
Ch. Bussler et al. (Eds.): WES 2002, LNCS 2512, pp. 175–187, 2002.
© Springer-Verlag Berlin Heidelberg 2002

A Service Infrastructure for e-Science:
The Case of the ARION* System

Catherine Houstis, Spyros Lalis, Vassilis Christophides, Dimitris Plexousakis,
Manolis Vavalis, Marios Pitikakis, Kyriakos Kritikos,

Antonis Smardas, and Charalampos Gikas

Institute of Computer Science, Foundation for Research and Technology – Hellas
P.O. BOX 1385, GR-711 10 Heraklion, Greece

���������	
	��������������
������
��
�����������
��
���
����
���������������

Abstract. The ARION system provides basic e-services of search and retrieval
of objects in scientific collections, such as, data sets, simulation models and
tools necessary for statistical and/or visualization processing. These collections
may represent application software of scientific areas, they reside in geographi-
cally disperse organizations and constitute the system content. The user, as part
of the retrieval mechanism, may dynamically invoke on-line computations of
scientific data sets when the latter are not found into the system. Thus, ARION
provides the basic infrastructure for accessing and producing scientific infor-
mation in an open, distributed and federated system. More advanced e-services,
which depend on the scientific content of the system, can be built upon this in-
frastructure, such as decision making and/or policy support using various in-
formation brokering techniques.

1 Introduction

ARION is a service-based infrastructure designed to support search and retrieval of
objects in scientific collections, such as, data sets, simulation models and tools neces-
sary for statistical and/or visualization processing. It also actively supports dynamic
and distributed scientific data processing workflows, in interactive and batch mode.
The computational grid used in ARION is composed of geographically distributed
and heterogeneous resources, namely, servers, networks, data stores and workstations
with GUI displays, all resident to the member organizations that provide the scientific
content and resources. ARION provides the means [1], [2] for organizing this ensem-
ble so that its disparate and varied parts are integrated into a coherent whole. Hence,
ARION can be viewed as the middleware between users, the data they wish to process
and the computational resources required for this processing.

Central to ARION are ontologies and workflows. They are the main mechanisms
for recording expert knowledge, for information representation/navigation and for
expressing computation processes over the grid.

* ARION is supported by the European Commission under the 5th Framework Programme,

IST-2000-25289, Key Action 3: Digital Heritage and Cultural Content.

176 Catherine Houstis et al.

The ARION system is built using results of two recently initiated research activi-
ties, the Semantic Web and the Semantic Grid. Within the former activity, RDF/S
[17], promotes semantic interoperability by making use of ontologies and associated
tools (such as RDFSuite [3]) at the information modeling level, whereas within the
latter, a computational framework for the system is defined. In addition, specifications
of metadata standards and syntactic interoperability standards, like OpenGIS [20], are
direct and very valuable contributions for the implementations of basic comput-
ing/visualization services.

The rest of the paper is structured as follows. In section 2, we present the system
architecture. Although the design of the architecture is complete, the limited space
permits only a high-level description. In section 3, we explain the use of recent devel-
opments in the architecture, focusing on the use of ontologies and workflows and
associated software tools for their implementation. Finally, in section 4 we conclude
our presentation by suggesting the use of the ARION system as a scientific service
tool for more advanced information services.

2 ARION a Lightweight System Integration Architecture

The principle architecture of the ARION system consists of three independent parts.
The Search Engine allows users to pose queries to the knowledge provided by
ARION. The Workflow Data Base System contains the workflow specifications and
handles the preparation of execution specifications to be sent to the workflow run-
time. The Workflow Runtime System is responsible for the execution of workflows
and the management of the information produced during this execution from the dis-
tributed nodes. The architecture is shown in Fig. 1.

Fig. 1. The ARION architecture

A Service Infrastructure for e-Science: The Case of the ARION System 177

All three parts of ARION are conceptually linked by an ontology and the corre-
sponding (computational) workflows, the overall structuring principles of the whole
system.

ARION is composed of a set of distributed nodes containing different data sets
and programs (scientific collections). These nodes interoperate using an agent plat-
form, and provide the basic services for a workflow execution. Workflows typically
rely on distributed and autonomous tasks, and are controlled by a centralized server
(ARION main server). The agents installed on each node execute workflow tasks
(mainly computations) and monitor its services.

2.1 The Search Engine Subsystem

The Search Engine, shown in Fig. 2 (a), is mainly based upon RDFSuite [3], which
will be described in section 3. An editor is used to enter metadata and ontology in-
formation, which are loaded to the ORDBMS of the ARION system. A global storage
located in the ARION main server contains all the metadata descriptions submitted to
or created by the system (centrally or locally). An update tool is responsible for col-
lecting locally (on each ARION provider-end independent subsystem) the submitted
metadata.

A RQL [4] query engine executes any search demand that is originated from the
user interface or the Workflow Data Base System. Queries can be posed for either the
metadata information or the concepts and properties of the ontology.

2.2 Workflow Data Base Subsystem

The Workflow Database System, shown in Fig. 2 (c), consists of the following com-
ponents: Workflow Editor, Update Tool, Workflow Storage System, Workflow Data-
base Server and Statistical Database.

The Workflow Editor is used to define a workflow specification or to alter an al-
ready existing one. The specifications go through the Update Tool and finally stored
in the central Workflow Storage System.

The Workflow Database Server is the most important part of the Workflow Data-
base System. It communicates with the Graphical User Interface, the Search Engine
and the Workflow Runtime System. To illustrate the functionality of the Workflow
Database Server, suppose that a user issues a data set query. The Workflow Database
Server contacts the Search Engine to determine if the requested data set is stored in
our system. In case the answer is negative, it searches the Workflow Storage in order
to find a workflow specification that can produce the specific data set and if such a
workflow exists, it prepares a workflow execution specification. This workflow exe-
cution specification is eventually sent to the Workflow Runtime System to be executed.

During a workflow execution process, the Workflow Runtime System communi-
cates with the Statistical Database and stores runtime related information like execu-
tion time, resources occupied, network nodes passed, number of execution errors,
warnings etc.

178 Catherine Houstis et al.

2.3 Agent Runtime Subsystem

The Workflow Runtime System, shown in Fig. 2 (b), consists of two main components,
namely the Workflow Manager and the User Monitoring System.

The Workflow Manager has seven sub-components. The Workflow Engine is re-
sponsible for the execution of a workflow instance. For each workflow definition
received from the Workflow Data Base, an execution environment is initialized and a
Task Scheduler is created. The Task Scheduler makes decisions about the order of
execution of tasks and assigns blocks of tasks to the Task Manager, which is respon-
sible for the execution. The Task Manager cooperates with the Agent Management
System where all the objects related with the agent platform are located, including
agent generation mechanism, communication objects and proxies to Grasshopper
objects. Grasshopper [21] is the basic agent used in the ARION runtime subsystem. A
Task Execution Agent is created by the Agent Management System, containing all the
workflow-related information required in order to migrate to a remote node and exe-
cute the designated tasks.

The Gateway is the sub-component that is used for connecting with the runtime
system and facilitating remote management (e.g., from the Web). The last sub-
component is the Logger, which keeps track of all the steps taken during the execu-
tion phase of a workflow instance.

The User Monitoring System is divided into the Workflow Execution Monitoring,
where a user can view or even alter the progress of a workflow execution, and the
Notification System, where user input is requested.

2.4 User Authentication/Authorization

The authentication process, during which the user proves his/her identity, is imple-
mented by the system via an authorization mechanism, which grants or denies permis-
sion to access a digital object (data or resource). In order to define these permissions,
we have adopted a role-based access control mechanism [18] to handle the users and
objects. A user that is assigned to one role has all the access privileges of that role.
These roles are shared inside the distributed system by using a hierarchical structure
(depending on trust domains). When a user initiates a workflow, the agent runtime
system acts on behalf of that user and carries all the required authentication and
authorization information.

2.5 User Interfaces

The user interface of a system like ARION has three main responsibilities. Firstly, it
has to provide mechanisms to access the domain ontology and metadata information,
publish them, manage them and of course to query them. Web-based interfaces allow
users to navigate through an ontology efficiently and easily (e.g., via hyperbolic
trees). This provides a powerful “see and go” interaction style that retains the sim-
plicity of “point and click”. A Metadata Editor inserts new metadata information into
the system or modifies existing ones. The ontology can also be used by the Search
Engine user interface to provide guidance when formulating queries. This has been
proved to be a more effective way to retrieve accurate search results than a simple
keyword-based query.

A Service Infrastructure for e-Science: The Case of the ARION System 179

Fig. 2. (a) The Search Engine subsystem architecture, (b) The Agent Runtime subsystem ar-
chitecture, (c) The Workflow Data Base subsystem architecture

Secondly, it has to visualize produced or retrieved scientific data sets. In our case,
these are mostly geographical information, so it has to provide Geographical Infor-
mation System (GIS) capabilities in order to visualize them over maps. For example,
the results of a workflow execution may be graphically displayed. In fact, Java applets
could be used to visualize any kind of scientific information.

Thirdly, it has to provide ways to interact and control a workflow execution. We
have adopted three different approaches in user interface design for these purposes. In
the Workflow Overview approach, the user conceives the whole process of a
workflow execution and is aware of the various steps that comprise the workflow.
The user may interact with the runtime system through a Web-based interface. This is
implemented by dynamically produced Web pages based on Java Servlets. In this
case, the user is able to:

• Monitor the workflow execution and retrieve statistical and other information
about the execution of the current as well as of previous phases.

• Suspend / resume the workflow execution.

180 Catherine Houstis et al.

• Provide the input parameters required for a task to go on with its execution.

• At certain points (checkpoints) to choose whether the workflow will continue its
execution or whether it should return to a previous stage.

There is no need for a user to be constantly connected in order to control a
workflow that is being executed. The user is notified (by e-mail, SMS etc.) when a
predefined stage (checkpoint) in the workflow execution is reached or when (data or
control) input is required for the workflow to continue execution.

In the Application View approach, the user views a workflow execution as a
standalone application that hides the complexity of working with several different
processes and is implemented as a Java applet. The user may program the execution
of the whole workflow process and get the final output. That implies that input pa-
rameters to tasks will have to be pre-specified and will be regarded as input parame-
ters to the application. It is expected that this approach will be used from those wish-
ing to program a large number of workflow executions (batch execution) and obtain
the final output without any intervention during their execution.

The third approach is a combination of the previous two. The user will be able to
program the execution of a number of workflows, providing all the input parameters
from the beginning. However, the system will request verification (through a Web
interface), when, for example, a parameter is used.

ARION also includes a collection of tools addressing expert users (providers).
Tools, like Protégé-2000 [19], can be used by domain experts to develop ontologies.
A Workflow Editor has been implemented, which enables users to graphically create,
modify or delete workflow specifications. These specifications are transformed into
XML files compliant with our XML-based workflow specification language. The
editor uses graphical constructs / symbols that correspond to language constructs
(workflow specification entities) of our workflow specification language, and spe-
cialized forms and templates that automate the creation procedure. The workflow
entities are combined according to the semantics / restrictions of our workflow speci-
fication language and no other combination is allowed. The users should be ac-
quainted with the workflow language in order to understand the basic semantics of the
editor. With this knowledge, users can comprehend the graphical constructs and com-
bine them to generate a complete workflow specification.

2.6 Tailored Deployment

ARION’s three-tier distributed architecture enables a high level of reliability and
scalability. Not all nodes (provider end nodes) need to install all three ARION sub-
systems locally. Because of the flexibility of ARION’s architecture, multiple deploy-
ment options are available. Through analyzing each provider’s environment, deter-
mining general administrative needs and resources, the deployment option best suited
for a provider can be effectively chosen.

In a minimal deployment configuration, only the agent platform is deployed in a
provider side local server node. Neither the search engine (there is no local metadata
storage) nor the workflow database are installed. In this configuration, the ARION
main server connects directly to this node, utilizing software agents, and executes
workflow tasks.

A Service Infrastructure for e-Science: The Case of the ARION System 181

The other two configurations, shown also in Fig. 1, present a more autonomous and
self-managing deployment. Local queries could be performed and even the execution
of a completely local workflow would be possible. The ARION architecture can be
easily extended to handle any number of clients and manage provider local server
nodes.

Additional features incorporated in the ARION system include on-line data set
production and automated metadata generation for these data sets. ARION offers
tools (editors) for easy publication of workflow specifications and metadata informa-
tion. All the above features contribute to provide minimal administration of the sys-
tem.

The user-end required platform is kept to a minimal, that is, the use of any web
browser is sufficient to access ARION. In order to achieve this, a gateway is provided
to every ARION server, which hides the agent runtime system complexity from the
user web browser.

3 Ontology Based Knowledge Representation

Very often, there is a need to share the meaning of terms in a given domain. Achiev-
ing such a common understanding is accomplished by agreeing on an appropriate way
to conceptualize the domain. The result is a domain-oriented ontology, a "formal
specification of a conceptualization" [5], which is either domain specific or general-
izes or reconciles domains.

An ontology, apart from the navigational benefits it brings, provides common se-
mantics that can be used to improve communication between either humans or com-
puters. Ontologies may be grouped into the following three areas, according to their
role: to assist in communication between people, to achieve interoperability among
computer systems, or to improve the process and/or quality of engineering software
systems [6].

We identify five important classes of benefits that may result from the use of on-
tologies:

• Useful queries. An ontology is used for searching a metadata information reposi-
tory for resources (e.g., data sets). The main benefit of this approach is faster and
intelligent access to relevant information resources, which leads to more effective
use and reuse of knowledge resources.

• Sharing knowledge. More generally, an ontology helps to integrate many overlap-
ping pieces of information. Ideally, people will contribute to a shared, global and
well-organized knowledge base of information. Of course, this requires a lot of ef-
fort in both the technical and institutional realms.

• Extensibility. An ontology can be enriched with new classes in every branch and
every level. However, the ontology must be designed carefully in order to be suffi-
ciently general (and thus extensible).

• Reusability. The ontology is the basis for a formal encoding of the important enti-
ties, attributes, processes and their inter-relationships in the domain of interest. A
common ideal for an ontology is that it could be a re-usable and/or shared compo-
nent in a software system [6].

182 Catherine Houstis et al.

• Identifying rights. In particular, agent-based systems such as ARION will need
ontology-based metadata to compute the licenses required to provide various serv-
ices, to pay the appropriate copyright fees, and so on.

In the ARION system, we focus on common semantics for scientific collections.
We have worked on an environmental (ocean wave) ontology consisting of a collec-
tion of different facets. For instance, facets may describe data sets, production meth-
ods including mathematical modeling, parameters used, etc. A reason for the combi-
nation of several facets is the modularization of a potentially large monolithic
ontology. In addition, facets may be formulated according to core queries users may
be interested to formulate. A facet-based engineering of an ontology scales well with
large scientific ontologies. New information may be appended in accordance to
user/provider needs. The ontology definition contains an “IS-A” hierarchy of relevant
domain concepts, relationships between concepts and properties of concepts. There
are two main entities in our ontology, consisting of different facets that describe the
scientific data and scientific models respectively. This approach provides another
level of granularity. The basic structure of an ocean-wave ontology is shown in Fig. 3.

Fig. 3. The structure of our environmental (ocean wave) ontology

The representation of metadata in ARION is realized by RDF [16]. RDF schemas
(RDFS) [17] provide a basic type schema for RDF. Objects, classes, and properties
can be described. In relation to ontologies, RDF/S provides two important contribu-
tions: a standardized syntax for writing ontologies and a standard set of modeling
primitives like instance-of and subclass-of relationships.

The expressive capabilities of RDF and RDF Schema suffice for the purposes of
ARION and are used as the basis for modeling our domain of knowledge. In particu-
lar, metadata description is ontology-driven, in the sense that the construction of the
metadata information is carried out in a top-down fashion, by populating a given
ontology, rather than in a bottom-up fashion. Every scientific object (data set or
model) is described by a collection of attributes (properties), inherited from its parent-
class or native to the specific object.

A Service Infrastructure for e-Science: The Case of the ARION System 183

3.1 Conceptual Querying

The creation of RDF raises the prospect of a widely accepted standard for represent-
ing knowledge on the Web. However, just representing knowledge and information is
not enough; query languages and tools are needed to enable the creation of RDF-
aware applications. Such a solution is RDFSuite

1
.

RDFSuite is a suite of tools for RDF metadata management providing storage and
querying both RDF descriptions and schemas [3]. It consists of three main compo-
nents: a RDF validating parser (VRP), a RDF schema-specific storage database
(RSSDB) and a query language (RQL) [4].

The RDF Schema Specific Database (RSSDB) loads recourse descriptions into an
object-relational DBMS. The representation of the RDF schema and the metadata
information is done separately, avoiding the monolithic table approach of representing
RDF triples. This provides flexibility to the underlying ORDBMS and allows easier
manipulation of schema information. After the validation of RDF metadata and the
consistency check of schema descriptions, a loader stores them in the DB.

The RDF Query Language (RQL) [4] is used to uniformly query RDF metadata in-
formation and RDF schemas. Thus, we can exploit this ability to implement schema
browsing, since large RDF schemas carry valuable information themselves due to
class refinement.

There are various ways in which an ontology assists searching data collections. In
the case of ARION, it is used as a basis for semantically structuring and organizing
the metadata information repository, and to assist in query formulation. We use our
ontology in three distinct ways:

• as a conceptual framework to help the user think about the information repository
and formulate queries

• as a guide to understand the ontology-driven metadata

• to drive the user interface for creating and refining queries

Ontology based search uses an intuitive relationship between concepts to provide
intelligent access to information. By using RQL, the queries can either use semantic
concepts (RDF schema) or just be word-based (RDF metadata). The semantic rich-
ness of the ontology can be an important factor here. A richer ontology can improve
search.

4 Active Data Generation and Retrieval

In a repository of data sets it is not particularly useful to store the data sets alone.
Storing the computational tasks necessary to produce output data sets is even more
valuable especially when the user is allowed to customize the computation according
to his/her needs. The ARION middleware provides (a) tools to publish computations
of various data sets according to an XML based workflow specification and (b) a
runtime platform to execute the workflows. Thus, ARION is an active repository that
also stores workflows for scientific data set computing.

1 http://139.91.183.30:9090/RDF/

184 Catherine Houstis et al.

4.1 XML-Based Workflow Specifications

In ARION workflows provide abstractions of natural process models. An important
portion of a process model (workflow) is the definition of the process logic. The defi-
nition of the process logic is expressed by the usage of a workflow specification lan-
guage. Our workflow specification language is based on the XRL language [14], an
XML-based workflow specification language. Our language extends XRL to match
our model of scientific workflows. The fundamental idea is that a workflow can have
the same construct that a programming language has and that derives from the effort
to model the flow of scientific tasks in order to produce a data set. This flow can be
sequential, parallel, conditional or a combination of such sub-flows. For this reason
we equip our language with constructs like sequence, parallel-sync (tasks are exe-
cuted in parallel), conditional if-else and while-do that can be combined and attached
to a workflow definition. These constructs are sufficient to model the scientific logic
of a workflow. A task is defined of having input and output (just like a program exe-
cution), and some properties like location (URL) and type. The input and output are
usually data sets that also have properties like location, type etc. This information is
needed in order for the Runtime System to actually execute a task.

Workflow specifications are generated from our XML-based workflow specifica-
tion language. XML [15] is a world-wide standard file format with a specific tree-like
internal structure. With the help of a DTD (a prolog-formatted file), that defines its
vocabulary and structure, an XML file can describe the semantics of our workflow
specifications. XML files are easily transported, exchanged, stored and occupy little
space on disk. Additionally, several tools have been developed by the wider CS com-
munity that can be used to manipulate XML files and to transform them into other
data-representation formats.

4.2 Agent Runtime Technology

Workflows are considered as a kind of multi-agent cooperation, in the sense that
software agents may be used to perform tasks (computational processes), and the
workflow can be used to orchestrate or control the interactions between agents. To be
more specific, a workflow specification [9] is defined by the following elements:

• activities to perform (tasks)
• sequence of activities (control flow)
• data sets
• data flow

A workflow consists of several tasks and the relations among them are managed by
the control flow. The runtime system enables the integration of each task’s applica-
tion-specific logic into a large application that combines the knowledge of separate
tasks. The specification of a task contains a description of the required input (i.e., data
sets and initialization parameters) as well as the produced output. It may also describe
execution rights / privileges for users, groups of users, machines or computer pro-
grams. Tasks are usually executable programs installed on remote machines and
therefore the definition of a task also includes remote host’s related information. The

A Service Infrastructure for e-Science: The Case of the ARION System 185

data flow states how data sets move between different tasks. Examples of data sets are
files of scientific content and database entries.

The objective of the agent runtime system is to take care of the execution of
workflows and it is a part of a Workflow Management System (WfMS). Requests for
workflow execution originate from the Workflow Database and are managed by a
Workflow Engine, which is responsible for interpreting the workflow definition and
interacting with a Task Scheduler. These requests include the workflow specification
that contains all necessary information required in order to facilitate data set(s) pro-
duction.

A Task Scheduler determines the order of execution of applications on host ma-
chines and provides all the necessary initialization parameters and input data sets
required. The runtime system guarantees that all relations among tasks described in
the workflow specification will be preserved while trying to achieve the highest pos-
sible level of parallel task execution.

The runtime system supports the notion of backtracking. This workflow feature of-
fers the option of returning back to a previously executed step rather than continuing
the normal execution flow. Our aim is to support the need for calibration of input
parameters in order to achieve a desired result. The system can be programmed to
execute repeated executions of the same workflow with slight changes in the input
parameters of some tasks so that the user won’t have to request their execution one at
a time. This feature is very important since parameter calibration is part of scientific
computing and takes place interactively with the user. As pointed out at the user inter-
face section three different interfaces are supporting it. Interactive, batch and interme-
diate interfaces are tailored for user interactivity.

ARION’s runtime system implementation takes advantage of mobile agents’ tech-
nology to facilitate the execution of remote tasks. A software agent is defined as a
computer program that acts autonomously on behalf of a person or organization [10].
Furthermore, the properties proactive, autonomous, intelligent [11], and mobile are
often used to characterize agents.

Mobile agents are generally used in order to reduce the network load, to overcome
the network latency and to encapsulate protocols. In addition, their use has been
widely adopted for the following reasons:

• Agent technology is suitable for workflow execution. The notion of execution of
tasks residing in physically separated machines fits well with the mobile agents’
execution model. It also provides features for the enhancement of complex infor-
mation retrieval and workflow services.

• It allows flexibility for the runtime system in terms of task scheduling. An agent
may be provided with variable level of knowledge and/or authorization to de-
cide/collaborate with other agents during its execution. So, part of the task sched-
uling process may be entrusted to mobile agents.

• Agents can perform complex tasks and communicate/co-operate with other agents
on behalf of the user. They are also capable of operating without additional user
input and act independently, even if the user is disconnected, which makes them
ideally suited for the fulfillment of automated tasks.

• The user doesn’t have to be constantly connected to the system. Agents represent a
user and operate on behalf of him without the user being required to be on-line for

186 Catherine Houstis et al.

the whole period of the workflow process. The user may connect and disconnect
several times and be able to monitor the evolvement of the workflow.

• It addresses the limited scalability faced with the RPC-based model architecture
[12]. Due to the inherent characteristics of the RPC model a two-step communica-
tion for assigning tasks and obtaining results is essential and the workflow engine
solely takes charge of scheduling and assigning tasks. Furthermore, communica-
tion overhead is concentrated to the workflow engine. It is common for most or-
ganizations to have massive amount of workflows to process simultaneously re-
sulting in an ever-increasing demand for better performance and scalability. Mobile
agent technology can be used to overcome these limitations. The primary differ-
ence of this model to the RPC model is that the scheduling and assignment of tasks
are not the sole responsibility of workflow engines. Since mobile agents may carry
the whole or a part of the workflow definition they can also decide the next tasks to
perform without resorting to the help of centralized workflow engines. That im-
plies that the computational overhead is distributed among workflow engines and
task performers. In addition, the communication overhead for assigning tasks is
also distributed.

A mobile agent’s operation is supported by an agent platform that has to be run-
ning at every host that participates to workflow execution to facilitate the agent mi-
gration. The platform chosen (Grasshopper agent platform [21]) apart from the basic
support of mobile code also provides communication services that enhance coordina-
tion abilities of the runtime system.

5 Conclusion

An advanced lightweight architecture of the ARION active repository has been pre-
sented. It provides the infrastructure for a scientific knowledge service for different
domains of science. The present content of the repository is data sets, simulation
models statistical and visualization tools concerning wave data. The repository pro-
vides ontology based search service and workflow computational service. The user is
capable of producing advanced queries and interacting with the computational service
to customize his/her computations. Rich interfaces provide a very user-friendly envi-
ronment.

Advanced services, which depend on scientific information, can be easily built. For
instance policy making can be supported via appropriately building of workflows
according to a policy-dictated scenario. Likewise decision support, which requires
scientific information production according to many sources and rules, can be easily
accommodated perhaps via mediation or other known information brokering tech-
niques. The system incorporates tools for publishing descriptions of information and
publishing of computational structures (workflows) to compute information. Thus, the
ARION system can also be used as a tool to store and compute information on line
and upon user demand for decision making and/or policy support.

A Service Infrastructure for e-Science: The Case of the ARION System 187

References

 1. C. Houstis and S. Lalis: “ARION: An Advanced Lightweight Architecture for Accessing
Scientific Collections”. RTD Information Society Technologies, III.1.4, 2000.

 2. C. Houstis, S. Lalis: "ARION: A Scalable Architecture for a Digital Library of Scientific
Collections" ,8th Panhellenic Conference on Informatics, November 2001

 3. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, K. Tolle: The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases, 2nd International
Workshop on the Semantic Web, WWW10 (2001)

 4. RQL: A Declarative Query Language for RDF, G. Karvounarakis, S. Alexaki,
V.Christophides, D. Plexousakis, Michel Scholl: The Eleventh International World Wide
Web Conference (WWW2002), Honolulu, Hawaii, USA, May 7-11, 2002, pages 592-603.

 5. T. R. Gruber: A Translation Approach to Portable Ontology Specifications. In: Knowledge
Acquisition. vol. 6, no. 2, 1993. pages 199-221

 6. Uschold, M., Healy, M., Willamson, K., Clark, P., & Woods, S.: Ontology reuse and ap-
plication. In Guarino, N., (Ed.), Formal Ontology in Information Systems, 1998, pages
179–192, Trento, Italy.

 7. I. Foster, C. Kesselman (eds): “The Grid: Blueprint for a New Computing Infrastructure”,
Morgan Kaufmann, 1998.

 8. Benjamins, R., Fensel, D. and Gomez Perez A.: Knowledge Management through Ontolo-
gies. In U. Reimer (editor), Proceedings of the Second International Conference on Prac-
tical Aspects of Knowledge Management. 29-30 October, 1998, Basel, Switzerland

 9. H. Stormer : A Flexible Agent-Based Workflow System. University of Zurich
 10. Crystaliz, Inc., General Magic, Inc., GMD Focus, and I. Coorp.: Mobile Agent Facility
Specification. Technical report, OMG, 1997.

 11. J. Ferber : Multi-Agent Systems: An Introduction to Artificial Intelligence. Addison-
Wesley Publishing Company, 1999.

 12. Jeong-Joon Yoo, Doheon Lee, Young-Ho Suh, Dong-Ik Lee : Multi-Agent Systems: Scal-
able Workflow System Based on Mobile Agents

 13. F. Leymann and D. Roller: “Production Workflow : Concepts and Techniques”. Prentice
Hall, 2000.

 14. W.M.P. van der Aalst and A. Kumar : “XML Based Schema Definition for Support of In-
ter-Organizational Workflow”. University of Colorado and University of Eindhoven re-
port, 2001.

 15. The XML specification web page, http://www.w3.org/XML.
 16. Ora Lassila and Ralph R. Swick.: Resource description framework (RDF) model and syn-
tax specification. Technical report, W3C, 1999. W3C Recommendation.
http://www.w3.org/TR/REC-rdf-syntax.

 17. Dan Brickley and R.V. Guha: Resource description framework (RDF) schema specifica-
tion. Technical report, W3C, 1999. W3C Proposed Recommendation.
http://www.w3.org/TR/PR-rdf-schema.

 18. RBAC. http://csrc.nist.gov/rbac
 19. Protégé-2000, http://www.smi.stanford.edu/projects/protege/
 20. OpenGIS, http://www.opengis.org
 21. Grasshopper 2 Agent Platform, http://www.grasshopper.de

	1 Introduction
	2 ARION a Lightweight System Integration Architecture
	2.1 The Search Engine Subsystem
	2.2 Workflow Data Base Subsystem
	2.3 Agent Runtime Subsystem
	2.4 User Authentication/Authorization
	2.5 User Interfaces
	2.6 Tailored Deployment

	3 Ontology Based Knowledge Representation
	3.1 Conceptual Querying

	4 Active Data Generation and Retrieval
	4.1 XML-Based Workflow Specifications
	4.2 Agent Runtime Technology

	5 Conclusion
	References

