
Conversation Support for Business Process Integration

James E. Hanson, Prabir Nandi, Santhosh Kumaran
IBM T.J. Watson Research Center

Yorktown Heights NY 10598
{jehanson | prabir | sbk}@us.ibm.com

Abstract

Business Process Integration and Automation (BPIA)
has emerged as an important aspect of the enterprise
computing landscape. Intra-enterprise application
integration (EAI) as well as the inter enterprise
integration (B2B) are increasingly being performed in
the context of business processes. The integration
scenarios typically involve distributed systems that are
autonomous to some degree. From the BPIA
perspective, the autonomy refers to the fact that the
systems being integrated have their own process
choreography engines and execute internal business
processes that are private to them. In the case of B2B
integration, the systems being integrated are fully
autonomous, while various levels of autonomy exist in
systems partaking in EAI.
In this paper we present a new paradigm for business
process integration. Our approach is based on a
conversation model that enables autonomous,
distributed BPM (Business Process Management)
modules to integrate and collaborate. Our conversation
model supports the exchange of multiple correlated
messages with arbitrary sequencing constraints and
covers the formatting of messages that are to be sent as
well as the parsing of the messages that have been
received. The crux of our conversation model is the
notion of a conversation policy, which is a machine-
readable specification of a pattern of message exchange
in a conversation. Our model supports nesting and
composition of conversation policies to provide a
dynamic, adaptable, incremental, open-ended, and
extensible mechanism for business process integration.
We discuss the current implementation of this
conversation model and early experience in applying
the model to solve customer problems. The
implementation utilizes distributed object technology.

1 Introduction

As business applications become more complex, and
application-to-application integration takes on greater
importance, we are seeing the emergence of business
process integration (BPI) as a key requirement in
enterprise computing systems. Tightly coupled solutions
(e.g., CORBA) have difficulty in a heterogeneous,

dynamic environment. Stateless interactions (e.g., XML
over HTTP) fail to support the essentially multi-step
character of typical business interactions. Protocols tend
to be either ad hoc and privately agreed-upon or
industry-wide consortium-driven (e.g., RosettaNet). The
ad hoc protocols do not scale and need to be
reformulated for every trading partner, while the
consortium-driven protocols are slow to change and
impossible to innovate on.

The aim of this paper is to propose general-purpose
conversation support as a solution to the needs of
business process integration. The next section is devoted
to a general discussion and validation of conversation
support, with special attention to the most challenging
case, that of B2B integration. Section 3 goes into the
details of its core element, conversation policies. Then,
in section 4, we turn to the current implementation of a
general-purpose conversation support system in a
business integration platform called Ninja, with
emphasis on its conversation support aspects. Section 5
briefly reviews some related work, and in section 6 we
close with a preview of our plans for further
development.

2 The conversational model of component

interaction

Conversation support for business process integration
starts with the adoption of the conversational model of
component interactions, in which components
(applications, e-businesses, agents) are treated as
autonomous, loosely coupled entities which interact by
exchanging messages in a conversational context.

Messaging Conversation
support

Business
processesInternet

e-business interoperability

e-business

e-business

e-business

e-business

Figure 1: Conversational model for B2B

Figure 1 shows the high-level architectural elements of
the conversational model, as applied to business-to-
business interactions. In the conversational model the
actual process logic is fronted by interoperability
technology specifically devoted to managing
interactions. The interoperability technology consists of
two distinct parts: messaging and conversation support.
Messaging is the bare “plumbing” needed to send and
receive electronic communications with others.
Conversation support governs the formatting of
messages that are to be sent, the parsing of messages that
have been received, and the sequencing and timing
constraints on exchanges of multiple, correlated
messages. Conversation support is a separate subsystem
that mediates between the messaging system and the
business processes.

At this level of detain, the conversational model has
much in common with the approach taken by tpaML[2]
and ebXML[3]. As we will see, however, it supports a
much greater degree of flexibility and expressiveness.
This is discussed further in Section 5.2.

The architecture provides a number of features
desirable for business process integration. These features
are discussed below in detail.

2.1 Interaction via asynchronous message

exchange

This means that, instead of exposing a means by
which other components can invoke its functionality, a
component exposes a means by which others can send it
messages. Messages are in effect requests, to be
processed as the recipient sees fit. Replies, if any, are
made asynchronously by sending another message back.

Message exchange has an important advantage over
interaction via direct invocation of functionality: it
correctly describes the component’s true control
boundaries. This is especially clear in B2B scenarios.
For example, if an e-business directly exposes its RFQ
processing functionality as a service to be invoked by its
customers, that implies that it’s the customer who causes
the RFQ to be processed. Really, of course, the firm
inserts some control logic into the code that gets
invoked, whereby the firm makes the decision of
whether to really process the RFQ by calculating a quote
and sending it back, or whether to refuse the customer’s
request. This control point changes the entire meaning of
the interaction. It means that what the customer actually
does is submit an RFQ with an implicit request that it be
processed--i.e., the customer sends a message. The
existence of the control point converts the “service
invocation” into a “message delivery”.

Adopting a message-exchange model from the outset
makes the real nature of these interactions explicit.

2.2 Generic messaging

Generic messaging means that the message-delivery
middleware does not filter the message content, nor
constrain the set of messages that may be delivered. It
means that arbitrary message content may be exchanged
by two parties in a conversation, even in cases where the
recipient of a message is unable to recognize its
meaning, make decisions about it, or even, perhaps,
parse it. In effect, all messages in a conversation are
delivered unopened to the same “inbox”, regardless of
content.

Generic messaging is an essential element in
achieving loose coupling between components, and
thereby avoiding the serious integration problems of
strongly typed schemes such as CORBA.

Generic messaging is also a proper assignment of
function. Placing prior constraints on the set of messages
that may be sent or received is like programming your
telephone to send or receive only words spoken in
English (if such a thing were practical). It is a basic
misplacement of function. The proper "job" of the
messaging infrastructure is to deliver messages--not to
act as a supervisor defining what may and may not be
said in a message. As we will see, that job is properly
assigned to the conversation support.

In fact, "unexpected" messages may turn out to be
valuable, both as feedback about the way the sender
wants to interact—e.g., its preferred protocols--and
because unfamiliarly-structured messages may well
contain clues as to how they should be handled. For this
reason, they should be available for inspection and
processing by the business logic, not filtered out by a
restrictive messaging system. By analogy, if you answer
the phone and hear a voice that sounds like it might be
speaking in French, you might try to find someone
nearby who could serve as interpreter; or, failing that,
you could reply in English and hope the other party will
start speaking your language. But either case would be
preferable to having a phone that refused to receive non-
English messages.

2.3 Conversation-centric interactions

At least as important as the adoption of generic
asynchronous message exchange is the adoption of
"conversation-centric" interactions. This means that
messages are sent within an explicit conversational
context that is set up on first contact, maintained for the
duration of the conversation, and torn down at the end.
Each new message in a conversation is interpreted in

relation to the messages previously exchanged in that
conversation.

Adopting conversation-centric interaction from the
outset amounts to recognizing that in the real world of
business process integration, interactions are typically,
and most naturally, represented as multi-step exchanges
of correlated messages.

2.4 Conversation management independent

of message delivery

As we said above, the messaging subsystem
encapsulates the sending and receiving of messages,
making it possible to support multiple transport
mechanisms (e.g., XML over HTTP, SOAP, JMS, etc.)
by simply plugging them in.

Furthermore, by separating conversation management
from message delivery, it becomes easy to switch
delivery mechanisms in mid-conversation—e.g.,
increase or decrease the encryption level, change to a
channel with higher or lower bandwidth, etc. Such a
change would itself be negotiated by means of a short
sub-conversation embedded in the larger conversational
interaction, but would otherwise not impinge upon the
interaction.

2.5 Isolation of interoperability from

business process

The main reason for making interoperability
technology separate from the business process logic is
that the interoperability technology shouldn't place
constraints on how the core of the business works. The
business processes are what the interoperability
technology is supposed to support, not prescribe. They
are the thing that differentiates one firm from another;
the thing that is most crucial to success and survival; and
not the kind of thing a firm would like to expose to the
world. Interoperability means connecting up the business
processes with the economy--not turning the business
over to someone else.

Controlling the business processes is the core of what
it means to be an independent business engaged in trade.
Each party in a trade, by definition, makes decisions
unilaterally and executes them under its own control.
Even when under contract, a firm's "sovereignty" is not
compromised, because its decision to obey the contract
is unilateral (as, of course, was its decision to sign the
contract in the first place). To the extent that
"interoperability" comes to encompass a firm's decision-
making and/or execution processes, that firm is not
engaging in trade--it is obeying directives.

Furthermore, it is futile to try. From outside, there is
no way to tell for sure whether a firm is "unable" to

execute a purchase order (for example), or "unwilling"
to do so.

Other considerations:
• Business processes change on different

timescales from interoperability technology.
Changing a business process needs to be done at a
firm’s instigation, on the firm's own timescale. It
should not be dependent on its customers, suppliers,
and trading partners. Changes in interoperability
technology are, by definition, on a "shared"
timescale.

• Ease of modification. As we will see below,
changes in interoperability can be accomplished by
something as easy as downloading an XML file.
Therefore, changes in business processes are neither
forced by changes in interoperability technology,
nor hindered by it.

Though interoperability technology and business
processes are clearly linked, just as clearly they are
separate endeavors with separate driving forces,
requirements and timetables.

2.6 Dynamic and flexible model for business

process integration

The current models for B2B integration are based on
process flow graphs [5],[6],[7],[8],[9]. A company
participating in a B2B integration scenario publishes and
implements a “public process”. Trading partners of this
company communicate with it as stipulated by the public
process definition. A process flow graph is used to
represent the public process. This approach lacks the
flexibility to support dynamic B2B integration. In
contrast, our conversational approach presents an
incremental, open-ended, dynamic, and personalizable
model for B2B integration. We compare and contrast
our model with the traditional models in detail in a later
section.

3 Conversation policies

In application-to-application conversations, free-form
dialogs are not really practical. Therefore, e-business
interactions will make frequent use of pre-programmed
patterns. Pre-programmed interaction patterns are called
conversation policies (CPs). They are central to practical
conversation support.

A conversation policy is a machine-readable
specification of a pattern of message exchange in a
conversation. CPs consist of message schema,
sequencing, and timing information. They are
conveniently described by a state machine, in which the

sending of a message (in either direction) is a transition
from one conversational state to another.

Request
pending

AtB: "Request bid"
Start

A's Reply
Pending

BtA: "Bid = x"

Terminate/
Failure

Terminate/
Success

AtB:
"Accept"

AtB:
"Reject"

BtA:
"Bye"

B's Reply
Pending

AtB: "CounterBid=x"

BtA: "CounterBid=x"
BtA:
"Accept" BtA:

"Reject"

Figure 2: Schematic of a simple CP
Figure 2 shows a schematic of a simple CP, in which

two participants, A and B, trade bids and counter-bids
until one or the other of them accepts the current bid or
gives up. Nodes in the graph correspond to different
states of the conversational protocol. In effect, each
node represents a summary of what has transpired so far
in the conversation. Edges connecting nodes represent
transitions from one state to another. Each transition
corresponds to a message being sent by one or the other
party, and specifies the format or schema of the message
as well as which party is the sender. For example, in the
starting state (labeled “Start”) there is one transition,
labeled “AtB: Request Bid”, which corresponds to A
sending a message to B of the form “Request bid”.
(Obviously in a real CP, the format of this message
would be spelled out.) The CP does not define any other
way for the conversation to proceed from its starting
state. Similarly, there are two transitions out of the state
labeled “Request Pending”: one in which party B sends a
message to party A of the form “Bid = x” (where x
represents some value determined by B), and another in
which party B sends “Bye”.

In carrying on a conversation, each party separately
loads its own copy of the CP, separately maintains its
own internal record of the conversation’s “current state”,
and uses the CP to update that state whenever it sends or
receives a message. From the point of view of either
party, this CP has two types of transitions: transitions to
take when a message of a particular format is received,
or transitions to take in order to send a message of a
particular format. The sender of a message usually
(though not always) has to make a decision as to which
of the possible alternative messages to send, and often
supply data as well--e.g., the value to fill in for bid’s
amount. Similarly, the recipient usually has to classify

the message--identifying which of the possible
alternatives was sent--and often parse it to unpack the
data supplied by the sender.

As written, the CP is independent of the “point of
view” of the company: i.e., which role, A or B, a given
company is playing in a given conversation. One can just
as easily describe the CP from within one role. For
example, if we adopt role A, then transitions labeled
“AtB” are interpreted as “send message”; and “BtA”
is interpreted as “receive message”.

Take this example as an illustration. In a real system,
the message schemas would be spelled out in detail, e.g.
via reference to an XML Schema document. And, as we
will see below, the overall CP could be broken up into
“patterns” or “stanzas”, each of which was represented
by its own CP state machine.

Some other features to note:
• CPs enable extensive reuse of messages.

Because a message is interpreted with respect to
the conversation’s current state, the same
message can be safely reused in multiple
contexts. For example, the message “OK” can
be used in a bid/counterbid CP to signify
acceptance of a bid, in an RFQ CP to signify
acceptance of a quote, and so forth. In all cases,
the contextual information supplied by the CP
and the conversation’s current state removes any
ambiguity.

• CPs provide economy of expression. No need to
make messages self-describing “kitchen sinks”
containing all possible context you can think of
or might ever want to use.

• Because each of the conversing parties
maintains its own record of the conversation’s
state, and uses its own CPs to update that record,
the parties need not, in fact, be using exactly the
same CP. The minimal requirement is that, in
the course of a particular conversation, the
sequence of messages they exchange
corresponds, on each side, to some path through
the particular CP that party is using.

3.1 Nesting and composition of conversation

policies

In day-to-day business, a firm’s interactions with
other firms tend to be made up of common, conventional
interaction patterns. That is to say, its conversations tend
to have phases or “stanzas” which fall into common
patterns, and are reused in different contexts. For
example, first there might be discussion of product
discovery, then negotiation of the deal, finally
settlement. And it is nested: Product discovery, for
example, might start with the customer expressing needs,

the seller asking pointed questions about them and then
recommending a list of possible matches, followed by
the buyer making a selection from the list. Negotiation
might start with a discussion of the way to negotiate:
haggle over price, or place bids in an auction, or etc.,
followed by, in both cases, a pattern of message
exchange appropriate to that negotiation method. After
the products are dealt with, then the parties might turn to
a dialog about delivery options (if the goods are
physical) and prices. Similar, settlement might start with
an enquiry into the methods of payment supported,
followed a selection of one of them.

Bid-CP
Request
pending

AtB: "Request to
start Bid-CP"

Bid-CP
executing

BtA: "OK"

Ready to
set Price

Price set

[Bid-CP done:
final state = "Terminal/Success"]

[Bid-CP done:
final state =
"Terminal/Failure"]

(from other states)

(to other states)

Price
setting
failed

(to other states)

BtA: "No"

Figure 3: Nested CPs

Conversation policies are inherently nestable. This
means that, as part of carrying on a conversation that
obeys a given policy, the conversing parties might
choose to start a new conversation policy as a “sub-
conversation”, possibly carry it out to completion, then
return to the previous conversation policy. In effect, both
parties carry on a narrowly scoped “child” conversation
within the enclosing context of the more broadly scoped
“parent” conversation.

For example, two parties might be engaged in a
simple negotiated bidding procedure, in which they first
identify a set of services to be performed, then they
engage in an iterated bidding procedure to settle on a

price. That iterated bidding procedure may be
represented by the CP in Figure 3, in which the
specification of the goods outside the scope of the CP--it
is part of the context--and the messages only pertain to
the bid price.

In this case, the CP governing the “parent”
conversation would contain transitions for starting up a
sub-conversation following the bid/counterbid CP. This
is shown in Figure 3.

4 Conversation support in the Ninja
Gateway

Let us now turn to the way in which conversation

support is built into a research prototype BPI platform
we are developing, called Ninja. Ninja’s architecture
exemplifies the conversational model, starting with the
separation of the interoperability technology from the
core business process management technology.

4.1 Ninja Gateway

The Ninja Gateway encapsulates the interoperability

technology. It is packaged as a unit capable of operating
on its own, or in conjunction with Ninja’s Business
Process Manager subsystem, the Ninja Process Broker.

The gateway’s architecture is indicated in Figure 4.
The Connection Manager provides the messaging. The
Conversation Adapters provide the conversation
support. Each conversation adapter controls one
conversation at a time. Additional elements in Figure 4,
such as Security and Solution Management, are outside
our present scope.

The Connection Manager supports and encapsulates a
variety of messaging protocols, such as SOAP, RMI, and
plain HTTP. It is designed so that additional protocols
may be added as pluggable modules. It supports
asymmetric messaging within a conversation--i.e.,
outbound messages in the conversation sent via one
protocol, inbound received via another.

internet

Business
processes
(e.g., Ninja

Process
Broker)C

on
ne

ct
io

n
M

an
ag

er

Ninja gateway

Adapter Mgmt

Security Sol'n Mgmt

Conversation
Adapters

Figure 4: Ninja system overview

data to/from
business
processes

Conversation Adapter

Conv Manager

Inbox

Outbox

Conv
Support
Bean

CP

CP

CP

CP

CP Handler

CP library

Connection
Manager

SOAP

[others]
messages
in & out

Figure 5: Conversation adapter components

4.2 Conversation Adapter design

A sample Conversation Adapter is shown in Figure 5.
It contains a Conversation Support Bean (CSB), a
Conversation Policy Handler (CPH), and a Conversation
Manager. The CPH holds a tree of CP instances. The
Conversation Adapter passes outbound messages to the
Connection Manager for delivery, and receives inbound
message from it for processing. On the other side, it sends
data to, and receives data from, the business processes.

Each Conversation Adapter acts as a dynamic, adaptive
channel supporting a single conversation. Multiple
simultaneous conversations are handled by separate
Conversation Adapter instances. When a conversation is
first set up, a new Conversation Manager, CSB and CPH
are created, for the purpose of managing that
conversation. Typically a CP instance is created as well,
and installed as the root of the CPH’s tree. Then, as the
conversation proceeds, other new CP instances are created
and installed in the CPH’s tree, as needed. Finally, when
the conversation ends, all of these structures are torn down
(or pooled for reuse in another conversation).

4.3 Conversation Support Beans

Each Conversation Adapter contains a Conversation

Support Bean (CSB) that takes care of maintaining the
conversational context. This is straightforward: the CSB
consists mainly of an “inbox” into which all incoming
messages in the conversation are placed, in order of
arrival, and an “outbox” in which outgoing messages are
place, for delivery by the connection manager. In a
conversation, the outbox of one party is in effect
connected to the inbox of the other.

CSBs are created during a conversation setup phase, in
which the two parties exchange inbox identifiers. Then, in
each subsequent message, the sender uses the recipient’s
inbox identifier to direct the message to that inbox.

In Ninja, the Connection Manager is the common
Internet endpoint for all messages in all conversations that
a firm engages in. In order to direct a message to a
particular conversation, the sender’s connection manager
inserts the recipient’s conversation-specific inbox
identifier into the header of each outgoing message before
delivering it. Then, upon delivery, the recipient’s
connection manager extracts that inbox identifier from the
header and uses it to put the message in the inbox of the
CSB set up for that particular conversation.

4.4 Conversation Policy Handler

The Conversation Policy Handler (CPH) maintains a

set of CP instances in use during the conversation.
CPs are arranged in a tree, which is managed by a

CPH. The job of the CPH is to create new nodes in the
tree, when an extant node wants to start a “child”
conversation; and to delete nodes in the tree once that CP
is no longer needed--e.g., when that part of the
conversation is over.

One CP in the tree is designated as the Active CP. This
is the CP that is currently being used to carry on the
conversation. When, during the course of conversing, it
comes time to start a sub-conversation, the Conversation
Manager creates a new CP instance of the appropriate
type, installs it in the CPH as the child of the Active CP,
and then makes the newly created CP the new Active CP.
When that sub-conversation is over, the Conversation
Manager removes it from the tree and makes its parent the
Active CP once again.

Starting a sub-conversation is an example of leaving a
conversation unfinished (i.e., the parent), carrying on
another conversation for a while, and then returning to the
unfinished conversation. It is also possible to leave sub-
conversations unfinished, return to a higher contextual
level (i.e., a higher node in the tree), and start a new CP
from that node. This is why the CPH arranges its CP
instances in a tree structure, rather than in a stack.

The CP tree provides a certain degree of graceful error
handling. Built into the handling of messages is the default
behavior that, if a message is received that does not
conform to any of the messages allowed by the protocol at
that point in the conversation, the message gets passed up
to the parent CP, which is then re-activated. If, for
example, a CP for processing RFQs receives a message it
does not recognize--a query about the shipping
information, its default behavior is to pass that message
off to its parent. This reflects the fact that the parent, with
its broader context, is more likely to recognize the
message than the child. If the parent does not recognize it,
it passes the message up to its parent, and so forth, all the
way up to the root node.

Other ways of handling unexpected messages can be
built into individual CPs. For example, a CP may itself
have a transition for “none of the above”--i.e., if any
message other than the ones expected is received, take that
transition. This is appropriate when the sequence of
messages needs to be carefully constrained, such as in the
middle of a payment, for example.

4.5 CP instances

Each CP consists of a state machine, a set of message

formatting or parsing modules, and a set of “command”
modules. Formatting modules are used to convert data,
such as part numbers, quantities, prices, etc., for sending.
Parsing modules do the inverse operation: they unpack a
message that has been received. Command modules are
calls to the business processes, used when a decision
needs to be made and when data must be supplied for
formatting an outgoing message.

Processing of an incoming message is as follows:
1. The ConnectionManager places the message in the

CSB’s inbox, raises a MessageReceived event, and
returns a delivery acknowledgement to the sender.

2. The ConversationManager picks up the message and
attempts to find a transition to take in the current
active CP. It does this by searching for a transition
from the CP’s current state that corresponds to
receiving that particular message. This involves
executing a message-parsing module associated with
that transition, which compares the format of the
message against an expected schema, and, if the
format is correct, unpacks the data in the message and
places it in a holding area.

3. If such a transition is found, the
ConversationManager updates the CP’s current state
(to the destination state of the transition) and executes
any other actions associated with that transition. This
will often involve passing the message’s data on to
the business processes.

Often, as a result an event such as the receipt of a
message, the CP moves to a state from which there are
transitions for sending messages. This is a decision point
in the CP, in the sense that information from the business
processes is required in order to select which transition to
take, and/or to specify the data to be packed into an
outgoing message.

These transitions are taken at the instigation of the
business processes. That is, the CP itself does not “call”
the business process for a decision, or for data. Rather, the
business process raises an event on the CP, which
specifies which transition it should take, and supplies the
data it should use. In this way, the business processes are
always in charge of all outgoing messages.

4.6 Implementation

A detailed description of the implementation is out of
the scope of this paper. Here we provide a brief overview
of the Ninja gateway implementation.

The Ninja Gateway has been implemented as an
application atop a J2EE based platform. We used IBM’s
Websphere Application Server Advanced Edition as the
J2EE platform.

• Conversation Support Beans (CSBs),
Conversation Policy instances are implemented as
Entity EJBs. The ConversationManager is
implemented as a Session EJB.

• Persistence of connection pipes for a conversation
instance is done using Entity EJBs while the
ConnectionManager itself is implemented as a
Session EJB. SOAP and HTTP specific message
receivers were deployed as servlets.

• Conversation Policies, defined as a subset of
UML state machine, were specified using XML
and so were the commands and the command
implementations.

5 Related Work
This section discusses the related work in this area.

5.1 Flow Models

Today’s BPM integration landscape is dominated by

flow models [5],[6],[7],[8],[9],[10]. At the core of this
approach is the representation of a set of activities and
their dependencies via a directed graph. The nodes in the
graph correspond to activities and the arcs represent the

dependencies between these activities. For each inter-
enterprise business process, a process flow graph is
defined and implemented in the “gateway” of each
participating enterprise. These process flow graphs
together form the “public process”. We list below some of
the limitations of this approach:

1. Modeling gap. The flow models only cover a
relatively small area of the B2B integration space.
In particular, they do not model the life cycle
management of these process fragments, process
brokering among these fragments, or content
aggregation aspects of business process integration
problem.
a. Life cycle management. The creation and

termination of each process flow graph is an
important aspect of the modeling of a business
process integration problem. The application
state directly influences the life cycle
management.

b. Process brokering. Any non-trivial business
process integration scenario is bound to have
multiple, concurrent, and active processes. A
business event from a trading partner could
influence any of these concurrent processes.
Process brokering is concerned with the
propagation of business events to the
appropriate processes based on the application
state[13].

c. Content aggregation. Typically, the information
necessary to make decisions in the context of the
execution of a business process is fragmented
and distributed. The content aggregation is
concerned with dynamically composing the
content from multiple enterprise information
systems[13].

2. Specification explosion. Any attempt to address the
modeling gap problem results in specification
explosion as shown in ref. [11]. This implies that
the complexity of the flow graph increases
exponentially as the flow graph model itself is used
to address the problems discussed above.

3. Lack of support for event based programming.
Once a flow graph is instantiated, the type of
activities in the flow determines the interruptibility
of the flow. The flow may be interrupted at an
activity waiting for a specific event to arrive. But
the model does not support generic event
processing. Specifically, the flow models do not
support the capability to perform a set of actions
based on application state and the event content.

4. Lack of support for dynamic integration. In a
dynamic integration scenario, the artifacts that
support the integration need to evolve dynamically
based on the context. In essence, this amounts to the
generation of business process integration “glue”

via composition of orthogonal components. Current
B2B implementations based on flow models lack
this capability.

We list below the distinguishing features of our
conversational model and discuss how these features help
in addressing the problems mentioned above.

1. Modeling the execution of a conversation policy as
a finite state machine.

2. Use of the command design pattern[12] to model
the actions a participant needs to perform in
response to the receipt of a message in
conversation.

3. Modeling of a multi-threaded conversation by
dynamic composition of orthogonal conversation
policies.

4. Delegation of message parsing and generation to the
receivers of the commands and the ability to spawn
a child policy based on the parsing of the received
message.

5. Ability to manage the life cycle of process flow
graphs via commands executed by the finite state
machines that model the conversation polices.

The conversation policies can effectively model the life
cycles of public processes. They can perform state-
dependent brokering of concurrent public processes and
dynamically aggregate content for decision support. These
are achieved primarily by the use of finite state machines
and the command design pattern in modeling the system.

The ability to dynamically compose orthogonal
conversation polices eliminates the specification
explosion problem.

Our model fully supports event based programming
paradigm. A conversational tree supports the processing
of a set of events as each node in the tree is modeled as an
event-driven state machine. If an event is received that is
not in this set, it is propagated to the root of the tree and
the root may dynamically spawn a new child policy to
process this event.

Our model supports dynamic business process
integration by its ability to evolve dynamically based on
the process context. For example, in a B2B integration
scenario, one could visualize the CP trees at both sides of
the conversation growing and shrinking dynamically as
the life cycle of a collaborative process unfolds.

5.2 ebXML and tpaML

In many ways, our approach to B2B integration is
similar to that taken by tpaML[2] and ebXML[3]. In both
cases, there are long-running conversations in which
messages are exchanged, etc. However, the sequencing
rules in tpaML and ebXML are significantly less powerful
than provided by the state-machines in CPs. There is no
way in tpaML or ebXML to do context-dependent

sequencing, or composition of sequencing rules, both of
which are provided by nested CPs.

tpaML and ebXML are targeted at situations where two
e-businesses, having already decided to do business
together, want to negotiate agreements that completely
specify their interoperability technology, frequently prior
to any actual use of that technology. Thus there is little to
support the needs of dynamic, flexible, evolving
interaction patterns.

5.3 Web Services

The conversational model described above clearly
differs in its crucial aspects from Web Services[4] as they
are commonly understood today. We believe that with a
few significant enhancements, however, the basic Web
Services architecture can be extended to support the
required features of the conversational model.

For example, message delivery would use the existing
transport mechanisms as specified in WSDL. Businesses
would use WSDL port types for endpoints that set up
conversations and receive messages. UDDI entries would
be used in the same way they are now, with the additional
feature that businesses would list the top-level
conversation policies they support.

The properties and requirements of conversation-
enabled Web Services are explored in greater detail in ref.
[14].

6 Ongoing and Future Work

We are currently working on two important aspects of
a B2B integration architecture based on our
conversational model: (1) Extension of the Java
Connector Architecture (JCA) to support conversations;
and (2) Definition of an XML-based language for
scripting conversation policies. These are briefly
discussed below.

6.1 Conversational JCA

The JCA architecture[1] provides a set of abstractions

for connecting the J2EE platform to heterogeneous
Enterprise Information Systems (EISs). The abstractions,
defined as a set of contracts at the system and at the
application level provide a collection of scalable, secure
and transactional mechanisms that enable the integration
of EISs with application servers and enterprise
applications.

In this work we propose to extend the JCA application
and system contracts to support conversations and
conversation policies. This will extend the architecture
from the realm of EIS integration to cross-enterprise

integration. The (conversational) adapters built
conforming to the architecture, provides the guarantee of
being able to run on any J2EE platform and avail of the
system specific resources (transaction, security,
connection pooling and conversation management).

Conversational JCA are currently under development
and are planned for public release on the IBM
alphaWorks site.[15]

6.2 Conversation Policy XML

Business process integration through conversational
interactions can only succeed on a wide scale if some
common way of specifying CPs, is adopted as an industry
standard.

For this reason, we are currently developing
Conversation Policy XML (cpXML), an XML dialect for
describing CPs. It permits CPs to be downloaded from
third parties (such as standards bodies, providers of
conversation-management systems, or even specialized
protocol-development shops). Once downloaded and
installed in a firm’s conversation-management system,
bindings are added to specify the connections between the
decision points of the CP and the firm’s business logic.

cpXML is narrowly scoped, restricting itself to
describing the message interchanges exactly as we
sketched them in Section 2. Thus, for example, it does not
cover the way in which a CP is bound to the business
logic, or the means by which the CP connects to the
messaging system. It takes a third-party perspective,
describing the message exchanges in terms of “roles”
which are assumed at runtime by the businesses engaged
in a conversation. It supports nesting of conversation
policies, and time-based transitions such as timeouts on
waiting for an incoming message.

Designing protocols is a daunting task, especially in
B2B interactions, where the participants and the business
needs are constantly changing, where the goals of the
different parties are often at odds, and where there is no
central authority to enforce conformance to any one
protocol. The narrow scoping of cpXML significantly
lightens the task of developing useful interaction patterns
into formal, executable conversation policies. And while a
state-machine-based model can be limiting in certain
contexts, this is more than made up for by the clarity,
simplicity, and ease of implementation that a state-
machine affords.

7 Conclusion

We believe that conversation support technologies will
greatly enhance the speed of e-business integration.
Modeling of complex B2B interactions, which themselves
follow a conversational pattern, fits naturally with

conversation policies. Extending standard integration
architectures like JCA to include conversation support
will allow tool vendors and application server providers to
build applications that extend the realm of integration
from EIS to cross-enterprise integration.

8 References
[1] J2EE Connector Architecture 1.0 Specifications
from http://java.sun.com/j2ee/connector/
[2] Electronic Trading Partner Agreement for E-
commerce (tpaML) draft version 1.0.6, from
http://ebxml.org/project_teams/trade_partner/tpaml106
.zip
[3] ebXML, http://ebxml.org
[4] Web Services,
http://alphaworks.ibm.com/webservices
[5] Peregrine B2B Integration Platform,
www.peregrine.com
[6] Thatte, S., “XLANG: Web Services for Business
Process Design”, Microsoft Corp., 2001. cf.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
[7] WebMethods B2Bi www.webmethods.com.
[8] Vitria Business Ware. www.vitria.com.
[9] TIBCO Active Exchange. www.tibco.com.
[10] BPMI.org, “Business Process Modeling
Language”, http://www.bpmi.org/bpml-spec.esp
[11] D. Georgakopoulos, H. Schuster, A. Cichocki, and D.
Baker, “Managing Process and Service Fusion in Virtual
Enterprises”, Information Systems, Vol. 24, No. 6, 1999,
429-456.
[12] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design
Patterns – Elements of Reusable Object Oriented Software,”
Addison-Wesley Publishing Company, NY, 1995.
[13] Kumaran, S., Huang, Y., Chung, J-Y. A
Framework-based Approach to Building Private
Trading Exchanges. IBM Systems Journal (To Appear
in June 2002).
[14] J. Hanson, P. Nandi and D. Levine,
“Conversation-enabled Web Services for Agents and
E-business”, Proceedings of the Third International
Conference on Internet Computing (IC-2002), to
appear.
[15] http://www.alphaworks.ibm.com

	Introduction
	The conversational model of component interaction
	Interaction via asynchronous message exchange
	Generic messaging
	Conversation-centric interactions
	Conversation management independent of message delivery
	Isolation of interoperability from business process
	Dynamic and flexible model for business process integration

	Conversation policies
	Nesting and composition of conversation policies

	Conversation support in the Ninja Gateway
	Ninja Gateway
	Conversation Adapter design
	Conversation Support Beans
	Conversation Policy Handler
	CP instances
	Implementation

	Related Work
	Flow Models
	ebXML and tpaML
	Web Services

	Ongoing and Future Work
	Conversational JCA
	Conversation Policy XML

	Conclusion
	References

