
filtered through a transformation appropriate to the client’s type. In addition, if
the client requests it and provides a specification of its interfaces, the Conversa-
tion Controller can also direct the client’s side of the conversation. Thus neither
the service nor the client developer must explicitly handle conversational logic
in their code.

Each time the Conversation Controller receives a message on behalf of the
service, it will identify the current stage of the conversation and verify that the
message’s document type is appropriate; if not, then it will send an exception. If
the message type is valid, then the Conversation Controller will invoke the service
appropriately. It will then identify the document type of the response from the
service, identify the new state and the valid input documents for that state, and
format an appropriate response for the client. The Conversation Controller can
also pass the response through an appropriate transformation, if requested by
the client. (For example, if the client is a web browser and has requested form
output, then the Conversation Controller may transform the response into an
HTML form prompting for appropriate input.)

Moreover, if the client is another service that can return a specification of its
own service entry points, then the Conversation Controller could automatically
send the output message to appropriate client entry points; if a valid input
document for the new state is returned, the Conversation Controller could then
forward it to the service, thus moving the conversation forward dynamically.
As a result, the Conversation Controller can help a client and service carry
out an entire conversation without either the client or the service developer
having to implement any explicit conversation control mechanisms. This means
that the client developer does not need complete knowledge of all the possible
conversations supported by all the services with which the client might interact
in the future. For example, each time the Conversation Controller receives a
message on behalf of a service, it could implement the pseudo-code listed below.

1. Look at the message header and determine the current state of the conver-
sation. (Ask the service for specifications, if necessary.)

2. From the conversation specification, get the valid input document types for
the current state.

3. Verify whether the current message is of a valid input document type for the
current state.

4. If the received message is of a valid type, then look up the inbound document
in the dispatch specification and dispatch the message to an appropriate
service entry point. If more than one appropriate service entry point exists,
then dispatch it to each entry point (in order specified by the service) until
the service produces an output document of a valid document type. If no
entry point exists or no valid output document is produced, then inform the
client, also prompting for valid input document types.

40 Harumi Kuno et al.

5. From the conversation specification, calculate the conversation’s new state,
given the document type of the output document returned by the service.
Look up the valid input documents for this new state.

6. Format the output document in a form appropriate to the client type, also
prompting for the input document types that are valid in the new state.

4.1 Client Automation

An argument can be made that developers implementing e-service clients will
not want a conversation controller to direct their part of the conversation, both
because they expect to hard-code the client parts of the conversation and also
because they will find the idea of using a third-party to control the conversation
foreign2. However, decoupling conversation logic from business logic on the client
side greatly increases the flexibility of a client by allowing it to interact dynam-
ically with services even if their conversation policies do not match exactly. For
example, the same client code could be used to interact with two services that
support different conversation policies but common interfaces.

In order for a conversation controller to direct the client’s part of a conver-
sation, the controller must be able to dispatch messages the client receives from
the server in order to generate documents that the server requests. This means
that the client must be able to communicate its service interfaces to the Con-
versation Controller. For example, we can extend the process described in the
previous section to allow the Conversation Controller to direct both the server
and client sides of the conversation, producing the pseudo-code listed below.

1. Look at the message header and determine the current state of the conver-
sation. (Ask the service for specifications, if necessary.)

2. From the conversation specification, get the valid input document types for
the current state.

3. Verify whether the current message is of a valid input document type for the
current state.

4. If the received message is of a valid type, then look up the inbound document
in the dispatch specification and dispatch the message to the appropriate
service entry point; otherwise, inform the client that the message is not a
valid type and prompt for the input document types that are valid in the
new state.

5. From the conversation specification, calculate the conversation’s new state,
given the document type of the output document returned by the service.
Look up the valid input documents for this new state.

6. If the client wishes to be treated as a browser, then format the output doc-
ument in an appropriate HTML form, also prompting for the valid input
document types for the new state.

7. If the client wishes to be directed by the Conversation Controller and there
are valid input documents for the new state, then look up outbound docu-
ment types in the client’s dispatch table, and invoke the appropriate client
methods that could produce valid input documents.

2 Conversation with Kevin Smathers, 1/4/2001.

Conversations + Interfaces = Business Logic 41

8. If the client produces a valid input document, then send it to the service,
invoking it through the Conversation Controller (recursion takes place here).

9. If the client does not produce any valid input documents, or if there were no
valid input documents in the new state, then format and return the output
document in an appropriate HTML form, also prompting for the new state.

4.2 Conversation Controller State

The Conversation Controller that we have outlined above does not include any
performance management, history, or rollback mechanisms. If one subscribes to
the idea that intermediate states of an e-service’s conversation are not trans-
actional, and one also supposes that Conversation Management functionality
(including performance history, status of ongoing conversations, etc.) is distinct
from Conversation Control functionality, then the Conversation Controller can
operate in a stateless mode.

5 Related Work

In his survey of agent systems for E-Commerce, Griss [9] notes that researchers
in the agent community have proposed a number of agent communication sys-
tems over the past decade, and indeed agent-based e-commerce systems seem
like a natural model for the future of e-services. Griss identifies several kinds
of agent systems appropriate for E-Commerce, including personal agents, mo-
bile agents and collaborative/social agents. Griss then lists seven properties that
represent dimensions of agent-like behavior: adaptability, autonomy, collabora-
tions, intelligence, mobility, persistence and personality/sociability. We believe
that although e-services exhibit some of these properties, e-services are not nec-
essarily adaptable, intelligent or anthropomorphic (they are not required to ex-
hibit personality/sociability). However, since agents dynamically communicate
via message exchanges that conform to specified protocols/patterns, agent-based
conversations are recognized as an especially appropriate model for e-service in-
teractions.

Several existing agent systems allow agents to communicate following con-
versational protocols (or patterns). However, to the best of our knowledge, all
of these are tightly coupled to specific agent systems, and require that all par-
ticipating entities must be built upon a common agent platform. For example,
the Knowledgeable Agent-oriented System (KaoS) [10] is an open distributed
architecture for software agents, but requires agent developers to hard-wire con-
versation policies into agents in advance. Walker and Wooldridge [11] address
the issue of how a group of autonomous agents can reach a global agreement on
conversation policy; however, they require the agents themselves to implement
strategies and control. Chen, et al. [12] provide a framework in which agents can
dynamically load conversation policies from one-another, but their solution is
homogeneous and requires that agents be built upon a common infrastructure.

42 Harumi Kuno et al.

Our Conversation Controller is unique in that we require only that a partici-
pating service produce two XML-based documents – 1) a specification of the
conversational flows it supports and 2) a specification of the service’s function-
ality (describing how the service can be invoked).

A few E-Commerce systems support conversations between services. How-
ever, these all require that the client and service developers implement matching
conversation control policies. RosettaNet’s Partner Interface Processes (PIPs)
[13] specify the roles and required interactions between two businesses. Com-
merce XML (cXML) [14] is a proposed standard being developed by more than 50
companies for business-to-business electronic commerce. cXML associates XML
DTDs for business documents with their request/response processes. Both Roset-
taNet and CommerceXML require that participants pre-conform to their stan-
dards. Our work is completely compatible with such systems, but is also unique
in that we allow a service’s clients to share the service’s Conversation Controller
dynamically – without having to implement the client to the specifications of
the service.

Insofar as they reflect the flow of business processes, e-service conversations
also resemble workflows. However, as the authors of the Web Services Conversa-
tion Language (WSCL) [6] observe, workflows and conversations serve different
purposes. Conversations reflect the interactions between services, whereas work-
flows delineate the work done by a service. A conversation models the externally
visible commercial interactions of a service, whereas a workflow implements the
service’s business functionality. In addition, workflows represent long-running
concurrent fully integrated processes, whereas e-service conversations are loosely
coupled interactions.

6 Conclusions / Future Work

E-services pose a new set of requirements and usage models for service interac-
tions. E-services must enable business-to-business interactions without requir-
ing intensive collaboration between service developers. Therefore, we advocate
a service-centric perspective that separates service interfaces from conversation
specifications. Distinguishing between conversation logic and service functional-
ity allows us to treat services as pools of interfaces that can be described using
service specifications and composed using conversation specifications.

In this paper, we have sketched how to use WSDL to create specifications de-
scribing service interfaces and how to use WSCL to create abstract conversation
specifications. We have discussed how these standards relate to each other and
how we can use them to compliment each other. We also described how services
can refer to the WSDL and WSCL specifications they support in their UDDI
registrations. We have built a prototypical conversation controller service that
leverages these specifications to direct services in their interactions. This third-
party conversation controller uses “reflected” XML-based specifications to direct
the message exchanges of e-services according to protocols without the service
developers having to implement protocol-based flow logic themselves. The ad-

Conversations + Interfaces = Business Logic 43

vantage of this approach is that it treats services as pools of methods that can
be easily and flexibly composed with a minimum of programming effort.

In the future, we plan to investigate more sophisticated uses of conversation
policies. For example, we would like to provide a model for the explicit support
of deciding conversation version compatibility. We would also like to explore
how to support both nested conversations and multiparty. Finally, we hope to
address how to exploit document type relationships when manipulating message
documents. For example, we would like to use subtype polymorphism to estab-
lish a relationship between a document type accepted as input by an interface
specification and a corresponding document type in a conversation specification.

References

1. Kuno, H.: Surveying the E-Services Technical Landscape. In: International Work-
shop on Advanced Issues of E-Commerce and Web-Based Information Systems
(WECWIS). (2000)

2. Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., Rogers, D.: UDDI Data Structure
Reference V1.0. Technical report (2000)

3. Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., Rogers, D.: UDDI Programmer’s
API 1.0. Technical report (2000)

4. Ariba, Inc. and International Business Machines Corporation: UDDI Technical
White Paper. Technical report, Ariba, Inc. and International Business Machines
Corporation and Microsoft Corporation (2000)

5. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.0. Technical report (2000)

6. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govindarajan, K., Karp, A.,
Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., Williams, S.: Web Services
Conversation Language (WSCL) 1.0. Technical report, Hewlett-Packard Web Ser-
vices Organization (2001)

7. Beringer, D., Kuno, H., Lemon, M.: Using WSCL in a UDDI Registry 1.02: UDDI
Working Draft Best Practices Document. Technical report, Hewlett-Packard Com-
pany (2001)

8. Kuno, H., Lemon, M.: A Lightweight Dynamic Conversation Controller for E-
Services. In: International Workshop on Advanced Issues of E-Commerce and
Web-Based Information Systems (WECWIS). (2001)

9. Griss, M.: My Agent Will Call Your Agent . . . But Will It Respond? Software
Development Magazine (2000)

10. Bradshaw, J.M.: KAoS: An Open Agent Architecture Supporting Reuse, Inter-
operability, and Extensibility. In: Knowledge Acquisition for Knowledge-Based
Systems Workshop. (1996)

11. Walker, A., Wooldridge, M.: Understanding the emergence of conventions in multi-
agent systems. In: First International Conference on Multi-Agent Systems. (1995)

12. Chen, Q., Dayal, U., Hsu, M., Griss, M.: Dynamic Agents, Workflow and XML
for E-Commerce Automation. In: First International Conference on E-Commerce
and Web-Technology. (2000)

13. Web page: (http://rosettanet.org)
14. Web page: cxml.org. (http://www.cxml.org)

http://rosettanet.org
http://www.cxml.org

	Introduction
	Approach
	Currently Developing Standards for Service Communication Specifications
	UDDI Registries
	Web Service Conversation Language
	Web-Service Definition Language (WSDL)
	Mapping between WSDL and WSCL

	Dynamic Conversation Controller for E-Services
	Client Automation
	Conversation Controller State

	Related Work
	Conclusions / Future Work

