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Abstract 

The unified theory of concurrency control and recovery inte- 
grates atomicity and isolation within a common framework, 
thereby avoiding many of the shortcomings resulting from 
treating them as orthogonal problems. This theory can be 
applied to the traditional read/write model as well as to 
semantically rich operations. In this paper, we extend the 
unified theory by applying it to generalized process struc- 
tures, i.e., arbitrary partially ordered sequences of trans- 
action invocations. lJsing the extended unified theory, our 
goal is to provide a more flexible handling of concurrent pro- 
cesses while allowing: as much parallelism as possible. Un- 
like in the original unified theory, we take into account that 
not all activities of a process might be compensatable and 
the fact that these process structures require transactional 
properties more general than in traditional ACID transac- 
tions. We provide a correctness criterion for transactional 
processes and identity the key points in which the more flex- 
ible structure of transactional processes implies differences 
from traditional transactions. 

1 introduction 

In conven.tional dataabases, concurrency control and recov- 
ery are well understood problems. Unfortunately, this is 
not the case when transactions are grouped into entities 
with higher level semantics, such as transactional processes 
[Alo97]. Some initial work has been done in this direction: 
studying atomicity (spheres of joint compensation [Ley95], 
or flexible transactions [ELLRSO, ZNBB94J) in a single pro- 
cess and analyzing concurrency control without considering 
recovery [AAHD97]. Practical experience, however, shows 
that concurrency control and recovery are related problems 
and they both need to be solved in order to produce com- 
plete, feasible solutions. 

In this paper, we present a f&t attempt to develop a 
theoretical framework in which to reason about concurrency 
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control and recovery in transactional processes. The chal- 
lenge we face is to design a single correctness criterion ac- 
counting for both concurrency control and recovery which, 
at the same time, copes with the added structure found in 
processes. In particular, and unlike in traditional transac- 
tions, processes introduce flow of control as one of the ba- 
sic semantic elements. Thus, the correctness criteria must 
take into consideration that processes already impose order- 
ing constraints among their different operations and among 
their alternative executions, constraints that will play a sig- 
nificant role in determining how process execution can be 
interleaved. Similarly, processes integrate invocations to ap- 
plications with different atomicity properties. Therefore, we 
cannot impose the strong requirements used in other mod- 
els (like ConTracts [WR92, RSS97], or CREW [KR98] where 
the inverses of all process steps have to exist). 

The contribution of the paper is threefold. First, it 
clarifies the problem of concurrency control and recovery 
in transactional processes without making unreasonable as- 
sumptions about their environment. Second, starting with 
the correctness of a single process based on flexible transac- 
tions [ELLRSO, ZNBB94] it provides a correctness crit,erion 
for concurrent execution of several processes generalizing 
and adapting the unified unified theory of concurrency con- 
trol and recovery [SWY93, AVA+94, VHYBS98] to transac- 
tional processes thereby extending the applicability of these 
models. In contrast to other approaches proposing a va,r:i- 
ety of transaction models (like TSME [GHS95, GHKM94]), 
this paper provides a single model covering all requirement,s 
that arise in the application areas of transactional process 
management. Third, it discusses several realistic environ- 
ments where these ideas are being implemented. We believe 
that transactional processes are becoming more and more 
important in applications such as, for instance, electronic 
commerce or virtual enterprises, workflow inanagement sys- 
tems, process support systems, or specialized coordinatio:n 
tools. Therefore, we expect the results of this paper to be 
of practical relevance in a variety of applications. 

The paper is organized as follows: In section 2, we present 
a sample application scenario for transactional processes. In 
section 3, we develop a correctness criterion for transact.ional 
processes and discuss its impact on concurrency control and 
recovery. Section 4 concludes the paper. 

2 Motivation 

Computer Integrated Manufacturing (CIM) environments 
are a good example of the use of transactional processes 
to coordinate different subsystems [NSSW94]. In the exam- 
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Figure 1: Concurrent execution of a construction process and a production process in the CIM scenario 

ple shown in figure 1, two processes are used to control the 
development and production of new products’. In this case, 
production does not follow mass-production techniques but 
aims to customize each one of the products to deliver. Thus, 
the development of the product and its manufacture are 
strongly tied. The construction process contains all develop- 
ing steps from the design of a new part to the final test and 
the subsequent technical documentation. It encompasses a 
CAD system, a product data management system (PDM), 
a test database as well as a technical documentation repos- 
itory. The production process includes all manufacturing 
steps from the ordering of materials to the production floor 
including the necessary scheduling. Thus, the production 
process encompasses the PDM system, a business applica- 
tion, a program repository and a product DBMS. Activities 
of transactional processes are service invocations in these 
underlying subsystems. As the bill of materials (BOM) of a 
new product generated within the construction process pro- 
vides the necessary input required by the production pro- 
cess, dependencies between both processes exist. 

2.1 Extending the Notion of Atomicity 

The example above clearly shows why transactional pro- 
cesses must provide a more general notion of atomicity than 
traditional transactions. Consider the construction process 
in figure 1. If a failure is detected during the test activ- 
ity of this process, it is certainly not desirable to undo all 
previous work including the long running design activity. 
It is more appropriate to undo only the PDM entry and 
document the CAD drawing so as to facilitate later reuse. 
This documentation can be alternatively executed instead of 
the technical documentation of the whole part which would 
have been done if the test activity would have succeeded. 
The possibility of executing alternatives in case of failures 
therefore generalizes the all-or-nothing semantics of atomic- 
ity and leads to a more flexible notion of atomicity used for 
transactional processes. 

‘This example reflects the practice followed by one of our indus- 
trial partners in a recently concluded research project [SSTSB]. 

2.2 Concurrency and Interference 

An additional prerequisite is to guarantee consistent inter- 
action between processes. Consider a construction process 
and a production process being executed in parallel as de- 
picted in figure 1. This parallelization is important in prac- 
tice as it dramatically reduces the time to market of new 
products. As depicted in figure 1, only the two activities 
within the PDM system do conflict. For concurrency con- 
trol purposes, the ordering of these two activities would be 
sufficient. However, when recovery has to be considered, 
further dependencies exist. As no inverse for the produc- 
tion activity exists, it must not be executed before the test 
terminated successfully. If the test fails, the PDM entry is 
compensated within the construction process and the BOM 
read by the production process is invalidated. Therefore, all 
activities of the production process would have to be com- 
pensated, too. However, if production of parts is already 
performed, this would lead to severe inconsistencies as no 
valid construction and BOM of these parts exists. 

2.3 Transactional Subsystems 

A transactional process scheduler coordinates transactional 
processes on top of transactional subsystems and ensures 
correctness even in case of failures. We assume these subsys- 
tems to have functionality such as the atomicity of service 
invocations, and either the ability to compensate already 
committed services or to support a two phase commit pro- 
tocol. When the application does not provide such function- 
ality, it will be provided by wrapping this application sys- 
tem with a transactional coordination agent. In this paper 
we concentrate on transactional process management on top 
of such transactional, possibly agent-wrapped subsystems. 
The problem of wrapping these systems by transactional 
coordination agents is important but beyond the scope of 
this paper. Some aspects of this problem are discussed in 
[NSSW94, SST98]. 
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3 Concurrency Control and Recovery in Transactional 
Processes 

In the following, we will consider transactional processes ex- 
ecuted by a transactional process scheduler on top of subsys- 
tems supporting the execution of local transactions as shown 
in figure 1. In this section, we derive a correctness criterion 
to reason about correct concurrency control and recovery of 
these transactional processes in a single framework. 

3.1 Process Model 

Each subsystem provides a limited set of transactional ser- 
vices that can be invoked by processes. Let a be the set 
of services (activities) provided by all subsystems. For each 
invocation of an activity of d, return values are provided. 
As activities are itself transactions in the underlying subsys- 
tems, they are by definition atomic and therefore terminate 
either committing or aborting. Activities differ in terms 
of their termination guarantees: they are either compensa- 
table, retriable, or pivot (as in the flex transaction model 
[MRSK92, ZNBB941). In the case of compensatable activ- 
ities, a compensation service is provided by the underlying 
subsystem, retriable activities are guaranteed to successfully 
terminate after a finite number of invocations, and pivot ac- 
tivities are those which are neither compensatable nor re- 
triable. These different termination guarantees of activities 
will be defined more formally as follows using the notion 
of activity sequence to denote the sequential execution of 
activities. 

Definition 1 (Effect-free Activities) 
Let u =< ai aj . . a, > be a sequence of activities from 
a. The sequence u is effect-free if, for all possible activity 
sequences a! and w from A, the return values of cy and w in 
the concatenated activity sequence < CY u w > are the same 
as in the activity sequence < cy w >. 0 

A special case of effect-free activities is the sequence 
cr =< a; arl > consisting of a compensatable activity ai 
and its compensating activity ai’. More formally, 

Definition 2 (Compensatability and Compensation) 

An activity ai E d is compensatable if an activity a;’ E a 
exists where the activir!y sequence u =< ai a;’ > is efiect- 
free. The activity a;’ as then called the compensating ac- 
tivity Of a;. 0 

In order to formally define retriable activities, the in- 
vocation of activities has to be labeled. Let ai the nth 
invocation of activity a;. 

Definition 3 (Retriable Activity) 
An activity a; is retria.ble if some m E N exists with ai 
terminating with abort for 1 5 j < m while a;(m) is guar- 
anteed to terminate with commit. 0 

The guarantee that there is always one invocation which 
will commit ensures that retriable activities will not fail. 
More formally, 

Definition 4 (Failure of an Activity) 
An activity a; has failed if invocation a;(l) has terminated 
with abort and no m E N exists where ai is guaranteed 
to commit. Cl 

To guarantee the property of compensatability, a com- 
pensating activity ai, IS (1) itself not compensatable, how- 
ever, it is (ii) retriable and therefore guaranteed to commit. 
Note further that according to the flex transaction model 
both pivot activities and retriable’ activities do not have a 
compensating activity. 

Intuitively, a process is an arbitrary collection of ac- 
tivities in arbitrary subsystems. For the process model, 
we adopt and refine ideas of the flex transaction model 
[ELLRSO, ZNBB94]. More formally, 

Definition 5 (Process) 

A process, P, is a triple (A, <, a), where A C d is a set of 
activities, < is a partial order over A with << C (d x A), 
and a is a partial order defined over << with a C (< x <<) 
establishing alternative execution paths by specify& for each 
activity a E A an ordering on the activities a’ E A directly 
following it. cl 

For notational purposes, a process is assumed to have a 
unique identifier, for instance,’ pi. Activities within Pi are 
denoted as a:, , a:*, . . . , a&. The superscript index denotes 
the property of an activity, the subscript indices denote the 
process id and a unique id of the activity within the process 
(activity aB, for instance, is an activity of process Pi with 
id n and it is retriable). The commitment of process T\ is 
denoted by C;, its abort by Ai. If the property of an activity 
is not relevant, we will omit this specification. 

The semantics of the precedence order < within pro- 
cesses is a temporal one. This means that for any two 
activities, oih and a;,, if oib < ai,, then ai, can only be 
executed after oik committed. The preference order a de- 
fined over pairs of connectors starting both from the same 
activity establishes the order in which the connectors .will 
be evaluated. If there are two order constraints in < with 
(oi, <<ii aij) a (ai,, <;, a;*) then, if oik is executed, either 
oij must have failed or both aFj and (azj)-’ must have been 
executed. Also, all activities succeeding aFj must have been 
compensated before oik is able to be executed. Thus, as an 
extension of the flex transaction model, these further order 
constraints derived from < have to be respected when ex- 
ecuting alternatives. However, these alternative execution 
paths have the same semantics as the preference order of 
the flex transaction model. Note that both orders, < and 
a, are irreflexive, transitive, and acyclic. To avoid indeter- 
minism in the execution, when, by transitivity, a associates 
several connectors, it can only define a total order. 

Figure 2: Process PI with precedence and preference order 

‘In the context of transactional process management, we could 
also consider r&Sable activities to be as well compensatable in order 
to give a scheduler more options for executing alternatives in case of 
failures. For the sake of simplicity, we however follow the less general 
flex transaction model here. 
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Example 1 Consider process PI depicted in figure 2. The 
precedence order of PI is depicted with solid lines, the pref- 
erence order of PI with dotted lines. Given these orders, 
ai, and therefore also ai, can only be executed after a:, has 
failed or after aL has failed and ai, has been compensated 
by a;,‘. Therefore, as depicted in figure 3, four possible valid 
executions of PI exist. 0 

Figure 3: Possible executions of process PI 

We consider a single transactional process to be well de- 
fined if it has well-formed flex structure [ZNBB94]. The 
basic well-formed flex structure consists of a set of com- 
pensatable activities followed by one pivot activity which is 
again followed by a set of retriable activities. Additionally, 
the pivot activity can recursively be succeeded by a com- 
plete well-formed flex structure given that an alternative 
consisting only of retriable activities exists for it. 

In [ZNBB94] it has been shown that well-formed flex 
structures always guarantee the existence of one execution 
path that can be executed correctly while all other paths 
will leave no effects. In the following, processes having well- 
formed flex structures are called processes with guaranteed 
termination (this is equivalent to the “semi atomicity” in 
the flex transaction model). The guaranteed termination 
property of transactional processes is a generalization of the 
“all-or-nothing” semantics of traditional ACID transactions 
as it ensures that at least one of eventually many valid ex- 
ecutions (specified by the alternatives) is effected. In what 
follows, we will only consider processes with guaranteed ter- 
mination. 

For notational purposes, the first non-compensatable ac- 
tivity of a process with guaranteed termination Pi will be 
called state-determining activity sio of Pi. All activities of 
Pi preceding sio are compensatable. Therefore, backward 
recovery can be performed by successively applying compen- 
sation if sio fails or if an abort Ai of P; is performed before 
si,, committed. Similarly, once si,, has terminated success- 
fully, forward recovery is guaranteed. From here, a process 
with guaranteed termination can be in any of two states. 
A process, Pi, is said to be forward-recoverable, F - R&C, 
after sio has been committed, otherwise pi is backward- 
recoverable, t3 - REC. The sequence of compensating ac- 
tivities to be executed for recovery purposes of a process in 
state U - REC is its backward recovery path. The sequence 
of activities leading from any activity succeeding sio to the 
well-defined termination of a process is the forward recovery 
path. The set of activities of a process Pi to be executed 
for recovery purposes (either forward or backward) will be 
called the completion of pi denoted by C(P;). Note that in 
the case of Pi being in state B - REC, C(Pi) consists only 
of compensating activities, while, if Pi is in state 7 - REC, 
C(R) consists of both compensating activities (local back- 
ward recovery to a state-determining element sik)3, and re- 

3As we consider basic well-formed flex structures recursively, mul- 
tiple local state-determining activities sib of Pi may exist. 

triable activities. While the failure of one activity leads to 
the execution of the next alternative given by the preference 
order Q, the abort Ai of a process in 7 - REC considers 
only the alternative with lowest priority which consists only 
of retriable activities and thus guarantees safe termination. 
Similarly, the abort A; of a process Pi in B - REC considers 
only compensation in backward order and no further alter- 
native execution paths. The completion C(R) of a process 
Pi will be an important notion when we define complete 
process schedules below. 

Example 2 Consider again process PI depicted in figure 2. 
Obviously, PI is a process with guaranteed termination as 
it has well-formed flex structure. The pivot activity ay2 is 
the state-determining activity s10 of 9. Before the suc- 
cessful te7mination of a&, PI is in t3 - REC and in this 

state, the completion C(PI) consists of {al,‘} if ai, has 
been executed correctly. After successful termination of a!, , 
PI is in F - REC. After activity a&, for instance, has 
terminated successfully, the completion of PI evaluates to 
C(Pl) = {a;,’ < ai < ais}. 0 

3.2 Process Schedules and Correctness 

Following [VHYBS98], the notion of conflicting activities is 
defined using the return values of activities. 

Definition 6 (Commutativity) 
A Two activities aik, a?, E A commute if for all activity sequen- 

ces Q and w from A, the return values in the concatenated 
activity sequence < LY aih aj, w > are identical to the Teeturn 
values of the activity sequence < a! aj, oik w >. 0 

Two activities are in conflict if they do not commute. 
Furthermore, we consider commutativity between all activ- 
ities of a to be perfect [VHYBS98]. This means that if two 
activities a:, and aj, conflict, then we will also consider a 

conflict between aFh and ajp, for all possible combinations of 
a,,LJ E {-1,l). Otherwise, if azb and aj, commute, we will 

assume ayb and a:, to commute for all possible combinations 
of a,P E (-1, l}. 

Given the structure of processes with guaranteed termi- 
nation and the information about conflicting activities, a 
process schedule can be defined as follows. 

Definition 7 (Process Schedule) 
A process schedule S is a triple (‘Ps, As, <s) where PS is 
a set of processes, As c d is a subset of all activities of 
all processes of Ps with As c {ai? ( aij E di A Pi E Ps}, 
<<s is a partial order between actzvities of As wilh <<s c 
(As x As). For the order <, the following has to hold: 

1. V Pi : <i E <CS 

2. V (ai,, aj,), i # j, such that sib and aj, do not com- 
mute: aik <<s aj, or aj, <<s aik 0 

Note that by 7.1, a process schedule guarantees only legal 
executions of each process pi E Ps thus respecting both pi’s 
precedence and preference order. 

Formally, the above definition of a process schedule looks 
like the classical definition of a schedule. However, it implic- 
itly includes information about the properties of all activi- 
ties (compensatable, pivot or retriable) and thus, also about 
the different states of processes (l3 - REC or 3 - ‘REC) and 
it includes the alternative execution of a process Pi as even 
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Figure 4: Serializable (a) and non-serializable (b) concurrent execution of processes PI and P2 

in a complete process schedule where all processes terminate 
committing [BHG87], not necessarily all of pi’s activities are 
considered. This does, however not influence the notion of 
serializability. A process schedule is serializable if it is con- 
flict equivalent to a serial execution of all processes. Hence, 
a serializable process schedule does not contain cyclic de- 
pendencies [BHG87]. 

Example 3 Consider the two processes, PI and Pz, de- 
picted in jigure 4(b) being executed in parallel. As the pairs 
of activities (a:, , a&), (a:, , as,), and (a&, a$,) do not com- 
mute (denoted by dashed arcs), they have to be ordered in 
the process schedule S’. Also, the intra-process orders of PI 
and PZ must be respected in S’. Therefore, process sched- 
ule S’ at iime t2 evailuates to: Sl, = (PS& 1&& , q, ) 
with the set of process,es P,I t2 = {PI, Pz}, the set of activ- 

ities AsI = {a;,,ay,,a:,, ag1,ag2,a$,az4}, and the order 

G& = i’Cai, Ksi2 a’;“, CS;, ai,), (a”z, <s;, 4, G;, 

ai3 -G;, ah,), (ai, %;;a a:, 1, (a$ G+, a:,)}. Obviously, 
process schedule S& is not serializable because of cyclic de- 
pendencies between PI and PQ. cl 

Example 4 Consider again processes PI and P2, now ex- 
ecuted as depicted in ,Figure 4(a). At time t2, the process 
schedule St, is seriali;!able. Here, no cyclic dependencies 
between PI and PZ do exist as the order <<stz evaluates to 
<<stz= {(ai, Cst, al;, <st2 ai,), (4, <st2 a”z2 <st2 
a$ Kst2 a;,>, (ai, Kst2 ac21),(aY2 Kst, a&)). 0 

3.3 Completed Process Schedules 

The serializability of tralnsactional processes allows to lesson 
about correct concurrency control. In order to additionally 
reason about correct recovery when, for instance, a failure of 
the process scheduler occurs, we now make recovery-related 
activities explicit by applying the unified theory of concur- 
rency control and recovery [SWY93, AVA+94, VHYBS98] 
to transactional processes. Therefore, we replace each abort 
activity A; of a process P; by the activities of its comple- 
tion C(Pi). This replacement of abort activities leads to the 
notion of the completed process schedule 3. In order to guar- 
antee correct recovery, all active processes PiI, . . , Pi, are 
assumed to abort, which must be treated jointly by using a 
group abort operation .A(Pi, , . . . , Pi,). Note that aborted 

processes may be in 7 - IREC. Therefore, not only com- 
pensation of previously executed activities but all activities 
of the forward-recovery path of aborted processes have to 
be considered, thus leading to crucial differences compared 
with the standard undo procedure for recovery. This is also 
reflected in the notion of completed process schedule in con- 
trast to the expanded schedule of the traditional unified the- 
ory which contains only additional compensation compared 
with the initial schedule. The way a process schedule is com- 
pleted is depicted in figure 5. After Ai has been replaced 
by all activities of C(P;), a process Pi can be considered as 
committed. 

Crash 0 regutar activities 

@ activitiw of baekwrud 
recovery palh 

c-- ComPfeted Process Schedule 6 - 
@ activl@s 01 forwarcl 

reco”ery path 

Figure 5: Completion of a process schedule by activilties 
of the backward recovery path and of the forward recovery 
path of all active processes 

More formally, the completed process schedule 3 of a 
process schedule S is defined as follows: 

Definition 8 (Completed Process Schedule 3) 
Let S = (Ps, As, <s) be a process schedule. The complel;ed 
process schedule 3 of S, is a triple (?s, As, &) where 

1. For the set of prticesses I@S holds: P.s = Ps. 

2. & is a set of activities derived from As’ in the follow- 
ing way: 

(a) For each process Pi E Ps, if aih E Ai and aik is 

not the abort activity Ai, then sib E &. 

(b) All active processes are treated as aborted pro- 
cesses, by adding A(Pnl,. . , P,,), a set-oriented 
abort, at the end of S, where (P,,, . . , P,,,) are 
all active processes in S. 

(c) For each aborted process Pj in Ps, all activities 
aj* E C(Pj) of the completion C(Pj) of Pj are in 
S (aj. E As). An abort activity Aj is changed to 
Cj E As. 
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Figure 6: Completed process schedule ,!!& (a) and reduced process schedule ?& (b) of process schedule St, 

3. The partial order, <CS, is determined as follows: 

(a) For every two activities, ai, and ai,, if aik <<s 
aj, in S, then aik <CS aj, in S. 

(b) FOT every two activities, ailc and ai,, of the com- 
pletion C(Pi) of every process Pi that does not 
commit in S, if ai, <<i ai, E C(Pi), then a;& <<s 
ai, in 3. 

(c) All activities of the completion C(Pi) of every pro- 
cess Pi that does not commit in S follow the Pi 
original activities and must precede Ci in 3. 

(d) If a group abort A(PnI,. . . , P,,,) E S, then ev- 
ery pair of conflicting activities of the completions 
of these processes, ai, E C(Pi),aj, E C(Pj) with 
i,j E {nl,... , n9}, i # j,- has to be ordered in L!? 
(either aik G& ai, OT aj, <CS ai,). 

Cd Wh enever aik as A(P,q, . . . , Pn. ) <<s aj, and 
some activity apt of the completion C(P,) of pro- 

cess Pp E {Pm,, . . , P,. } 5 ‘Ps conflicts with 
aj, (a;,), then it must be true that aqL & aj, 
(aik <<s apt ). 

(f) Whenever A(. . . , Pi,. . .) <<s A(. . . , Pj,. . .) for 
some i # j, then for all conflicting activities sib 
of the completion of Pi and aj, of the completion 
of Pj, ailc E C(P,) and aj, E C(Pj), it must be 
true that aile is aj,. Cl 

The following example presents how a given process sched- 
ule is completed. 

Example 5 Consider again process schedule St, of exam- 
ple 4 with Pst2 = {PI, Pz} as depicted in figure 4(a). When 

the completed process schedule 3 is determinded at time t2 
where both processes are active, a group abort A(Pl, P2) has 
to be added to St,. The set of activities Ast2 of gt2 consists 
of all activities of dstz plus the activities {aF3’, a& ,a&} 
of the completion C(Pl) and {a&} of the completion C(P2). 
The order <<st, of St2 is the union of <<St2 and {(af, <<st, 

a;,’ Cst2 ai5 4Cst2 aI,), (a&4&, a&), (a&&t2 a;,)}. 
The completed process schedule $, is depicted in figure 6(a). 
AS no cyclic dependencies exist, the completed process sched- 
ule St, is serializable. 0 

3.4 Unified Theory for Processes 

Like in the traditional unified theory, reducibility provides a 
criterion for correct concurrency control and recovery once 
we have completed a process schedule by making recovery- 
related activities explicit. The idea of the reduction of a 
completed process schedule is to eliminate both an activity 
and its compensating activity if they form an effect-free ac- 
tivity sequence as well as to eliminate activities of aborted 
processes that are themselves effect-free. Also, consecutive 
activities may be commuted if they do not conflict. More 
formally, 

Definition 9 (ReducibiIity (RED)) 
A process schedule S = (Ps, As, <s) is reducible (RED) 
if its completed process schedule 3 = (?s, As, 2s) can be 
transformed into a serial process schedule 3 = (pg, &, &) 
by applying the following three transformation rules finitely 
many times: 

1. Commutativity Rule: If two activities aik, aj, E As 
such that aiL <<s ai, and (ai,, ai,) commute and there 
is no other activity a,, E As with aik &s apt as ai,, 
then the ordering ai, <<<s aj, can be replaced by the 
ordering aj, <<x ai&. 

2. Compensation Rule: If two activities ailc, ai,’ E & 

such that aib -&s ai,’ and there is no other activity 

aj, E As with aik Qs aj, &s a;‘, then aikr a;’ can 

be removed from 5. 

3. Effect-free Activity Rule: If Pi does not commit 
in S, then all activities aih that are effect-free can be 
removed from $. 0 

Example 6 Considering again process schedule St, of ex- 
ample 4 and its completed process schedule St, of example 5. 
When applying the reduction rules, only the two consecutive 
activities ai, and a;,’ can be removed from &, in accordance 

to the compensation rule. The reduced process schedule s 

shown in figure 6(b) is serializable as &s of & contains 

aside of the inter-process orders of PI and P2 only depen- 
dencies from process PI to process Pz. Therefore, process 
schedule St, is RED. 0 
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Example 7 Consider now process schedule Spl at time tl 
depicted in figure ‘7. When completing Sii, all pairs of con- 
flicting activities will be in the same order and the applica- 
tion of the reduction rules leads to a serial process schedule 
,!$‘, Therefore, process schedule Si: is RED. 0 

fi 

p2 

4, 
-- 

:’ 
j ‘, Conflict 
; i 

_ qL& 

: : 

Figure 7: Prefix-reducible execution of processes Pi and PZ 

RED is not prefix closed, which means, it cannot be used 
for dynamic scheduling. In accordance to the traditional 
unified theory, the criterion can be further restricted for this 
purpose leading to prefix-reducibility where each prefix of a 
process schedule has to be considered. More formally, 

Definition 10 (Prefix-Reducibility (PRED)) 
A process schedule S = (‘Ps, As, <s) is prefix-reducible 
(PRED) if every prefi:x of S is reducible. 0 

Example 8 Consider again process schedule St, of exam- 
ple 4 depicted in figure 4(a) and its prefix St, at time tl. 
In S tl, process Pa is in 3 - R&C while process 9 is in 
I3 - REC. When completing St,, the previously executed 
activity a:, of PI has to be compensated by “1,’ while for 
Po, the activities of the forward recovery path have to be 
executed. By scheduling all’, a conflict cycle appears in 

St, (aT1 Qt, al, QKgt, all -‘) that cannot be eliminated 
by the reduction rules as compensation of ah is not avail- 
able. Therefore, St, is not reducible and thus, St, is not 
prefix-reducible. The completed process schedule St, of St, 
is depicted in figure 8. 0 

us*, 
; 3 

St, -fB-++a 
4, ““2, 4, 2:) up 

* 
t 

&,, -=KStl I 

Completion 

;- ,,---- ---------b-4 

St1 -t 

aPI a& a”z2 4. 
-1 

:i al* a’24 “‘25 

Figure 8: Completed process schedule St, of St, 

Note that the above example is strongly influenced by 
the fact that activities without inverse do exist. Therefore, 
we have to consider not only compensation for recovery pur- 
poses. If ail inverses were available and the classical undo 
procedure of recovery could be applied, the prefix St, of St, 
would be reducible. The completion of St, would consider 
the compensation of az3, az2, asl, and ai,. Then, with re- 
spect to the compensation rule, all four activities and their 
compensation activity could be removed from St, leading 
to a reduced schedule St, consisting only of Cl and C:!. As 
reduction would be poszle for all prefixes of St, in this clas- 
sical sense, St, would be in PRED. Therefore, when consid- 
ering transactional processes with guaranteed termination 
property, the order in which non-compensatable activities 
are executed is crucial as we will see in section 3.5. 

Example 9 Taking again a look at process schedule Sl’; de- 
picted in figure 7. It can be shown that each prefix Sl: of Si: 
with t’ < tl is reducible. Therefore, process schedule SF, is 
PRED. Cl 

However, scheduling can also benefit from non-compen- 
satable activities. They have the semantics of a “quasi corn.- 
mit” of a process, as for all activities a&. of a proceeis P,: 
preceding such a non-compensatable activity si, compensa. 
tion can no longer be considered. Therefore, after the com- 
mitment of si, no cyclic conflicts can arise in the completed 
process schedule by the compensation activities a;‘. This 
is shown in the following example. 

Example 10 Consider process schedule S’ with processes 
PI and Ps depicted in figure 9. Although activities a;, anc! 
a$ do conflict, no conflict cycle can appear by the com- 
pensating activity “1,’ at time tl. As process process 1’1 is 
already in 3 -R&C, compensation of a;, is not available. 
Therefore, given that no further conflicts exist between activ- 
ities of Ps and the activities of the forward recovery path OJ' 

9, the execution depicted in figure 9 is correct with respect 
to both concurrency control and recovery. 0 

- 

Figure 9: Correct interleaving of processes exploiting the 
“quasi-commit” of non-compensatable activities 

3.5 Discussion of PRED of Completed Process Schedules 

In the previous sections, we introduced the formalism nee,ded 
to define prefix-reducibility with respect to transactional 
processes having guaranteed termination property. As our 
goal is to reason about correct concurrency control and re- 
covery, we have to prove that each process schedule in PRED 
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is in fact both serializable and recoverable. AS we have to 
deal with two different states of processes determining the 
way recovery has to be performed, we have to adopt the no- 
tion of recoverability to the structure of transactional pro- 
cesses leading to the notion of process-recoverability. More 
formally, 

Definition 11 (Process-Recoverability (Proc-REC)) 
A process schedule S is process-recoverable (Proc-REC), 
if for each pair of conflicting activities, aik and aj, with 
aik <<s aj, E S the following holds: 

I. Ci precedes cj in S (Ci <<s Ci) 

2. the next non-compensatable activity aj,,, of Pj follow- 
ing aj, succeeds in S the nexct next non-compensatable 
activity ai, of Pi following aik (ai, <<s aj,). q 

Note that in the above definition, the traditional case 
where no non-compensatable activities exist is contained as 
then, by definition 11.1, only an order between Ci and Cj 
with Ci <<s Cj has to be imposed. 

Theorem 1 If a process schedule S is PRED, then S is both 
serializable and process-recoverable. q 

The proof of theorem 1 is given in appendix A. 

In example 8, we have seen that the order in which the 
state-determining elements of conflicting processes are exe- 
cuted is crucial as it determines what is to be done in case 
of recovery (either forward or backward). We now formalize 
and generalize this dependency. 

Lemma 1 For each process schedule S in PRED with two 
conflicting activities a;& <<s aj, in S where process Pi is 
active, the following has to hold: 

1. Each non-compensatable activity aj, of Pj with aj, <<j 
aj,,, has to succeed the commit Ci of Pi [Ci <<s aj,,,). 

2. Activity aj, has to be compensatable (a;,). 0 

The proof of lemma 1 is given in appendix B. 

In schedule St, of example 8 with the pair of conflicting 
activities (a;, <st a$,), a; is executed before ayZ and 
thus, PZ is in 7 - d&C while irocess PI is still in t3 - R&C 
leading to a contradiction of lemma 1.1 and a violation of 
the PRED criterion. 

According to lemma 1, the commits of all non-compen- 
satable activities of Pj have to be deferred by the respective 
subsystem until process Pi has committed (C;) if a conflict 
between some activity sib and aj, with aik <<s aj, exists in 
5’. After fi has committed, all non-compensatable activi- 
ties of Pj are also allowed to commit as cyclic dependencies 
between Pi and Pj can no longer appear. Thus, the com- 
mitment of all non-compensatable activities of Pj has to be 
performed atomically by exploiting a two phase commit pro- 
tocol in order to ensure that either all activities commit or 
none of them. 

In the following, we analyze the implications, PRED has 
on the execution of activities within the completed process 
schedule. The following two lemmas specify the restrictions 
on the execution of compensating activities. 
’ Intuitively, all compensating activities have to be in re- 
verse order of the original activities. More formally: 
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Lemma 2 FOT each process schedule S in PRED with two 
conflicting activities al, and a;, , if both compensating activ- 

ities aTkl and aj,’ are in the completed process schedule 3, 
then they have to be in reverse order of the two correspond- 
ing activities in S. cl 

The proof of lemma 2 is given in appendix C. 

As we have to consider not only compensating activities 
for recovery purposes, additional restrictions between com- 
pensating activities of C(Pi) for some Pi in state D - R&C 
and non-compensatable activities (a;,) of C(Pj) for some Pj 
in state 7 - REC have to be considered. 

Lemma 3 FOT each process schedule S in PRED, if two 
conflicting activities a;’ E C(P;) and a non-compensatable 
activity a:, E C(Pj) have to be executed when completing S, 

then ai,’ has to precede a;, in 3 (ai,’ <(s a;,). q 

The proof of lemma 3 is given in appendix D. 

Coming back to the initial CIM example presented in 
section 2, we now have a formal criterion to classify the 
execution depicted in figure 1 as incorrect because the PRED 
criterion does not hold. In order to guarantee correctness, 
the production activity would have to be deferred until the 
commitment of the construction process. 

Unlike the traditional unified theory where only compen- 
sation had to be considered for aborted transactions in the 
expanded schedule, here also new activities have to be sched- 
uled when the completed process scheduIe has to be built. 
Thus, aside from already existing pairs of conflicting pro- 
cesses (if some undo operation is in conflict with an activity 
of another transaction in the traditional model, a conflict 
between both transactions must have been existed before 
compensation has been performed), new conflicts between 
processes may be introduced. Therefore, unlike in the tradi- 
tional unified theory, the completed procqs schedule 3 has 
always to be considered when reasoning about correctness 
of a process schedule for transactional processes. 

In [AVA+94], the criterion SOT (serializable with or- 
dered termination) has been introduced in order to reason 
about correct concurrency control and recovery of a schedule 
S without considering its expanded schedule 3. However, as 
the activities of the completion of a process are not known in 
advance, a SOT-like criterion (that relies only on informa- 
tion of a given schedule S) does not exist for transactional 
processes. Arbitrary conflicts can be introduced to 3 when 
non-compensatable activities of C(P;) of aborted processes 
Pi have to be considered. Therefore, when reasoning about 
correct concurrency control and recovery of transactional 
processes, the completed process schedule 3 has always to 
be considered to evaluate the PRED criterion. 

3.6 Increasing Parallelism of Conflicting Activities 

In the process model (definition 5), we only allowed either 
sequential execution (<) of activities or unrestricted paral- 
lelism. Also, in definition 7 of a process schedule, we only 
considered a (strong) temporal order (as) between two con- 
flicting activities. In order to increase parallelism, the weak 
order taken from the composite systems theory [ABFS97] 
could be applied with respect to the hierarchical schedulers 
of the type encountered when executing transactional pro- 
cesses on top of transactional subsystems. In this configura- 
tion, the output of the process scheduler is used as input to 



several lower schedulers, the schedulers of the transactional 
subsystems. Thus, t,his reflects the case of fork schedules 
described in [AFPS9!3]. While the strong order enforces se- 
quential execution, ie., an activity is invoked only after the 
previous one has terminated, the weak order between two 
activities is more permissive, meaning that both activities 
can be executed in parallel as long as the overall effect is the 
same as if they would have been executed as specified by the 
strong order. The di:fferentiation between strong and weak 
order can be made both within processes (intra-process or- 
der) and within conflicting activities of different processes 
(inter-process order). Then, all pairs of conflicting activities 
have to be weakly ordered as indicated by the composite 
transaction model. The subsystem is then responsible for 
keeping this weak order when executing both conflicting ac- 
tivities in parallel. In order to ensure this weak order, a 
subsystem has, for irrstance, to provide a protocol support- 
ing commit order serializability [BBG89]. Then, the commit 
order can be derived from the weak order between conflict- 
ing activities. Otherwise (if the weak order is not supported 
by the subsystem), as the weak order always contains the 
strong one, conflicting activities have to be executed with 
respect to a strong order. 

The re-invocation of retriable activities now may lead to 
a special treatment of other activities executed in parallel. 
Suppose two activities a& and oj, , with ag <s aj, , have to 
be executed within the same subsystem. If the local trans- 
action Tib corresponding to aG terminates aborting after 
some operations of Ti, have already been executed, then, 
in general, the local transaction Tj, (which corresponds to 
activity aj,) running :in parallel to T;, (with respect to the 
given weak. order) has to be aborted, too. However, as this 
is not due to a failure of Tj, , it must not lead to an exception 
of Pj leading to an other alternative. Moreover, after TiE is 
restarted, T’, has to be restarted within the subsystem, too, 
hence guaranteeing compliance to the weak order between 
both transactions. 

The integration of the composite systems ideas into the 
process model and the process schedule are described in de- 
tail in [SAS99]. 

4 Conclusion 

This paper provides a framework to jointly reason about cor- 
rect concurrency control and recovery for transactional pro- 
cesses in order to ensure both a more general notion of atom- 
icity (guaranteed termination) by the flexible handling of 
failures with appropriate alternative executions and correct 
interleavings of parallel processes. Unlike other approaches 
addressing only parts of this problem, we cover both atomic- 
ity and isolation simultaneously and do concurrency control 
and recovery at the appropriate level, the scheduling of pro- 
cesses. Furthermore, with the theory of composite systems, 
we can take into account the interaction between hierarchi- 
cal schedulers when executing transactional processes and 
increase parallelism by treating them according to the weak 
conflict order. 

With PRED, we have provided a correctness criterion for 
transactional processes based on the notion of completed 
process schedules. We have additionally shown that, due 
to the structure of transactional processes, the SOT cor- 
rectness criterion cannot be applied. Because of the execu- 
tion of non-compensatable activities during the completion 
of a process, reasoning about process recovery becomes more 
complex than in the traditional case where only compensa- 
tion has to be applied. Therefore, the completed process 

schedule has to be considered. Furthermore, we have iden- 
tified important prerequisites of PRED schedules that have 
to be respected due to the fact that some activities might be 
non-compensatable. Therefore, aside of the atomicity of sin 
gle activities and the compliance of orderings, the deferred 
commit of all non-compensatable activities and their atomic 
commit by exploiting a two phase commit protocol has to 
be provided by the subsystems. 

The framework established in this paper not only covers 
various applications such as workflow management, process 
support systems, and the provision of appropriate infras- 
tructures for electronic commerce, virtual enterprises, and 
the CIM scenario presented in section 2, it is also completely 
transparent to the user. Within the WISE project of IETH 
Zurich [AFH+99], we have implemented a process sched- 
uler for transactional process management using a protocoI 
which is based on the correctness criterion presented in this 
paper. This complements the correctness checking of smgle 
processes with respect to their guaranteed termination prop 
erty which is also available within the WISE system. The two 
ideas complete the effort to provide execution guarantees foi 
transactional processes. Based on them, we will in our fu-. 
ture work expand the framework established in this paper tcl 
identify transactional execution guarantees of subprocesses, 
and to reason about decoupled execution guarantees of sub- 
processes. 
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A Proof of Theorem 1 

Serializability: Assume that process schedule S is not 
serializable. Then, a conflict cycle has to exist of the 
form Pi <<s Pj <<s . . . <<s pi in the committed pro- 
jection of S. Therefore, this cycle also exists in the 
completed process schedule 3. Thus, it follows that S 
cannot be reducible and therefore also not PRED. 

Process-Recoverability: Assume that process schedule 
S is not process-recoverable. This can occur because 
one of the following four cases. In all these cases, 
the next non-compensatable activity of P; succeed- 
ing adk is denoted by ai, and ai,,, is the next non- 
compensatable activity of Pj succeeding aj, : 

Case 1: ai& <<s aj, <<s ai, <<s aj, <<s Cj <<s 
Ci. Consider the prefix S’ of S that excludes 
Ci. The completion C(Pi) of Pi may contain an 
activity of the forward recovery path conflicting 
with any activity of process Pj. As these activities 
of C(Pi) are not known in advance, new conflicts 
are possible leading to S not being in PRED. 

Case 2: sib <s aj, <s ai, KS aj, CS Cj KS 

A;. Consider the nrefix S’ of S that excludes A;. 
This prefix is exactly the same as we considereh 
in case 1. Thus, for the same reasons, a contradic- 
tion to the assumption of S being PRED arises. 

Case 3: aik <s aj, <s ai, <s aj,,, <s Ai KS Cj. 

Consider the completed process schedule ,? of S. 
The completion C(Pi) of pi may contain an activ- 
ity of the forward recovery path conflicting with 
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any activity of process Pj. As these activities 
of C(P,) are not known in advance, new conflicts 
with non-compensatable activities of Pj are pos- 
sible leading to S not being in PRElD. 

Case 4: aik <s aj, <s ai,,, <<s a;,,. Consider 
the prefix 5” of S that excludes a;,,. Then, if 
aih is compensatable, the compensation ai,’ of 
silo has to be executed in the completed process 
schedule S” of S’ . This leads to a conflict cycle 
in s’ which cannot be eliminated as compensa- 
tion of oj, is no longer available and contradicts 
with the initial assumption of S being PRED. If 
airc is not compensatable, then activities of the 
completion. C(Pi) of Pi may exist that introduce 
cyclic conflicts that cannot be eliminated. This 
also contra.dicts with the initial assumption. 0 

B Proof of Lemma 1 

Assume that process schedule S is in PRED and that in 
S, a pair of conflicti.ng activities aiE and aj, exists with 
a;, <<s aj, and that process pi is active. 

1. Assume that a non-compensatable activity oj, is exe- 
cuted before P; has terminated. Then, if some activity 
ai, of Pi has to be executed which is in conflict with 
aj,,, , they would have to be ordered in S as follows: 
aj,,, <s ai, leading to a conflict cycle in S. This cycle 
cannot be eliminated as: 

(i) aj,,, is a non-compensatable activity 

(ii) aik cannot be compensated as this would, in turn, 
introduce another conflict cycle in the completed 
process sch’edule S (a:, <<s aj, <<s ai,,, <<g ai,‘) 

(iii) aj, cannot be compensated as it is followed by the 
non-compensating activity aj, . 

Therefore, process schedule S is not in RED and thus 
not in PRED leading to a contradiction with the initial 
assumption. 

2. In this case, we have to differentiate whether a;& is 
compensatable or non-compensatable. 

(i) -4ssume that activity aik is compensatable (a:&) 
while activ:ity aj, is not compensatable (a:, or 
a$)). Then, if the compensation of aTb has to be 

considered in the completed process schedule S 
(when process Pi is in B - R&C), a conflict cycle 
by aFk <<s aj, <<s a;’ appears. In this case, 
S is not in RED and also not in PRED leading to 
a contradiction with the initial assumption. 

(ii) Assume that both activity aik and activity aj, 
are not compensatable (thus, both processes are 
in F - R&C). As process Pi is active in S, fur- 
ther non-co.mpensatable activities a;,, may exist 
in the completion C(P;) of Pi. Assume further 
that ai, is in conflict with aj,. Therefore, the 
order aj, (<s ai,, has to be imposed in the 
completed process schedule S of S. This leads 
to cyclic conflicts in S (ai, <<g aj, <<s ai,) 
that cannot be eliminated as all involved activi- 
ties are non-compensatable. In this case, S is not 
in RED and also not in PRED which contradicts 
with the initial assumption. El 

C Proof of Lemma 2 

Assume that process schedule S is in PRED. Assume further 
that in the completed process schedule S the compensating 
activities a;’ and aj, are executed in the same order as 

the two conflicting activities azb and a;,. Then, in S, the 
following holds: a:, <<s a;, <<s a;’ <<g aj;’ leading to a 
conflict cycle that cannot be eliminated by one of the reduc- 
tion rules. Therefore, S is not RED and thus also not P:RED 
leading to a contradiction with the initial assumption. Cl 

D Proof of Lemma 3 

Suppose that process schedule S is in PRED with at, CF 
S. Assume further that the two conflicting activities a; 
and the non-compensatable activity a;, are ordered in the 
completed process schedule S as follows: a;, <(d ai,‘. A:; 
commutativity is assumed to be perfect, a compensating 
activity has the same conflicts as its corresponding activity. 
Therefore, the conflict cycle af, <<s a51 <<s a;’ in S exists 
and cannot be eliminated by the reduction rules and leads 
to the conclusion that S is not in RED and thus also IBDt in 
PRED. This contradicts with the initial assumption. Cl 
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