
ABSTRACT

CHANDRA, SANDEEP. Service Based Support for Scientific Workflows (Under the

direction of Dr. Mladen A. Vouk)

A Problem Solving Environment (PSE) is a computer-based system that

provides all the computational facilities necessary to solve a target class of problems, that

is, it efficiently supports a specific set of scientific workflows. A special class of PSE’s

are those that rely on networks. Network-based PSEs are collections of distributed

applications, interfaces, libraries, databases, programs, tools, clients, and intelligent

agents, which facilitate user interaction and cooperative execution of the components

charged with the solution tasks. Thus, the need for effective and efficient communication

among the PSE components is obvious. This has resulted in a proliferation of

communication building blocks, or middleware, for distributed scientific computing and

problem solving. The most recent, and quite promising, option is the availability of

network-based services, sometimes called Web Services.

This work is concerned with evaluation of the feasibility, usability and

effectiveness of service-based support for scientific workflows. A successful open source

proof of concept architecture and framework was developed and assessed using a

Bioinformatics scientific problem solving workflow. Access to the data, computations,

and user interfaces is based on the services architecture and standards such as XML for

data descriptions, WSDL for service descriptions, SOAP for service delivery, and UDDI

for service registration and brokering. This service-oriented approach facilitates

integration of disparate data acquisition and analysis applications that participate in

complex scientific problem solving processes. The developed framework, called

Scientific Data Management Service Workflow System, or SDMSWS, was found to be

sufficiently flexible and versatile that it was possible to effect appliance-like composition

and use of standard-conforming workflow services. An open-source solution, such as

SDMSWS, enables services from different organizations, platforms and domains to

interoperate seamlessly through standard interoperability protocols. This is contrasted

with similar systems that implement proprietary service solutions.

In order to compare SDMSWS with other systems that support scientific problem

solving workflows, it was necessary to develop a set of measures. They include measures

related to end-user issues, workflow issues, services issues, networking issues, and a

variety of more general issues. The selection and the definition of the metrics, and the

rational behind them, are discussed. The comparative analysis reveals that its open source

nature has some distinct advantages. For example, the framework minimizes the

customization and integration of new component workflow services, and it shows that,

unlike commercial solutions, it is relatively independent of the service domains and can

incorporate any network-based service that conforms to standard Web Services

description and protocols. It is the finding of this work that complex distributed scientific

workflows can be, and should be, supported using open-source service-based solutions.

However, current standards, for workflow description, interchange and execution were

found wanting and further work will be needed before one can depend on them in

practical scientific workflow environments.

SERVICE BASED SUPPORT FOR SCIENTIFIC WORKFLOWS

by
SANDEEP CHANDRA

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

COMPUTER SCIENCE

Raleigh

2002

APPROVED BY:

ii

BIOGRAPHY

Sandeep Chandra is from Hyderabad, India. He received his Bachelor’s degree in

computer science from BVB College, Osmania University, Hyderabad, India. He was

pursuing a Postgraduate program in Master of Computer Applications from VSPGS,

Osmania University, Hyderabad, India, but discontinued it upon his acceptance to the

Master of Science program in the department of Computer Science at North Carolina

State University.

At NC State, he was a part of the Scientific Data Management (SDM) Project, and

worked on his thesis under the direction of Dr. Mladen Vouk. Also, as part of the SDM

project he spent a year and a half working with scientists and biologists from Oak Ridge

National Labs, Lawrence Livermore National Labs and San Diego Super Computer

Center.

iii

ACKNOWLEDGEMENTS

I express my sincere gratitude to my advisor, Dr. Mladen Vouk, for his guidance and

support throughout the research of this thesis. Working with him has been a fantastic

experience. I also thank Dr. Peter Wurman and Dr. Munindar Singh for serving on my

thesis committee. It has been a learning experience working with them as part of my

course work and research interests.

I appreciate the help extended by my colleagues in the Scientific Data Management

(SDM) project - Zhengang Cheng and Sangeeta Bhagwanani. Zhengang has guided me

through many aspects of this research. I acknowledge members of the SDM project from

San Diego Super Computer Center, Oak Ridge National Labs and Lawrence Livermore

National Labs for their prompt help in many issues of the project.

My friends, both here at NC State and back home in India, have been supportive of all

my endeavors – I can’t thank them enough. Finally, I would sincerely like to thank my

parents, Kishan and Madhu, for their love, and my brother and sister-in-law, Sumeer and

Malini, for having constantly encouraged me to pursue higher studies and setting such

high academic standards for me to follow.

This work has been supported in part by the DOE SciDAC grant/contract DE-FC02-

01ER25484, by IBM, and by NCSU CACC.

iv

TABLE OF CONTENTS

List of Tables………………………………………………………………………….…vii

List of Figures…………………………………………………………………………...viii

1 Introduction....…………………………………………………………………………...1

1.1 Issues…………………..…………..…………………………………………..1

1.2 Contribution….………………………………………………………………..3

1.3 Organization of Thesis……………………..………………………………….5

2 Web Service and Workflow Concepts...…...……………………………………………6

2.1 Web Service.....………………………………………………………………..6

2.1.1 Architecture……………………………………………………….…6

2.1.2 Operations…………………………………………………………...7

2.2 Web Service Stack…………………………………………………………….8

2.3 Universal Discovery, Description and Integration (UDDI)…………………...9

2.4 Web Service Description Language (WSDL)…….………………………….10

2.5 Simple Object Access Protocol (SOAP)……….…………………………….13

2.5.1 SOAP Message…………………………………………………….13

2.6 Scientific Workflows………………………………………………………...14

2.6.1 Pipeline and Workflow…………………………………………….15

2.7 Web Service-Workflow Architecture………………………………………..16

3 Scientific Data Management Service Workflow System (SDMSWS)…..……….……18

3.1 Architecture, Working and Components……………...……………………..18

3.2 Bioinformatics Workflow Service…………...………………………………25

v

3.2.1 Gene-Expression Workflow………………...……………………...27

3.2.2 Performance Measure…….……………….……..………………...30

3.3 Current Limitations…………………………………………………………..31

4 Specialized Services….………………………………………………………………...33

4.1 Database Access Service……………………………………………………..34

4.2 VIPAR Service for Bioinformatics Resources………………………………37

4.2.1 Architecture………………………………………………………...37

4.2.2 RDF Ontology……………………………………………………...39

4.3 Conclusions…………………………………………………………………..42

5 Framework Evaluation…….……..…………………………………………………….43

5.1 Comparison Metrics.…………………………………………………………43

5.1.1 Metric Definition and Scope……………………………………….48

5.1.2 Survey of Workflow Tools…………...……………………………51

5.2 WebSphere Application Development Integration Edition………………….52

5.2.1 Comparison Matrix………………………………………………...53

5.3 i-Flow Workflows……………………………………………………………55

5.3.1 Comparison Matrix………………………………………………...55

5.4 TurboBench………………………….……………………………………….58

5.4.1 Comparison Matrix………………………………………………...60

5.5 Visual Integrated Bioinformatics Environment (VIBE)…..……...………….62

5.5.1 Comparison Matrix………………………………………………...63

5.6 BINGO…….…………………………………………………………………65

5.6.1 Comparison Matrix………………………………………………...66

vi

5.7 Workflow based Architecture to support Scientific Applications (WASA)....68

5.7.1 Comparison Matrix………………………………………………...69

5.8 GeneFlow………………………….…………………………………………71

5.8.1 Comparison Matrix………………………………………………...73

5.9 Bioinformatics Workflow and Data Management System (GeneBeans)…....74

5.9.1 Comparison Matrix………………………………………………...75

5.10 Conclusions..………………………………………………………………..76

6 Conclusions…….………………………………………………………………………78

6.1 Summary……………………………………………………………………..78

6.2 Future Developments.…………………………………………….………….79

6.3 Latest in Technology and Possible Research Areas…………………………81

 6.3.1 Open Grid Service Architecture…………………….……………...81

6.3.2 Web Services Flow Language (WSFL)……..……………………..82

6.3.3 Web Services Conversation Language (WSCL)……..…………….83

6.3.4 BizTalk……………………….…………………………………….84

6.3.5 Open Source Workflow Projects….……………………………….85

6.3.6 Bio* Projects……………………………………………………….86

6.3.7 Discovery Link – IBM’s Life Sciences Framework……………….87

References………………………………………………………………………………..88

Appendix A: List of Tools Surveyed…………………………………………………….94

vii

LIST OF TABLES

Table 2.1. WSDL Description…………………...………………………………………11

Table 3.1. Performance Measure………………….……...……………………………...30

Table 4.1. RDF Description………………….……...…………………………………...40

Table 5.1. SDMSWS Vs WSAD IE………...……………………………………………53

Table 5.2. SDMSWS Vs i-Flow……………………..…………………………………..55

Table 5.3. SDMSWS Vs TurboBench...…………………………………………………60

Table 5.4. SDMSWS Vs VIBE…...……………………………………………………...63

Table 5.5. SDMSWS Vs BINGO...……………………………………………………...66

Table 5.6. SDMSWS Vs WASA……...…………………………………………………69

Table 5.7. SDMSWS Vs GeneFlow…..…………………………………………….…...73

Table 5.8. SDMSWS Vs GeneBeans…………..…………………………………...……75

viii

LIST OF FIGURES

Figure 2.1. Web Service Architecture..……………………………………………………7

Figure 2.2. Web Service Stack….…………………………………………………………8

Figure 2.3. Pipeline and Workflow……..………………………………………………..15

Figure 2.4. Web Service-Workflow Architecture..………...…………………………….16

Figure 3.1. SDMSWS Architecture……………………………………………………...19

Figure 3.2. UDDI Setup………………………………………………………………….21

Figure 3.3. SDMSWE……………………………………………………………………24

Figure 3.4. Bioinformatics Workflow Service Architecture…………….……………….26

Figure 3.5. Gene-Expression Workflow…………………………………………………28

Figure 4.1. Extending Bioinformatics Environment……...……………………………...34

Figure 4.2. Database Access Service……….……………………………………………36

Figure 4.3. VIPAR Architecture…………………………………………………………38

Figure 5.1. Problem Solving Environment Layering……………………………….……45

Figure 5.2. i-Flow Workflow Environment……...………………………………………57

Figure 5.3. TurboBench Workflow Environment……...………………………………...59

Figure 5.4. BINGO Workflow Environment…………………………………………….65

Figure 5.5. GeneFlow Workflow Environment………………………………………….72

Figure 6.1. Flow Model…………………………....………………………….…………82

1

1 Introduction

A Problem Solving Environment (PSE) is a computer-based system that

provides all the computational facilities necessary to solve a target class of problems

efficiently, that is, it efficiently supports a specific set of scientific workflows [2]. A

special class of PSE’s are those that rely on networks. Network-based PSEs are

collections of distributed applications, interfaces, libraries, databases, programs, tools,

clients, and intelligent agents, which facilitate user interaction and cooperative execution

of the components charged with the solution tasks [11]. Thus, the need for effective and

efficient communication among these PSE components is obvious. This has resulted in a

proliferation of communication building blocks, or middleware, for distributed scientific

computing and problem solving [3]. The most recent, and quite promising, option is the

availability of network-based services, sometimes called Web Services.

1.1 Issues

Development of enabling PSEs where scientists may share, integrate and utilize solutions

directly in their research to enhance collaborative problem solving capabilities tends to be

complicated, among other things, by:

• Use of Complex Data Structures: For example, situations where the applications

are designed and programmed with specialized complex data structures that may

not be easy to access from other applications.

2

• Distributed Data Resources: Another situation arises when the data resources are

scattered around the network both physically and through the applications that

access them. If, in such cases, there is also a lack of means to bridge distance and

application interface gaps, we may experience inter-operability problems.

• Application Customization: Algorithms and solutions are often customized to the

needs of specific research communities making it difficult for others to adapt to it

or benefit from it.

• Absence of Process Automation: Manual steps, represented by the human

intervention in a process, can be quite a production bottleneck. In a research

environment it is highly desirable to automate certain steps of a scientific process.

• Network Inaccessible: Inability to access network-based applications and possible

lack of standards for underlying communication protocols.

The classical construction approach to PSE’s, as demonstrated in prior work has revolved

around many different issues. Some of them are (1) Use of distributed application

modules, where each module performs tasks and responds to messages from other

participants in the system. In such an architecture, failure of one module can affect the

performance of the whole system [4]; (2) Development of hand-crafted or home-grown

solutions which may not function when incorporated into another PSE [5]; (3) Inability to

support integration of a wide range of computational tools from different domains

without requiring end-users to know a lot about the details of the underlying system and

its architecture [6].

3

The need to support standardized communication among distributed applications has

resulted in a proliferation of standard communication methods. Many were applied to

distributed scientific computing. The latest approach is through a new breed of network-

based services, called Web Services. Based on standardized communication protocols

such as UDDI [7], SOAP [8], WSDL [9] and XML [10], Web Services have made it

possible for organizations to communicate and integrate network-based services.

Applications from disparate platforms can exchange data and information at both the

network level and the web interface level. The idea is to enable services from different

organizations and domains to interoperate seamlessly irrespective of language, platform

and internal protocols. In scientific community, rapid advancement in both large-scale

data acquisition and distribution, and relevant modular analysis techniques, supports the

move towards service-oriented framework. However, the feasibility of use of service-

based solutions in complex scientific environments is still an open issue.

1.2 Contribution

This work is concerned with evaluation of the feasibility, extensibility, usability and

effectiveness of service-based support for scientific workflows. It has two components:

Framework. A successful open source proof of concept architecture and framework was

developed using a Bioinformatics scientific problem solving workflow. Access to the

data, computations, and user interfaces is based on the services architecture and standards

such as XML for data descriptions, WSDL for service descriptions, SOAP for service

delivery, and UDDI for service registration and brokering. The developed framework,

4

called Scientific Data Management Service Workflow System, or SDMSWS, was found

to be sufficiently flexible and versatile that it was possible to effect appliance-like

workflow composition and execution. An open-source solution, such as SDMSWS,

enables services from different organizations, platforms and domains to interoperate

seamlessly through standard interoperability protocols. This is contrasted with similar

systems that implement proprietary service solutions.

Assessment. In order to compare SDMSWS with other systems that support scientific

problem solving workflows, it was necessary to develop a set of measures. They include

measures related to end-user issues, workflow issues, services issues, networking issues,

and a variety of more general issues. The selection and the definition of the metrics, and

the rational behind them are discussed. A comparative analysis of SDMSWS with some

standard commercial and research based scientific workflow tools reveals that its open

source nature has some distinct advantages. For example, the framework minimizes the

customization and integration of new component workflow services, and it shows that,

unlike commercial solutions, it is relatively independent of the service domains and can

incorporate any network-based service that conforms to standard Web Services

description and protocols. It is the finding of this work that complex distributed scientific

workflows can be, and should be, supported using open-source service-based solutions.

However, current standards for workflow description, interchange and execution were

found wanting and further work would be needed before one can depend on them in

practical scientific workflow environments.

5

In the Problem Solving Environments, solutions proposed for complex processes and

workflows from distributed resources comprised of single host, multiple hosts or

network-based but none of them supported a service-based approach. To the best of the

author’s knowledge, this research is the first attempt that focuses on examining the

feasibility, viability and usability of such service based support of scientific workflows

and an assessment by problem solving environment based comparative analysis of the

same with some standard scientific workflow tools.

1.3 Organization of Thesis

Chapter 2 defines web services and scientific workflow technology. It describes concepts

of relevant technologies namely, UDDI, WSDL, SOAP and workflows. Chapter 3

describes the architecture, functionality and components of the SDMSWS framework. A

specific case study is presented for composition and integration of bioinformatics data

acquisition and analysis services into an end-user workflow. Chapter 4 defines certain

domain specific specialized services that can be integrated with SDMSWS to form an

extended bioinformatics environment with emphasis on the databases, and tools, and

agent based software used for specialized scientific investigation. Chapter 5 presents a

comparative evaluation of the proposed architecture with respect to existing commercial

and research based technologies based on similar principles. Chapter 6 concludes the

thesis with a summary of the achievements, suggestions on possible future work, and a

review of the current state of Web Service, workflow and bioinformatics research.

6

2 Web Service and Workflow Concepts

2.1 Web Service

Web Services are software components that are self-containing, self-describing modular

applications that can be published, located, and invoked across the Web. They allow

applications to interoperate in a loosely coupled environment, discovering, and

connecting dynamically to services without any previous agreements having been

established between them. More importantly, a Web Service may combine several

applications that a user needs. For the end-user, however, the entire infrastructure will

appear as a single application [12]. Web Services encompass just about any application

available over or delivered via the Web using standard protocols like Simple Object

Access Protocol (SOAP), Universal Description, Discovery, and Integration (UDDI),

Web Services Description Language (WSDL) and Extensible Markup Language (XML).

The Web Service itself is really nothing more than a software program; say a java servlet

or a java server page. The Web Services architecture is simply a wrapper for accessing

this pre-existing code in a platform and language-independent manner. These

technologies provide a standard means of communication among different software

applications involved in presenting dynamic context-driven information to the user.

2.1.1 Architecture

There are three participants (Figure 2.1) in the Web Services architecture [1]:

7

 Service Registry

 2. Find Service 1. Publish Service

3. Bind to Service

Service Requester Service Provider

Figure 2.1. Web Service Architecture

• Service Provider: Provide services, and maintain a registry that makes those

services available.

• Service Registry: Clearinghouses for services. Service registry acts as a central

location for registering all services.

• Service Requestor: Looks for Web Services of use, and then invokes those

services.

2.1.2 Operations

There are three Web Services operations [13]:

• Publish/Unpublish: Publishing and unpublishing involves advertising services to a

registry (publishing) or removing those entries (unpublishing). The service

provider contacts the service broker to publish or unpublish a service.

8

• Find: Service requestors and service brokers perform the find operation together.

The service requestors describe the kinds of services they are looking for, and the

service brokers deliver the results of such requests.

• Bind: The bind operation takes place between the service requestor and the

service provider. The two parties interact and then the requestor accesses and

invokes services of the provider.

2.2 Web Service Stack

Figure 2.2. Web Service Stack

The Web Service Stack defines the Web Services architecture layering [13]. (Bottom-Up)

• Layer1: Standard Internet protocols like the HTTP and TCP/IP.

• Layer2: Simple Object Access Protocol (SOAP) is based on XML and is used for

exchange of information between services from organizations.

• Layer3: Web Services Definition Language (WSDL) is used for describing

service attributes.

 Service Publication and Discovery
 (UDDI)

 Service Description (WSDL)

 XML Based Messaging
 (SOAP)

 Common Internet Protocols (HTTP, TCP/IP)

9

• Layer4: Universal Description, Discovery and Integration, which is a central

repository for holding and describing services.

2.3 Universal Discovery, Description and Integration (UDDI)

The UDDI (Universal Description, Discovery and Integration) registry is a global, public,

online directory that gives organizations a uniform way to describe their services,

discover other organizations services, and understand the methods necessary to conduct

information exchange with one another. UDDI's approach to discovery is to have a

registry of services distributed across the Web. In that distributed registry, businesses and

services are described in a common XML format. The structured data in those XML

documents is easily searched, analyzed, and manipulated. The term "dynamic discovery"

is used in a UDDI context, as the common use case for UDDI involves a client

application dynamically finding an exchange partner via a UDDI registry and then

deciding to exchange information [8]. Publishing/Describing Web Services implies

service users do not have to “re-invent the wheel” every time they want to do something

that others have already done.

The UDDI information model contains four core elements [14]:

• Business information: This is described using the business entity element, which

represents a physical organization. It contains information (such as name,

description, and contacts) about the organization. The business entity information

10

includes support for “Yellow Pages” type searches that can be performed to locate

organizations that service a particular industry or category.

• Service information: This is described using the business service element, which

groups together related services offered by an organization.

• Binding information: This is described using the binding template element, for

information that is relevant for application programs that need to connect to and

then communicate with a remote Web Service. The instructions may either be in

the form of an interface definition language such as WSDL, or a text-based

document.

• Information about specifications for services: This is described using the tModel

element, which is an abstract representation of the technical specification. A

tModel has a name, publishing organization, and URL pointers to the actual

specifications themselves.

2.4 Web Service Description Language (WSDL)

WSDL (Web Service Description Language) defines the XML grammar for describing

services as collections of communication endpoints, or ports, capable of exchanging

messages irrespective of the underlying network protocols. It is used to describe what a

Web Service can do, where it resides, and how to invoke it. UDDI registries describe

numerous aspects of Web Services, including the binding details of the service. WSDL

fits into the subset of a UDDI service description. Companies can publish WSDL’s for

11

services they provide and others can access those services using the information in the

WSDL. Table 2.1 is a sample WSDL description:

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://152.1.158.185:9080…..
 …….XMLSchema">
 <wsdl:message name="getDataResponse">
 <wsdl:part name="return" type="xsd:string" />
 </wsdl:message>

 <wsdl:message name="getDataRequest">
 <wsdl:part name="input" type="xsd:string" />
 </wsdl:message>

 <wsdl:portType name="DataService">
 <wsdl:operation name="getData" parameterOrder="input">
 <wsdl:input message="intf:getDataRequest" name="getDataRequest" />
 <wsdl:output message="intf:getDataResponse" name="getDataResponse" />
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="urn:sdsc.service.BlastOneSoapBinding" type="intf:DataService">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="getData">
 <wsdlsoap:operation soapAction="" />
 <wsdl:input name="getDataRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://152.1.158.185:9080/axis/services/urn:sdsc.service.
 BlastOne/axis/services/urn:sdsc.service.BlastOne" use="encoded" />
 </wsdl:input>
 <wsdl:output name="getDataResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://152.1.158.185:9080/axis/services/urn:sdsc.service.
 BlastOne/axis/services/urn:sdsc.service.BlastOne" use="encoded" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="DataServiceService">
 <wsdl:port binding="intf: urn:sdsc.service.BlastOneSoapBinding"
 name= "urn:sdsc.service.BlastOne">
 <wsdlsoap:address
 location="http://152.1.158.185:9080/axis/services/urn:sdsc.service.BlastOne" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Table 2.1. WSDL Description

12

WSDL description (Table 2.1) uses the following elements to define Web Services [9]:

• Types: Containers for data type definitions using some type system (like XSD).

• Message: An abstract, typed definition of the data being communicated.

• Operation: An abstract description of an action supported by the service which

could be one of the following four types, one way, request-response, solicit-

response and notification.

• Port Type: An abstract set of operations supported by one or more endpoints.

• Binding: A concrete protocol and data format specification for a particular port

type.

• Port: A single endpoint defined as a combination of a binding and a network

address.

• Service: A group of related ports.

A service implemented by a Java class could define one or more operations. Operations

would map to individual Java methods, implemented by the class. Messages would map

to the return types of the methods, or to their parameter list. WSDL also defines a

common binding mechanism. This is used to attach a specific protocol or data format or

structure to an abstract message, operation, or endpoint. This allows the reuse of abstract

definitions. WSDL provides specific binding extensions to SOAP, HTTP GET/POST and

MIME formats and protocols, but any other binding mechanisms can also be used [9].

13

2.5 Simple Object Access Protocol (SOAP)

SOAP, which is built on XML, defines a simple way to package information for

exchange across system boundaries, allowing one program to invoke service interfaces

across the Internet, without the need to share a common programming language or

distributed object infrastructure. SOAP contains the framework where message

composition and their responses can be specified. This protocol is specific mostly to Web

Services over HTTP. A Web Service could interact with remote machines through

HTTP's post and get methods, but SOAP is much more robust and flexible.

2.5.1 SOAP Message

A SOAP message is an XML document that consists of a mandatory SOAP envelope, an

optional SOAP header, and a mandatory SOAP body [7].

• The SOAP envelope construct: Defines an overall framework for expressing what

the message contains, who should deal with it, and whether it is optional or

mandatory.

• The SOAP encoding rules: Defines a serialization mechanism that can be used to

exchange instances of application-defined datatypes.

• The SOAP RPC representation: Defines a convention that can be used to

represent remote procedure calls and responses.

14

2.6 Scientific Workflows

In many sciences and engineering areas computation is complex and repetitive. Graph

based notations, like the generalized activity networks (GAN) are a natural way of

representing numerical and human processing [57]. Workflows are similar

representations of structured activities [11]. A scientific process usually involves the

invocation of a series of activities that are typically invoked in a routine manner.

Workflow computations involve the following issues:

• Formatting output from one task, feeding it as input to the next task and adding

additional parameters if necessary.

• As scientific data sets are consumed and generated by simulation programs, the

intermediate results are checked for consistency and validated to ensure that the

computation as a whole remains on track.

• Scientific computations can involve much human intervention. Roles of the

participants involved must be explicitly represented to enable effective

intervention.

• Successful execution of workflows requires careful handling of exceptions during

definition and execution of tasks.

• Workflows should be controlled from a single point, giving user the capability to

perform computations that span across distributed resources.

15

2.6.1 Pipeline and Workflow

 Pipeline (Linear Workflow)

Workflow

Figure 2.3. Pipeline and Workflow

Figure 2.3 depicts a pipeline (linear workflow) and a workflow, solid arrowed lines

represent flow of processing control and dotted lines indicate flow of information

between activities. Workflow and pipeline represent series of tasks to be completed

according to some sequence. A task (T) in its most basic definition is the minimal unit of

work; it can have inputs and outputs. Tasks are linked together by connectors, which

represent joins or forks. Pipeline is a simplified workflow; it is linear. A pipeline has a

single input and a single output. In a pipeline the sequence of tasks is executed linearly. A

workflow can be made up of multiple linear flows and can have multiple outputs but

mostly has a single point of entry. It can consist of multiple paths from the start to the end

task with branches in between. Workflows can also have decision nodes, AND nodes and

OR nodes.

 T4 T1

 T3

 T4 T3 T2 T1

 T2

16

2.7 Web Service-Workflow Architecture

 Service Registry

 UDDI
 Publish Service

 Find Service Descriptions
 (WSDL)

 Service
 Bind

 Service Requester SOAP based
 Communication

 Service Providers

Figure 2.4. Web Service-Workflow Architecture

Figure 2.4 describes the architecture integrating Web Services and workflows. Service

providers register service and service descriptions (WSDL) with the public registry

(UDDI). Service requestor composes a workflow consisting of services. It interfaces only

with the public descriptions of the service and not their internal implementation.

Communication between the service requestor and the service provider is supported by

SOAP over standard network protocols.

 Service
 A

 Service
 B

 .
 .
 .

 Service
 C

 Service
 Workflow
 Interface

 Internal Service
 Implementation

17

Designing and implementing complex workflows often requires interdisciplinary

collaborations involving aspects of scientific computing and data integration. Abstraction

and encapsulation are standard computer science techniques for shielding end-users from

complexities of scientific computing. In collaborative and distributed systems additional

complexities arise from heterogeneity of the distributed environment. The following

chapter addresses this problem by implementing a service oriented scientific workflow

framework that supports integration of network-based distributed services based on the

standard Web Services interoperability protocols.

18

3 Scientific Data Management Service Workflow System
(SDMSWS)

The following is a pilot implementation of a service based scientific workflow framework

that provides effective access to diverse, distributed scientific tools across different

organizations using the de facto Web Services technologies (UDDI, SOAP and WSDL).

The idea is that every organization should publish their service descriptions with a

centralized registry and have full control on how services interact and execute. The

interested user will be able to locate these services and invoke them either on their own or

as parts in a workflow. The framework will expose the workflow to the outside world as

a means of enabling services from different organization to interoperate seamlessly where

services communicate with each through standard interoperability protocols and perform

the tasks defined in the workflows. The specific case study is composition and integration

of Bioinformatics data acquisition and analysis services into an end-user workflow.

3.1 Architecture, Working and Components

The Scientific Data Management Service Workflow System (SDMSWS) framework is

proposed with the idea to develop, implement, test and deploy an integrated service-based

system for support of scientific workflows. It assists in composing and executing

workflows from services using the workflow construction and execution editor and

making the access to scientific data and tools as devoid of unnecessary technological

overhead as possible. Figure 3.1 represents the overall architecture of the system.

 5. Invoke
 Service

 4. Soap Message

 6. Result
 2. Deploy Service

 3. Query Register

Figure 3

Uses registered services to
construct new services and/or
workflows.

Workflow
Execution

Retrieve needed services/workflow
and executes/runs through the
services/workflows, delivers outpu
to the user.

 Service 1
Workflow
Composer

 SOAP
 Server
(rpc router)

 Possible Implementation
 Representation of Service 1

Database
1. SDMSWS
 UDDI
 Registry
19

.1. SDMSWS Architecture

 Service n

 Service 2

 Service m

s

t

 Service 1
 Analysis
 Service
XML data descriptions
WSDL process descriptions
URL/URI descriptors

20

Every Organization exposes and registers its services, which may have been developed

on different platforms, with the UDDI registry. The service provider has to publish

specifications, and the messages it can exchange, about the service namely access point

(where its been hosted and deployed), methods implemented, input/output parameters and

other service related information. This can be a description in natural language, an XML

document or in Web Services Definition Language. The service is deployed to a SOAP

router (Axis [15], which is Apaches implementation of SOAP). The SOAP router is a

Remote Procedure Call (RPC) router that accepts and invokes client requests. The client

can query the UDDI to find services of interest and use the workflow tool to construct

and execute workflows from the services available. The client need not know the

implementation details of a service. The workflow tool accepts parameters, from the

service description file, namely service name, method name, input method parameters

and SOAP URL, and creates a SOAP call that is sent to the SOAP router. The SOAP

router calls the appropriate service based on the parameters it receives in the SOAP

message. Finally, it returns the result to the client.

The SDMSWS has the following components:

• Universal Description Discovery and Integration: UDDI registry serves as the

central registry for services and is accessible either directly or through programs.

It consists of a UDDI registry, registry database for storing information and a web

server as a servlet engine that also provides security features like user

authentication. Both human and program can access the UDDI registry. User can

21

browse the UDDI web page to find and use a service of interest. Figure 3.2

depicts the setup of the UDDI. It consists of:

1. UDDI Registry: IBM UDDI Registry implementation. (part of IBM

WSTK 2.3 [16]).

2. Registry Database: For storing the registry information (on uddidata

database).

3. Apache Tomcat 4.0 [17] Web Server: Tomcat, which belongs to the class

of Web Servers from Apache Software Foundation, is a servlet container

that is used in the official reference implementation for the java servlets

and java server pages. [A web server serves web pages to clients across

the Internet. The web server hosts pages, scripts, and programs and serves

them using HTTP].

 Figure 3.2. UDDI Setup

• Service: A service is a program that can receive requests and respond to them.

The service may be presented in the form of a program like a servlet running on a

web server anywhere on the network. The service details namely owner, access

point and contact information are submitted to the UDDI. The methods

 WEB SERVER

UDDI REGISTRY
 UDDI
 data on
database

 USER

 PROGRAM

22

implemented, input-output parameters and other details of the service are

published in the WSDL description corresponding to that service. Following are

the components of a service [18]:

1. Service Interface: A representation of the service to the outside world and

the available operations and messages that can be exchanged.

2. Service Binding: Binding provides the connection between the service

interface and the implementation and information on how to get to it.

3. Service Implementation: This is the implementation of the service.

(SOAP, EJB, Bean etc). Service implementation has two parts,

• Service Provider: Offers some function or process as a service.

• Service Consumer: Requests the service to perform some task.

• SOAP Module: The SOAP module is an integral part of the framework:

1. A Service provider develops and deploys services on the SOAP router.

The services are registered with the UDDI Registry.

2. The developer of the workflow queries the UDDI registry to enquire the

service description details.

3. SDMSWS Workflow Editor (SOAP client) let’s the end users construct

and execute workflows using the service description attributes.

4. When the workflow is invoked, it makes an RPC to the SOAP Router

through appropriate SOAP messages. In the SOAP message, it includes

information about the parameters required to invoke the service.

23

5. The SOAP server on receiving the SOAP message invokes the actual

implementation of the service either over the network or locally depending

on the location of the service. It returns the result of the service invocation

to the end user.

6. Note [AXIS as SOAP Server]: “Axis is essentially a SOAP engine. A

framework for constructing SOAP processors such as clients, servers,

gateways, etc. It also includes a stand-alone server that can plug into

servlet engines like Tomcat” [15].

• WSDL and XML Process Descriptors: WSDL is used to describe the specification

of a service and express the information about the interface and its bindings.

There is information for automatic invocation of a service by another service

without human intervention at a much lower level. An example WSDL

description is described in chapter 2.

• Scientific Data Management Services Workflow Editor (SDMSWE) [The Editor

was developed by Ms. Sangeeta, with contributions from Mr. Cheng and myself]:

The workflow tool lets the user define, construct and execute the sequence of data

and analysis services it wants to invoke. It creates a Web Service based

environment for executing and monitoring workflows. The workflow editor has

the following properties:

1. GUI based interface used to create, edit and save linear workflows that

involve multiple services and data resources. (Figure 3.3)

24

2. The workflow consists of task nodes that are connected into a directed

graph. Each task represents a unit of work to be done. It may be invoking

a service on the remote machine, or a service over the web, or even a local

program. It may also just deliver information from a web page.

3. In the workflow editor, the arrows (originating from the START node)

define the sequence and ordering of tasks and eventually the flow of data

from one task to another.

4. The workflow editor has features for looping to iterate around one or more

tasks.

 Figure 3.3. SDMSWE

25

5. The workflow engine is central to the workflow editor architecture and is

responsible for composing SOAP calls based on the service interface

parameters supplied to the workflow components.

6. The workflow engine provides basic syntactical verification of workflow

parameters. A more extensive verification would involve verifying the

workflow description against the service description in the registry.

7. The workflow editor also provides for automation or manual intervention

during the execution of a workflow.

8. The workflow editor can dynamically locate services registered with the

UDDI and extract service details.

There are two modes of operation for the workflow GUI. One is the workflow

composer mode used to construct workflows. The other is the playback mode

where the end-user initiates and tracks the execution of a defined workflow. The

execution engine invokes the services defined in the workflow. Alternatively the

user can directly go to the UDDI registry, find the interested service, and invoke

those services directly (as a web page).

3.2 Bioinformatics Workflow Service

We have implemented a prototype of a bioinformatics workflow that chains together the

following bioinformatics web resources Clusfavor [19], NCBI Genbank [20], NCBI Blast

[21] and Transfac [22] in a workflow, thus automating a scientist's manual procedure of

interacting with each of these sites individually. Each of these services performs certain

analysis on the data that is provided to it. This monolithic bioinformatics workflow

services run on the SDMSWS servers as Gene-expression workflow implementation.

Registered with UDDI, they are invoked through SDMSWS workflow GUI.

 6. Result

End User

Figure 3.4.

In figure 3.4 the workflow

each task with one of th

Transfac. Input parameters

description at the UDDI.

Monolithic Bioinfo
Workflow Creation

 Workflow
 Composer

 Workflow
 Execution

 Monolithic Bioinfo
Workflow Execution

 SOAP Server
 (RPC Router)

4. Service Call
26

 Bioinformatics Workflo

 editor is used to compo

e following services, C

 needed to invoke the s

 Once the tasks recei

 Service registry
 and Description

 CLUSFAVOR S

 GENBANK SE

 BLAST SERV

 TRANSFAC SE

 Services on SD
Server
5. Service Invoke
w Service Architect

se a scientific workf

lusfavor, NCBI Ge

ervices are obtained

ve the parameters,

 Gene-E
 Workflow I

ERVICE

RVICE

ICE

RVICE

MSWS
s

X
M
L

W
 R
 A
 P
 P
 E
R

2. Deploy Service
xpression
 3. Query

mplementation
1.Register
ure

low and associate

nbank, Blast and

 from the WSDL

the SOAP client

Data
Src’s

27

(Workflow GUI) sends an invocation to the SOAP server. The SOAP server contacts the

Gene-Expression workflow implementation, which is the implementation of these

services and invokes the actual data sources. The service is executed and the result is

returned to the SOAP server, which in turn returns the result to the end user. A wrapper

[23] interface is used to filter the result as XML data. The output of one task can either

be passed directly or modified and passed as the input to the next task in sequence. All

the outputs are stored at the client side and provide either a browser view or an XML

view of data. A composed workflow can be saved and played again at a later stage

thereby saving time in successive runs of an experiment.

3.2.1 Gene-Expression Workflow

[This workflow is proprietary to Dr. Matthew Coleman of Lawrence Livermore National

Labs.] The workflow has been divided into four basic steps, namely Clusfavor analysis,

GenBank search, Blast search, and Transfac search using MatInspector tool [22]. A user

enters a set of relevant parameters upfront. After this, the workflow is automatically

executed, using the parameters along the way. Simple iterations of the same step can be

executed for multiple inputs. Whenever there are multiple possible outcomes or choices

from a step, a certain decision can be made about the parameters that would be passed as

input to the next task in sequence. We have identified and implemented this

bioinformatics workflow service that is now being used as the bootstrapping research and

development case study. It involves access to multiple network-based data-sources and

other annotation databases (access via XML), as well as access to other information

28

resources. Figure 3.5 demonstrates the input and output parameters, and the sequence of

execution, of the components in the Gene-Expression workflow.

 Gene / Accession No.

 cDNA Sequence

 Comparisons

 Sequence

 Figure 3.5. Gene-Expression Workflow

In Gene-Expression workflow (Figure 3.5) we feed the data of a given microarray

analysis to a cluster analysis tool (Clusfavor). Based on the results select the gene

identifiers and retrieve their cDNA sequences from the GenBank database. We then

perform a sequence comparison (Blast) of the retrieved cDNA sequences against known

sequences and analyze results using Transfac with defined parameters. Following is a

brief description of the components in the workflow:

 Clusfavor
 Service

 Transfac
 Service

 Genbank
 Service

 Blast Service

 Subsequence
 Analysis

 Filter

 Post Transfac Analysis

 Tab delimited file from
 Micro-array analysis

 START STOP

29

• Clusfavor (Cluster and Factor Analysis with Varimax Orthognal Rotation): A

Windows based computer program for principal component and unsupervised

hierarchical cluster analysis of DNA microarray transcriptional profiles [19]. It

takes a tab-delimited file as an input, performs analysis, and outputs a group of

genes. Clusfavor is used to obtain cDNA sequences for genes of interest. Output

of Clusfavor consists of several clusters of named sequences that have similar

expression characteristic. It is a collection of clustered cDNA fragments.

Clusfavor service is encapsulated as a SOAP service and deployed.

• Genbank: Genbank is the NIH genetic sequence database, an annotated collection

of all publicly available DNA sequences [20]. A cDNA string is extracted from

the Clusfavor output and is passed to Genbank to do a lookup and obtain a

sequence of cDNA strings represented by the cDNA string extracted from the

previous output. This service uses a single accession number and makes a request

to NCBI's GenBank nucleotide database and returns the URL link for the page,

this URL has the information about the gene corresponding to the accession

number. The service then uses the target URL attribute from the previous service

call and returns the nucleotide sequence for that gene.

• BLAST (Basic Local Alignment Search Tool): BLAST is a set of similarity

search programs designed to explore all of the available sequence databases [21].

The service performs blast using the sequence htgs database. We obtain the blast

results, and for those results that have a good match, identify where in the

returned sequence the match occurred and take that part of the sequence +/- 1000

base pairs.

30

• Transfac: Fast and sensitive service for detection of consensus matches in

nucleotide sequence data. It builds a consensus model using location and

consensus of transcription factor binding sites [22]. The sequence generated from

the previous BLAST service is furnished to the Transfac service.

3.2.2 Performance Measure

Table 3.1 compares the time to perform the Gene-Expression workflow tasks manually as

against using SDMSWS.

Time Comparison of Gene-Expression Workflow
Implementation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

80 110 140 170 200

Runs(no. of genes)

Ti
m

e(
m

in
s)

Manual
SDMSWS

Table 3.1. Performance Measure

The time for single manual invocation of the workflow involves the time to find relevant

databases and online tools, manually copy outputs from one tool to another, possibly

31

port-process the output and paste appropriate pieces into the next process. On an average

this process takes around nine minutes. Similarly the time for executing the same

workflow using SDMSWS, which has just one time set up of the workflow parameters,

takes an average of four minutes. The workflow in both cases is run for varying number

of genes.

We notice a significant decrease in time while using SDMSWS over manual operations.

This factor is even more significant when the workflow is invoked with a large number of

input data (genes). Suppose the workflow is invoked for 200 genes, this means that it

would take about 200 * 9 (time for manual invocation) equals 1800 minutes to run all 200

genes through the workflow manually. Not to forget the human stress factor of running

such long iterations. To perform 200 such iterations it would take humans about 6-7 days.

Compared to this the service workflow tool can run 200 genes in 200 * 4 (time for tool

based workflow) equals 800 minutes. This would finish well within a day and would not

require any human intervention at all. Including human factors into the workflow

execution makes the contribution of SDMSWS framework’s workflow automation

worthwhile.

3.3 Current Limitations

The following are some limitations of the current architecture.

• The system currently implements a text based workflow description, which needs

to be replaced by a standard workflow definition language.

32

• Lack of workflow verification. We need to verify the services in the workflow

with the service specification in the registry.

• Lacks support for branching within a workflow and parallel execution of

workflow components.

• Very basic and primitive exception handling in the framework, which needs to be

replaced by an extensive error control and recovery.

• Lack of browser based access to the workflow editor. Every time a newer version

is released it has to be downloaded on the end user system.

• System uses the default web server security to guard services and registry. This

needs to be replaced by a much more detailed security capability.

This chapter described the architecture and components of SDMSWS. In the later half we

implemented a Bioinformatics domain specific service based workflow in support of the

defined architecture. The following chapter talks about some other domain specific

specialized services that can run in association with the SDMSWS and extend the

framework to a much more diverse yet integrated Bioinformatics environment.

33

4 Specialized Services

Bioinformatics is the field of science in which biology, computer science, and

information technology merge to form a single discipline. It is an emerging research

discipline that uses information technology, mainly software tools, to organize and

analyze scientific data in order to answer complex biological questions. It comprises of

databases, algorithms, scientific and intelligent tools to collect, organize, store, retrieve

and analyze biological data. Important disciplines within Bioinformatics and

computational biology include the development and implementation of tools that enable

efficient access, use and management of various types of information and analysis and

interpretation of various types of data from different domains. “The ultimate goal in the

field of bioinformatics is to enable the discovery of new biological insights as well as to

create a global perspective from which unifying principles in biology can be discerned.

This can be achieved only when there is effective scientific research that is spurned by

intelligent data access and analysis across domains” [24].

A realistic environment would consist of a number of distributed domain specific data

and information sources. SDMSWS framework can be central to such an environment

providing flexibility, extensibility, and effective and efficient access to a consistent view

of data from these sources through an intuitive and useful perspective. Following are

some other domain specific specialized solutions that, along with the SDMSWS

framework, are participants of this realistic environment. Some of them have been

discussed in the previous chapter.

34

 NCBI GenBank

 Other Personalized Tools Other Life Sciences
 (Database Access) based Web Services

 Blast sequences, Information filter,
 Clusfavor, Transfac VIPAR

Clustering,
 Pattern Identification (VIPAR)

Figure 4.1. Extending Bioinformatics Environment

4.1 Database Access Service

For sometime now, a bioinformatics concern was the creation and maintenance of a

database to store biological information, such as that of genes. Development of this type

 SDMSWS
 FRAMEWORK

 Tools for
Information
 Retrieval

 Databases

 Genomic
 Services

 Algorithms
& Analyses

 Agent
 Analyses

 Machine
 Learning

35

of database involved not only design issues, but also the development of complex

interfaces whereby researchers could both access existing data as well as submit new or

revised data. Ultimately, however, all of this information must be combined to form a

comprehensive picture of how researchers may study this data. Therefore, the field of

bioinformatics has evolved such that the most pressing task now involves the analysis

and interpretation of various types of data [24]. This plethora of information has led to an

absolute requirement for computerized databases to store, and organize data, and for

specialized tools to view and analyze the data.

A database is a large, organized source of persistent data, usually associated with

computerized software designed to update, query, and retrieve components of the data

stored within the system. A simple database might be a single file containing many

records, each of which includes the same set of information. For example, a record

associated with a genomic sequence database typically contains information such as gene

name, gene id, the scientific name of the gene organism and often, literature citations

associated with the sequence.

In figure 4.2 a parser accesses and filters data from NCBI Genbank repository to store it

in the SDMSWS database. Data on the website is stored as files and thus data in the

database represents the same information but provides better means of storage and

querying. A service to retrieve data from the database is defined, registered and deployed

with the SDMSWS framework. The data in the database can also be accessed from a web

page.

36

 Direct Access

Figure 4.2. Database Access Service

In figure 4.2 DB2XML [25] is a wrapper tool that transforms relational databases into

XML documents. It provides attributes that describe characteristics of the data (meta

data). It generates xml data as a result for a sql query to any database. DB2XML has two

implementations; it can be implemented and invoked as a stand-alone tool from a

graphical user interface or as a servlet to dynamically generate XML-documents. It works

with any database provided the right database drivers are used. As XML is an accepted

standard for data formatting, DB2XML wrapper could be used as an efficient way to

define content dependent data.

 SDMSWS
 Genomic
 Database

Ftp.ncbi.edu
 SDMSWS
 FRAMEWORK

 Parser

 Browser
 Access

D
B
2
X
M
L

37

4.2 VIPAR Service for Bioinformatics Resources

VIPAR (Virtual Information Processing Agent Research) [26] software developed by

Oak Ridge National Labs (ORNL), demonstrates the ability to self-organize a number of

related articles. It extends the field of information agents in a number of ways, most

significant is the ability for agents to use a flexible Resource Description Framework

(RDF) [27] ontology for managing information, and the ability to dynamically add and

cluster new information entering the system [26]. To organize and classify information

collected from various sources, VIPAR uses cooperative and adaptive information agents.

These agents are able to work together to gather and organize information. There are

different agent types that use a communication protocol that enables them to interact. For

example, individual agents gather information (articles) from individual bioinformatics

resources, some agents analyze the articles, and others organize the information. To

deploy such agents VIPAR uses the Oak Ridge Mobile Agent Community (ORMAC)

framework developed by ORNL. ORMAC is a generic agent framework providing

transparent agent communication and mobility.

4.2.1 Architecture

Virtual Information Processing Agent Research (VIPAR) is a client server application

based on the RMI (Remote Method Invocation) technology. The server consists of three

agents: -

• Download agent - Responsible for downloading all the information from the web.

38

• Whiteboard agent - Stores and manages the collected information. Other agents

have to subscribe to this agent to access articles.

• Clustering agent - Performs clustering analysis on the collected data.

Figure 4.3. VIPAR Architecture

The server starts downloading information, from network based resources. These agents

use the RDF ontology to capture and download information. Once downloaded these

articles are posted on the whiteboard where they are stored, managed and checked for

duplicity. The cluster agent then runs the algorithm on these articles clustering them on

the basis of certain information provided to the agent. VIPAR client initiates a connection

to the server and generates the graphical representation of the clustered information. The

 SDMSWS FRAMEWORK

 VIPAR CLIENT
 QUERYING
 FOR
 INFORMATION

 VIPAR SERVER SERVICE HOSTED AT ORNL

 Download
 agent

 Clustering
 agent

 Whiteboard
 agent

 WWW

39

VIPAR server can be queried for genomic information from the SDMSWS framework.

The server runs as a service at Oak Ridge National Labs and is registered with the

SDMSWS UDDI registry. The workflow editor can dynamically locate the VIPAR

servers registered with the registry and can compose and invoke a query.

4.2.2 RDF Ontology

XML is an accepted standard to address the problem of organizing and classifying large

amounts of heterogeneous information accessible over the Internet. However, a

significant challenge is to automatically convert information currently expressed in a

standard HTML format to an XML format [28]. Converting HTML information to XML

is difficult as there is no single, uniform structure existing across most of the Internet

resources, which would allow a simple conversion from the HTML format to the desired

XML format. Even within a single web site the structure may not be consistent. The main

issue is defining a common description that allows disparate HTML pages to be

converted to XML in a consistent way. One means of performing this conversion is to use

a generic parsing engine that can be driven by an ontology. The semantic web is one such

approach that extends the current Internet by giving well-defined meaning to information

[29]. The semantic web is based on the Resource Description Framework (RDF). RDF is

a mechanism for using XML to describe an Internet resource as a directed graph [28].

Table 4.1 is an example of an RDF file that defines the model for extracting information

from a source. There are five basic elements of an RDF description [28]:

40

<articleSourceName>
Genomics Pharma

</articleSourceName>

<rootURLStr>
http://genomics.phrma.org/

</rootURLStr>

<collection>
Genomics

</collection>

<searchDepthLimit>
2

</searchDepthLimit>

<minutesWaitBetweenDownloadSessions>
60

</minutesWaitBetweenDownloadSessions>

<tocMetaData>
<urlRegEx>

http://genomics.phrma.org/today/
</urlRegEx>

</tocMetaData>

<articleMetaData>
<article>

<urlRegEx>
http://www\.eurekalert\.org/pub_releases/[0-9]{4}-[0-9]{1,2}/.*\.php

</urlRegEx>

<startOfTextStr>
<h1 class="title">

</startOfTextStr>

<endOfTextStr>
<P><div align="center">

</endOfTextStr>
</article>

</articleMetaData>

Table 4.1. RDF description

1. Article metadata: Metadata about the retrieved articles. This information includes

the name of the source from where the article was located and the collection under

which VIPAR classifies it.

41

2. Traversal directives: Specific actions for traversing a site. This includes the search

depth limit (number of hops) from the root URL, and the number of minutes to

wait between rechecking the site for new articles.

3. Traversal maps: The map starts with the root URL from which the agent is to

begin a traversal of the site, and from which the agent can resolve relative URLs

found at the site. A rule-based map of the pages of interest on the site is based on

the URL structure of the site and is encoded via regular expressions.

4. Article delimiters: Markers to delimit the text of an article from other information

on a given web page. (Banners and advertisements).

5. Article structuring rules: Rules for structuring the article text as XML. Regular

expressions are used to reduce the various structural characteristics of an article,

such as the title and author.

Based on this RDF ontology, a retrieval agent checks links found at an Internet

newspaper site against the traversal map to determine if the article page is of interest. The

agent checks with the VIPAR system to verify that the article has not already been

incorporated. If the article is new, the agent retrieves the page, discerning the actual

article text from the article delimiters, and cleans it of extraneous information on the

page. The agent then marks up the clean text using XML, tagging the parts of the article

(title, author, date, location, paragraphs, etc). The article is then posted to the VIPAR

system. The agent continues to monitor the site based on the traversal directives, and

posting new information, as it becomes available [26]. We have designed seven RDF

42

files that are currently used by VIPAR to collect and analyze bioinformatics data across

the web.

4.3 Conclusions

In the last couple of chapters we have transitioned from implementing a specific

bioinformatics workflow case study to integrating other general domain specific solutions

into SDMSWS architecture and expanding the bioinformatics environment. In particular

we have demonstrated the feasibility of, SDMSWS as a framework for domain specific

service based workflow composition and execution and at the same time, its role as a core

element integrating diverse, domain specific specialized services that constitute the

extended bioinformatics environment. In the following chapter we will perform a

qualitative assessment of the SDMSWS framework, based on metrics derived for

problem solving environments, against tools that were built on current web technologies

and workflow principles, and in some cases serve the same purpose as SDMSWS. While

some of these tools are commercial, others are products of research.

43

5 Framework Evaluation

5.1 Comparison Metrics

A problem-solving environment (PSE) is a computational system that provides a

complete and convenient set of high-level tools for solving problems from a specific

domain. The PSE allows users to define and modify problems, choose solution strategies,

interact with and manage appropriate hardware and software resources, visualize and

analyze results, and record and coordinate extended problem solving tasks. A user

communicates with a PSE in the language of the problem, not in the language of a

particular operating system, programming language, or network protocol [2]. A PSE

should have the following properties:

• Support for all it user types, two principal ones being (1) application scientists

interested primarily in using the PSE to solve a particular domain problem, (2)

system developers who help achieve the objectives of the users [6].

• Support appliance-like use

1. Provide the user with a comfortable and familiar interface.

2. Abstraction must be used to hide the details of both the underlying

computer system and the problem domain where appropriate [30].

3. Problem-oriented to allow specialists to concentrate on their discipline,

without having to become experts in computer science issues [31].

44

4. Analysis and presentation tool support. The use of graphics and visuals

can enhance the usability of the PSE, for example, through tables and

graphs to visualize the state of the application [56].

• Inter-operability and Integration

1. Exchanging information across domains and among different providers is

a very complex task. A PSE needs a thorough understanding of the diverse

information sources and also certain expertise in them.

2. To realize the full potential of network-supported workflows, we must

enable the engineering of varied forms of integration suited to diverse

architectures in practice.

3. Use of standard technology defined and accepted by industry participants.

• Collaboration

1. Nowadays, many science and engineering projects are performed in

collaborative mode with physically distributed participants. A PSE must

include the ability to facilitate collaborative solutions.

2. Human workflows and collaborations involve various elements of the

participants changing situation and their activities.

• Service Support

1. Application development tools that enable an end user to construct new

applications and support its execution on a set of resources.

• A PSE must be dependent on, and support, the underlying network infrastructure.

• It should be scalable. A PSE building tool must be able to add new functionality

within its existent base.

45

• Adapt to changes, as the rate of change of experiment methodology is faster than

the rate of change of tools available for performing analysis.

• Flexibility must exist in the ability to support a wide range of computational

models that various domains may require.

• Support for debugging and exception handling.

These requirements hold true even for SDMSWS, which is categorized as a network-

based framework providing problem-solving capabilities. To qualitatively evaluate the

framework against both commercial and research based tools, we develop and use the

PSE-based layering (Figure 5.1) of attributes namely, end-user issues, workflow issues,

service issues, network-based issues, and other general issues as metrics.

Figure 5.1. Problem Solving Environment Layering

The metric categories (and details) were chosen based on a survey of scientific workflow

tools and user profiles relevant to a network-based PSE. The full list of the tools

considered is given at the end of the thesis. Only a subset was used in the comparative

 Underlying
 Network Infrastructure

 Underlying Technology and
 Service Implementation

 Problem-Solving /
 Application Integration / Workflow

 End-User

46

analysis. It is our firm belief that comparison metrics need to be sufficiently complete and

comprehensive, and they need to have the scope that highlights both the PSE and the

networking character of the solution, that is, it conforms to the software architecture

layering shown in Figure 5.1. Thus, selected metrics describe important aspects of the

requirements on the underlying network infrastructure, technology and services,

application integration and workflows and the end user interfaces.

The author did not find sufficiently comprehensive open source tools, but did find a

number of commercially available tools that were designed to help in some or all aspects

of network-based problem solving. However, some open source workflow engines are

briefly discussed in chapter 6. For this reason experimental, and quantitative, assessment

of the tools was not possible for most part. Most tools examined had only published

technical reports explaining their architecture and functionality. It was therefore decided

to use more categorical and qualitative measurements in the comparative analysis. The

metrics selected in each of the categories were based on the following reasoning:

• For End Users: The ideology of this framework had always been to reduce

technological overhead on the end-users and allow them to concentrate on their

research discipline, without having to become experts in computer science issues.

This implied, in some ways, that we needed a solution that was easy to install on

the user’s system and principally required problem domain understanding for it to

be used. It was also deemed necessary that the users have control of the interface

and the services they needed to use.

47

• For Workflows: To provide flexibility, the developed system was designed to

support manual or automatic selection of services from a list of published network

based Web Services, and to use those selections to create and perform complex

analyses.

• For Services: With scientific and business communities apparently moving

towards the Web Services based approach, and with SDMSWS framework built

on these principles, we thought it relevant to analyze and compare the underlying

technologies, and their advantages and disadvantages.

• For Network Support: For universal accessibility, solutions and tools need to be

available over the network supported by standard networking protocols. Also, to

maintain the proprietary nature of the solutions it may be a requirement to keep

the internal implementation details of their tools opaque to the end-user and

secure from revealing its internals.

• For Other - General: Important issues while designing the workflow environment

were to support platform independence, scalability by enabling integration of

diverse and large data sets, analysis solution and methods to improve processing

speed and optimize resource usage. Fault tolerance and exception handling was

another concern as it is necessary to keep the user informed of failed processes

and invocations and its also imperative to have provisions for detecting errors that

were raised as a result of a user error or system failure.

The following section describes the measures used in each metric category and the

qualitative scope of the measure.

48

5.1.1 Metric Definition and Scope

End-User Issues:

• Abstraction: Enable end-user to focus on their work instead of dealing with

management and tuning of the tools that are not part of their workflow. This

metric assesses the appliance-like nature of the tool. The value ranges from 1 to 5.

1 – Complete abstraction

5 – No abstraction

• Usability: Determined by the ease of installation on client machine and the

required understanding to use the tool, also the extent of the functionality

provided by the tool within the end-user domain. This was based on the subjective

scale of 1 to 5 (rating provided by the author).

1 – Easy to use with minimal understanding

5 – Difficult to use and needs expertise

• Human-Centric: Support for human intervention during workflow execution.

Full and Partial Support – Full (pro-active, e.g., resumable interrupts at will) or

Partial (reactive, only pre-determined pause and intervention points) user control

over workflow execution.

No Support – No human intervention while workflow execution.

Workflow Issues:

• Workflow Type: States whether the workflow environment supports linear, non-

linear workflows, or both.

49

• Composition Tool: The software or programming languages used to develop the

workflow composition tool.

• Workflow Automation: Determines the support for automation of workflow

execution and reuse of saved workflows.

Technologies / Services Issues:

• Technology/Standards: Lists the technologies involved in designing the

framework and the protocols supported, if any.

• Service Oriented: States whether the tools are Web Service based or not.

Yes – Web Service Based, No – Proprietary Services

Network-Based Issues:

• Network-Based: Current scientific computation tools are expensive, need

expertise to use them, and hence have a restricted set of users. To provide

universal access, applications need to be network accessible.

Yes – Services can be invoked over the network.

No – Does not support invocation of network-based services.

• Standard Protocol Support: Communication in SDMSWS is encapsulated in the

Web Services protocols that run over standard network protocols (HTTP, TCP/IP)

implying no change to the underlying network support.

• Security: The type of security provided to the applications and the framework.

Frameworks can have a very basic web server based security or can have

sophisticated enterprise level security.

50

General Issues (Open Source, Platform Support, Scalability, Processing and Fault

Tolerance/Exception Handling):

• Commercial: Lists if the product is commercial or available in the public domain

as freeware. The tool can also be available for research purposes.

Yes – Commercial

No – Available in public domain as freeware

• Product Type: Tells whether the product is a prototype or is a production-level

release.

• Open Source: States whether the product is open source or not.

• Platform Support: Lists the platforms supported by the framework.

• Scalability: States whether other solutions and tools can be incorporated into the

workflow environment.

Yes – Means that other public tools can be incorporated.

No – Indicates that it does not support inclusion of other solutions.

• Processing: States the use of any features to support higher processing. For

example, use of state of the art processors or special design in the architecture to

enhance the processing of tasks. It can either be limited or extensive based on the

framework.

• Fault Tolerance/Exception Handling: States the extent to which exception

handling is supported (limited or Extensive, through some special support), and if

there are any explicit fault tolerant features or functionalities built into the system.

51

5.1.2 Survey of Workflow Tools

For the purpose of comparison we surveyed, among others, PSE’s such as EDSS [53],

Symphony [54], Coven [6] and GRASPARC [5]. These PSE’s were designed to solve a

special class of problems such as environment modeling and analyses, grids, visualization

and high performance applications. Although some of the tools were network-oriented,

there was no direct reference to the use of service based workflow composition and

execution (as we know it today) in any of them. We also studied commercial workflow

solutions from vendors in both science and business domains. Most of them were not

available for us to evaluate. For example, we found that WebSphere Application

Development Integration Edition [18] from IBM primarily focuses on support of Web

Service based workflows in business-to-business industry. We also saw relevance in i-

Flow [32], as it was a classical workflow environment with support for human centric

drag and drop features for workflow composition. It has a Java-based architecture, which

helped us develop some ideas on programming the workflow environment. These, along

with some other graph based workflow notions were the motivation for developing a GUI

based workflow editor. Also, right from the early stages of this research we have been

concentrating on scientific workflows and tools for the life sciences discipline. We thus,

narrowed our search to data and analysis solutions in the Life Sciences Domain. We

performed extensive search on scientific workflows in various web resources and

directories and found commercial and research driven solutions that were designed to

support workflows in the life sciences discipline. However, only few of these had similar

properties and goals as SDMSWS and thus were chosen for comparative analysis.

52

5.2 WebSphere Application Development Integration Edition

WebSphere Application Development Integration Edition (WSAD IE) [18] from IBM is

a complete web application and services development environment. It provides the tools

necessary for developing web applications that includes static web pages, JSPs, servlets

and the XML deployment descriptor. It also is intended to be the ideal collaborative tool

for the creation, assembly, publication, deployment and dynamic maintenance of Web

Services using the latest Web Services standards such as SOAP, WSDL, UDDI and more

recently BPEL4WS [58]. But the main focus of WSAD IE is on the interfaces coming

from various clients and connectors used to connect to data and information resources in

an n-tier enterprise software environment. It provides for wizards to generate interfaces

described by WSDL. Services and service flows are an integral part of WSAD IE. A

Service flow is a service composed of other services. In the WSAD IE terminology a

smaller element of a workflow is called a micro flow, which represents a series of

interactions required to do a single synchronous operation. Microflows are

uninterruptible, short-lived operations that perform basic operations within a task rather

than a complete task. There are different scenarios for which WSAD IE is used [18].

• A client accessing a service over SOAP. The tools in Application Developer

Integration Edition can be used to create the service provider as well as the SOAP

proxy used by service consumer to access the client.

• WSAD IE allows for services to be created from java beans. These services can

also be available via the SOAP protocol.

• WSAD IE has tools for combining individual services into a single service flow.

53

5.2.1 Comparison Matrix

 SDMSWS WSAD IE

 End-User Issues

 Usability

 Human-Centric

 1
 (Easy to Install and Use)

 Yes, Partial Support

 5
 (Need Expertise)

 Yes, Partial Support
 Workflow Issues

 Workflow Type

 Composition Tool

 Workflow Automation

 Linear
 Scientific Workflows

 Swing Workflow Editor

 Yes, Save and Reuse
 Workflows

 Linear & Non-Linear
 Science and Business
 Workflows
 Proprietary MicroFlow
 Constructor
 Yes, Save and Reuse
 Workflows

 Service Issues

 Technology/Standards

 Service Oriented

 SOAP, UDDI, WSDL

 Yes, Web Service Based

 SOAP, UDDI, WSDL

 Yes, Web Service Based
 Network-Based Issues

 Network Based

 Security

 Yes

 Default Web Server
 Security for Services

 Yes

 Enterprise Level
 Security

 Other General Issues

 Commercial

 Product Type

 Open Source

 Platform

 Scalability

 No

Prototype, Research Based

 Yes

All Platforms

 Yes, can incorporate any
 Web Service

 Yes

Full Grown, Commercial

 No

 Windows and Linux

Yes, can incorporate any
 Regular or Web Service

Table 5.1. SDMSWS Vs WSAD IE

54

Some of the issues that compare and contrast WSAD IE and the SDMSWS framework

are:

• Support for Web Services: WSAD IE is a complete suit of tools (wizards) that

helps create and deploy customized services that can run in its environment. In

SDMSWS any network based service, described and deployed with Web Service

protocols, can be incorporated as a component in the workflow.

• Support for Workflows: WSAD IE focuses on the shorter, synchronous, linear

and non-linear workflows, which it calls microflows. SDMSWS has support for

linear workflows, created from existing services. It also supports synchronous

interactions between the tasks in a workflow.

• Save and Retrieve Workflows: In WSAD IE workflows can be saved and invoked

at a later stage. SDMSWS workflow environment also allows for saving of

workflows.

• Distributed Composition/Execution: In SDMSWS the workflow can have

components that are distributed and can be invoked over the network. WSAD IE

too has workflow components/tasks that are network based.

• Usability: WSAD IE needs certain amount of expertise and knowledge on the

users part. SDMSWS needs lesser understanding on part of the user and is easy to

adapt to.

WSAD IE is a comprehensive set of tools that provide support for tailored workflows in

the business-to-business industry and the scientific domain. SDMSWS can be categorized

as a subset of WSAD IE with some additional distinctive features.

55

5.3 i-Flow

i-Flow [32] is a workflow tool from Fujitsu Software that aids business groups to

collaboratively plan, automate, track and improve business processes. Its a conventional

software engineering workflow tool that defines the operational aspect of a business

process, like sequencing of tasks and who performs them, the information flow to support

the tasks, and the tracking and reporting mechanisms that measure and control them. It

allows monitoring the flow and checking the execution of the workflow and keeps the

history of workflow execution. Its primary usage is for definition and execution of human

oriented workflows. Central to the architecture of i-Flow is a workflow engine. There are

also adapters that can connect to databases, custom clients and other environments. The

client architecture is delivered through a web browser. It is a java based workflow client

tool that has features to construct workflows graphically.

5.3.1 Comparison Matrix

 SDMSWS i-Flow

 End-User Issues

 Usability

 Human-Centric

 1
 (Easy to install and use)

 Yes, Partial Support

 3
 (Needs Expertise)

 Yes, Extensive Support
 Workflow Issues
 Workflow Type

 Composition Tool

 Linear
 Scientific Workflows

 Swing Workflow Editor

 Linear & Non-Linear
 Business Workflows

 Applet Workflow Editor

Table 5.2. SDMSWS Vs i-Flow

56

Table 5.2. (continued)

 Service Issues

 Technology/Standards

 Service Oriented

 SOAP, UDDI, WSDL

 Yes, Web Service Based

 J2EE, RMI, IIOP

 No support for services

 Network-Based Issues

 Network Based

 Security

 Yes

 Uses default Web Server

 No, used mostly for
Intranet based workflows

 LDAP [41] Security
 Other General Issues

 Commercial

 Product Type

 Open Source

 Platform

 Scalability

 Fault Tolerance

 Processing

 No

Prototype, Research Based

 Yes

 All Platforms

 Yes, can incorporate any
 Web Service

 Limited Exception
 Handling

 Handle limited Requests

 Yes

 Full Grown

 No

 Windows, Linux

 Yes, Expansion through
 Use of Adapter Modules

 Extensive, Through use
 of handling modules

 High, Engine uses
 Numerous Processors

Following are some observations of i-Flow environment with respect to SDMSWS:

• Workflow Construction: i-Flow can be used to construct workflow templates

(Figure 5.2), where components represent certain work to be performed.

SDMSWS framework too has a workflow editor component with similar

functionality that assists in workflow creation and execution.

57

Figure 5.2. i-Flow Workflow Environment

• Workflow Execution: i-Flow lacks the ability to invoke services on remote

systems. SDMSWS workflow components can invoke remote services.

• Event Driven: In i-Flow on execution of a task a report can be generated and the

concerned participant(s) can be informed of the same.

• Human-Centric: The workflow environment in i-Flow provides for human

intervention and lets the user make changes during runtime. Similarly in

SDMSWS the client can intervene the execution of the workflow at any stage.

• Saving Workflow Templates: Both i-Flow and SDMSWS allow the invocation of

saved workflows, saving time for a periodically run workflow.

58

i-Flow is a tool supporting intra-organization workflows and lacks the ability to invoke

remote services unless the architecture is customarily designed. Its comparison with

SDMSWS was on the basis of the workflow related aspects they have in common.

5.4 TurboBench

TurboBench [33] is a Java-based system that enables scientists to, (1) integrate standard

bioinformatics applications and diverse data sources into computational workflows in

which input data and results are passed from one step to the next and, (2) accelerate

workflow execution through parallel computing to exploit heterogeneous collections of

networked computers. Workflows correspond to graphs and are composed of components

having well-specified sets of inputs and outputs and may perform computations or other

operations on data. There are atomic components (self-contained operations such as

running a Java or a Perl program and SOAP services in its latest release) and workflow

components (links components together, with each component executing one after the

other in a sequence). Components are structured XML objects containing information

required to manage and execute them. Users can create atomic components using wizards

that produce XML objects automatically by generating appropriate wrappers [33]. Its

architecture consists of:

• Master: The Master is responsible for overall management of the system. It

authenticates users, coordinates and monitors the execution of individual jobs,

handling errors, and notifying Clients when the job is complete.

59

• Client: Clients are used to create atomic components or workflows, store them

and submit them for execution to the system. Clients are run on desktop machines

and include wizards and the TurboChart tool (Figure 5.3).

• Workers: The Workers are the machines that perform the real computational

work. They execute components, access databases, and transform data as it passes

from one component to the next. Each Worker runs a small program (called a

daemon) that decides exactly what the Worker should do. It takes care of data

manipulations, conversions, and communications required for setting up the task.

It executes the actual component to carry out the required computation or data

access. Finally, it returns information to the Master when the task completes.

 Figure 5.3. TurboBench Workflow Environment

60

5.4.1 Comparison Matrix

 SDMSWS TurboBench

 End-User Issues

 Usability
 1
 (Easy to install and use)

 5
 (Needs Expertise)

 Workflow Issues

 Workflow Type

 Composition Tool

 Workflow Automation

 Linear
 Scientific Workflows

 Swing Workflow Editor

 Yes, Save and Reuse WF

 Linear & Non-Linear
 Scientific Workflows

Swing Workflow Editor

Yes, Save and Reuse WF
 Service Issues

 Technology/Standards

 Service Oriented

 SOAP, UDDI, WSDL

 Yes, Web Service Based

 EJB’S, XML, Databases
 Yes, Proprietary (XML)
& SOAP Service Support

 Network-Based Issues

 Network Based

 Security

 Yes

 Uses default Web Server

 Yes

Enterprise Level Security
 Other General Issues

 Commercial

 Product Type

 Open Source

 Platform

 Scalability

 Fault Tolerance

 Processing

 No, Research Use

 Prototype

 Yes

 All Platforms

 Yes, can incorporate any
 Web Service
 Moderate Exception
 Handling

 Limited Requests

 Yes

 Full Grown

 No

 UNIX, Linux, Windows

Yes, Plug-and-Play Arch.

 Guaranteed / Automatic
 Rerun of Tasks

High, Scheduling Models
 For high performance

Table 5.3. SDMSWS Vs TurboBench

61

Following are some observations of TurboBench with respect to SDMSWS:

• Support for Workflows: TurboBench combines atomic components to form linear

and non-linear workflows. Atomic components correspond to self-containing

operations such as executing a java method. Workflow components in SDMSWS

represent Web Services.

• Service Components: TurboBench supports only those applications in workflows

that are customized to run in its environment unlike SDMSWS workflow editor,

which can incorporate any network-based service that supports standard Web

Service descriptions and protocols.

• Network Based Workflow Execution: TurboBench workflow can consist of

components running on any machine in a network. In SDMSWS also workflows

can consist of tasks distributed over the network.

• Parallel Computing: An application execution engine provides run time support

for parallel computations in TurboBench. SDMSWS workflow engine currently

does not support parallel computation of tasks.

• Save/Retrieve Data: TurboBench has a data repository service that aids data to be

stored in different formats. For example data can be stored in files or databases. In

SDMSWS data can be stored on client side as files.

• Processing: Use of scheduling model in TurboBench facilitates for load balancing

among available resources. In SDMSWS the workflow component is very

primitive and does not support such capability.

62

Overall, the TurboBench workflow environment provides extensive support for life

sciences based workflows, but requires workflow components to be tailor-made to work

in its execution environment.

5.5 Visual Integrated Bioinformatics Environment (VIBE)

VIBE [34] is a visual programming interface to VIBE servers, which provide access to

many common bioinformatics algorithms. The graphical interface provides an extensible

drag-and-drop environment for the creation of sequence analysis pipelines and

visualization of results. The VIBE interface comes with a set of analyses that can be

pipelined within the interface [34]. VIBE was developed by INCOGEN, Inc. in

collaboration with TimeLogic Corporation. The VIBE architecture is based on J2EE

object oriented architecture standards and RMI technology to provide a scalable and

extensible system. VIBE provides the following features [34]:

• Efficient drag-and-drop sequence analysis pipeline construction from a wide

selection of tools and algorithms.

• Users can either run the tools with their default parameters or change them.

• Design time checking of workflow specification.

• Pipelines can be saved as XML specifications and can be invoked at a later stage.

User can also edit the XML specifications.

• Support for specialized visualization tools for certain analyses. Data can also be

viewed as XML or plain text.

63

5.5.1 Comparison Matrix

 SDMSWS VIBE

 End-User Issues

 Abstraction

 Human-Centric

 2
 (Yes, Abstracts Details)

 Yes, Partial Support

 2
 (Yes, Abstracts Details)

 Yes, Partial Support
 Workflow Issues

 Workflow Type

 Composition Tool

 Workflow Automation

 Linear
 Scientific Workflows

 Swing Workflow Editor

 Yes, Save and Reuse WF

 Linear & Non-Linear
 Scientific Workflows

 Proprietary Editor

Yes, Save and Reuse WF
 Service Issues

 Technology/Standards

 Service Oriented

 SOAP, UDDI, WSDL

 Yes, Web Service based

 Multi-tiered J2EE and
 RMI

 No, Proprietary Services
 Network-Based Issues

 Network Based Yes Yes

 Other General Issues

 Commercial

 Product Type

 Open Source

 Platform

 Scalability

 Processing

 No, Research Use

 Prototype

 Yes

 All Platforms

 Yes, can incorporate any
 Web Service

 Limited Requests

 Yes

 Full Grown

 No

 All Platforms

Yes, use of Multi-Tiered
 Architecture

High, Use of Application
 Layer Distribution

Table 5.4. SDMSWS Vs VIBE

64

Some comparison issues regarding VIBE and SDMSWS are:

• Workflow Verification: VIBE provides design time checking to assist users create

valid workflows and reduce the probability of run-time errors [34]. SDMSWS

workflow currently does not provide for any workflow verification.

• Retrieving Saved Workflows: In VIBE workflows can be saved as XML with the

client. It can be invoked later and used with different inputs. SDMSWS workflow

editor can save workflows in plain text format, which can be invoked at a later

time.

• Service Components: VIBE supports only those applications in workflows that

are customized to run in its environment. SDMSWS workflow editor can

incorporate any network component based component as long as the component

supports standard Web Service protocols and descriptions.

• Visualization: VIBE has special applications and libraries, which provide better

visualization of data. In SDMSWS data format is dependent on the type supported

by the service.

• Scalability: VIBE is based on J2EE, RMI technology and has a multi-tiered

architecture which allows it to be scalable and extensible. SDMSWS workflow

editor currently has a primitive architecture that provides support for limited

number of services.

• Access to Data: Results of workflow runs are stored in the database and can be

retrieved later. In SDMSWS results are stored as files on the client side.

• Processing: VIBE has the ability to distribute the application layer in the

architecture to improve system performance [34].

65

5.6 BINGO

BINGO [35] is a three-dimensional graphical environment for sequence analysis and

structure modeling. The purpose of BINGO is to develop a platform where software tools

can communicate with each other by streamlining their inputs and outputs. It offers a

platform for integrating bioinformatics software tools and databases with graphic

analysis. The software tools are connected with various databases to automate complex

computations, where the results can interact in real time with graphical analysis system.

Different workflow threads can be created in BINGO workflow environment.

Figure 5.4. BINGO Workflow Environment

66

The architecture consists of:

• BINGO workflow: Used to create complex job threads. Each node in a chart is a

scientific software tool. The input and output of different nodes can be connected

so that the output from one program can be used as input for another. The job

thread can be saved and invoked later.

• JGRASP: JGRASP [35] is for three-dimensional visualization of molecular

structure and sequences. With the built-in Java version of Delphi, JGRASP runs

on any machine including applets from web pages.

• Alignment Editor: This component is for visualization of multiple sequence

alignment in several sequences formats.

5.6.1 Comparison Matrix

 SDMSWS BINGO

 End-User Issues

 Usability
 1
 (Easy to install and use)

 4
 (Needs Expertise)

 Workflow Issues

 Workflow Type

 Composition Tool

 Workflow Automation

 Linear
 Scientific Workflows

 Swing Workflow Editor

 Yes, Save and Reuse WF

 Linear
 Scientific Workflows

 Java-Based Editor

Yes, Save and Reuse WF
 Service Issues

 Technology/Standards

 Service Oriented

 SOAP, UDDI, WSDL

 Yes, Web Service based

 Java, Databases

 No, Proprietary Services

Table 5.5. SDMSWS Vs BINGO

67

Table 5.5. (Continued)

 Network-Based Issues

 Network Based Yes No
 Other General Issues

 Commercial

 Product Type

 Open Source

 Platform

 No, Research Use

 Prototype

 Yes

 All Platforms

 No, Research Use

 Prototype

 Yes

 SGI 6.5, Intel Linux and
 Sun Solaris

Some comparative issues between SDMSWS and BINGO are:

• Service Components: BINGO supports only those applications in workflows that

are customized to run in its environment. It uses the tools available in the Jackal

Package [35]. SDMSWS workflow editor can incorporate any service based on

standard Web Service protocols and descriptions.

• Visualization: BINGO has visualization modules that can be used for three-

dimensional view of data.

• Workflow Save and Retrieve: In BINGO workflows can be saved and invoked

later saving time for repetitive invocation of the same workflow. SDMSWS

workflow editor has similar features.

• Scalability: Scalability in BINGO is supported by providing modules to plug-in

new components in the workflow environment.

• Platform Support: The strength of BINGO is its visualization feature, which is

supported well by the processing capability of SGI machines.

68

5.7 Workflow based Architecture to support Scientific Applications
(WASA)

The WASA [36] project was aimed at providing a workflow based integrated

environment for advanced applications in a variety of domains, including life sciences.

The first WASA architecture (1994-1996) was based on layers of distinct functionality,

each of which consisted of a set of components. The defined layers were, The User

Interface layer (for designing workflows, data manipulation, visualization and runtime

monitoring), Internal Tool Layer (for workflow engine), Enhanced Database

Functionality Layer (for advanced functionality in system-independent way) and the

Database Layer. The second WASA prototype (1994-1996) was based on client-server

architecture. The workflow engine was a multi-threaded Java program that read workflow

specifications from a relational database, instantiated workflows and controlled the

execution of workflows. Users accessed the workflow management system using

standard Web Browsers as workflow clients. Also, workflows contained sub workflows.

When a complex workflow was launched, only that sub workflow was started that had to

go first, subsequent ones were only retrieved from the database when needed. The latest

prototype architecture is based on CORBA (Common Request Broker Architecture) [37]

and java with features like workflow modeling and execution, reuse of workflow

schemas and distributed workflow execution. Workflows are implemented as CORBA

objects, which communicate with each other by sending and receiving messages using an

object request broker. The use of object-oriented technology achieves interoperability

between applications that are components of a workflow system.

69

5.7.1 Comparison Matrix

 SDMSWS WASA

 End-User Issues

 Usability

 Human-Centric

 1
 (Easy to install and use)

 Yes, Partial Support

 1
 (Easy to install and use)

 Yes
 Workflow Issues

 Workflow Type

 Composition Tool

 Workflow Automation

 Linear
 Scientific Workflows

 Swing Workflow Editor

 Yes, Save and Reuse WF

 Scientific Workflows

 Swing or Applet Editor

Yes, Save and Reuse WF
 Service Issues

 Technology/Standards

 Service Oriented

 SOAP, UDDI, WSDL

 Yes

 CORBA, Databases

 No, CORBA Objects
 Network-Based Issues

 Network Based Yes Yes
 Other General Issues

 Commercial

 Product Type

 Open Source

 Platform

 Scalability

 No, Research Use

 Prototype

 Yes

 All Platforms

 Yes, can incorporate any
 Web Service

 Yes

 Prototype

 No

 All Platforms

 Yes, use of CORBA
 Middleware architecture
 to support scalability

Table 5.6. SDMSWS Vs WASA

Following are some comparative issues between WASA and SDMSWS:

70

• Workflow Execution: In WASA the CORBA infrastructure allows the assignment

of workflow objects to different servers. Parts of workflow can communicate and

exchange messages. This allows controlling workflows in a fully distributed way

without the need of a centralized workflow engine. SDMSWS has a central

workflow engine that governs the execution of a workflow.

• Workflow Components: WASA supports only those applications in workflows

that are specific technology (CORBA) based.

• Workflow Clients: Web browsers interpreting java applets or stand-alone java

applications are used as workflow clients. SDMSWS uses the swing workflow

editor as the workflow client.

• Application Integration: In WASA support for integration of domain specific

applications is based on a common interface definition (Interface definition

Language) standard. In SDMSWS the use of standard interoperability protocols

and technologies leverage the task of domain specific application integration.

• Runtime Modification: Using explicit modeling of states of workflow instances,

WASA can implement dynamic runtime modification of workflow parameters

[36]. SDMSWS workflow environment allows for modification of workflow

component attributes during the run time of the workflow at break points, which

occur in between the tasks.

• Architecture Scalability: Scalability is WASA is supported by the use of CORBA

middleware architecture, which accommodates various CORBA objects.

71

5.8 GeneFlow

GeneFlow [38] is a scientific workflow tool based on the METEOR (Managing End-To-

End OpeRations) [39] workflow management framework. It is a workflow system for

automating many aspects of genome data analysis in a collaborative research

environment. The system is designed to leverage the power of the Web to tie together the

various activities of data generation and analysis at multiple facilities. GeneFlow consists

of a number of software modules that carry out a particular function or set of functions.

These modules are being developed in Java and Perl programming languages. The

modules are designed such that it can be integrated into workflows using the METEOR

workflow management system.

Workflow management techniques developed in the METEOR project at the LSDIS lab

are intended to reliably support large-scale, complex and adaptive workflow applications

in real-world multi-enterprise heterogeneous computing environments [38]. It

coordinates, controls, monitors workflows consisting of automated/semi-automated tasks

and the information flowing between them. It addresses several open issues like

transactional workflows, interoperability via CORBA and/or Java, familiar easy-to-use

interfaces (Web browsers), easy-to-use graphical design tool, and multi-paradigm

workflows. Few of the technical capabilities of METEOR include [39]:

• Comprehensive modeling supporting by METEOR's workflow model with its

approach to specify human and automated tasks and intertask dependencies, and a

comprehensive graphical designer.

72

• Scalability and robustness, enabled by fully distributed architecture and

scheduling.

• Rapid development of complex applications for dynamic businesses, enabled by

automatic code generation from the specification provided graphically. Support

for enterprise wide and multi-enterprise environments.

• Basic interoperability, security and exception handling and recovery

METEOR can be used to create workflows visually, by using a graphical "drag and drop"

utility. METEOR is web enabled giving access to the components of the workflow.

Figure 5.4 depicts the METEOR graphical workflow building utility showing a number

of GeneFlow modules linked together in a workflow. Each component is a module

performing a task.

Figure 5.5. GeneFlow Workflow Environment

73

5.8.1 Comparison Matrix

 SDMSWS GeneFlow

 End-User Issues

 Human-Centric Yes, Partial Support Yes, Partial Support
 Workflow Issues

 Workflow Type

 Composition Tool

 Workflow Automation

 Linear
 Scientific Workflows

 Swing Workflow Editor

 Yes, Save and Reuse WF

 Linear & Non-Linear
 Scientific Workflows

 METEOR Workflow
 Wfms

Yes, Save and Reuse WF
 Service Issues

 Technology/Standards

 Service Oriented

 SOAP, UDDI, WSDL

 Yes, Web Service based

 Java, CGI, Perl

 No
 Network-Based Issues

 Network Based Yes Yes
 Other General Issues

 Commercial

 Product Type

 Open Source

 Platform

 No, Research use

 Prototype

 Yes

 All Platforms

 Yes

 Prototype

 No

 All Platforms

Table 5.7. SDMSWS Vs GeneFlow

Following are some comparative issues between SDMSWS and GeneFlow:

• Workflow Construction: GeneFlow can be used to construct workflow templates

(Figure 5.2), using the METEOR Wfms, where components represent certain

74

work to be performed. SDMSWS framework has a Swing based workflow editor

component with similar functionality that assists in workflow creation and

execution.

• Service Support: Modules supported in the workflow are java and Perl based and

are designed to work in the METEOR workflow environment.

• Non-Linear Workflows: Geneflow supports construction of both linear and non-

linear workflows. The current SDMSWS workflow tool supports only linear

workflows.

• Network Based Workflow Execution: GeneFlow workflow can consist of

components running on any machine in a network.

5.9 Bioinformatics Workflow and Data Management System
(GeneBeans)

GeneBeans [40] is a problem-solving environment for mining databases. The goal of the

project is to, (1) improve the usability and increase the functionality of bioinformatics

query systems and (2) provide tools by implementing a graphical dataflow-programming

interface. The system lets biologists deal with high-level components that can be

connected to form queries. There is support for branching networks of nodes, as well as

traditional pipeline constructions. The GeneBeans system uses a three-layer architecture:

(1) user interface, for workflow composition of components that perform specific

querying on the database, (2) a dataflow engine that executes commands on data retrieved

from the database and (3) a database (or several federated data sources). Session beans

combined with database support decide exactly what data and algorithms are used to run

75

a particular experiment. They will efficiently run a new analysis that is a variant on one

previously computed, without recomputing intermediate results. EJBs provide for

resource sharing, increasing the performance of a tool that makes many short-lived

connections to a database. They support a modular architecture, which will extend the

servers with new components to be composed into analyses [40].

5.9.1 Comparison Matrix

 SDMSWS GeneBeans

 End-User Issues

 Human-Centric Yes, Partial Support Yes, Partial Support
 Workflow Issues

 Workflow Type

 Composition Tool

 Workflow Automation

 Linear Scientific
 Workflows

 Swing Workflow Editor

 Yes, Save and Reuse
 of Workflows

 Linear & Non-Linear
 Scientific Workflows

 Applet Workflow Editor

 Yes, Save and Reuse
 of Workflows

 Service Issues

 Technology/Standards

 Service Oriented

 SOAP, UDDI, WSDL

 Yes, Web Service based

 EJB’s, Database
 WebSphere App Server

 No, Proprietary Tools
 Network-Based Issues

 Network Based Yes No, Intranet-Based

Table 5.8. SDMSWS Vs GeneBeans

76

Table 5.8. (continued)

 Other General Issues

 Commercial

 Product Type

 Open Source

 Platform

 No, Research Use

 Prototype

 Yes

 All Platforms

 No, Research Use

 Prototype

 No

 All Platforms

Following are some comparative issues between SDMSWS and GeneBeans:

• Usability: Provides a graphical dataflow interface that shields technological

details from end users. SDMSWS is based for similar purposes.

• Non-Linear Workflows: GeneBeans supports construction of non-linear

workflows.

• Workflow Components: In GeneBeans nodes in a workflow are connected to

form complex database queries. The query modules are designed and developed

to execute only within the GeneBeans workflow editor.

5.10 Conclusions

Most of the tools and products discussed in this chapter either support scientific

workflows or assist document exchange and application integration through workflows in

the business-to-business industry. Their comparison with respect to SDMSWS was based

on the functionality they have in common.

77

The most significant observation, among others, resulting from the comparative analysis

reveals that our framework minimizes the need for customization and integration of new

component workflow services, and it shows that, unlike commercial solutions, it is

relatively independent of the service domains and can incorporate any network-based

service that conforms to standard Web Services description and protocols. WSAD IE

supports Web Service based workflow composition but the participating components are

servicized within its framework. All other tools have proprietary services that are

dependent on the specific environment they were composed to run in. Other advantages

of the SDMSWS workflow environment are that it is platform independent, open source

and available in the public domain as freeware.

It is the finding of this work that complex distributed scientific workflows can be, and

should be, supported using open-source service-based solutions. However, based on these

factors it would be premature to conclude on the effectiveness and contribution of

SDMSWS framework to the scientific community. It has many open research issues, as

discussed in the following chapter, that when investigated and incorporated with the

current infrastructure, we believe, will contribute substantially to the use of Web Services

by the scientific research community.

78

6 Conclusions

This thesis studied the feasibility, usability and effectiveness of the Scientific Data

Management Service Workflow System (SDMSWS) architecture, which eases the access

to scientific data and solutions, and manipulation and analysis of the same, with an

interactive GUI-based workflow construction and execution environment that supports

the Web Services framework. The work illustrates how the defined architecture extends

by facilitating integration of diverse domain specific components. Finally, the framework

assessment was performed based on problem solving environment metrics, and

SDMSWS was compared against commercial standards and research solutions driven by

similar goals. We first present a summary of achievements followed by an overview of

the open research issues. We end this chapter with a brief overview of some technologies

that are representative of the current state of Web Services and bioinformatics research.

6.1 Summary

We developed the SDMSWS framework to achieve two goals: (1) to have a workflow

construction and execution framework that creates workflows using the services

registered with the registry and (2) to use the framework as a means of extending the

bioinformatics environment, integrating diverse domain specific specialized services. To

achieve these goals, research tools developed by scientists are registered as services with

the UDDI registry. The idea of having a service registry that holds the details about

services is to reduce the overhead on the scientists of searching for data acquisition and

79

analysis resources. Service descriptions such as methods implemented, input and output

parameters and other details are described in a WSDL file that is published to the UDDI

registry. Any organization interested in using a service can bind to it using the

information available at the UDDI and the WSDL description of the service. This also

allows for easy and timely update of the service descriptions that can propagate to all

users quite rapidly. The GUI-based workflow construction and execution editor lets the

end user define tasks and associate them with services. The user inputs the necessary

information regarding the service. Once the workflow starts executing, each task

(service) reads the parameters, creates a SOAP call and invokes the appropriate service.

Workflows could be of the two types, first where human intervention is needed to

analyze the input and output parameters, for some tasks to execute, and second where the

workflow executes the tasks in the sequence from start to stop without any interruption.

We were successfully able to implement a set of services constructed for a bioinformatics

workflow. We also tested, in a limited way, the extensibility of the framework by

describing and integrating other domain specific tools.

6.2 Future Developments

There are a number of additional features and architectural developments that could

extend and evolve SDMSWS framework:

• The most pressing task is to develop a domain independent, robust workflow

engine that will incorporate workflows from all areas of scientific research. In

80

particular there is immediate need for supporting composition and execution of

complex workflows.

• Incorporate a standard formal language or methodology to support description,

sequencing and ordering of workflow components.

• The current workflow framework does not support validation and verification of

the workflow description. This can be incorporated using workflow grammars

like Web Services Flow Language (WSFL) or XLANG, or a combination of both.

• Provide documentation of the workflow for better understanding of the domain

science issues.

• Possible description of a generic abstract workflow specification language that

can be mapped and converted to an executable format. [Work in progress at San

Diego Super Computer Center as part of the SciDAC [52] project].

• Import other Genetics and Bioinformatics workflow examples into the SDMSWS

system, adapt to fit, and generalize.

• Build and maintain a library of complex workflows that are designed over time.

• Incorporate the construction and execution of complex works not just linear.

Workflows that are like acyclic graphs.

• Optimize the resource utilization and perform load balancing by parallelizing the

execution of tasks/services on numerous processors.

• Provide storage, query, retrieval and security of data, both archive and current,

that is generated as part of the workflow execution.

81

In the implementation and experimentation domain the work that needs to be done is to

field test SDMSWS architecture and implement workflows from diverse areas of

scientific research. Such experiments in other areas will help determine the true

applicability, scalability and usefulness of the SDMSWS framework.

6.3 Latest in Technology and Possible Research Areas

6.3.1 Open Grid Service Architecture

One of the architectures that uses the Web Services technology is the Open Grid Service

Architecture (OGSA) [43] architecture. Open Grid Service Architecture integrates

services across distributed and heterogeneous organizations. This integration is

challenging because of the need to achieve various qualities of service (QOS) when

running from various native platforms. The OGSA is based on the concepts and

technologies from the GRID [42] and Web Services. This architecture defines uniform

exposed service semantics (the grid service) and defines standard mechanisms for

creating, naming and discovering transient Grid services instances. It provides location

transparency and multiple protocol bindings for service instances and supports integration

with underlying native platform facilities [43]. In OGSA, Grid technology is aligned with

Web Services technologies to achieve service description and discovery and automated

generation of client and server service descriptions. It also defines, in terms of WSDL,

interfaces and mechanisms required for creating and composing distributed systems.

82

Service bindings can support reliable invocation, authentication, authorization, and

delegation.

6.3.2 Web Services Flow Language (WSFL)

The goal of Web Services workflow is to enable integration across distributed

environments and organizations that make use of many Web Services. The Web Services

Flow Language (WSFL) is a proposed standard from IBM that addresses workflows on

two levels [44]:

• It supports a directed-graph model approach to defining and executing processes.

• It defines a public interface that allows processes to advertise themselves as Web

Services.

 End-User Workflow Engine

Figure 6.1. Flow Model

 Workflow Clusfavor

 Genbank

 Blast

 Transfac Result

83

Figure 6.1 provides a basic example of a simple scientific workflow process discussed in

chapter 3. It is an example of a directed-edge graph where lines connecting activities

indicate the flow of processing control between activities. The workflow engine can

incorporate WSFL and process tasks in the workflow in a defined sequence. This will

help defining the sequence and ordering of tasks upfront. WSFL could be a potential

substitute for the current native workflow engine language in the SDMSWS workflow

editor. In a recent development in the area of workflow grammars, IBM and Microsoft

have collaborated to propose a workflow language called BPEL4WS [58], which is

conceptualized in ways from WSFL and XLANG [47].

6.3.3 Web Services Conversation Language (WSCL)

As part of the continuing work based on the extension of Web Services technologies,

comes another XML based workflow definition grammar called Web Services

Conversation Language. “WSCL allows the abstract interfaces of Web Services,

implying business level conversations or public processes supported by a Web Service, to

be defined. WSCL specifies the XML documents being exchanged, and the allowed

sequencing of these document exchanges. WSCL conversation definitions are themselves

XML documents and can be interpreted by Web Services infrastructures and

development tools. It can work in conjunction with other service description languages

like WSDL. It could also be used to provide protocol-binding information for abstract

interfaces, or to specify the abstract interfaces supported by a concrete service. The

84

purpose of WSCL is to provide and define the minimal set of concepts necessary to

specify conversations” [45].

WSCL supports a formal approach to describe business level conversations, which is

based on XML, with the expectation that it will be extended for more complex Web

Services frameworks involving multiple participants. A key advantage of WSCL over

other formal specification languages is that it facilitates the creation of service

frameworks that will enable service implementers to offload the responsibility for

conversation-based tasks to the underlying implementation. A service developer could

create WSCL specifications documenting their service’s abstract interface and make it

available to potential users. A software developer could then use WSCL-compliant Web

Services servers and tools that provide document type validation, conversation tracking,

and message dispatching to the application logic, and other such functionality. Web

Services developers will be supported by tools that will allow them to map the

interactions outlined in the conversation definition to any existing application [45].

6.3.4 BizTalk

BizTalk [46] a product from Microsoft primarily focuses on enabling businesses to

exchange data from disparate data sources, standards and technologies. The exchange of

data is dependent on a framework that is based on industry standard XML. Some features

that BizTalk provides to the business community are [46]:

85

• Enterprise Application Integration: It enables interoperability between

applications within an enterprise making it possible for companies to have

existing applications communicate with each other without the need to completely

rewrite those applications.

• Business-to-Business Integration: It provides for businesses to communicate and

send documents to each other in a variety of means, such as Hypertext Transition

Protocol (HTTP), Secure Sockets Layer (SSL) and File Transport Protocol (FTP).

• Process Orchestration: Business analysts can define the business process of how

the communication must take place All of the modeling of the business process is

defined and compiled into a special XML document, known as the XLANG [47].

• Workflow Development Environment: Workflow represents a process involving a

number of participants, within an organization, exchanging information.

6.3.5 Open Source Workflow Projects

• OSWorkflow: OSWorkflow [59] is an open-source workflow system that allows

users to create and deploy workflows. It can be considered a low-level workflow

implementation. For example, loops, conditions, and processes or tasks that might

be represented by a graphical icon in other workflow systems must be coded in

OSWorkflow using some scripting language. An XML description that conforms

to the OpenSymphony [59] Document Type Definition (DTD) is translated into a

workflow process. The workflow engine uses this description to execute

processes or tasks.

86

• OFBiz: OFBiz (Open for Business) [60] is a comprehensive open source project

for doing business online. This product has tools to compose and execute business

workflows. OFBiz uses XML Process Description Language (XPDL) [62] as its

process definition language. XPDL is an open standard.

• OBE (Open Business Engine): The Open Business Engine [61] is an open source

workflow engine written in Java. It provides an environment for executing

activities in a controlled and centralized environment. It consists of many

components namely, OBE core for support libraries, OBE runtime engine that

executes workflows, OBE client API, OBE designer for composing workflows

and OBE servers that control the complete workflow environment.

Certain functionalities of these open source workflow projects look promising, and can

be incorporated in parts in the development of workflow environments like the

SDMSWS.

6.3.6 Bio* projects

Bio* projects [49] is a series of freely available open-source projects, in which software

engineers have developed re-usable code libraries in different programming languages

like Perl, Java, Python and LISP. These libraries automate common bioinformatics tasks

and provide methods for importing and exporting data between data sources. For

example, to fetch a piece of data from a database, the bioinformatists use the Bio*

libraries to do the fetch, put the information in a standard format, and return the

87

reformatted data to their script. The Bio* libraries though have not solved the problem of

the brittleness of online data sources. As soon as the structure of the web pages changes,

the Bio* library fails and has to be patched up using the adapter modules available for

each of the online resource [50].

6.3.7 Discovery Link - IBM’s Life Sciences Framework

IBM’s, Discovery Link [51] solutions is based on open standards including Web Services

standards like Simple Object Access Protocol (SOAP), XML, WSDL, and databases,

which allow services and products from multiple vendors to work together to form

comprehensive life sciences computing solutions. It promotes efficient application

development through component technology and code reuse decreasing the amount of

time and resources necessary to develop new applications. Applications can run on open,

standards-based systems. This framework provides for knowledge management, data

integration, high-performance computing and storage services needed for life sciences

research laboratories. It provides [51]:

• Knowledge management tools to transform data into information.

• Data integration tools for analyzing information extracted across varied resources

and diverse data domains.

• High-performance computing for modeling, simulation and visualization.

• Storage and retrieval technologies.

• Support and improved performance for scientific workflows.

88

References

[1] Enrique Castro “A perspective on Web Services”, WebServices.Org, 18/02/2002.

http://www.webservices.org/index.php/article/articleview/113/1/61

[2] E. Gallopoulos, E. Houstis and J. Rice. Computer as Thinker/Doer: Problem-Solving

Environments for Computational Science, IEEE Computational Science and Engineering,

summer 1994.

[3] John R. Rice and Ronald F. Boisvert, From Scientific Software Libraries to Problem

Solving Environments, IEEE Computational Science and Engineering Magazine, fall

1996, pp. 44-53.

[4] Balay R.I, Vouk M.A., Perros H., "Performance of Network-Based Problem-Solving

Environments," Chapter 18, in Enabling Technologies for Computational Science

Frameworks, Middleware and Environments, editors Elias N. Houstis, John R. Rice,

Efstratios Gallopoulos, Randall Bramley, Hardbound, ISBN 0-7923-7809-1, 2000

[5] Ken Brodlie, Andrew Poon, Helen Wright, Lesley Brankin, Greg Banecki and Alan

Gay, GRASPARC – A Problem Solving Environment Integrating Computation and

Visualization. IEEE Conference, 1993.

[6] Nathan A. DeBardeleben, Walter B. Ligon, Sourabh Pandit and Dan C. Stanzione Jr.

Coven: a Framework for High Performance Problem Solving Environments, IEEE

International Symposium on High Performance Distributed Computing HPDC-11 2002.

[7] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,

Satish Thatte, Dave Winer and Henrik Nielsen. “Simple Object Access Protocol (SOAP)”

08-May-2000. http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

http://www.webservices.org/index.php/article/articleview/113/1/61
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

89

[8] Universal Description, Discovery and Integration, Executive White Paper, 14-Nov-

2001, http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf

[9] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana “ Web

Services Description Language (WSDL)”, 15-Mar-2001, http://www.w3.org/TR/wsdl

[10] Tim Bray, Jen Paoli, C. M. Sperberg-McQueen, Eve Malor “Extensible Markup

Language (XML) 1.0, 6-Oct-2000, http://www.w3.org/TR/REC-xml

[11] Singh M.P., Vouk M.A., "Scientific workflows: scientific computing meets

transactional workflows," Proceedings of the NSF Workshop on Workflow and Process

Automation in Information Systems: State-of-the-Art and Future Directions, Univ.

Georgia, Athens, GA, USA, 1996.

[12] Christophe Coenraets, Web Services: Building the next generation of E-Business

applications, 2-Oct-2001.

http://www.javaworld.com/white-paper/macromedia-webservices-021202.pdf

[13] Doug Tidwell, Web Services: The Web’s next Revolution.

https://www6.software.ibm.com/developerworks/education/wsbasics/wsbasics-a4.pdf

[14] Qusay H. Mahmoud. Registration and Discovery of Web Services, June 2002.

http://developer.java.sun.com/developer/technicalArticles/WebServices/jaxrws/

[15] Axis, A SOAP implementation, http://xml.apache.org/axis/

[16] IBM WSTK 2.3 http://www.alphaworks.ibm.com/tech/webservicestoolkit/

[17] Apache Tomcat http://jakarta.apache.org/tomcat/tomcat-4.0-doc/index.html

[18] WebSphere Studio Application Developer Integration Edition 4.0, Services:

Definition, Binding, Invocation, IBM Services Group.

http://www7b.software.ibm.com/wsdd/library/presents/AppDevIE_Training.html

http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/REC-xml
http://www.javaworld.com/white-paper/macromedia-webservices-021202.pdf
http://developer.java.sun.com/developer/technicalArticles/WebServices/jaxrws/
http://xml.apache.org/axis/
http://www.alphaworks.ibm.com/tech/webservicestoolkit/
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/index.html
http://www7b.software.ibm.com/wsdd/library/presents/AppDevIE_Training.html

90

[19] Cluster and Factor Analysis with Varimax Orthogonal Rotation: CLUSFAVOR

http://mbcr.bcm.tmc.edu/genepi/ 2002.

[20] National Center for Biotechnology Information: NCBI GenBank

http://www.ncbi.nlm.nih.gov/Genbank/index.html 2002.

[21] Basic Local Alignment Search Tool: BLAST Basic Overview

http://www.ncbi.nlm.nih.gov/BLAST/blast_overview.html 2002.

[22] TRANSFAC - The Transcription Factor Database

http://transfac.gbf.de/TRANSFAC/

[23] Ling Liu, Calton Pu, Wei Han, David Buttler, Henrique Paques, Wei Tang. XWRAP

Java Wrappers http://www.cc.gatech.edu/projects/disl/XWRAPElite

[24] “What is bioinformatics” http://www.ncbi.nlm.nih.gov/Education/

[25] Volker Turau, Transforming relational databases into XML documents. DB2XML

1.4, http://www.informatik.fh-wiesbaden.de/~turau/DB2XML/

[26] Thomas E. Potok, Mark Elmore, Joel Reed, Nagiza Samatova and Nenad Ivezic.

“VIPAR: Advanced Information Agents discovering knowledge in an open and changing

environment”.

[27] O. Lassila, R. Swick. “Resource Description Framework (RDF) Model and Syntax

Specification”, W3C Recommendation, 22-Feb-1999, http://www.w3.org/RDF/

[28] Thomas E. Potok, Nagiza Samatova and Nenad Ivezic. An Ontology based HTML to

XML Conversion Using Intelligent Agents. 35th Annual Hawaii International Conference

on System Sciences (HICSS ’02).

http://mbcr.bcm.tmc.edu/genepi/
http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://www.ncbi.nlm.nih.gov/BLAST/blast_overview.html
http://transfac.gbf.de/TRANSFAC/
http://www.cc.gatech.edu/projects/disl/XWRAPElite
http://www.ncbi.nlm.nih.gov/Education/
http://www.informatik.fh-wiesbaden.de/~turau/DB2XML/
http://www.w3.org/RDF/

91

[29] S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein, J. Broekstra, M.

Erdmann, I. Horrocks, The Semantic Web: The roles of XML and RDF, IEEE Internet

Computing, Vol. 4(5), Sept/Oct 2000.

[30] Ranieri Baraglia, Renato Ferrini, Domenico Laforenza, Meta: A Web-based

Metacomputing Environment to build a Computational Chemistry Problem Solving

Environment, Parallel, Distributed and Network-based Processing, 2002.

[31] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Nell Rehn, Mike

Russell. Designing Grid Based Problem Solving Environments and Portals, System

Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference, 2001

[32] I-Flow Architecture White Paper

http://www.i-flow.com/about_iflow/white_papers/InterstageiFlowWP.pdf

[33] TurboBench, http://www.turbogenomics.com/products/turbobench_overview.html

[34] VIBE: Visual Integrated Bioinformatics Environment, Incogen Inc.

http://www.incogen.com/vibe/VIBE_WhitePaper.pdf

[35] Jason Z.Xiang, BINGO “Graphical Environment for Sequence Analysis and

Structure Modeling” http://trantor.bioc.columbia.edu/~xiang/bingo/

[36] M. Weske, G. Vossen: The WASA Project: A Survey; in presented at 1st European

Workshop on Workflow and Process Management 1998, Zurich, October 1998.

[37] OMG, The Common Object Request Broker. http://www.omg.org/

[38] David Hall and John Miller, GeneFlow http://gene.genetics.uga.edu/workflow/

[39] Krys Kochut, John Miller, Amit Seth. Meteor (Managing End-to-End OpeRations)

http://lsdis.cs.uga.edu/proj/meteor/meteor.html

http://www.i-flow.com/about_iflow/white_papers/InterstageiFlowWP.pdf
http://www.turbogenomics.com/about/background.html
http://www.incogen.com/vibe/VIBE_WhitePaper.pdf
http://trantor.bioc.columbia.edu/~xiang/bingo/
http://www.omg.org/
http://gene.genetics.uga.edu/workflow/
http://lsdis.cs.uga.edu/proj/meteor/meteor.html

92

[40] Jeffrey L. Brown, Thomas C. Hudson, Ann E. Stapleton, Jim Blum, Sridhar

Narayan, Gene Tagliarini, Ron Vetter and Kenisha V. Johnson. GeneBeans,

http://people.uncw.edu/hudsont/publications/ismb02.html

[41] Lightweight Directory Access Protocol (LDAP) http://www.openldap.org/

[42] Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance Computing

Applications, 2001, www.globus.org/research/papers/anatomy.pdf

[43] Ian Foster, Carl Kesselman, Jeffrey M. Nick, Steven Tuecke “The Physiology of the

Grid – An Open Grid Services Architecture for Distributed Systems Integration”

[44] James Snell “Introducing the Web Services Flow Language”.

[45] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh Chopella,

Kannan Govindarajan, Alan Karp, Haruni Kuno, Mike Lemon, Gregory Pogossiants,

Shamik Sharma, Scott Williams, WSCL 1.0, 14-Mar 2002.

[46] Empowering small and medium sized businesses to compete in the e-Marketplace

http://www.internosis.com/aboutus/News/articles/bts_white_paper.pdf

[47] Satish Thatte “XLANG- Web Services for Business Process Design”, 2001

[48] IBM International Technical Support Organization (IBM Redbooks) Workflow and

Image Library: FlowMark and VisualInfo with Windows. IBM 08/96

[49] The Open Bioinformatics Foundation http://www.open-bio.org/

[50] Lincoln Stein “Creating a Bioinformatics Nation” http://bio.oreilly.com/

[51] Discovery Link - IBM’s Life Sciences Framework, 2002

http://www-3.ibm.com/solutions/lifesciences/solutions/discoverylink.html

[52] Scientific Data Management Center, http://sdm.lbl.gov/sdmcenter/

http://people.uncw.edu/hudsont/publications/ismb02.html
http://www.openldap.org/
http://www.globus.org/research/papers/anatomy.pdf
http://www.internosis.com/aboutus/News/articles/bts_white_paper.pdf
http://www.open-bio.org/
http://bio.oreilly.com/
http://www-3.ibm.com/solutions/lifesciences/solutions/discoverylink.html
http://sdm.lbl.gov/sdmcenter/

93

[53] Vouk, M. A., R. Balay, and J. Ambrosiano, 1995: EDSS - An Environment for

Large-Scale Numerical Computing and Decision Making. International IFIP/WG 2.5

Workshop on Current Directions in Numerical Software and High Performance

Computing, Kyoto, Japan, October 16-17.

[54] Lurch M, Kafura D, Symphony – a Java based Composition and Manipulation

Framework for Computational Cluster. Computing and the Grid 2nd IEEE/ACM

International Symposium CCGRID2002, 2002

[55] Balay R., M. A. Vouk, H. Perros " A Lightweight Software Bus for Prototyping

Problem Solving Environments", Systems Engineering Conference, Las Vegas, 1996.

[56] Designing grid-based problem solving environments and portals

Von Laszewski G., Foster I., Gawor J., Lane P., Rehn, N., Russell M.,

System Sciences, 2001. 34th Annual Hawaii International Conference on, 2001

[57] “Activity Networks: Project Planning & Control by Network Models,” by Salah E.

Elmaghraby, November 1977, Wiley, John & Sons, Inc., and Elmaghraby S.E., "On

generalized activity networks," J. Ind. Eng., Vol. 17, 621-631, 1966]

[58] Francisco Curbera, Goland, Klein, Leymann, Roller, Weerawarana and Thatte

Business Process Execution Language for Web Services, 31 July 2002

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

[59] OSWorkflow – OpenSymphony, http://www.opensymphony.com/osworkflow/

[60] OFBiz – The Open for Business Project, http://www.ofbiz.org/

[61] OBE – Open Business Engine, http://www.openbusinessengine.org/index.html

[62] XML Process Definition Language (XPDL), Workflow Management Coalition

Specification May 22, 2001, http://www.wfmc.org/standards/docs/xpdl_010522..pdf

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.opensymphony.com/osworkflow/
http://www.ofbiz.org/
http://www.openbusinessengine.org/index.html
http://www.wfmc.org/standards/docs/xpdl_010522..pdf

94

Appendix A: List of Tools Surveyed

1. WebSphere Application Development Integration Edition 4.0: WSAD IE is a

commercial product from IBM. Services: Definition, Binding, Invocation, IBM

Services Group.

http://www7b.software.ibm.com/wsdd/library/presents/AppDevIE_Training.html

2. i-Flow, Fujitsu Software Corporation http://www.i-flow.com/index.htm

3. BizTalk, Microsoft Corporation http://www.microsoft.com/biztalk/

4. BEA WebLogic Collaborate 2.0

http://edocs.bea.com/wlintegration/v2_0/collaborate/workflow/index.htm

5. TurboBench http://www.turbogenomics.com/products/turbobench_overview.html

6. VIBE: Visual Integrated Bioinformatics Environment, Incogen Inc.

http://www.incogen.com

7. Jason Z.Xiang, BINGO “Graphical Environment for Sequence Analysis and

Structure Modeling” http://trantor.bioc.columbia.edu/~xiang/bingo/

8. The WASA Project: Flexible Workflow Management

http://dbms.uni-muenster.de/menu.php3?item=projects

9. GeneFlow http://gene.genetics.uga.edu/workflow/

10. Meteor (Managing End-to-End OpeRations). Krys Kochut, John Miller, Amit

Seth. http://lsdis.cs.uga.edu/proj/meteor/meteor.html

11. GeneBeans: a bioinformatics workflow and data management system

http://people.uncw.edu/hudsont/publications/ismb02.html

http://www7b.software.ibm.com/wsdd/library/presents/AppDevIE_Training.html
http://www.i-flow.com/about_iflow/white_papers/InterstageiFlowWP.pdf
http://www.microsoft.com/biztalk/
http://edocs.bea.com/wlintegration/v2_0/collaborate/workflow/index.htm
http://www.turbogenomics.com/about/background.html
http://www.incogen.com/
http://trantor.bioc.columbia.edu/~xiang/bingo/
http://dbms.uni-muenster.de/menu.php3?item=projects
http://gene.genetics.uga.edu/workflow/
http://lsdis.cs.uga.edu/proj/meteor/meteor.html
http://people.uncw.edu/hudsont/publications/ismb02.html

95

12. WIDE: Workflow on Intelligent Distributed database Environment

http://dis.sema.es/projects/WIDE/

13. Panta Rhei: Workflow Research at the University Klagenfurt

http://www.ifi.uni-klu.ac.at/ISYS/JE/Projects/Workflow/

14. Tom Sawyer Software Graph Editor Toolkit

http://www.tomsawyer.com/get/get-java.html

15. Graphviz – Open source graph drawing software

http://www.research.att.com/sw/tools/graphviz/

16. Flow ware: Plexus http://www.plx.com/

17. BioExchange: Enabling the Life Sciences

http://www.bioexchange.com/tools/software.cfm?start=31

18. WEAVE: Workflow to Enable Agile Virtual Environment

http://www.cs.sunysb.edu/~workflow/

19. Crossflow: Cross Organizational Workflow

http://www.darmstadt.gmd.de/oasys/projects/crossflow/index.html

20. Active Workflow: Singularity

http://www.singularity.co.uk/Our_Products/Our_Products.htm

21. Workflow: eiStream Enterprise Workflow

http://www.eastmansoftware.com/products/

22. Optix, Document Management and Workflow Systems

23. OSWorkflow http://www.opensymphony.com/osworkflow/

24. OFBiz (Open for Business) http://www.ofbiz.org/

25. OBE (Open Business Engine) http://www.openbusinessengine.org/index.html

http://dis.sema.es/projects/WIDE/
http://www.ifi.uni-klu.ac.at/ISYS/JE/Projects/Workflow/
http://www.tomsawyer.com/get/get-java.html
http://www.research.att.com/sw/tools/graphviz/
http://www.plx.com/
http://www.bioexchange.com/tools/software.cfm?start=31
http://www.cs.sunysb.edu/~workflow/
http://www.darmstadt.gmd.de/oasys/projects/crossflow/index.html
http://www.singularity.co.uk/Our_Products/Our_Products.htm
http://www.eastmansoftware.com/products/
http://www.opensymphony.com/osworkflow/
http://www.ofbiz.org/
http://www.openbusinessengine.org/index.html

	part2.pdf
	BIOGRAPHY
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES

	part3.pdf
	1 Introduction
	2 Web Service and Workflow Concepts
	3 Scientific Data Management Service Workflow System (SDMSWS)
	4 Specialized Services
	5 Framework Evaluation
	6 Conclusions
	References
	Appendix A: List of Tools Surveyed

