
Concurrency Control and Recovery in Transactional Process
Management*

Heiko Schuldt Gustav0 Alonso

Institute of Information Systems

Swiss Federal Institute of Technology (ETH)

ETH-Zentrum

CH-8092 Ziirich, Switzerland

{schuldt,alonso,schek}@inf.ethz.ch

Hans-JSrg Schek

Abstract

The unified theory of concurrency control and recovery inte-
grates atomicity and isolation within a common framework,
thereby avoiding many of the shortcomings resulting from
treating them as orthogonal problems. This theory can be
applied to the traditional read/write model as well as to
semantically rich operations. In this paper, we extend the
unified theory by applying it to generalized process struc-
tures, i.e., arbitrary partially ordered sequences of trans-
action invocations. lJsing the extended unified theory, our
goal is to provide a more flexible handling of concurrent pro-
cesses while allowing: as much parallelism as possible. Un-
like in the original unified theory, we take into account that
not all activities of a process might be compensatable and
the fact that these process structures require transactional
properties more general than in traditional ACID transac-
tions. We provide a correctness criterion for transactional
processes and identity the key points in which the more flex-
ible structure of transactional processes implies differences
from traditional transactions.

1 introduction

In conven.tional dataabases, concurrency control and recov-
ery are well understood problems. Unfortunately, this is
not the case when transactions are grouped into entities
with higher level semantics, such as transactional processes
[Alo97]. Some initial work has been done in this direction:
studying atomicity (spheres of joint compensation [Ley95],
or flexible transactions [ELLRSO, ZNBB94J) in a single pro-
cess and analyzing concurrency control without considering
recovery [AAHD97]. Practical experience, however, shows
that concurrency control and recovery are related problems
and they both need to be solved in order to produce com-
plete, feasible solutions.

In this paper, we present a f&t attempt to develop a
theoretical framework in which to reason about concurrency

-
‘Part of this work hlas been funded by the Swiss National Sci-

ence Foundation under the project WISE (Workflow based Internet
Services) of the Swiss Priority Programme “Information and Com-
munication Systems”.

pcmlission lo m&c digital or hard copies of all or part of this work for
personal or classroom USC is granted without fee provided that copies
are I,ot IFade or distribute&for profit or commercial advantage and that
copies bear this notice and the full citation on the lirst page. To COPY
otherwise, to republish, to post on servers or to redistribu~c to lists.
rcquircs prior spccitic permission and/or a fee.
PODS ‘90 Philadelphia PA
Copyright ACM 1999 l-581 13-062-7/99/05...$5.00

control and recovery in transactional processes. The chal-
lenge we face is to design a single correctness criterion ac-
counting for both concurrency control and recovery which,
at the same time, copes with the added structure found in
processes. In particular, and unlike in traditional transac-
tions, processes introduce flow of control as one of the ba-
sic semantic elements. Thus, the correctness criteria must
take into consideration that processes already impose order-
ing constraints among their different operations and among
their alternative executions, constraints that will play a sig-
nificant role in determining how process execution can be
interleaved. Similarly, processes integrate invocations to ap-
plications with different atomicity properties. Therefore, we
cannot impose the strong requirements used in other mod-
els (like ConTracts [WR92, RSS97], or CREW [KR98] where
the inverses of all process steps have to exist).

The contribution of the paper is threefold. First, it
clarifies the problem of concurrency control and recovery
in transactional processes without making unreasonable as-
sumptions about their environment. Second, starting with
the correctness of a single process based on flexible transac-
tions [ELLRSO, ZNBB94] it provides a correctness crit,erion
for concurrent execution of several processes generalizing
and adapting the unified unified theory of concurrency con-
trol and recovery [SWY93, AVA+94, VHYBS98] to transac-
tional processes thereby extending the applicability of these
models. In contrast to other approaches proposing a va,r:i-
ety of transaction models (like TSME [GHS95, GHKM94]),
this paper provides a single model covering all requirement,s
that arise in the application areas of transactional process
management. Third, it discusses several realistic environ-
ments where these ideas are being implemented. We believe
that transactional processes are becoming more and more
important in applications such as, for instance, electronic
commerce or virtual enterprises, workflow inanagement sys-
tems, process support systems, or specialized coordinatio:n
tools. Therefore, we expect the results of this paper to be
of practical relevance in a variety of applications.

The paper is organized as follows: In section 2, we present
a sample application scenario for transactional processes. In
section 3, we develop a correctness criterion for transact.ional
processes and discuss its impact on concurrency control and
recovery. Section 4 concludes the paper.

2 Motivation

Computer Integrated Manufacturing (CIM) environments
are a good example of the use of transactional processes
to coordinate different subsystems [NSSW94]. In the exam-

316

CAD Construction Write BOM Test Technical Decwinentaticn

9 Construction
$.,

Process

CAD
syatenl

PDM System Business Software Program Test and Product Document
(e.g. SAP FV3) Repository Norm DBMS DBMS DBMS

Transactional

Process

Scheduler

Transactional

Subsystems

Figure 1: Concurrent execution of a construction process and a production process in the CIM scenario

ple shown in figure 1, two processes are used to control the
development and production of new products’. In this case,
production does not follow mass-production techniques but
aims to customize each one of the products to deliver. Thus,
the development of the product and its manufacture are
strongly tied. The construction process contains all develop-
ing steps from the design of a new part to the final test and
the subsequent technical documentation. It encompasses a
CAD system, a product data management system (PDM),
a test database as well as a technical documentation repos-
itory. The production process includes all manufacturing
steps from the ordering of materials to the production floor
including the necessary scheduling. Thus, the production
process encompasses the PDM system, a business applica-
tion, a program repository and a product DBMS. Activities
of transactional processes are service invocations in these
underlying subsystems. As the bill of materials (BOM) of a
new product generated within the construction process pro-
vides the necessary input required by the production pro-
cess, dependencies between both processes exist.

2.1 Extending the Notion of Atomicity

The example above clearly shows why transactional pro-
cesses must provide a more general notion of atomicity than
traditional transactions. Consider the construction process
in figure 1. If a failure is detected during the test activ-
ity of this process, it is certainly not desirable to undo all
previous work including the long running design activity.
It is more appropriate to undo only the PDM entry and
document the CAD drawing so as to facilitate later reuse.
This documentation can be alternatively executed instead of
the technical documentation of the whole part which would
have been done if the test activity would have succeeded.
The possibility of executing alternatives in case of failures
therefore generalizes the all-or-nothing semantics of atomic-
ity and leads to a more flexible notion of atomicity used for
transactional processes.

‘This example reflects the practice followed by one of our indus-
trial partners in a recently concluded research project [SSTSB].

2.2 Concurrency and Interference

An additional prerequisite is to guarantee consistent inter-
action between processes. Consider a construction process
and a production process being executed in parallel as de-
picted in figure 1. This parallelization is important in prac-
tice as it dramatically reduces the time to market of new
products. As depicted in figure 1, only the two activities
within the PDM system do conflict. For concurrency con-
trol purposes, the ordering of these two activities would be
sufficient. However, when recovery has to be considered,
further dependencies exist. As no inverse for the produc-
tion activity exists, it must not be executed before the test
terminated successfully. If the test fails, the PDM entry is
compensated within the construction process and the BOM
read by the production process is invalidated. Therefore, all
activities of the production process would have to be com-
pensated, too. However, if production of parts is already
performed, this would lead to severe inconsistencies as no
valid construction and BOM of these parts exists.

2.3 Transactional Subsystems

A transactional process scheduler coordinates transactional
processes on top of transactional subsystems and ensures
correctness even in case of failures. We assume these subsys-
tems to have functionality such as the atomicity of service
invocations, and either the ability to compensate already
committed services or to support a two phase commit pro-
tocol. When the application does not provide such function-
ality, it will be provided by wrapping this application sys-
tem with a transactional coordination agent. In this paper
we concentrate on transactional process management on top
of such transactional, possibly agent-wrapped subsystems.
The problem of wrapping these systems by transactional
coordination agents is important but beyond the scope of
this paper. Some aspects of this problem are discussed in
[NSSW94, SST98].

317

3 Concurrency Control and Recovery in Transactional
Processes

In the following, we will consider transactional processes ex-
ecuted by a transactional process scheduler on top of subsys-
tems supporting the execution of local transactions as shown
in figure 1. In this section, we derive a correctness criterion
to reason about correct concurrency control and recovery of
these transactional processes in a single framework.

3.1 Process Model

Each subsystem provides a limited set of transactional ser-
vices that can be invoked by processes. Let a be the set
of services (activities) provided by all subsystems. For each
invocation of an activity of d, return values are provided.
As activities are itself transactions in the underlying subsys-
tems, they are by definition atomic and therefore terminate
either committing or aborting. Activities differ in terms
of their termination guarantees: they are either compensa-
table, retriable, or pivot (as in the flex transaction model
[MRSK92, ZNBB941). In the case of compensatable activ-
ities, a compensation service is provided by the underlying
subsystem, retriable activities are guaranteed to successfully
terminate after a finite number of invocations, and pivot ac-
tivities are those which are neither compensatable nor re-
triable. These different termination guarantees of activities
will be defined more formally as follows using the notion
of activity sequence to denote the sequential execution of
activities.

Definition 1 (Effect-free Activities)
Let u =< ai aj . . a, > be a sequence of activities from
a. The sequence u is effect-free if, for all possible activity
sequences a! and w from A, the return values of cy and w in
the concatenated activity sequence < CY u w > are the same
as in the activity sequence < cy w >. 0

A special case of effect-free activities is the sequence
cr =< a; arl > consisting of a compensatable activity ai
and its compensating activity ai’. More formally,

Definition 2 (Compensatability and Compensation)

An activity ai E d is compensatable if an activity a;’ E a
exists where the activir!y sequence u =< ai a;’ > is efiect-
free. The activity a;’ as then called the compensating ac-
tivity Of a;. 0

In order to formally define retriable activities, the in-
vocation of activities has to be labeled. Let ai the nth
invocation of activity a;.

Definition 3 (Retriable Activity)
An activity a; is retria.ble if some m E N exists with ai
terminating with abort for 1 5 j < m while a;(m) is guar-
anteed to terminate with commit. 0

The guarantee that there is always one invocation which
will commit ensures that retriable activities will not fail.
More formally,

Definition 4 (Failure of an Activity)
An activity a; has failed if invocation a;(l) has terminated
with abort and no m E N exists where ai is guaranteed
to commit. Cl

To guarantee the property of compensatability, a com-
pensating activity ai, IS (1) itself not compensatable, how-
ever, it is (ii) retriable and therefore guaranteed to commit.
Note further that according to the flex transaction model
both pivot activities and retriable’ activities do not have a
compensating activity.

Intuitively, a process is an arbitrary collection of ac-
tivities in arbitrary subsystems. For the process model,
we adopt and refine ideas of the flex transaction model
[ELLRSO, ZNBB94]. More formally,

Definition 5 (Process)

A process, P, is a triple (A, <, a), where A C d is a set of
activities, < is a partial order over A with << C (d x A),
and a is a partial order defined over << with a C (< x <<)
establishing alternative execution paths by specify& for each
activity a E A an ordering on the activities a’ E A directly
following it. cl

For notational purposes, a process is assumed to have a
unique identifier, for instance,’ pi. Activities within Pi are
denoted as a:, , a:*, . . . , a&. The superscript index denotes
the property of an activity, the subscript indices denote the
process id and a unique id of the activity within the process
(activity aB, for instance, is an activity of process Pi with
id n and it is retriable). The commitment of process T\ is
denoted by C;, its abort by Ai. If the property of an activity
is not relevant, we will omit this specification.

The semantics of the precedence order < within pro-
cesses is a temporal one. This means that for any two
activities, oih and a;,, if oib < ai,, then ai, can only be
executed after oik committed. The preference order a de-
fined over pairs of connectors starting both from the same
activity establishes the order in which the connectors .will
be evaluated. If there are two order constraints in < with
(oi, <<ii aij) a (ai,, <;, a;*) then, if oik is executed, either
oij must have failed or both aFj and (azj)-’ must have been
executed. Also, all activities succeeding aFj must have been
compensated before oik is able to be executed. Thus, as an
extension of the flex transaction model, these further order
constraints derived from < have to be respected when ex-
ecuting alternatives. However, these alternative execution
paths have the same semantics as the preference order of
the flex transaction model. Note that both orders, < and
a, are irreflexive, transitive, and acyclic. To avoid indeter-
minism in the execution, when, by transitivity, a associates
several connectors, it can only define a total order.

Figure 2: Process PI with precedence and preference order

‘In the context of transactional process management, we could
also consider r&Sable activities to be as well compensatable in order
to give a scheduler more options for executing alternatives in case of
failures. For the sake of simplicity, we however follow the less general
flex transaction model here.

318

Example 1 Consider process PI depicted in figure 2. The
precedence order of PI is depicted with solid lines, the pref-
erence order of PI with dotted lines. Given these orders,
ai, and therefore also ai, can only be executed after a:, has
failed or after aL has failed and ai, has been compensated
by a;,‘. Therefore, as depicted in figure 3, four possible valid
executions of PI exist. 0

Figure 3: Possible executions of process PI

We consider a single transactional process to be well de-
fined if it has well-formed flex structure [ZNBB94]. The
basic well-formed flex structure consists of a set of com-
pensatable activities followed by one pivot activity which is
again followed by a set of retriable activities. Additionally,
the pivot activity can recursively be succeeded by a com-
plete well-formed flex structure given that an alternative
consisting only of retriable activities exists for it.

In [ZNBB94] it has been shown that well-formed flex
structures always guarantee the existence of one execution
path that can be executed correctly while all other paths
will leave no effects. In the following, processes having well-
formed flex structures are called processes with guaranteed
termination (this is equivalent to the “semi atomicity” in
the flex transaction model). The guaranteed termination
property of transactional processes is a generalization of the
“all-or-nothing” semantics of traditional ACID transactions
as it ensures that at least one of eventually many valid ex-
ecutions (specified by the alternatives) is effected. In what
follows, we will only consider processes with guaranteed ter-
mination.

For notational purposes, the first non-compensatable ac-
tivity of a process with guaranteed termination Pi will be
called state-determining activity sio of Pi. All activities of
Pi preceding sio are compensatable. Therefore, backward
recovery can be performed by successively applying compen-
sation if sio fails or if an abort Ai of P; is performed before
si,, committed. Similarly, once si,, has terminated success-
fully, forward recovery is guaranteed. From here, a process
with guaranteed termination can be in any of two states.
A process, Pi, is said to be forward-recoverable, F - R&C,
after sio has been committed, otherwise pi is backward-
recoverable, t3 - REC. The sequence of compensating ac-
tivities to be executed for recovery purposes of a process in
state U - REC is its backward recovery path. The sequence
of activities leading from any activity succeeding sio to the
well-defined termination of a process is the forward recovery
path. The set of activities of a process Pi to be executed
for recovery purposes (either forward or backward) will be
called the completion of pi denoted by C(P;). Note that in
the case of Pi being in state B - REC, C(Pi) consists only
of compensating activities, while, if Pi is in state 7 - REC,
C(R) consists of both compensating activities (local back-
ward recovery to a state-determining element sik)3, and re-

3As we consider basic well-formed flex structures recursively, mul-
tiple local state-determining activities sib of Pi may exist.

triable activities. While the failure of one activity leads to
the execution of the next alternative given by the preference
order Q, the abort Ai of a process in 7 - REC considers
only the alternative with lowest priority which consists only
of retriable activities and thus guarantees safe termination.
Similarly, the abort A; of a process Pi in B - REC considers
only compensation in backward order and no further alter-
native execution paths. The completion C(R) of a process
Pi will be an important notion when we define complete
process schedules below.

Example 2 Consider again process PI depicted in figure 2.
Obviously, PI is a process with guaranteed termination as
it has well-formed flex structure. The pivot activity ay2 is
the state-determining activity s10 of 9. Before the suc-
cessful te7mination of a&, PI is in t3 - REC and in this

state, the completion C(PI) consists of {al,‘} if ai, has
been executed correctly. After successful termination of a!, ,
PI is in F - REC. After activity a&, for instance, has
terminated successfully, the completion of PI evaluates to
C(Pl) = {a;,’ < ai < ais}. 0

3.2 Process Schedules and Correctness

Following [VHYBS98], the notion of conflicting activities is
defined using the return values of activities.

Definition 6 (Commutativity)
A Two activities aik, a?, E A commute if for all activity sequen-

ces Q and w from A, the return values in the concatenated
activity sequence < LY aih aj, w > are identical to the Teeturn
values of the activity sequence < a! aj, oik w >. 0

Two activities are in conflict if they do not commute.
Furthermore, we consider commutativity between all activ-
ities of a to be perfect [VHYBS98]. This means that if two
activities a:, and aj, conflict, then we will also consider a

conflict between aFh and ajp, for all possible combinations of
a,,LJ E {-1,l). Otherwise, if azb and aj, commute, we will

assume ayb and a:, to commute for all possible combinations
of a,P E (-1, l}.

Given the structure of processes with guaranteed termi-
nation and the information about conflicting activities, a
process schedule can be defined as follows.

Definition 7 (Process Schedule)
A process schedule S is a triple (‘Ps, As, <s) where PS is
a set of processes, As c d is a subset of all activities of
all processes of Ps with As c {ai? (aij E di A Pi E Ps},
<<s is a partial order between actzvities of As wilh <<s c
(As x As). For the order <, the following has to hold:

1. V Pi : <i E <CS

2. V (ai,, aj,), i # j, such that sib and aj, do not com-
mute: aik <<s aj, or aj, <<s aik 0

Note that by 7.1, a process schedule guarantees only legal
executions of each process pi E Ps thus respecting both pi’s
precedence and preference order.

Formally, the above definition of a process schedule looks
like the classical definition of a schedule. However, it implic-
itly includes information about the properties of all activi-
ties (compensatable, pivot or retriable) and thus, also about
the different states of processes (l3 - REC or 3 - ‘REC) and
it includes the alternative execution of a process Pi as even

319

,

(b)

Figure 4: Serializable (a) and non-serializable (b) concurrent execution of processes PI and P2

in a complete process schedule where all processes terminate
committing [BHG87], not necessarily all of pi’s activities are
considered. This does, however not influence the notion of
serializability. A process schedule is serializable if it is con-
flict equivalent to a serial execution of all processes. Hence,
a serializable process schedule does not contain cyclic de-
pendencies [BHG87].

Example 3 Consider the two processes, PI and Pz, de-
picted in jigure 4(b) being executed in parallel. As the pairs
of activities (a:, , a&), (a:, , as,), and (a&, a$,) do not com-
mute (denoted by dashed arcs), they have to be ordered in
the process schedule S’. Also, the intra-process orders of PI
and PZ must be respected in S’. Therefore, process sched-
ule S’ at iime t2 evailuates to: Sl, = (PS& 1&& , q,)
with the set of process,es P,I t2 = {PI, Pz}, the set of activ-

ities AsI = {a;,,ay,,a:,, ag1,ag2,a$,az4}, and the order

G& = i’Cai, Ksi2 a’;“, CS;, ai,), (a”z, <s;, 4, G;,

ai3 -G;, ah,), (ai, %;;a a:, 1, (a$ G+, a:,)}. Obviously,
process schedule S& is not serializable because of cyclic de-
pendencies between PI and PQ. cl

Example 4 Consider again processes PI and P2, now ex-
ecuted as depicted in ,Figure 4(a). At time t2, the process
schedule St, is seriali;!able. Here, no cyclic dependencies
between PI and PZ do exist as the order <<stz evaluates to
<<stz= {(ai, Cst, al;, <st2 ai,), (4, <st2 a”z2 <st2
a$ Kst2 a;,>, (ai, Kst2 ac21),(aY2 Kst, a&)). 0

3.3 Completed Process Schedules

The serializability of tralnsactional processes allows to lesson
about correct concurrency control. In order to additionally
reason about correct recovery when, for instance, a failure of
the process scheduler occurs, we now make recovery-related
activities explicit by applying the unified theory of concur-
rency control and recovery [SWY93, AVA+94, VHYBS98]
to transactional processes. Therefore, we replace each abort
activity A; of a process P; by the activities of its comple-
tion C(Pi). This replacement of abort activities leads to the
notion of the completed process schedule 3. In order to guar-
antee correct recovery, all active processes PiI, . . , Pi, are
assumed to abort, which must be treated jointly by using a
group abort operation .A(Pi, , . . . , Pi,). Note that aborted

processes may be in 7 - IREC. Therefore, not only com-
pensation of previously executed activities but all activities
of the forward-recovery path of aborted processes have to
be considered, thus leading to crucial differences compared
with the standard undo procedure for recovery. This is also
reflected in the notion of completed process schedule in con-
trast to the expanded schedule of the traditional unified the-
ory which contains only additional compensation compared
with the initial schedule. The way a process schedule is com-
pleted is depicted in figure 5. After Ai has been replaced
by all activities of C(P;), a process Pi can be considered as
committed.

Crash 0 regutar activities

@ activitiw of baekwrud
recovery palh

c-- ComPfeted Process Schedule 6 -
@ activl@s 01 forwarcl

reco”ery path

Figure 5: Completion of a process schedule by activilties
of the backward recovery path and of the forward recovery
path of all active processes

More formally, the completed process schedule 3 of a
process schedule S is defined as follows:

Definition 8 (Completed Process Schedule 3)
Let S = (Ps, As, <s) be a process schedule. The complel;ed
process schedule 3 of S, is a triple (?s, As, &) where

1. For the set of prticesses I@S holds: P.s = Ps.

2. & is a set of activities derived from As’ in the follow-
ing way:

(a) For each process Pi E Ps, if aih E Ai and aik is

not the abort activity Ai, then sib E &.

(b) All active processes are treated as aborted pro-
cesses, by adding A(Pnl,. . , P,,), a set-oriented
abort, at the end of S, where (P,,, . . , P,,,) are
all active processes in S.

(c) For each aborted process Pj in Ps, all activities
aj* E C(Pj) of the completion C(Pj) of Pj are in
S (aj. E As). An abort activity Aj is changed to
Cj E As.

320

I I

Completion

‘&St2 4ht2 &t2
;-\ ,“\ ,--- I \

~ St2
ai, a& aYj2 ai ay2 a& ai, 3 a;l a& ai a; 3 6

&St2 -&St, as*,
,‘Y ,‘Y ,--_ , \

St2
!Zi, a!j 1 a;2 a; 3 a:, a& af 3

(4 (b)
Figure 6: Completed process schedule ,!!& (a) and reduced process schedule ?& (b) of process schedule St,

3. The partial order, <CS, is determined as follows:

(a) For every two activities, ai, and ai,, if aik <<s
aj, in S, then aik <CS aj, in S.

(b) FOT every two activities, ailc and ai,, of the com-
pletion C(Pi) of every process Pi that does not
commit in S, if ai, <<i ai, E C(Pi), then a;& <<s
ai, in 3.

(c) All activities of the completion C(Pi) of every pro-
cess Pi that does not commit in S follow the Pi
original activities and must precede Ci in 3.

(d) If a group abort A(PnI,. . . , P,,,) E S, then ev-
ery pair of conflicting activities of the completions
of these processes, ai, E C(Pi),aj, E C(Pj) with
i,j E {nl,... , n9}, i # j,- has to be ordered in L!?
(either aik G& ai, OT aj, <CS ai,).

Cd Wh enever aik as A(P,q, . . . , Pn.) <<s aj, and
some activity apt of the completion C(P,) of pro-

cess Pp E {Pm,, . . , P,. } 5 ‘Ps conflicts with
aj, (a;,), then it must be true that aqL & aj,
(aik <<s apt).

(f) Whenever A(. . . , Pi,. . .) <<s A(. . . , Pj,. . .) for
some i # j, then for all conflicting activities sib
of the completion of Pi and aj, of the completion
of Pj, ailc E C(P,) and aj, E C(Pj), it must be
true that aile is aj,. Cl

The following example presents how a given process sched-
ule is completed.

Example 5 Consider again process schedule St, of exam-
ple 4 with Pst2 = {PI, Pz} as depicted in figure 4(a). When

the completed process schedule 3 is determinded at time t2
where both processes are active, a group abort A(Pl, P2) has
to be added to St,. The set of activities Ast2 of gt2 consists
of all activities of dstz plus the activities {aF3’, a& ,a&}
of the completion C(Pl) and {a&} of the completion C(P2).
The order <<st, of St2 is the union of <<St2 and {(af, <<st,

a;,’ Cst2 ai5 4Cst2 aI,), (a&4&, a&), (a&&t2 a;,)}.
The completed process schedule $, is depicted in figure 6(a).
AS no cyclic dependencies exist, the completed process sched-
ule St, is serializable. 0

3.4 Unified Theory for Processes

Like in the traditional unified theory, reducibility provides a
criterion for correct concurrency control and recovery once
we have completed a process schedule by making recovery-
related activities explicit. The idea of the reduction of a
completed process schedule is to eliminate both an activity
and its compensating activity if they form an effect-free ac-
tivity sequence as well as to eliminate activities of aborted
processes that are themselves effect-free. Also, consecutive
activities may be commuted if they do not conflict. More
formally,

Definition 9 (ReducibiIity (RED))
A process schedule S = (Ps, As, <s) is reducible (RED)
if its completed process schedule 3 = (?s, As, 2s) can be
transformed into a serial process schedule 3 = (pg, &, &)
by applying the following three transformation rules finitely
many times:

1. Commutativity Rule: If two activities aik, aj, E As
such that aiL <<s ai, and (ai,, ai,) commute and there
is no other activity a,, E As with aik &s apt as ai,,
then the ordering ai, <<<s aj, can be replaced by the
ordering aj, <<x ai&.

2. Compensation Rule: If two activities ailc, ai,’ E &

such that aib -&s ai,’ and there is no other activity

aj, E As with aik Qs aj, &s a;‘, then aikr a;’ can

be removed from 5.

3. Effect-free Activity Rule: If Pi does not commit
in S, then all activities aih that are effect-free can be
removed from $. 0

Example 6 Considering again process schedule St, of ex-
ample 4 and its completed process schedule St, of example 5.
When applying the reduction rules, only the two consecutive
activities ai, and a;,’ can be removed from &, in accordance

to the compensation rule. The reduced process schedule s

shown in figure 6(b) is serializable as &s of & contains

aside of the inter-process orders of PI and P2 only depen-
dencies from process PI to process Pz. Therefore, process
schedule St, is RED. 0

321

Example 7 Consider now process schedule Spl at time tl
depicted in figure ‘7. When completing Sii, all pairs of con-
flicting activities will be in the same order and the applica-
tion of the reduction rules leads to a serial process schedule
,!$‘, Therefore, process schedule Si: is RED. 0

fi

p2

4,
--

:’
j ‘, Conflict
; i

_ qL&

: :

Figure 7: Prefix-reducible execution of processes Pi and PZ

RED is not prefix closed, which means, it cannot be used
for dynamic scheduling. In accordance to the traditional
unified theory, the criterion can be further restricted for this
purpose leading to prefix-reducibility where each prefix of a
process schedule has to be considered. More formally,

Definition 10 (Prefix-Reducibility (PRED))
A process schedule S = (‘Ps, As, <s) is prefix-reducible
(PRED) if every prefi:x of S is reducible. 0

Example 8 Consider again process schedule St, of exam-
ple 4 depicted in figure 4(a) and its prefix St, at time tl.
In S tl, process Pa is in 3 - R&C while process 9 is in
I3 - REC. When completing St,, the previously executed
activity a:, of PI has to be compensated by “1,’ while for
Po, the activities of the forward recovery path have to be
executed. By scheduling all’, a conflict cycle appears in

St, (aT1 Qt, al, QKgt, all -‘) that cannot be eliminated
by the reduction rules as compensation of ah is not avail-
able. Therefore, St, is not reducible and thus, St, is not
prefix-reducible. The completed process schedule St, of St,
is depicted in figure 8. 0

us*,
; 3

St, -fB-++a
4, ““2, 4, 2:) up

*
t

&,, -=KStl I

Completion

;- ,,---- ---------b-4

St1 -t

aPI a& a”z2 4.
-1

:i al* a’24 “‘25

Figure 8: Completed process schedule St, of St,

Note that the above example is strongly influenced by
the fact that activities without inverse do exist. Therefore,
we have to consider not only compensation for recovery pur-
poses. If ail inverses were available and the classical undo
procedure of recovery could be applied, the prefix St, of St,
would be reducible. The completion of St, would consider
the compensation of az3, az2, asl, and ai,. Then, with re-
spect to the compensation rule, all four activities and their
compensation activity could be removed from St, leading
to a reduced schedule St, consisting only of Cl and C:!. As
reduction would be poszle for all prefixes of St, in this clas-
sical sense, St, would be in PRED. Therefore, when consid-
ering transactional processes with guaranteed termination
property, the order in which non-compensatable activities
are executed is crucial as we will see in section 3.5.

Example 9 Taking again a look at process schedule Sl’; de-
picted in figure 7. It can be shown that each prefix Sl: of Si:
with t’ < tl is reducible. Therefore, process schedule SF, is
PRED. Cl

However, scheduling can also benefit from non-compen-
satable activities. They have the semantics of a “quasi corn.-
mit” of a process, as for all activities a&. of a proceeis P,:
preceding such a non-compensatable activity si, compensa.
tion can no longer be considered. Therefore, after the com-
mitment of si, no cyclic conflicts can arise in the completed
process schedule by the compensation activities a;‘. This
is shown in the following example.

Example 10 Consider process schedule S’ with processes
PI and Ps depicted in figure 9. Although activities a;, anc!
a$ do conflict, no conflict cycle can appear by the com-
pensating activity “1,’ at time tl. As process process 1’1 is
already in 3 -R&C, compensation of a;, is not available.
Therefore, given that no further conflicts exist between activ-
ities of Ps and the activities of the forward recovery path OJ'

9, the execution depicted in figure 9 is correct with respect
to both concurrency control and recovery. 0

-

Figure 9: Correct interleaving of processes exploiting the
“quasi-commit” of non-compensatable activities

3.5 Discussion of PRED of Completed Process Schedules

In the previous sections, we introduced the formalism nee,ded
to define prefix-reducibility with respect to transactional
processes having guaranteed termination property. As our
goal is to reason about correct concurrency control and re-
covery, we have to prove that each process schedule in PRED

322

is in fact both serializable and recoverable. AS we have to
deal with two different states of processes determining the
way recovery has to be performed, we have to adopt the no-
tion of recoverability to the structure of transactional pro-
cesses leading to the notion of process-recoverability. More
formally,

Definition 11 (Process-Recoverability (Proc-REC))
A process schedule S is process-recoverable (Proc-REC),
if for each pair of conflicting activities, aik and aj, with
aik <<s aj, E S the following holds:

I. Ci precedes cj in S (Ci <<s Ci)

2. the next non-compensatable activity aj,,, of Pj follow-
ing aj, succeeds in S the nexct next non-compensatable
activity ai, of Pi following aik (ai, <<s aj,). q

Note that in the above definition, the traditional case
where no non-compensatable activities exist is contained as
then, by definition 11.1, only an order between Ci and Cj
with Ci <<s Cj has to be imposed.

Theorem 1 If a process schedule S is PRED, then S is both
serializable and process-recoverable. q

The proof of theorem 1 is given in appendix A.

In example 8, we have seen that the order in which the
state-determining elements of conflicting processes are exe-
cuted is crucial as it determines what is to be done in case
of recovery (either forward or backward). We now formalize
and generalize this dependency.

Lemma 1 For each process schedule S in PRED with two
conflicting activities a;& <<s aj, in S where process Pi is
active, the following has to hold:

1. Each non-compensatable activity aj, of Pj with aj, <<j
aj,,, has to succeed the commit Ci of Pi [Ci <<s aj,,,).

2. Activity aj, has to be compensatable (a;,). 0

The proof of lemma 1 is given in appendix B.

In schedule St, of example 8 with the pair of conflicting
activities (a;, <st a$,), a; is executed before ayZ and
thus, PZ is in 7 - d&C while irocess PI is still in t3 - R&C
leading to a contradiction of lemma 1.1 and a violation of
the PRED criterion.

According to lemma 1, the commits of all non-compen-
satable activities of Pj have to be deferred by the respective
subsystem until process Pi has committed (C;) if a conflict
between some activity sib and aj, with aik <<s aj, exists in
5’. After fi has committed, all non-compensatable activi-
ties of Pj are also allowed to commit as cyclic dependencies
between Pi and Pj can no longer appear. Thus, the com-
mitment of all non-compensatable activities of Pj has to be
performed atomically by exploiting a two phase commit pro-
tocol in order to ensure that either all activities commit or
none of them.

In the following, we analyze the implications, PRED has
on the execution of activities within the completed process
schedule. The following two lemmas specify the restrictions
on the execution of compensating activities.
’ Intuitively, all compensating activities have to be in re-
verse order of the original activities. More formally:

323

Lemma 2 FOT each process schedule S in PRED with two
conflicting activities al, and a;, , if both compensating activ-

ities aTkl and aj,’ are in the completed process schedule 3,
then they have to be in reverse order of the two correspond-
ing activities in S. cl

The proof of lemma 2 is given in appendix C.

As we have to consider not only compensating activities
for recovery purposes, additional restrictions between com-
pensating activities of C(Pi) for some Pi in state D - R&C
and non-compensatable activities (a;,) of C(Pj) for some Pj
in state 7 - REC have to be considered.

Lemma 3 FOT each process schedule S in PRED, if two
conflicting activities a;’ E C(P;) and a non-compensatable
activity a:, E C(Pj) have to be executed when completing S,

then ai,’ has to precede a;, in 3 (ai,’ <(s a;,). q

The proof of lemma 3 is given in appendix D.

Coming back to the initial CIM example presented in
section 2, we now have a formal criterion to classify the
execution depicted in figure 1 as incorrect because the PRED
criterion does not hold. In order to guarantee correctness,
the production activity would have to be deferred until the
commitment of the construction process.

Unlike the traditional unified theory where only compen-
sation had to be considered for aborted transactions in the
expanded schedule, here also new activities have to be sched-
uled when the completed process scheduIe has to be built.
Thus, aside from already existing pairs of conflicting pro-
cesses (if some undo operation is in conflict with an activity
of another transaction in the traditional model, a conflict
between both transactions must have been existed before
compensation has been performed), new conflicts between
processes may be introduced. Therefore, unlike in the tradi-
tional unified theory, the completed procqs schedule 3 has
always to be considered when reasoning about correctness
of a process schedule for transactional processes.

In [AVA+94], the criterion SOT (serializable with or-
dered termination) has been introduced in order to reason
about correct concurrency control and recovery of a schedule
S without considering its expanded schedule 3. However, as
the activities of the completion of a process are not known in
advance, a SOT-like criterion (that relies only on informa-
tion of a given schedule S) does not exist for transactional
processes. Arbitrary conflicts can be introduced to 3 when
non-compensatable activities of C(P;) of aborted processes
Pi have to be considered. Therefore, when reasoning about
correct concurrency control and recovery of transactional
processes, the completed process schedule 3 has always to
be considered to evaluate the PRED criterion.

3.6 Increasing Parallelism of Conflicting Activities

In the process model (definition 5), we only allowed either
sequential execution (<) of activities or unrestricted paral-
lelism. Also, in definition 7 of a process schedule, we only
considered a (strong) temporal order (as) between two con-
flicting activities. In order to increase parallelism, the weak
order taken from the composite systems theory [ABFS97]
could be applied with respect to the hierarchical schedulers
of the type encountered when executing transactional pro-
cesses on top of transactional subsystems. In this configura-
tion, the output of the process scheduler is used as input to

several lower schedulers, the schedulers of the transactional
subsystems. Thus, t,his reflects the case of fork schedules
described in [AFPS9!3]. While the strong order enforces se-
quential execution, ie., an activity is invoked only after the
previous one has terminated, the weak order between two
activities is more permissive, meaning that both activities
can be executed in parallel as long as the overall effect is the
same as if they would have been executed as specified by the
strong order. The di:fferentiation between strong and weak
order can be made both within processes (intra-process or-
der) and within conflicting activities of different processes
(inter-process order). Then, all pairs of conflicting activities
have to be weakly ordered as indicated by the composite
transaction model. The subsystem is then responsible for
keeping this weak order when executing both conflicting ac-
tivities in parallel. In order to ensure this weak order, a
subsystem has, for irrstance, to provide a protocol support-
ing commit order serializability [BBG89]. Then, the commit
order can be derived from the weak order between conflict-
ing activities. Otherwise (if the weak order is not supported
by the subsystem), as the weak order always contains the
strong one, conflicting activities have to be executed with
respect to a strong order.

The re-invocation of retriable activities now may lead to
a special treatment of other activities executed in parallel.
Suppose two activities a& and oj, , with ag <s aj, , have to
be executed within the same subsystem. If the local trans-
action Tib corresponding to aG terminates aborting after
some operations of Ti, have already been executed, then,
in general, the local transaction Tj, (which corresponds to
activity aj,) running :in parallel to T;, (with respect to the
given weak. order) has to be aborted, too. However, as this
is not due to a failure of Tj, , it must not lead to an exception
of Pj leading to an other alternative. Moreover, after TiE is
restarted, T’, has to be restarted within the subsystem, too,
hence guaranteeing compliance to the weak order between
both transactions.

The integration of the composite systems ideas into the
process model and the process schedule are described in de-
tail in [SAS99].

4 Conclusion

This paper provides a framework to jointly reason about cor-
rect concurrency control and recovery for transactional pro-
cesses in order to ensure both a more general notion of atom-
icity (guaranteed termination) by the flexible handling of
failures with appropriate alternative executions and correct
interleavings of parallel processes. Unlike other approaches
addressing only parts of this problem, we cover both atomic-
ity and isolation simultaneously and do concurrency control
and recovery at the appropriate level, the scheduling of pro-
cesses. Furthermore, with the theory of composite systems,
we can take into account the interaction between hierarchi-
cal schedulers when executing transactional processes and
increase parallelism by treating them according to the weak
conflict order.

With PRED, we have provided a correctness criterion for
transactional processes based on the notion of completed
process schedules. We have additionally shown that, due
to the structure of transactional processes, the SOT cor-
rectness criterion cannot be applied. Because of the execu-
tion of non-compensatable activities during the completion
of a process, reasoning about process recovery becomes more
complex than in the traditional case where only compensa-
tion has to be applied. Therefore, the completed process

schedule has to be considered. Furthermore, we have iden-
tified important prerequisites of PRED schedules that have
to be respected due to the fact that some activities might be
non-compensatable. Therefore, aside of the atomicity of sin
gle activities and the compliance of orderings, the deferred
commit of all non-compensatable activities and their atomic
commit by exploiting a two phase commit protocol has to
be provided by the subsystems.

The framework established in this paper not only covers
various applications such as workflow management, process
support systems, and the provision of appropriate infras-
tructures for electronic commerce, virtual enterprises, and
the CIM scenario presented in section 2, it is also completely
transparent to the user. Within the WISE project of IETH
Zurich [AFH+99], we have implemented a process sched-
uler for transactional process management using a protocoI
which is based on the correctness criterion presented in this
paper. This complements the correctness checking of smgle
processes with respect to their guaranteed termination prop
erty which is also available within the WISE system. The two
ideas complete the effort to provide execution guarantees foi
transactional processes. Based on them, we will in our fu-.
ture work expand the framework established in this paper tcl
identify transactional execution guarantees of subprocesses,
and to reason about decoupled execution guarantees of sub-
processes.

References

[AAHD97]

[ABFS97]

[AFH+99]

[AFPS99]

[Alo97]

[AVA+94]

I. Arpinar, S. Arpinar, U. Halici, and A. Dogac.
Correctness of Workflows in the Presence of
Concurrency. In Proceedings of the Next Gen-
eration Information Technologies and Sysl!ems
Conference (NGITS’Sr), Israel, June 1997.

G. Alonso, S. Blott, A. Feller, and H.-J. Schek.
Correctness and Parallelism in Composite Sys-
tems. In Proceedings of the ACM Symposium
on Principles of Database Systems (PODS’97),
Tucson, Arizona, May 12-15 1997.

G. Alonso, U. Fiedler, C. Hagen, A. Lazcano,
H. Schuldt, and N. Weiler. WISE: Business
to Business E-Commerce. In Pr0ceeding.s of
the gth International Workshop on Research Is-
sues on Data Engineering. Information Tech-
nology for Virtual Enterprises (RIDE- VE’99),
Sydney, Australia, March 1999.

G. Alonso, A. Feller, G. Pardon, and H.-J.
Schek. Transactions in Stack, Fork and Join
Composite Systems. In Proceedings of the 7th
International Conference.on Database Theory
(ICDT’SS), Jerusalem, Israel, January 1999.

G. Alonso. Processes + Transactions =
Distributed Applications. In Proceedings of
the High Performance Transaction Proces:;ing
Workshop (HPTS’97), Asilomar, California,
September 1997.

G. Alonso, R. Vingralek, D. Agrawal, Y. Breit-
bart, A. El Abbadi, H.-J. Schek, ;and
G. Weikum. Unifying Concurrency Control and
Recovery of Transactions. Information :;ys-
terns, 19(1):101-115, 1994.

324

[BBG89]

[BHG87]

[ELLRSO]

[Elm921

[GHKM94]

[GHS95]

[JK97]

[KR98]

by951

[MRSK92]

[NSSW94]

[RSS97]

[SAS99]

C. Beeri, P.A. Bernstein, and N. Goodman.
A model for concurrency in nested transaction
systems. Journal of the Association for Com-
puting Machinery, 36(2):230-269, April 1989.

P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

A. Elmagarmid, Y. Leu, W. Litwin, and
M. Rusinkiewicz. A Multidatabse Transaction
Model for InterBase. In Proceedings of the 16th
VLDB Conference, pages 507-518, Brisbane,
Australia, 1990.

A. Elmagarmid, editor. Database Z+ansaction
Models for Advanced Applications. Morgan
Kaufmann, 1992.

D. Georgakopoulos, M. Hornik, P. Krychniak,
and F. Manola. Specification and Management
of Extended Transactions in a Programmable
Transaction Environment. In Proceeding of the
10th International Conference on Data Engi-
neering (ICDE’94), pages 462-473, Houston,
Texas, February 1994.

D. Georgakopoulos, M. Hornick, and A. Sheth.
An Overview of Workflow Management: From
Process Modeling to Workflow Automation
Infrastructure. Distributed and Parallel
Databases, 3:119-153, 1995.

S. Jajodia and L. Kerschberg, editors. Ad-
vanced Transaction Models and Architeckres.
Kluwer Academic Publishers, 1997.

M. Kamath and K. Ramamritham. Failure
Handling and Coordinated Execution of Con-
current Workflows. In Proceedings of the 14th
International Conference on Data Engineering
(ICDE’98), pages 334-341, Orlando, Florida,
February 1998.

F. Leymann. Supporting Business Transac-
tions via Partial Backward Recovery in Work-
flow Management Systems. In Datenbanksys-
teme in Biiro, Technik und Wissenschaft, pages
51-70, 1995.

S. Mehrotra, R. Rastogi, A. Silberschatz, and
H. Korth. A aansaction Model for Multi-
database Systems. In Proceedigs of the 12th In-
ternational Conference on Distributed Comput-
ing Systems (ICDCS’92), pages 56-63, Yoko-
hama, Japan, June 1992.

M. Norrie, W. Schaad, H.-J. Schek, and
M. Wunderli. CIM Through Database Coor-
dination. In Proceedings of the International
Conference on Data and Knowledge Systems,
May 1994.

A. Reuter, K. Schneider, and F. Schwenkreis.
ConTracts Revisited, chapter 5. In: [JK97].
Kluwer Academic Publishers, 1997.

H. Schuldt, G. Alonso, and H.-J. Schek. Con-
currency Control and Recovery for Transac-
tional Processes. Technical report, Department

[SST981

[SwY93]

[VHYBS98]

[WR92]

[ZNBB94]

Appendix

of Computer Science, Swiss Federal Institute of
Technology Ziirich, 1999.

H. Schuldt, H.-J. Schek, and M. Tresch. Coor-
dination in CIM: Bringing Database Function-
ality to Application Systems. In Proceedings of
the 5th European Concurrent Engineering Con-
ference (ECEC’98), Erlangen, Germany, April
1998.

H.-J. Schek, G. Weikum, and H. Ye. To-
wards a Unifying Theory of Concurrency Con-
trol and Recovery. In Proceedings of the ACM
Symposium on Principles of Database Systems
(PODS’93), pages 300-311, June 1993.

R. Vingralek, H. Hasse-Ye, Y. Breitbart, and
H.-J. Schek. Unifying concurrency control
and recovery of transactions with semantically
rich operations. Theoretical Computer Science,
(190):363-396, 1998.

H. WBchter and A. Reuter. The ConTract
Model, chapter 7. In: [Elm92]. Morgan Kauf-
mann Publishers, 1992.

A. Zhang, M. Nodine, B. Bhargava, and
0. Bukhres. Ensuring Relaxed Atomicity for
Flexible Transactions in Multidatabase Sys-
tems. In Proceedings of the ACM SIGMOD
Conference, pages 67-78, 1994.

A Proof of Theorem 1

Serializability: Assume that process schedule S is not
serializable. Then, a conflict cycle has to exist of the
form Pi <<s Pj <<s . . . <<s pi in the committed pro-
jection of S. Therefore, this cycle also exists in the
completed process schedule 3. Thus, it follows that S
cannot be reducible and therefore also not PRED.

Process-Recoverability: Assume that process schedule
S is not process-recoverable. This can occur because
one of the following four cases. In all these cases,
the next non-compensatable activity of P; succeed-
ing adk is denoted by ai, and ai,,, is the next non-
compensatable activity of Pj succeeding aj, :

Case 1: ai& <<s aj, <<s ai, <<s aj, <<s Cj <<s
Ci. Consider the prefix S’ of S that excludes
Ci. The completion C(Pi) of Pi may contain an
activity of the forward recovery path conflicting
with any activity of process Pj. As these activities
of C(Pi) are not known in advance, new conflicts
are possible leading to S not being in PRED.

Case 2: sib <s aj, <s ai, KS aj, CS Cj KS

A;. Consider the nrefix S’ of S that excludes A;.
This prefix is exactly the same as we considereh
in case 1. Thus, for the same reasons, a contradic-
tion to the assumption of S being PRED arises.

Case 3: aik <s aj, <s ai, <s aj,,, <s Ai KS Cj.

Consider the completed process schedule ,? of S.
The completion C(Pi) of pi may contain an activ-
ity of the forward recovery path conflicting with

325

any activity of process Pj. As these activities
of C(P,) are not known in advance, new conflicts
with non-compensatable activities of Pj are pos-
sible leading to S not being in PRElD.

Case 4: aik <s aj, <s ai,,, <<s a;,,. Consider
the prefix 5” of S that excludes a;,,. Then, if
aih is compensatable, the compensation ai,’ of
silo has to be executed in the completed process
schedule S” of S’ . This leads to a conflict cycle
in s’ which cannot be eliminated as compensa-
tion of oj, is no longer available and contradicts
with the initial assumption of S being PRED. If
airc is not compensatable, then activities of the
completion. C(Pi) of Pi may exist that introduce
cyclic conflicts that cannot be eliminated. This
also contra.dicts with the initial assumption. 0

B Proof of Lemma 1

Assume that process schedule S is in PRED and that in
S, a pair of conflicti.ng activities aiE and aj, exists with
a;, <<s aj, and that process pi is active.

1. Assume that a non-compensatable activity oj, is exe-
cuted before P; has terminated. Then, if some activity
ai, of Pi has to be executed which is in conflict with
aj,,, , they would have to be ordered in S as follows:
aj,,, <s ai, leading to a conflict cycle in S. This cycle
cannot be eliminated as:

(i) aj,,, is a non-compensatable activity

(ii) aik cannot be compensated as this would, in turn,
introduce another conflict cycle in the completed
process sch’edule S (a:, <<s aj, <<s ai,,, <<g ai,‘)

(iii) aj, cannot be compensated as it is followed by the
non-compensating activity aj, .

Therefore, process schedule S is not in RED and thus
not in PRED leading to a contradiction with the initial
assumption.

2. In this case, we have to differentiate whether a;& is
compensatable or non-compensatable.

(i) -4ssume that activity aik is compensatable (a:&)
while activ:ity aj, is not compensatable (a:, or
a$)). Then, if the compensation of aTb has to be

considered in the completed process schedule S
(when process Pi is in B - R&C), a conflict cycle
by aFk <<s aj, <<s a;’ appears. In this case,
S is not in RED and also not in PRED leading to
a contradiction with the initial assumption.

(ii) Assume that both activity aik and activity aj,
are not compensatable (thus, both processes are
in F - R&C). As process Pi is active in S, fur-
ther non-co.mpensatable activities a;,, may exist
in the completion C(P;) of Pi. Assume further
that ai, is in conflict with aj,. Therefore, the
order aj, (<s ai,, has to be imposed in the
completed process schedule S of S. This leads
to cyclic conflicts in S (ai, <<g aj, <<s ai,)
that cannot be eliminated as all involved activi-
ties are non-compensatable. In this case, S is not
in RED and also not in PRED which contradicts
with the initial assumption. El

C Proof of Lemma 2

Assume that process schedule S is in PRED. Assume further
that in the completed process schedule S the compensating
activities a;’ and aj, are executed in the same order as

the two conflicting activities azb and a;,. Then, in S, the
following holds: a:, <<s a;, <<s a;’ <<g aj;’ leading to a
conflict cycle that cannot be eliminated by one of the reduc-
tion rules. Therefore, S is not RED and thus also not P:RED
leading to a contradiction with the initial assumption. Cl

D Proof of Lemma 3

Suppose that process schedule S is in PRED with at, CF
S. Assume further that the two conflicting activities a;
and the non-compensatable activity a;, are ordered in the
completed process schedule S as follows: a;, <(d ai,‘. A:;
commutativity is assumed to be perfect, a compensating
activity has the same conflicts as its corresponding activity.
Therefore, the conflict cycle af, <<s a51 <<s a;’ in S exists
and cannot be eliminated by the reduction rules and leads
to the conclusion that S is not in RED and thus also IBDt in
PRED. This contradicts with the initial assumption. Cl

326

