
 1

Beyond Discrete E-services: Composing Session-
oriented Services in Telecommunications

Vassilis Christophides1, Richard Hull2, Gregory Karvounarakis1,2, Akhil Kumar2,
Geliang Tong2, Ming Xiong2

1Institute of Computer Science, FORTH,
 Vassilika Vouton, P.O. Box 1385, GR 71110, Heraklion, Greece.

{christop, gregkar}@ics.forth.gr

2Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974.
{hull, akhil, tong, xiong}@research.bell-labs.com

Abstract. We distinguish between two broad categories of e-services: discrete
services (e.g., add item to shopping cart, charge a credit card), and session-
oriented ones (teleconference, collaborative text chat, streaming video, c-
commerce interactions). Discrete services typically have short duration, and
cannot respond to external asynchronous events. Session-oriented services
have longer duration (perhaps hours), and typically can respond to
asynchronous events (e.g., the ability to add a new participant to a
teleconference). When composing discrete e-services it usually suffices to use
a process model and engine that composes the e-services as relatively
independent tasks. But when composing session-oriented e-services, the engine
must be able to receive asynchronous events and determine how and whether to
impact the active sessions. For example, if a teleconference participant loses
his wireless connection then it might be appropriate to trigger an announcement
to some or all of the other participants. In this paper we propose a process
model and architecture for flexible composition and execution of discrete and
session-oriented services. Unlike previous approaches, our model permits the
specification of scripted “active flowcharts” that can be triggered by
asynchronous events, and can appropriately impact active sessions. We
introduce here a model and language for specifying process schemas
(essentially a collection of active flowcharts) that combine multiple e-services,
and describe a prototype engine for executing these process schemas.

1 Introduction

 The use of web-accessible e-services will revolutionize the way that many e-
commerce and consumer software applications are provided. Until now, much of the
research (e.g., see [3,6,7,18,24]) and emerging infrastructure (e.g., IBM's Web
services Toolkit, Sun's Open Net Environment and JiniTM Network technology, HP's
e-speak, Microsoft's .Net and Novell's One Net initiatives3) in e-services has been

1See www.alphaworks.ibm.com/tech/webservicestoolkit, www.sun.com/sunone,
developer.java.sun.com/developer/ products/jinni, www.e-speak.hp.com,
www.microsoft.net/net, and www.novell.com/news/onenet, respectively.

 2

focused on the composition of discrete, short-running tasks such as “add an item to a
shopping cart”, “charge a credit card” or “check the availability of tickets”. While the
APIs of such services may include several methods that can be invoked, they are
typically unresponsive or unaware of asynchronous events arising from other e-
services or from external applications. In contrast, there are several kinds of session-
oriented e-services that do need to respond to asynchronous events during their life-
cycle. Such e-services arise in telecommunications, c-commerce [4], and cross-
organizational workflows [16]. We use the term “responsive” for e-services that need
to respond to asynchronous events in their environment, and “insular” for e-services
that can be isolated from such events. This paper introduces the AZTEC framework,
which uses a new process model and architecture that enables highly flexible, scripted
handling of asynchronous events in composite e-services involving responsive
sessions.

Many e-services for telecommunication applications, such as voice calls,
teleconferences, internet-based multimedia chat or collaboration, single- or multi-
participant streaming video sessions and interactive games, are session-oriented and
responsive. For example, all of them need to respond (by shutting down) if they are
used in conjunction with a pre-paid billing account that runs out of money. It may be
desirable to impact a teleconference if a participant drops out (e.g., because they
move out-of-range of wireless connection), perhaps by informing the other
participants. Another class of examples arises when using “presence” services, which
generate messages when someone becomes present on a network (e.g., by turning on
their cell phone, or typing something on a keyboard). Presence information could be
used to automatically connect an invited participant into a teleconference, or to alert
viewers of a streaming video that an interested friend has just become present.

Moreover, the notion of collaborative commerce (c-commerce) is focused on
supporting all aspects of electronic communication and interaction between the
(human and automated) participants in commercial transactions. Many of these
interactions have long duration (ranging from a phone call to a catalog-sales company
to the month-long process of obtaining a home mortgage), and are impacted by events
generated by the involved participants, and by external applications. As just one
example, it may be useful to automatically monitor customer sessions at a web-based
storefront and proactively intervene, by enabling a sales person or product expert to
join into the session [2]. Finally, in the context of cross-organizational workflows,
sub-workflows are usually packaged as outsourced e-services. Then, an execution of a
sub-workflow may both generate and respond to multiple events [16].

To provide a framework for assembling, executing, and monitoring insular
(discrete) and responsive (session-oriented) e-services we combine elements of the
workflow and event paradigms. This combination permits a loosely coupled process
definition environment. More specifically, workflow-style constructs can be used for
specifying how to respond to a given event type, but the specifications of these
responses do not need to be embedded into a single workflow schema. This allows a
modularization of the specification of a composite e-service, in which the event
responses can be considered as logical building blocks. This is consistent with the
increasing autonomy between activities (e.g., outsourced e-services) that a web-
enabled distributed architecture can provide.

 3

Our contribution in this paper is a model, a language and an engine for creating
composite e-services involving sessions. We propose an Active Flowchart Model,
supporting the specification of process schemas (that define a composite e-service)
essentially as a collection of “active flowcharts”, i.e., flowcharts coupled with the
event types that can trigger them. The language used to define active flowcharts is
called XASC (XML-based Active Service Composition). It is XML-based in two
ways: the active flowcharts are themselves specified in XML, and the interfaces
between the flowcharts and e-services are based on SOAP XML messages [21]. The
engine is event-driven, supports explicit prioritizations between flowchart enactments,
as well as simultaneous execution of multiple process enactments. The engine forms
one component of the AZTEC system, which also provides the means for automatic
generation of process schemas using higher-level specifications.

Since the main focus of this paper is on the process model and runtime execution
engine for composite e-services involving sessions, we do not address issues such as
publishing, registering, or selecting atomic or composite e-services using emerging
technologies like UDDI (Universal Description Discovery and Integration), and
WSDL4 (Web Services Description Language). We note that AZTEC builds on top of
standards for accessing session-based telecommunications services (e.g., SIP, Parley),
and that Lucent and other providers are currently developing technologies (e.g.,
SoftSwitch, PacketIN, Flexant) that enable invocation and interaction with session-
oriented telecommunications services programmatically, i.e., as e-services.

The paper is organized as follows. Section 2 identifies key issues raised when
composing session-oriented e-services, and motivates the various elements of our
approach. Section 3 presents the Active Flowchart Model, including a high-level
specification of the XASC language and its semantics. Section 4 describes the
architecture and run-time environment of AZTEC, including both the execution
engine and the components for automated generation of process schemas. Section 5
discusses related research, and Section 6 presents our ideas for future work.

2 Motivation and Approach

This section examines more closely the fundamental issues that arise in composing
responsive, session-oriented e-services, and then describes the key components of the
approach taken by AZTEC. We introduce a representative class of composite e-
services involving sessions to provide grounding for the discussion. The example is
called “(Design your own) Smart Teleconference”, and comes from
telecommunication applications. Similar needs are also exhibited in the context of
collaborative commerce and cross-organizational workflows.

With existing technology it is possible to request that a phone-based audio
teleconference be set up, to run from a start time to an end time, with a given number
of ports (i.e., participants). This kind of teleconference supports a very limited set of
automated functions – people can join the teleconference or exit it, and perhaps the
group can request extensions of the teleconference (e.g., add 15 minutes). The charge

4See www.w3.org/TR/SOAP, www.uddi.org, and www-106.ibm.com/developerworks/library/

w-wsdl.html respectively.

 4

for the teleconference is based on the maximum number of ports requested not the
number of ports used. Adding more ports typically requires operator intervention.

Based on emerging technologies in the telephony network it will soon be possible
to dynamically assemble and invoke much richer forms of teleconferencing. In our
hypothetical Smart Teleconference application, a user will be able to request that a
multimedia teleconference be established with a given start and end time, a given set
of invited participants, a set of different interaction formats (e.g., audio bridge,
internet-based text chat, internet-based collaborative web browsing, shared view of
video streams), the use of presence services, and guidelines concerning quality of
service, costs, and billing model (e.g., pre-paid or account-based). As a particular
example, Rick may request that a smart teleconference involving an audio bridge and
possibly a text-chat bridge be set up to run between 10 AM and 12 noon, involving
five participants, namely Akhil, Geliang, Gregory, Ming, and Vassilis. A presence
service is to be used, both to identify whether an active participant loses their wireless
connection, and to automatically connect an invited participant if he/she has not been
active but becomes present on a network (e.g., by turning a wireless device on). Also,
the teleconference will be charged to Rick’s pre-paid account (which happens to have
$25 in it), and the overall expected cost is to be minimized.

In this example, during execution, there will be four sessions in operation, each
potentially interacting with the others. For example, if a participant drops from the
audio conference then the other participants might be notified through the text-chat
session. Likewise, the presence server may lead to the automated connecting of new
participants. Finally, the billing session may receive periodic updates about the
services being rendered by the other sessions, and may impact the other sessions (by
shutting them down) if the account runs dry.

In the AZTEC framework we view the sessions as being wrapped, to form session
objects with an API that includes synchronous function calls and generated events.
The wrappers would typically translate between the internal representation of
functions and events and the SOAP interface [21] supported by the e-service realizing
the session. The wrappers can also transform asynchronous function calls into
synchronous function calls (e.g., to yield a synchronous function that asks the
telephony network to place a phone call and then give as a return value information
about whether the call was answered, busy, or rang until a time-out occurred).

A primary purpose of a process schema composing multiple session objects is to
specify how these objects are to interact. We identify three challenges of managing
these interactions:
1) Knowing what is interacting: Inquiring about the explicit state of external session
objects is not always possible. From a requester viewpoint the objects might have to
be treated as black boxes supporting a well-defined but limited interaction interface.
2) Knowing how the session objects should impact each other: The impact of one
session object on another will be application dependent, i.e., depending on the goals
of a specific composition of e-services. In addition, the logic used when reacting to
events generated by session objects will depend on the state of other session objects
and the state of the overall process enactment.
3) Knowing when the interactions will take place: Interactions with autonomous
session objects can't be specified statically, since the service requester has a limited

 5

ability to supervise the session object, and the session object may be reacting to
multiple non-deterministic events not directly visible through its interface.

The AZTEC framework responds to items (1) and (2) by permitting the use of
flowcharts to specify how to respond to a given session-object event. In particular,
these flowcharts can probe the session objects as to their current state, and then
impact one or more of the session objects. The flowcharts provide many of the
advantages of workflow models (e.g., separation of control logic from tasks
performed), but also support lower-level data manipulation constructs (e.g., to
restructure or merge data from different events). As will be seen below, constructs
are provided in AZTEC so that one flowchart enactment may launch another one.

One implication of item (3) is that it cannot be predicted in advance when or how
frequently a given session object event will occur. This is the fundamental motivation
for incorporating the event-driven paradigm into our model, rather than attempting to
extend any of the commonly used workflow models, so that all the flowcharts could
be combined into a single workflow schema.

We note that the enactment of a single flowchart may involve numerous requests
against external session objects (and perhaps databases, etc.), and may thus take
hundreds of milliseconds or even multiple seconds or minutes to execute. This is in
marked contrast with the approach taken by action algebras based on situation calculi.
In those models, the action taken when an event is received is viewed as atomic and
instantaneous [20]. The potential for long-running enactments and for events to arrive
soon after one another leads to the potential for interleaved flowchart enactments,
which is another implication of item (3). In some cases there may need to be some
prioritization and/or interaction between two or more flowchart enactments. In
AZTEC, we provide both priorities and also the ability for one flowchart enactment to
suspend, examine, modify and resume another.

Finally, one could naturally ask: Why use flowcharts, as opposed to a full-fledged
programming language, as in Java beans? One motivation concerns the need for some
flowchart enactments to access, and perhaps manipulate, the state of another
enactment. Since flowcharts have restricted flow-of-control logic that is easily
accessible, they are easier to reason about and manipulate than unrestricted code
blocks. The other motivation stems from an important goal of AZTEC, which is to
enable the automated construction of process schemas, i.e., composite e-services, to
achieve some high-level requirements. Although automated assembly is not the focus
of this paper, we make a few remarks about how AZTEC will support this process in
Subsection 4.3.

3 The Active Flowchart Model

A key focus of the AZTEC platform is to support session-oriented services,
responsive to asynchronous events. A key design criterion for AZTEC is to enable
the specification of highly customized and/or personalized reactions to asynchronous
events coming from external e-services. To this end, we introduce a process model for
active flowcharts i.e., flowcharts that can be invoked asynchronously whenever a
matching event occurs (in the style of Event-Action rules [25]). To illustrate how the

 6

Sequence

Root
Input

audiosessionid: int
phone_num:int
hangup_time:int

Local
#active: int
billsessionid:int
amount:float
#account:intGetFromC R

in: Xpath
out:billsessionid

[true] [false]

Choice
#active == 0

Choice
#active == 1

[true]

Parallel

[false]

FindNumActive
in: audiosessionid

out: #active

Sequence

EndBilling
in: billsessionid
out: #account,

amount

CreateEvent
(“cleanup”)

in: audiosessionid,
“nopartic.txt”,

account,
amount

Sequence

PlayAudioMsg
in: audiosessionid,

“noothers.wav”

CreateEvent
(“cleanup”)

in: audiosessionid,
“nopartic.txt”,

account,
amount

EndBilling
in: billsessionid
out: #account,

amount

NotifyBilling
in: billsessionid

phone_num,
hangup_time

PlayAudioMsg
in: audiosessionid,

“noothers.wav”

Read from Dir
in: partic_list[i]
out: partic_info

Sequence

InsertIntoCR
in: partic_info,

Xpath(i)

Root
Input

partic:tring[]
#partic: int
#account:int
accountOwner:string

Local
i : int
partic_info:XMLelement[

name:string,
office-phone:int,
home-phone:int]

amount:float

Sequence

CR - Context reposi tory

While_do
I<#partic.

While_do
I<#Partic.

StartBilling
in: #account

out: bi llsessionid

Sequence

i++;CreateEvent
(“add_particip”)

in: audio_sessionid,
partic_list[i],
bill sessionid

Sleep
1 min.

Choice
#active == 1

Sequence

[true] [false]

Sequence

[true]

Choice

#active == 0
InitTeleconference

out: audiosessionid

FindNumActive
in: audiosessionid

out: #active

EndBilling
in: bi llsessionid

out: amount

CreateEvent
(“cleanup”)

in: audiosessionid,
“nopartic.txt”,

account,
amount

PlayAudioMsg
in: audiosessionid,

“noothers.wav”

EndBilling
in: bi llsessionid

out: amount

CreateEvent
(“cleanup”)

in: audiosessionid,
“nopartic.txt”,

account,
amount

i++;

Sequence

Root Input
#account: int
audiosessionid :int
amount:float

GetFromCR
in: #account

out: emailaddress

Input
audiosessionid :int
mailfile :string
#account: int
amount:float

Local
emailaddress :string

Parallel

Sequence

PlayAudioMsg
in: audiosessionid ,

“nomoney .wav”

CreateEvent
(“cleanup”)

in: audiosessionid ,
“money.txt” ,

account,
amount

suspendAll FCs
in: “add_participant”

Sequence

Root

TerminateProcess

ShutdownAudioSession
in: audiosessionid

SendEmail
in: emailaddress ,

mailfile ,
amount

(c) Out of Money (d) Cleanup

(a) Start Teleconference

(b) Participant Hang-up

Fig. 1. Flowcharts from audio-conference process schema

 7

Active Flowchart Model and the AZTEC platform can support a smart teleconference
we rely in the rest of the paper on a simplified example with only audio conferencing,
and a pre-paid billing model. In our example, we consider an event-based interaction
with two session-oriented e-services appropriately wrapped as session objects using
SOAP [21]: (a) the audio_conf_service, that can initiate audio conferences, add
participants to it, and monitor when participants have hung up; and (b) the
billing_service, that maintains pre-pay accounts, can keep track of how much money
is being used during an audio conference, and generate an event if the account runs
out of money. Five active flowchart schemas need to be defined for this example: (1)
Start_audio_conference, (2) Add_participant, (3) Participant_hang_up, (4)
Out_of_money, and (5) Clean_up. We are giving below the abstract syntax of the
XASC language, used to define these flowchart schemas, and we will explain its
various constructs using the graphical representation of our flowcharts in Figure 1 (a
concrete XML syntax is forthcoming).

An XASC process schema (e.g. Smart Teleconference) consists of a set of active
flowchart schemas, an identified root flowchart, and an XML Schema [22] for the
Context Repository. For each active flowchart, the enactment-priority indicates the
priority with which the flowchart should be executed, if invoked by the specified
event type.

<process-schema> :== <active-flowchart>+<root-flowchart-name><CR-schema>
<active-flowchart> :== <event-name><flowchart-name><enactment-priority>

 In our example, executing the XASC process schema causes the root

Start_audio_conference flowchart to be launched. This collects participant profile
data (including office and home phone numbers), initiates an audio conference,
notifies the billing service about the new audio conference, and then launches an
enactment of Add_participant for each invited participant. The latter flowchart
attempts to add one participant to the audio conference, first by ringing their office
phone and if no answer then ringing their home phone. If the participant answers,
then the billing service is notified. Although not illustrated in our simplified example,
the Add_participant flowchart might also be invoked in the middle of the audio
conference. If a participant hangs up then the audio_conference service generates an
event, which in turn launches the Participant_hang_up flowchart not presented here.
If at least two participants remain, then the flowchart enactment simply informs the
billing service that one participant dropped; if zero or one participant remains then the
flowchart enactment invokes the Clean_up flowchart. The Out_of_money flowchart
is launched if the billing service generates an event indicating that the account against
which the audio conference is being charged has run out of money. This flowchart
plays a message to the participants telling them that the account is out of money, and
then invokes the Clean_up flowchart. Importantly, the Out_of_money flowchart
also suspends the operation of all flowchart enactments of type Add_participant.
Finally, the Clean_up flowchart has the job of requesting the audio_conf_service to
end the conference.

Before continuing we note that our model supports four modes of interaction
between flowchart enactments: (1) by generating events that launch other flowchart
enactments; (2) by sharing data in the Context Repository; (3) by querying the status

 8

of other flowchart enactments, and even suspending and subsequently altering the
activity of other enactments; and (4) by using priorities to enforce a certain execution
order between steps of flowchart enactments. More details are presented below.

Active flowcharts essentially subscribe to various event types in order to be
asynchronously notified by external e-services (session objects), or other flowcharts.
Both events (i.e., messages) and flowcharts (i.e., processes) are first-class citizens in
our model. Despite the fact that in our example there is a one-to-one correspondence
between event types and flowchart schemas, an XASC design choice was to favor
modularity of definitions. Thus, different process schemas may reuse both event types
related to specific session objects (e.g., in case of new flowcharts using the same e-
services) and flowchart schemas (e.g., in case of new e-services composed using the
same flowcharts).

<event> :== <event-name><event-arg>*
<event-arg> :== <parm-name><parm-type>
<parm-type> :== <XMLSchema-Type>

Event types are defined by their name, and the name and the type of their input

parameters. These parameters are used for passing data from a session object to an
active flowchart enactment and vice versa (i.e., the data flow), as well as, from one
flowchart enactment to another. XASC event and flowchart parameter values are
XML data, typed according to a process-specific XML Schema.

<flowchart> :== <flowchart-signature> <flowchart-body>
<flowchart-signature> :== <flowchart-name> <flowchart-arg>*
<flowchart-arg> :== <parm-name> <parm-type>
<flowchart-body> :== start <flowchart-var>* <subflow> finish
<flowchart-var> :== <parm-name> <parm-type>
<subflow> :== begin-seq <subflow>+ end-seq
 | begin-parallel <subflow>+ end-parallel
 | begin-choice <condition> <subflow>+ end-choice
 | begin-loop <condition> <subflow>+ end-loop
 | task
<condition> :== <condition-var>+ <literal>
<condition-var> :== <parm-name> <parm-type>
<task> :== <task-input-arg>* <task-output-arg>*
 (<external-task>
 |<internal-task>
 |<event-task>)
<task-input-arg> :== <parm-name><parm-value>
<task-output-arg> :== <parm-name><parm-value>
<parm-value> :== <XMLSchema-Instance>
 |<parm-name>

Flowchart signatures state their name and input parameters. Note that the signature

of enabling events should subsume the signature of the flowcharts. This can be
statically checked during an XASC process schema compilation [17]. The body of a

 9

flowchart is defined using a structured workflow language introduced in [15],
although extended to permit input parameters and local variables. One motivation for
using this model is the relative ease of querying flowchart enactments about their state
[10]. For Start_audio_conference the input variables are an array of participants
(names), the size of the array, an account number to be billed, and the conference
“sponsor”, which will be notified about status and completion of the audio
conference. It also uses local variables, which are private to a single flowchart
enactment. These enactments can also access the Context Repository, which enables
sharing of information between flowchart enactments.

Each flowchart has a unique root task (delimited by start and finish) and the control
constructs (seq, parallel, choice, loop) are properly nested (matching respective begin
and end tags). For instance, the Start_audio_conference flowchart performs seven
sequential tasks: (a) insert participant profile information into the Context Repository,
(b) initialize the billing session, (c) start the audio conference session, (d) add
participants into the audio conference, (e) sleep for a short period (say, 1 minute), (f)
get the number of active participants, and (g) check whether the audio conference was
successfully launched. Boolean conditions of the choice and loop control tasks are
evaluated against flowchart input arguments or local variables. In
Start_audio_conference we can see the while-do loop condition (i<#part) for
finding participant info (office and home phone numbers) from a directory, as well as
the choice branches (#active=0, #active=1) for ending the teleconference when the
number of active participants is not sufficient. Additionally, in the Clean-Up
flowchart we can see the parallel construct used to shutdown the audio session while
notifying the teleconference sponsor about the total cost.

Various kinds of XASC tasks exist with corresponding input and output
parameters. External tasks (represented with double squares) make synchronous
function calls to session-oriented and discrete e-services, while internal tasks
(represented with simple squares) use available AZTEC functions/operations. For
example, in the Start_audio_conference flowchart, the second and third sequence
tasks are synchronous calls to the billing and the audio_conf e-services in order to
initialize the corresponding sessions and obtain respectively the billing and audio
session id. Internal processing tasks implement various operations, including
manipulations of literal data and accesses to the Context Repository, namely insert
(creating new values), set (replacing values) and get operations (reading values). Each
time an XASC process schema is executed, the Context Repository is initialized as a
new XML document, instance of an XML Schema specified by the application
programmer. For instance, the second sequence task of the first while-do in
Start_audio_conference, inserts into the created context repository the participant
information (name, office and home phones) that will be used by an enactment of the
Add-Participant flowchart to attempt to add a participant into the teleconference.

Last but not least, tasks may be used to explicitly generate events (represented with
hexagons). In Start_audio_conference, the first sequence task of the second while-
do loop will create an Add-Participant event, having as input parameters the
participant name (partlist[i]), as well as, the initialized audio and billing session ids.
Each occurrence of such event has the effect of invoking an Add_participant
enactment asynchronously. Furthermore, in the seventh task (choice), when only one
person is detected to be active (since presumably no other participant had been

 10

reached) a voice message is played, the billing session is closed, and an event to is
generated to launch the Clean_up flowchart. This appropriately closes the audio
session, and sends an e-mail to the teleconference sponsor. The last task of Clean_up
will terminate the entire process enactment, including the cancellation of any extant
flowchart enactments, logging anything important from the Context Repository and
then freeing up that memory.

A special category of internal XASC tasks (represented with rounded squares)
enable to directly suspend, resume or cancel the execution of tasks of a running
flowchart enactment, as well as, to examine the current state of an enactment (e.g.,
using techniques of [10]). The first kind of task is illustrated in the Out-of-Money
flowchart, which will be launched when the pre-pay billing account runs out of
money. Since the objective of this flowchart is to shutdown the entire teleconference,
its first task will suspend the tasks of all running enactments of type Add-
Participant. Clearly, we will not continue attempts to add a participant if the audio
conference is being cancelled. The third task of the flowchart will, as previously
discussed, launch the Clean_up flowchart.

We close this section by commenting on the final mode of interaction between
flowchart enactments, namely the use of priorities. For example, the Out_of_money
flowchart may be given priority over the Add_participant and Participant_hang_up
flowcharts. The prioritization can also be used to favor certain flowchart enactments
during periods of heavy load. For example, Add_participant enactments might be
given higher priority than Participant_hang_up ones, because it is important to
quickly connect people to the audio conference; delays in clerical updates to the
billing session can also be delayed.

4 The AZTEC Platform

This section provides a brief introduction to the AZTEC platform for composing
and executing discrete and session-oriented e-services that is currently being
developed at Bell Labs. The overall architecture of the system is described in
Subsection 4.1. Subsection 4.2 describes how the AZTEC platform executes schemas
specified in this process model. Finally, Subsection 4.3 describes how AZTEC
supports dynamic changes to process schemas.

4.1 Overall architecture

The AZTEC platform provides support for service selection and assembly, and for
executing the resulting composite service. Note that assembly and execution can be
performed as two distinct phases, or can be interleaved, thereby supporting a form of
dynamic service selection and assembly. Figure 2 illustrates the main components of
the AZTEC platform (shown as the large rounded-corner square), along with an
Administration component (upper left) and access to web-services, the telephony
network, and the wireless network (across the bottom).

In the upper right of Figure 2, we can see the Assembly component, that performs
service selection, creation of process schemas, and if needed, the dynamic revision of

 11

process schemas. Under typical usage, when a request for a composite service (e.g., a
smart conference with various characteristics) is presented to the AZTEC platform,
then the Assembly component will analyze the requirements and build a process
schema that can support the requested composite service. In the current design,
AZTEC’s Assembly component uses a form of hierarchical planning [11], that starts
by selecting a high-level "template" process schema which may have "slots" that need
to be filled in, and then progressively fills in the slots with more detailed templates or
grounded schemas (i.e., schemas with no slots). The templates and slot fillers are
stored in the Templates and Fillers Library, shown in the upper left of the AZTEC
platform. For more details on service assembly and the splicing technique used,
readers are referred to [9].

The process schema assembly performed by the Assembly component is
traditionally viewed as a "design-time" activity. In contrast, the Execution
component in the bottom center of the AZTEC platform is charged with the "run-
time" activity of executing the process schemas. This execution engine is event
driven. It interprets the process schemas, and interacts with web-services, telephony
services, and wireless services through a collection of Wrappers (provided as part of
this component) and gateways (provided by emerging products from telephony
equipment manufacturers including Lucent).

The final component of AZTEC is for (dynamic) Schema Management. This
component is used to load process schemas into the Execution component, and more
importantly, to enable modifications and refinements (via the Assembly component)
to process schemas in the middle of executing on a process schema. In particular, this
supports the "design-time" activity of process schema assembly in the midst of "run-
time" activity of process schema execution.

As with database mediators [23], humans will have an important role in the
creation, maintenance, and monitoring of a running AZTEC platform. Through the
Administration component, programmers will develop the templates and fillers that
are used to support the hierarchical planning process for automated service assembly.
Programmers will also specify the policies to be used when building (or modifying)
process schemas for satisfying requests for composite services. Finally, humans may
choose to monitor the status of service executions, and perhaps directly manipulate
the process schema of a running composite service.

4.2 Execution of XASC process schemas

We now describe how an XASC process schema is executed by the Execution
component of the AZTEC platform. A process enactment gets started by an init event
generated by the system. Referring to Figure 2, this event is received by the Event
Listener and passed - through the Event Queue - to the Task Dispatcher. The Task
Dispatcher then assigns a thread from its Thread Pool to initiate the process
enactment. This is a predefined procedure for all process enactments, comprising the
generation of a unique process identifier for this enactment, the initialization of a
Context Repository document, which will be used for data passing across flowcharts
within this process enactments and, finally, enacting the root flowchart of this process
schema. This enactment is represented internally as a DOM tree and placed into the
working space of the Flowchart Logic Server. Note that due to the structured nature

 12

Templates and
fillers library (XASC);
service descriptions;

user profiles

Status,
Results,
Exceptions

Status queries,
manual interventions

1. Process schemas to be executed (XASC)
2. Request dynamic composition

Synchronous Method
Invocations (SOAP RPC)

External event
(SOAP RPC)

Requests for
composite services
(manual or programmatic)

Context
Repository

(main memory
database)

service creation
policies

templates, fillers

Flowchart Repository
(Internal representation

of process schema)

Administration and
Service Creation

Gateway to
wireless network

Gateway to wireline
telephony network

Web-services on Internet
(including, e.g., streaming video)

Synchronizing wrappers
to service platforms

ASSEMBLY
Service selection, splicing,

revision (VorteXML)

Process
Schema
Parser

Admin
Manager

Monitor event
(SOAP RPC)

Control Flow Event

Event

Flowchart
enactment

Set/Get/Insert

SCHEMA MANAGEMENT

EXECUTION
(of XASC scripts interpreted by Java)

Log
Session info
Data sharing
bw flowcharts

Event
Listener

Event queue Task Dispatcher
Thread
Pool

Data Passing

Flowchart Logic Server
Runtime Flowchart Environment

(FCs + local variables)

Event Event

Fig. 2. AZTEC Framework for assembly and execution of session-oriented e-services

of the flowcharts, the order of execution of tasks is equivalent to a depth-first traversal
of this tree representation. At this point, the flowchart is ready for execution.

More generally, in the middle of executing a process enactment the Flowchart
Logic Server will be executing zero or more flowcharts in parallel. In our running
example, in the middle of the teleconference there might be two flowchart enactments
running to handle participants who are attempting to join the teleconference and
another that deals with a participant who has just hang-up his telephone. Note also
that there might be more than one process enactment running at the same time; in this
case, however, flowcharts from different process enactments are not allowed to
interact with each other - sharing data through different Context Repository
documents and having different process identifiers.

For each one of these flowcharts, the Flowchart Logic Server maintains
information about their execution state (e.g., which task is currently running) which
can also be queried through internal functions. Then, for instance, whenever a task
has finished the Flowchart Logic Server will generate a Control Flow Event which -
when dispatched – will result to the execution of the appropriate (i.e., the next one in
a sequence) task, and send it to the Event Listener module, which will place it in the
Event Queue. Finally, the Task Dispatcher has the role of invoking individual tasks in

 13

response to events that it gets from the Event Queue. In order to allow for several
tasks to be executed concurrently, the invocation of the tasks itself is handled by a set
of threads (Thread Pool) coordinated by the Task Dispatcher. When capable of doing
more work, i.e. when there are available threads in its Thread Pool, the Task
Dispatcher will ask the Event Queue for an event. The Task Dispatcher may also
decide to expand its Thread Pool if no threads are available, if, for instance, most of
the threads are waiting for results and do not consume much of their CPU time.

A key feature of AZTEC in the execution of multiple flowcharts is the rich
flexibility that is given for deciding the priorities with which the steps of different
flowcharts should be executed. In AZTEC the prioritization is managed explicitly by
separating the Flowchart Logic Server, the Event Queue and the Task Dispatcher.
Clearly, when handing the next event to the Task Dispatcher for execution, the Event
Queue can easily employ a scheduling algorithm to pick the event with the higher
priority. Thus, events with a higher priority are processed sooner that events with a
lower priority. Events with the same priority are processed in a FIFO order.

The individual tasks will primarily be function calls to wrapped e-services that are
resident on the web, the telephony network, or the wireless network. In cases when a
service will need to send an asynchronous event back to AZTEC (i.e. when a
participant has hang-up), this event will be trapped by the wrapper. The wrappers can
fill-in application specific information and send the event into the system through the
Event Listener, in an appropriate internal representation. When a response is obtained,
the Flowchart Logic Server is informed that the task has completed and also receives
the returned values of the task (if any).

Finally, this architecture facilitates explicit control on the execution state of
flowcharts. For instance, suspending a flowchart is be implemented by just annotating
the flowchart instance in the Flowchart Logic Server's internal working space as
suspended. As long as a flowchart is marked as suspended, the Flowchart Logic
Server does not send any more events for the execution of its tasks. Moreover, when
the Event Queue is asked to give the highest priority event to the Task Dispatcher, it
can bypass events that have been produced by flowcharts, which are marked as
suspended. For tasks of a flowchart which are already running, when the suspend
command arrives, we allow them to finish their execution normally, in order to avoid
inconsistencies.

4.3 Loading and modifying process schemas

We now turn to the Schema Management component of AZTEC, which supports
the delivery of process schemas into the Execution component, and dealing with
dynamic process schema modification and refinement. If a new process schema is
created by the Assembly component, then it can be passed into the Admin Manager.
This in turn passes the schema to the Process Schema Parser, which parses the XASC
specification into an internal DOM representation. If the parsing is successful then
the result is placed into the Flowchart Repository, otherwise, an error message is sent
back to the Admin Server.

 In some cases the Assembly component will provide an incompletely specified
process schema to the Execution component. For example, the particular choice of an
e-service might be omitted, or in fact a larger portion of a flowchart might be left

 14

unspecified. This will permit dynamic selection of e-services and/or refinement of the
process schema. How do the empty slots get filled in? The basic approach is that the
Flowchart Logic Server will come to a point of the flowchart that is unspecified and
notify the Admin Server. The Admin Server in turn will gather appropriate
information (e.g., about the current sessions and states of active flowchart instances)
and send a request to the Assembly component to fill in the needed parts of the
process schema. When this comes back, the Admin Manager gives it to the Process
Schema Parser, which in turn produces an internal representation for the flowchart,
including a marker indicating where processing should start. Finally, the Admin
Manager will send an event into the Event Scheduler indicating that the process
schema has been refined and is ready to go.

It should be stressed that in order for the Admin Manager to access the Context
Repository, it must go through the Event Scheduler and Task Dispatcher. This design
decision is motivated primarily to keep the number of data and control flow paths to a
minimum. The Assembly component might also get involved with schema execution
if there is a significant exception to a running process schema. In this case, the
exception can be passed to the Admin Manager, which can request the Assembly
component to create a repair. The Admin Manager is also involved if a human,
through the Administration and Service Creation component, wants to examine the
runtime status of an XASC process enactment.

5 Related Work

Several proposals for workflow systems attempt to combine the technology of active
database systems with event-based systems. Some examples of event-driven
distributed workflow engines are WIDE [5] and EVE [13]. The main modules in EVE
are: an event detection and logging module, rule execution module and service
execution module. Upon detection of a primitive or composite event, this module will
activate the appropriate rule in the rule execution module. The latter consists of ECA
rules. When a rule is activated, it will check the associated condition, and if it is true,
the corresponding action is performed. The action part of the rule will in turn generate
events, which are fed into the event detection module. In comparison with AZTEC,
EVE has more sophisticated support for events; however, EVE does not have a notion
of sessions like AZTEC. Moreover, the action part of the ECA rules in EVE cannot
mimic all of the flexibility that the AZTEC flowcharts offer.
 Citation [19] describes an event based approach for dynamic modifications of
running workflow instances using rules and predicates such as drop, replace, check,
delay and process. This approach is especially useful for semantic exception
handling. The AZTEC model can also support adaptability in a somewhat different
way by changing the contents of the context repository during a running instance.
Another interesting service-oriented model for inter-organizational workflows is
given by the Crossflow project [16]. This model provides mechanisms for selection
and invocation of services, and controlling and monitoring an external service.
However, all these models fail to recognize the notion of a session, the only exception
being the Caltech Infospheres project [8], where sessions are entities that can be
explicitly specified, supported and reasoned with.

 15

6 Future Work

We foresee several areas of further research in connection with the AZTEC
framework. One such area relates to further refinement of the active flowchart model,
that supports hierarchical and modular constructs for specifying active flowcharts and
their interactions, including priorities and data sharing. It is also necessary to perform
some kind of global consistency checking for all the flowcharts in an application to
ensure that their interactions are "safe". Another research area is performance, since
telecommunications applications typically require sub-second responses to most
events (such as when a participant is dropped). Hence, we plan to model the
performance implications of our architecture in order to ensure that it can meet
stringent performance goals. Since multiple flowcharts can run in parallel and
generate events simultaneously, priority assignment policies must be compatible with
the real-time performance requirements. Although our discussion of the framework
has focused on the running of a single enactment (e.g., to control a single multimedia
teleconference), in practice the execution engine must support at least hundreds of
enactments running at the same time. In such a context, it is important to study issues
resulting from the interactions between concurrently running enactments. There are
also performance issues related to assignment of priorities to enactments and
scheduling of enactments. Finally, it is important to support recovery in our
framework so that session-oriented composite e-services can be recovered from
failures.

REFERENCES

1. W.M.P. van der Aalst and A. Kumar, "XML Based Schema Definition for Support

of Inter-organizational Workflow", Information Systems Research (accepted).
2. V. Anupam, R. Hull and B. Kumar, "Personalizing E-commerce Applications with

On-line Heuristic Decision Making ", Proceedings of Tenth Intl. World Wide Web
Conference, June 2001.

3. B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elmagarmid and J. Beard, "Self-
Coordinated and Self-Traced Composite Services with Dynamic Provider
Selection", Technical Report, University of New South Wales, March 2001
(Available at http://sky.fit.qut.edu.au/ ~dumas/selfserv.ps.gz).

4. R. Breite, P. Walden and H. Vanharanta, "C-Commerce Virtuality – Will it work in
the Internet?", Proc. of International Conf on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet (SSGRR 2000),
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm.

5. F. Casati, P. Grefen, B. Pernici, G. Pozzi, and G. Sanchez. WIDE workflow model
and architecture. Technical report, University of Twente, 1996.

6. F. Casati, S. Sayal, M. Shan, "Developing e-services for composing e-services",
Proceedings of CAISE 2001, Interlaken, Switzerland, June 2001.

7. F. Casati and M. Shan, "Dynamic and adaptive composition of e-services",
Information Systems, to appear 2001.

8. K. Mani Chandy and Adam Rifkin, "Systematic Composition of Objects in
Distributed Internet Applications: Processes And Sessions", Conference

 16

Proceedings of the Thirtieth Hawaii International Conference on System Sciences
(HICSS), Maui, Volume 1, January 1997, pp.395-404.

9. V. Christophides, R. Hull, A. Kumar, J. Simeon, "Workflow mediation using
VorteXML, " IEEE Data Engineering Bulletin 24(1), March 2001, 40-45.

10.V. Christophides, R. Hull, A. Kumar, "Querying and Splicing of Workflows,"
CoopIS '02, September 2001 (forthcoming).

11.K. Erol, J. Hendler, and D. Nau, "Semantics for hierarchical task network
planning", Tech. Report CSTR3239, CS Department, Univ. of Maryland, 1994.

12.P. Fankhauser, M. Fernandez, A. Malhotra, et al., "The XML Query Algebra ",
W3C Working Draft, 15 February 2001, http://www.w3.org/TR/query-algebra/.

13.A. Geppert and D. Tombros, "Event-based distributed workflow execution with
EVE," Technical Report Technical Report 96.5, University of Zurich, 1996.

14.R. Hull, F. Llirbat, E. Simon, et al., "Declarative Workflows that Support Easy
Modification and Dynamic Browsing" Conference on Work Activities
Coordination and Collaboration (WACC), San Francisco, February 1999, 69-78.

15.B. Kiepuszewski, A. ter Hofstede and C. Bussler, "On Structured Workflow
Modelling", Proceedings of CAISE 2000, Stockholm, Sweden.

16.J. Klingemann, J. Wasch and K. Aberer, "Adaptive Outsourcing in Cross-
organizational Workflows, GMD Report 30, August 1998.

17.G. Kuper and J. Siméon, Subsumption for XML Types, International Conference
on Database Theory (ICDT'2001), January 2001,London, UK.

18.S. A. McIlraith, T. Cao Son, and H. Zeng, "Semantic Web Services", IEEE
Intelligent Systems, March/April – 2001.

19.R. Muller and E. Rahm, E., "Rule-Based Dynamic Modification of Workflows in a
Medical Domain," Proc. Datenbanksysteme in Bro, Technik und Wissenschaft
(BTW '99), Freiburg, March 1999, pp. 429-448.

20.R. Reiter, “KNOWLEDGE IN ACTION: Logical Foundations for Describing and
Implementing Dynamical Systems”. Book in preparation.
http://www.cs.toronto.edu/cogrobo/.

21.Simple Object Access Protocol (SOAP) 1.1, W3C Note 08, May 2000,
http://www.w3.org/TR/SOAP/.

22.H.S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. “XML schema part
1: Structures”, W3C Recommendation, October, 2000.

23.G. Wiederhold, "Mediators in the Architecture of Future Information Systems"
IEEE Computer, Volume 25, Number 3, 1992, 38-49.

24.G. Weikum, (Special Issue Editor), Bulletin of the Technical Committee on Data
Engineering, IEEE Computer Society, Vol. 24, No.1, March 2001.

25.Widom J. and, Ceri S. (Eds.). Active Database Systems: Triggers and Rules For
Advanced Database Processing. Morgan Kaufmann, 1996.

