
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Quality of Service Specification in Distributed Object Systems Design

Svend Frolund and Jari Koistinen
Hewlett-Packard Laboratories

Quality of Service Speci�cation in

Distributed Object Systems Design

Svend Fr�lund

Hewlett-Packard Laboratories, frolund@hpl.hp.com

Jari Koistinen

Hewlett-Packard Laboratories, jari@hpl.hp.com

Traditional object-oriented design methods deal with the

functional aspects of systems, but they do not address qual-

ity of service (QoS) aspects such as reliability, availabil-

ity, performance, security, and timing. However, deciding

which QoS properties should be provided by individual sys-

tem components is an important part of the design process.

Di�erent decisions are likely to result in di�erent compo-

nent implementations and system structures. Thus, deci-

sions about component-level QoS should be made at design

time, before the implementation is begun. Since these de-

cisions are an important part of the design process, they

should be captured as part of the design. We propose a

general Quality-of-Service speci�cation language, which we

call QML. In this paper we show how QML can be used to

capture QoS properties as part of designs. In addition, we

extend UML, the de-facto standard object-oriented mod-

eling language, to support the concepts of QML. QML is

designed to integrate with object-oriented features, such as

interfaces, classes, and inheritance. In particular, it allows

speci�cation of QoS properties through re�nement of ex-

isting QoS speci�cations. Although we exemplify the use of

QML to specify QoS properties within the categories of reli-

ability and performance, QML can be used for speci�cation

within any QoS category|QoS categories are user-de�ned

types in QML.

1. Introduction

1.1 Quality-of-Service in Software Design

In software engineering|like any engineering

discipline|design is the activity that allows engineers

to invent a solution to a problem. The input to the

design activity consists of various requirements and con-

straints. The result of a design activity is a solution

in which all major architectural and technical problems

have been addressed. Design is an important activity

since it allows engineers to invent solutions stepwise and

in an organized manner. It makes engineers consider so-

lutions and trade various system functions against each

other.

To be useful, computer systems must deliver a certain

quality of service (QoS) to its users. By QoS, we refer

to non-functional properties such as performance, relia-

bility, availability, and security. Although the delivered

QoS is an essential aspect of a computer system, tradi-

tional design methods, such as [2, 11, 1, 13, 4], do not

incorporate QoS considerations into the design process.

We strongly believe that, in order to build systems that

deliver their intended QoS, it is essential to systemati-

cally take QoS into account at design time, and not as

an afterthought during implementation.

TradingStation

TradingServiceI

RateServiceI
RateService

TradingService

FIG. 1. Class diagram for the currency trading system

We use a simple example to illustrate the need for

design-time QoS considerations. Consider the currency

trading system in Figure 1. Currency traders interact

with the trading station, which provides a user inter-

face. To provide its functionality, the trading station

uses a rate service and a trading service. The

rate service provides rates, interests, and other in-

formation important to foreign exchange trading. The

trading service provides the mechanism for making

trades in a secure way. An inaccessible currency trading

system might incur signi�cant �nancial loss, therefore it

is essential that the system is highly available.

It is important, at design time, to decide the QoS

properties of individual system components. For exam-

ple, we need to decide the availability properties of the

rate service. We can decide that the rate service

should be highly available so that the trading station

can rely exclusively on it for rate information. Alterna-

tively, we can decide that the rate service need not

be highly available. If the rate service is not highly

available, the trading station cannot rely exclusively

on it, but must be prepared to continue operation if the

rate service fails. To continue operation, the trading

station could connect to an external rate service. As

the example shows, di�erent availability properties for

the rate service can result in di�erent system archi-

tectures. It is important to decide on particular QoS

properties, and thereby chose a speci�c architecture, at

design time.

Besides the system architecture, the choice of QoS

properties for individual components also a�ects the im-

plementation of components. For example, the rate

service can be implemented as a single process or as

a process pair, where the process-pair implementation

provides higher availability. Di�erent QoS properties

are likely to require di�erent implementations. More-

over, the QoS properties of a component may a�ect

the implementation of its clients. For example, with

a single-process implementation, the trading station

may have to explicitly detect failures and restart the

rate service, whereas with a process-pair implementa-

tion, failures may be completely masked for the trading

station.

1.2 Quality-of-Service Speci�cation

In the previous section we argued that QoS properties

of individual components reect important design deci-

sions, and that we need describe these QoS properties as

part of the design process. To capture component-level

QoS properties, we introduce a language called QML

(QoS Modeling Language).

Consider the CORBA IDL [17] interface de�nition for

the rate service in Figure 2.

A rate service provides one operation for retrieving

the latest exchange rates with respect to two currencies.

The other operation performs an analysis and returns a

forecast for the speci�ed currency. The interface de�-

nition speci�es the syntactic signature for a service but

does not specify any semantics or non-functional aspects.

In contrast, we concern ourselves with how to specify the

required or provided QoS for servers implementing this

interface.

QML has three main abstraction mechanisms for QoS

speci�cation: contract type, contract , and pro�le. QML

allows us to de�ne contract types that represent speci�c

QoS aspects, such as performance or reliability. A con-

tract type de�nes the dimensions that can be used to

characterize a particular QoS aspect. A dimension has a

domain of values that may be ordered. There are three

kinds of domains: set domains, enumerated domains,

and numeric domains. A contract is an instance of a

contract type and represents a particular QoS speci�-

cation. Finally, QML pro�les associate contracts with

interfaces, operations, operation arguments, and opera-

tion results.

The QML de�nitions in Figure 3 include two contract

types Reliability and Performance. The reliability

contract type de�nes three dimensions. The �rst one

represents the number of failures per year. The keyword

\decreasing" indicates that a smaller number of failures
is better than a larger one. Time-to-repair (TTR) repre-

sents the time it takes to repair a service that has failed.

Again, smaller values are better than larger ones. Fi-

interface RateServiceI f
Rates latest(in Currency c1,in Currency c2)

raises (InvalidC);

Forecast analysis(in Currency c)

raises (Failed);

g;

FIG. 2. The RateServiceI interface

nally, availability represents the probability that a

service is available. In this case, larger values represent

stronger constraints while smaller values represent lower

probabilities and are therefore weaker.

We also de�ne a contract named systemReliabilty

of type Reliability. The contract speci�es constraints

that can be associated with, for example, an operation.

Since the contract is named it can be used in more than

one pro�le. In this case, the contract speci�es an upper

type Reliability = contract f
numberOfFailures: decreasing numeric no/year;

TTR: decreasing numeric sec;

availability: increasing numeric;

g;

type Performance = contract f
delay: decreasing numeric msec;

throughput: increasing numeric mb/sec;

g;

systemReliability = Reliability contract f
numberOfFailures < 10 no/year;

TTR f
percentile 100 < 2000;

mean < 500;

variance < 0.3

g;
availability > 0.8;

g;

rateServerProfile for RateServiceI = pro�le f
require systemReliability;

from latest require Performance contract f
delay f

percentile 50 < 10 msec;

percentile 80 < 20 msec;

percentile 100 < 40 msec;

mean < 15 msec

g;
g;

from analysis require Performance contract f
delay < 4000 msec

g;
g;

FIG. 3. Contracts and Pro�le for RateServiceI

bound on the allowed number of failures. It also speci�es

an upper bound, a mean, and a variance for TTR. Finally,

it states that availability must always be greater than
0:8.

Next we introduce a pro�le called rateServerProfile

that associates contracts with operations in the
RateServiceI interface. The �rst requirement clause

states that the server should satisfy the previously de-

�ned systemReliability contract. Since this require-
ment is not related to any particular operation, it is

considered a default requirement and holds for every

operation. Contracts for individual operations are al-
lowed only to strengthen (re�ne) the default contract.

In this pro�le there is no default performance contract;

instead we associate individual performance contracts
with the two operations of the RateServiceI interface.

For latest we specify in detail the distribution of delays

in percentiles, as well as a upper bound on the mean de-
lay. For analysis we specify only an upper bound and

can therefore use a slightly simpler syntactic construc-

tion for the expression. Since throughput is omitted for
both operations, there are no requirements or guarantees

with respect to this dimension.

We have now e�ectively speci�ed reliability and per-
formance requirements on any implementation of the

rateServiceI interface. The speci�cation is syntacti-

cally separate from the interface de�nition, allowing dif-
ferent rateServiceI servers to have di�erent QoS char-

acteristics.

QoS speci�cations can be used in many di�erent situ-
ations. They can be used during the design of a system

to understand the QoS requirements for individual com-

ponents that enable the system as a whole to meet its
QoS goals. Such design-time speci�cation is the focus of

this paper. QoS speci�cations can also be used to dy-

namically negotiate QoS agreements between clients and
servers in distributed systems.

In negotiation it is essential that we can match of-

fered and required QoS characteristics. As an example,
satisfying the constraint \delay < 10 msec" implies that

we also satisfy \delay < 20 msec." We want to enable

automatic checking of such relations between any two
QoS speci�cations. We call this procedure conformance

checking , and it is supported by QML.

QML allows designers to specify QoS properties inde-
pendently of how these properties can be implemented.

For example, QML enables designers to specify a cer-

tain level of availability without reference to a particular
high-availability mechanism such as primary-backup or

active replication.

QML supports the speci�cation of QoS properties in
an object-oriented manner; it provides abstraction mech-

anisms that integrate with the usual object-oriented ab-

straction mechanisms such as classes, interfaces, and in-
heritance. Although QML is not tied to any partic-

ular design notation, we show how to integrate QML

with UML [2], and we provide a graphical syntax for

component-level QoS speci�cations.

QML is a general-purpose QoS speci�cation language;

it is not tied to any particular domain, such as real-

time or multi-media systems, or to any particular QoS

category , such as reliability or performance.

We organize the rest of this paper in the following

way. In Section 2, we introduce our terminology for dis-

tributed object systems. We present the dimensions of

reliability and performance that we use in Section 3. We

describe QML in Section 4, and we explain its integra-

tion into UML in Section 5. We use QML and the UML

extensions to specify the QoS properties of a computer-

based telephony system in Section 6. The topic of Sec-

tion 7 is related work, and Section 8 is a discussion of

our approach. Finally, in Section 9, we draw our conclu-

sions.

2. Our Terminology for Object-Oriented

Systems

We assume that a system consists of a number of

services . A service has a number of clients that rely on

the service to get their work done. A client may itself

provide service to other clients.

A service has a service speci�cation and an implemen-

tation. A service speci�cation describes what a service

provides; a service implementation consists of a collec-

tion of software and hardware objects that collectively

provide the speci�ed service. For example, a name ser-

vice maintains associations between names and objects.

A name service can be replicated, that is, it can be im-

plemented by a number of objects that each contain all

the associations. It is important to notice that we con-

sider a replicated name service as one logical entity even

though it may be implemented by a collection of dis-

tributed objects.

A client uses a service through a service reference, or

simply a reference. A reference is a handle that a client

can use to issue service requests. A reference provides

a client with a single access point, even to services that

are implemented by multiple objects.

Traditionally, a service speci�cation is a functional

interface that lists the operations and attributes that

clients can access; we extend this traditional notion of

a service speci�cation to also include a de�nition of the

QoS provided by the service. The same service speci�-

cation can be realized by multiple implementations, and

the same collection of objects can implement multiple

service speci�cations.

3. Selected Dimensions

To specify QoS properties in QML, we need a way

to formally quantify the various aspects of QoS. A QoS

category denotes a speci�c non-functional characteristic

of systems that we are interested in specifying. Relia-

bility , security , and performance are examples of such

categories. Each category consists of one or more di-

mensions that represent a metric for one aspect of the

category. Throughput would be a dimension of the per-

formance QoS category. We represent QoS categories

and dimensions as user-de�ned types in QML.

To meaningfully characterize services with QoS cat-

egories we need valid dimensions. We are particularly

interested in the dimensions that characterize services

without exposing internal design and implementation de-

tails. Such dimensions enable the speci�cation of QoS

properties that are relevant and understandable for, in

principle, any service regardless of implementation tech-

nology.

We describe a set of dimensions for reliability and

performance. In [8] we have reviewed a variety of liter-

ature and systems on reliability including work by Gray

et al. [7], Cristian [5], Reibman [14], Birman, [3], Maf-

feis [10], Littlewood [9], and others. As a result we pro-

pose the following dimensions for characterizing the re-

liability of distributed object services:

Name Type

TTR Time

TTF Time

Availability Probability

Continuous availability Probability

Failure masking set ffailure, omission, response,

value, state, timing, late, earlyg

Server failure enum fhalt, initialState, rollBackg

Operation semantics enum fexactlyOnce, atLeastOnce,
atMostOnceg

Rebinding policy enum frebind, noRebindg

Number of failures Unsigned Integer

Data policy enum fvalid, notValidg

We use the measurable quantities of time to failure

(TTF) and time to repair (TTR). Availability is the

probability that a service is available when a client at-

tempts to use it. Assume for example that service is

down totally one week a year, then the availability would

be 51/52, which is approximately 0.98. Continuous

availability assesses the probability with which a

client can access a service an in�nite number of times

during a particular time period. The service is expected

not to fail and to retain all state information during this

time period. We could for example require that a par-

ticular client can use a service for a 60 minute period

without failure with a probability of 0.999. Continuous

availability is di�erent from availability in that it

requires subsequent use of a service to succeed but only

for a limited time period.

The failure masking dimension is used to describe

what kind of failures a server may expose to its clients.

A client must be able to detect and handle any kind of
exposed failure. The above table lists the set of all pos-

sible failures that can be exposed by services in general.
The QoS speci�cation for a particular service will list the
subset of failures exposed by that service.

We base our categorization of failure types|shown
in Figure 4|on the work by Cristian [5]. If a service
exposes omission failures, clients must be prepared to
handle a situation where the service simply omits to re-

spond to requests. If a service exposes response fail-
ures, it might respond with a faulty return value or an
incorrect state transition. Finally, if the service exposes
timing failures, it may respond in an untimely manner.
Timing failures have two subtypes: late and early tim-

ing errors. Services can have any combination of failure
masking characteristics.

failure

reponse

value state

earlylate

timingomission

FIG. 4. Failure type hierarchy

Operation semantics describe how requests are han-

dled in the case of a failure. We can specify that is-
sued requests are executed exactlyOnce, atLeastOnce,
or atMostOnce.

Server failure describes the way in which a service
can fail. That is, whether it will halt inde�nitely, restart
in a well de�ned initialState, or restart rolledBack
to a previous check point.

The number of failures gives a likely upper bound
for the number of times the service will fail during a

speci�c time period.
When a service fails the client needs to know whether

it can use the existing reference or whether it needs to
rebind to the service after the service has recovered. The
rebinding policy is used to specify this aspect of reli-
ability.

Finally, we propose that the client also needs to know
if data returned by the service still is valid after the
service has failed and been restarted. To specify this
we need to associate data policy with entities such as

return values and out arguments.
For the purpose of this paper we will propose a

minimal set of dimensions for characterizing perfor-
mance. We are only including throughput and latency.
Throughput is the transfer rate for information, and
can, for example, be speci�ed as megabytes per second.
Latencymeasures the time between the point that an in-

vocation was issued and the time at which the response
was received by the client.

Dimensions such as those presented here constitute
the vocabulary for QoS speci�cation languages. We use
the dimensions to describe the example in section 6.

4. QML: A Language to Specify QoS

Properties

We describe the main design considerations for QML
in Section 4.1. We already introduced the fundamental
concepts of QML in section 1. Sections 4.2{4.8 describe
the syntax and semantics of QML in more detail. For
the full description of QML we refer to the language
de�nition in [6].

4.1 Basic Requirements

The main design consideration for QML is to sup-
port QoS speci�cation in an object-oriented context. We
want QML to integrate seamlessly with existing object-
oriented concepts. This overall goal results in the follow-
ing speci�c design requirements for QML:

� QoS speci�cations should be syntactically separate
from other parts of service speci�cations, such as
interface de�nitions. This separation allows us to
specify di�erent QoS properties for di�erent imple-
mentations of the same interface.

� It should be possible to specify both the QoS prop-
erties that clients require and the QoS properties
that services provide. Moreover, these two aspects
should be speci�ed separately so that a client-server
relationship has two QoS speci�cations: a speci�-
cation that captures the client's requirements and
a speci�cation that captures the service's provision-
ing. This separation allow us to specify the QoS
characteristics of a component, the QoS properties
that it provides and requires, without specifying the
interconnection of components. The separation is
essential if we want to specify the QoS characteris-
tics of components that are reused in many di�erent
contexts.

� There should be a way to determine whether the
QoS speci�cation for a service satis�es the QoS re-
quirement of a client. This requirement is a con-
sequence of the separate speci�cation of the QoS
properties that clients require and the QoS proper-
ties that services provide.

� QML should support re�nement of QoS speci�ca-
tions. In distributed object systems, interface def-
initions are typically subject to inheritance. Since
inheritance allows an interface to be de�ned as a
re�nement of another interface, and since we asso-
ciate QoS speci�cations with interfaces, we need to
support re�nement of QoS speci�cations.

� It should be possible to specify QoS properties at
a �ne-grained level. As an example, performance
characteristics are commonly speci�ed for individ-

ual operations. As another example, the data pol-
icy dimension described in Section 3 is applicable to
arguments and return values of operations. QML
must allow QoS speci�cations for interfaces, opera-
tions, attributes, operation parameters, and opera-
tion results.

Other aspects such as negotiation and utility can be

dealt with as mechanisms using QML or possibly be part

of future extensions of QML. This paper focuses on the

requirements listed above.

We have already briey introduced the fundamental

concepts of QML: contract type, contract , pro�le. The

following sections will provide a more detailed descrip-

tion of QML.

4.2 Contracts and Contract Types

A contract type contains a dimension type for each of

its dimensions. We use three di�erent dimension types:

set, enumeration, and numeric. Figure 5 gives an ab-

stract syntax for contract and dimension types.

conType ::= contract fdimName1 : dimType
1
; : : : ;

dimNamek : dimType
k
; g

dimName ::= n

dimType ::= dimSort

j dimSort unit

dimSort ::= enum fn1 ; : : : ; nkg
j relSem enum fn1 ; : : : ; nkg with order

j set fn1 ; : : : ; nkg
j relSem set fn1 ; : : : ; nkg
j relSem set fn1 ; : : : ; nkg with order

j relSem numeric

order ::= order fni < nj ; : : : ; nk < nmg
unit ::= unit=unit j % j msec j : : :
relSem ::= decreasing j increasing

FIG. 5. Abstract syntax for contract types

Contracts are instances of contract types. A contract

type de�nes the structure of its instances. In general, a

contract contains a list of constraints. Each constraint

is associated with a dimension. For example, if we have

a dimension \latency" in a contract type, a contract in-

stance may contain the constraint \latency < 10." Fig-

ure 6 gives an abstract syntax for contracts and con-
straints.

A contract may specify constraints for all or a subset

of the dimensions in its contract type. Omission of a

speci�cation for a particular dimension indicates that
the contract is trivially satis�ed along that dimension.

In general, a constraint consists of a name, an op-

erator, and a value. The name is typically the name
of a dimension, but, as we describe in Section 4.3, the

name can also be the name of a dimension aspect. The

permissible operators and values depend on the dimen-

contract ::= contract fconstraint1 ; : : : ;
constraintk; g

constraint ::= dimName constraintOp dimValue

j dimName faspect
1
; : : : ; aspect

n
; g

dimValue ::= literal unit

j literal

literal ::= n

j fn1 ; : : : ; nkg
j number

aspect ::= percentile percentNum constraintOp

dimValue

j mean constraintOp dimValue

j variance constraintOp dimValue

j frequency freqRange constraintOp

number%
freqRange ::= dimValue

j lRangeLimit dimValue ; dimValue

rRangeLimit

lRangeLimit ::= (j [
rRangeLimit ::=) j]
constraintOp ::= == j >= j <= j < j >

percentNum ::= 0 j 1 j : : : j 99 j 100
dimName ::= de�ned in Figure5

unit ::= de�ned in Figure5

FIG. 6. Abstract syntax for contracts

sion type. A dimension type speci�es a domain of val-

ues. These values can be used in constraints for that
dimension. The domain may be ordered. For example,

a numeric domain comes with a built-in ordering (\<")
that corresponds to the usual ordering on numbers. Set

and enumeration domains do not come with a built-in
ordering; for those types of domains we have to describe

a user-de�ned ordering of the domain elements. The do-

main ordering determines which operators can be used
in constraints for that domain. For example, we can-

not use inequality operators (\<," \>," \<=," \>=")

in conjunction with an unordered domain.

The domain for a set dimension contains elements

that are sets of name literals. We specify a set domain
using the keyword set, as in \set fn1; : : : ; nkg." This

de�nes a set domain where the domain elements are sub-
sets of the set \fn1; : : : ; nkg." The constraints over a set

dimension will then be constraints with set values, as in
\failures== fresponse; omissiong."

The domain for an enumeration dimension contains
elements that are name literals. We specify an enu-

meration domain using the keyword enum. For exam-
ple, we could de�ne an enumeration domain as follows:

\enum fn1; : : : ; nkg." Here, the domain will contain
the name literals \n1; : : : ; nk," and we can specify con-

straints as \dataPolicy== valid."

The domain of a numeric dimension contains elements

that are real numbers. Constraints for a numeric dimen-
sion are written as \latency < 10."

Elements of numeric dimensions are always or-

dered. We can specify a user-de�ned ordering for

set and enumerated dimensions in the following way:

\order fvalid < invalidg." When dimensions are or-

dered we need to specify whether larger or smaller val-

ues are considered stronger. As an example consider

the dimension of availability. A larger numeric value

for availability is a stronger that a smaller, we say that

availability is an \increasing" dimension. Other dimen-

sions, such as delay, are \decreasing" since smaller val-

ues are consider as stronger guarantees. Consequently,

QML requires that we de�ne ordered dimensions as ei-

ther decreasing or increasing. For the data validity enum

decreasing semantics seems most intuitive, since valid

also satis�es invalid.

The example in Figure 7 gives an example of a con-

tract type expression followed by a contract expression.

Note that the contract expression is explicitly typed with

a contract type name, this explicit typing enables the

QML compiler to determine a unique contract type for

any contract expression. So far we have only covered the

syntax for contract values and contract types. In Sec-

tion 4.4, we describe how to name contract values and

contract types, and how to use those names in contract

expressions.

4.3 Aspects

In addition to simple constraints QML supports more

complex characterizations that are called aspects . An

aspect is a statistical characterization; QML currently

includes four generally applicable aspects: percentile,

mean, variance, and frequency . Aspects are used for

characterizations of measured values over some time pe-

riod.

The percentile aspect de�nes an upper or lower value

for a percentile of the measured entities. The statement

percentile P denotes the strongest P percent of the

measurements or occurrences that have been observed.

type T = contract f // A contract type expression

s1: decreasing set f e1, e2, e3, e4 g
with order fe2<e1, e1<e3, e3<e4g;

e1: increasing enum f a1, a2, a3 g
with order fa2<a1, a3<a2g;

n1: increasing numeric mb / sec;

g;

T contract f // A contract expression of type T

s1 <= f e1, e2 g;
e1 < a2;

n1 < 23;

g;

FIG. 7. Example contract type and contract expressions

The aspect \percentile 80 < 6" states that the 80th

percentile of measurements for the dimensions must be

less than 6. We allow a constraint for a dimension to

contain more than one percentile aspect, as long as the

same percentile P does not occur more than once.

QML also allows the speci�cation of frequency con-

straints for individual values which is useful with enu-

merated types, and for ranges, which is useful with nu-

meric dimensions. Rather than specifying speci�c num-

bers for the frequency, QML allows us to specify the

relative percentage with which values in a certain range

occur. The constraint \frequency V > 20%" means

that in more that 20% of the occurrences we should have

the value V . The literal V can be a single value or if the

dimension has an ordering, and only then, it may be a

range. The constraint \frequency [1; 3) > 35%" means

that we expect 35% of the actual occurrences to be larger

than 1 and less than or equal to 3.

Figure 8 shows some examples of aspects in contract

expressions. The contract expression is preceded by the

name of its corresponding contract type. For s1 we de-

�ne one constraint for the 20th percentile. The meaning

of this is that the strongest 20% of the value must be

less than the speci�ed set value.

contractTypeName contract f
s1 f percentile 20 < f e1, e2 gg;
e1 f

frequency a1 <= 10 %;

frequency a2 >= 80 %;

g;
n1 f

percentile 10 < 20;

percentile 50 < 45;

percentile 90 < 85;

percentile 100 <= 120;

mean >= 60;

variance < 0.6;

g;
g;

FIG. 8. Example contract expression

decl ::= conTypeDecl j conDecl
conTypeDecl ::= type y = conType

conDecl ::= xc = conExp

conExp ::= y contract

j xc re�ned by

fconstraint 1 ; : : : ; constraintk ; g
conType ::= de�ned in Figure5

contract ::= de�ned in Figure6

constraint ::= de�ned in Figure6

FIG. 9. Abstract syntax for de�nition of contracts and
contract types

For e1 we de�ne the frequencies that we expect for
various values. For the value a1 we expect a frequency of
less than or equal to 10%. For a2 we expect a frequency
greater than or equal to 80%, and so forth.

The constraint on n1 de�nes bounds for values in dif-
ferent percentiles over the measurements of n1. In ad-
dition, we de�ne an upper bound for the mean and the
variance.

4.4 De�nition of Contracts and Contract

Types

The de�nition of a contract type binds a name to a
contract type; the de�nition of a contract binds a name
to the value of a contract expression. Figure 9 illus-
trates the abstract syntax to de�ne contracts and con-
tract types. In the astract syntax, we use xc as a generic
name for contracts and y as a generic name for contract
types.

We can de�ne a contract B to be a re�nement
of another contract A using the construct \B =
A re�ned byf: : :g" where A is the name of a previ-
ously de�ned contract. The contract that is enclosed by
curly brackets (f: : :g) is a \delta" that describes the dif-
ference between the contracts A and B. We say that
the delta re�nes A and that B is a re�nement of A.
The delta can specify QoS properties along dimensions
for which speci�cation was omitted in A. Furthermore,
the delta can replace speci�cations in A with stronger
speci�cations. The notion of \stronger than" is given
by a conformance relation on constraints. We describe
conformance in more detail in Section 4.8.

Figure 10 and Figure 11 illustrates how a named con-
tract type (Reliability) can be de�ne and how con-
tracts of that type can be de�ned respectively. The con-
tract type Reliability has the dimensions that we have
identi�ed within the QoS category of reliability described
in section 3

The contract systemReliability is an instance of
Reliability; it captures a system wide property,
namely that operation invocation has \exactly once" (or
transactional) semantics. The systemReliability only
provides a guarantee about the invocation semantics,
and does not provide any guarantees for the other di-
mensions speci�ed in the Reliability contract type.

The contract nameServerReliability is de�ned as
a re�nement of another contract, namely the con-
tract bound to the name systemReliability. In
the example, we strengthen the systemReliability

contract by providing a speci�cation along the
serverFailure dimension, which was left unspeci�ed
in the systemReliability contract.

type Reliability = contract f
failureMasking: decreasing

set fomission, lostResponse, noExecution,

response, responseValue, stateTransitiong;
serverFailure:

enum fhalt, initialState, rolledBackg;
operationSemantics: decreasing

enum fatLeastOnce, atMostOnce, onceg with

order fonce < atLeastOnce, once < atMostOnceg;
rebindingPolicy: decreasing

enum frebind, noRebindg with

order fnoRebind < rebindg;
dataPolicy: decreasing enum fvalid, invalidg

with order fvalid < invalidg;
numOfFailure: decreasing numeric failures/year;

MTTR: decreasing numeric sec;

MTTF: increasing numeric day;

reliability: increasing numeric;

availability: increasing numeric;

g;

FIG. 10. Example contract type de�nition

systemReliability = Reliability contract f
operationSemantics == once;

g;

nameServerReliability = systemReliability f
serverFailure == rolledBack;

g;

type Performance = contract f
latency: decreasing numeric msec;

throughput: increasing numeric kb/sec;

g;

traderResponse = Performance contract f
latency f percentile 90 < 50 msec g;

g;

FIG. 11. Example contract de�nitions

4.5 Pro�les

According to our de�nition, a service speci�cation
contains an interface and a QoS pro�le. The interface
describes the operations and attributes exported by a
service; the pro�le describes the QoS properties of the
service. A pro�le is de�ned relative to a speci�c inter-
face, and it speci�es QoS contracts for the attributes and
operations described in the interface. We can de�ne mul-
tiple pro�les for the same interface, which is necessary

since the same interface can for example have multiple
implementations with di�erent QoS properties.

Once de�ned, a pro�le can be used in two contexts:
to specify client QoS requirements and to specify service
QoS provisioning. Both contexts involve a binding be-

pro�le ::= pro�le freq
1
; : : : ; req

n
; g

req ::= require contractList

j from entityList require contractList

contractList ::= conExp
1
; : : : ; conExp

n

entityList ::= entity
1
; : : : ; entity

n

entity ::= opName

j attrName

j opName:parName

j result of opName

opName ::= identi�er

attrName ::= identi�er

parName ::= identi�er

conExp ::= de�ned in Figure9

FIG. 12. Abstract syntax for pro�les

tween a pro�le and some other entity. In the client con-

text this other entity is the service reference used by the

client; in the service context, the entity is a service im-

plementation. We discuss bindings in Section 4.7. Here,

we describe a syntax for pro�le values, and in Section 4.6

we describe a syntax for pro�le de�nition.

Figure 12 gives an abstract syntax for pro�les. A pro-

�le is a list of requirements, where a requirement speci�es

one or more contracts for one or more interface entities,

such as operations, attributes, or operation parameters.

If a requirement is stated without an associated entity,

the requirement is a default requirement that applies by

default to all entities within the interface in question.

Our intention is that the default contract is the strongest

contract that applies to all entities within an interface.

We can then explicitly specify a stronger contract for

individual entities by using the re�nement mechanism.

Contracts for individual entities are de�ned as follows:

\from e require C." Here e is an entity and C is a

contract. We use C as a delta that re�nes the default

contract of the enclosing pro�le. Using individual entity

contracts as deltas for re�nement means that we do not

have to repeat the default QoS constraints as part of

each individual contract.

declaration ::= conTypeDecl

j conDecl

j pro�leDecl

pro�leDecl ::= xp for intName = pro�leExp

pro�leExp ::= pro�le

j xp re�ned by freq
1
; : : : ; req

n
; g

intName ::= identifier

conTypeDecl ::= de�ned in Figure9

conDecl ::= de�ned in Figure9

pro�le ::= de�ned in Figure12

req ::= de�ned in Figure12

FIG. 13. Abstract syntax for de�nition of pro�les

Although a pro�le refers to speci�c operations and

arguments within an interface, the �nal association be-

tween the pro�le and the interface is established in a

pro�le de�nition. Such de�nitions are described in sec-

tion 4.6.

For each contract type, such as reliability, that a pro-

�le involves, we may specify zero or one default contract.

In addition, at most one contract of a given type can be

explicitly associated with an interface entity.

If, for a given contract type T , there is no default con-
tract and there is no explicit speci�cation for a particular

interface entity, the semantics is that no QoS properties

within the category of T are associated with that entity.

4.6 De�nition of Pro�les

A pro�le de�nition associates a pro�le with an inter-

face and gives the pro�le a name. A general require-

ment is that the interface entities referred to by the pro-

�le must exist in the related interface. The syntax for

pro�le de�nition is given in Figure 13. The de�nition

\id for intName = prof " gives the name id to the pro-

�le which is the result of evaluating the pro�le expression

prof with respect to the interface intName. The pro�le

name can be used to associate this particular pro�le with

implementations of the intName interface or with refer-

ences to objects of type intName.

A pro�le expression (pro�leExp) can be a pro�le, or

an identi�er with a \f: : :g" clause. If the expression is a

pro�le value, the de�nition binds a name to this value. If

a pro�le expression contains an identi�er and a \f: : :g"
clause, the identi�er must be the name of a pro�le, and

the \f: : :g" clause then re�nes this pro�le. The de�nition
gives a name to this re�ned pro�le.

If we have a pro�le expression \A re�ned by f: : :g,"
then the delta must either add to the speci�cations in A

or make the speci�cations in A stronger. The delta can

add speci�cations by de�ning individual contracts for en-

tities that do not have individual contracts in A. More-

over, the delta can specify a default contract if no default

interface NameServer f
void init();

void register(in string name, in object ref);

object lookup(in string name);

g

nameServerProfile for NameServer = pro�le f
require nameServerReliability;

from lookup require Reliability contract f
rebindPolicy == noRebind;

g;
g

FIG. 14. The interface of a name server

contract is speci�ed in A. The delta can strengthen A's

speci�cations by giving individual contracts for entities

that also have an individual contract in A. The indi-

vidual contract in the delta are then used as a contract

delta to re�ne the individual contract in A. Similarly,

the delta can specify a contract delta that re�nes the

default contract in A. We give a more detailed and for-

mal description of pro�le re�nement in [6].

To exemplify the notion of pro�le de�nition, con-

sider the interface of a name server in Figure 14.

The pro�le called nameServerProfile is a pro�le for

the NameServer interface; it associates various con-

tracts with the operations de�ned with the NameServer

interface. The nameServerProfile associates the

nameServerReliability contract (introduced in Fig-

ure 11) as the default contract, and it associates a re-

�nement of the nameServerReliability contract with

the lookup operation.

Notice that the contract for the lookup operation

must re�ne the default contract (in this case, the de-

fault contract is nameServerReliability). Since the

contract for operations must always re�ne the default

contract, it is implicitly understood that the contract

expression in an operation contract is in fact a re�ne-

ment.

4.7 Bindings

There are many ways in which QoS pro�les can be

bound to speci�c services. They can be negotiated and

associated with deals between clients and server, or they

can be associated statically at design or deployment

time. For the purpose of this paper we will provide an

example binding mechanism that allows clients to stati-

cally bind pro�les to references. In addition, we allow a

server to state the pro�le of its implementation. These

bindings could be used to ensure compatible characteris-

tics for clients and servers as well as runtime monitoring.

An abstract syntax for our notion of binding is illustrated

in Figure 16.

Figure 17 illustrates our notion of binding. In

the �rst example the client declares a reference called

myNameServer as a reference to a name server. The

client's QoS requirements are expressed by means of the

pro�le called nameServerProfile. In the second exam-

ple, the implementation called myNameServerImp is de-

clared to implement the service speci�cation that con-

sists of the interface called NameServer and the pro�le

called nameServerProfile.

The binding mechanism need not be a part of QML

but has been included here for clarity. Bindings are more

closely related to interface speci�cation, design and im-

plementation languages. As an example we will propose

a binding mechanism for UML in section 5.

4.8 Conformance

We de�ne a conformance relation on pro�les, con-
tracts, and constraints. A stronger speci�cation con-
forms to a weaker speci�cation. We need conformance
at runtime so that client-server connections do not have
to be based on exact match of QoS requirements with
QoS properties. Instead of exact match, we want to al-
low a service to provide more than what is required by a
client. Thus, we want service speci�cations to conform
to client speci�cations rather than match them exactly.

Pro�le conformance is de�ned in terms of contract
conformance. Essentially, a pro�le P conforms to an-
other pro�le Q if the contracts in P associated with an
entity e conform to the contracts associated with e in
the pro�le Q.

Contract conformance is in turn de�ned in terms of
conformance for constraints. Constraint conformance
de�nes when one constraint in a contract can be con-
sidered stronger, or as strong as, another constraint for
the same dimension in another contract of the same con-
tract type.

To determine constraint conformance for set dimen-
sions, we need to determine whether one subset conforms
to another subset. Conformance between two subsets
depends on their ordering. In some cases, a subset rep-
resents a stronger commitment than its supersets. As
an example, let us consider the failure-masking dimen-
sion. If a value of a failure-masking dimension de�nes
the failures exposed by a server, a subset is a stronger
commitment than its supersets (the fewer failure types
exposed, the better). If, on the other hand, we consider
a payment protocol dimension for which sets represent
payment protocols supported by a server, a superset is
obviously a stronger commitment than any of its sub-
sets (the more protocols supported, the better). Thus,

binding ::= clientBinding

j serviceBinding

clientBinding ::= refDecl with pro�leExp

serviceBinding ::= serviceDecl with pro�leExp

refDecl ::= identi�er : intName

serviceDecl ::= identi�er implements intName

FIG. 16. Abstract syntax for bindings

//Client side binding

myNameServer: NameServer with nameServerProfile;

//Implementation binding

myNameServerImp implements NameServer

with nameServerProfile;

FIG. 17. Example bindings

to be able to compare contracts of the same type the di-
mension declarations need to de�ne whether subsets or
supersets are stronger.

A similar discussion applies to the numeric domain.
Sometimes, larger numeric values are considered concep-
tually stronger than smaller. As an example, think of
throughput. For dimensions such as latency, smaller
numbers represent stronger commitments than larger
numbers.

In general, we need to specify whether smaller do-
main elements are stronger than or weaker than larger
domain elements. The decreasing declaration implies
that smaller elements are stronger than larger elements.
The increasing declaration means that larger elements
are stronger than smaller elements. If a dimension is
declared as decreasing, we map \stronger than" to \less
than" (<). Thus, a value is stronger than another value,
if it is smaller. An increasing dimension maps \stronger
than" to \greater than" (>). The semantics will be that
larger values are, considered stronger.

We want conformance to correspond to constraint sat-
isfaction. For example, we want the constraint d < 10
to conform to the constraint d < 20. But d < 10 only
conforms to d < 20 if the domain is decreasing (smaller
values are stronger). To achieve the property that con-
formance corresponds to constraint satisfaction, we al-
low only the operators f==; <=; <g for decreasing do-
mains, and we allow only the operators f==; >=; >g
for increasing domains. Thus, if we have an increasing
domain, the constraint d < 20 would be illegal.

If a pro�le Q is a re�nement of another pro�le P , Q
will also conform to P . Re�nement is a static operation
that gives a convenient way to write QoS speci�cations
in an incremental manner. Conformance is a dynamic
operation that, at runtime, can determine whether one
speci�cation is stronger than another speci�cation. For
more details on conformance we refer to [6].

5. An Extension of the Uni�ed Modeling

Language

In order to make QoS considerations an integral part
of the design process, design notations must provide the
appropriate language concepts. We have already pre-
sented a textual syntax to de�ne QoS properties. Here,
we extend UML [2] to support the de�nition of QoS prop-
erties. Later, we will use CORBA IDL [17] and our ex-
tension of UML [2] to describe an example design that
includes QoS speci�cations.

In UML, classes are represented by rectangles. In
addition, UML has a type concept that is used to de-
scribe abstractions without providing an implementa-
tion. Types are drawn as classes with a type stereotype
annotation added to it. In UML, classes may implement
types. The UML interface concept is a specialized us-
age of types. Interfaces can be drawn as small circles

that can be connected to class symbols. A class can

use or provide a service speci�ed by an interface. The

example below shows a client using (dotted arrow) a ser-

vice speci�ed by an interface called I . We also show a

class Implementation implementing the I interface but

in this example the interface circle has been expanded

to a class symbol with the type annotation.

Our extension to UML allows QoS pro�les to be asso-

ciated with uses and implements relationships between

classes and interfaces. A reference to a pro�le is drawn

as a rectangle with a dotted border within which the pro-

�le name is written. This pro�le box is then associated

with a uses or implements relationship.

Implementation

Client

RequiredProfile

ProvidedProfile

I

<<type>>
I

FIG. 15. UML extensions

In example 15, the client requires a server that im-

plements the interface I and satis�es the QoS require-

ments stated in the associated RequiredProfile. The

Implementation on the other hand promises to imple-

ment interface I with the QoS properties de�ned by the

ProvidedProfile pro�le. The pro�les are de�ned tex-

tually using our QoS speci�cation language.

Our UML extension allows object-oriented design to

be annotated with pro�le names that refer to separately

de�ned QoS pro�les. Notice that our UML extension

associates pro�les with speci�c implementations and us-

ages of interfaces. This allows di�erent clients of the

same interface to require di�erent QoS properties, and

it allows di�erent implementations of the same interface

to provide di�erent QoS properties.

6. Example

To illustrate QML and demonstrate its utility, we use

it to specify the QoS properties of an example system.

The example shows how QML can help designers de-

compose application level QoS requirements into QoS

properties for application components. The example also

demonstrates that di�erent QoS trade-o�s can give rise

to di�erent designs.

This example is a simpli�ed version of a system for

executing telephony services, such as telephone bank-

ing, ordering, etc. The purpose of having such an ex-

ecution system is to allow rapid development and in-

stallation of new telephony services. The system must

be scalable in order to be useful both in small busi-

nesses and for servicing several hundred simultaneous

calls. More importantly|especially from the perspec-

tive of this paper|the system needs to provide services

with su�cient availability.

Executing a service typically involves playing mes-

sages for the caller, reacting to key strokes, recording

responses, retrieving and updating databases, etc. It

should be possible to dynamically install new telephone

services and upgrade them at runtime without shutting
down the system. The system answers incoming tele-

phone calls and selects a service based on the phone

number that was called. The executed service may, for

example, play messages for the caller and react to events

from the caller or events from resources allocated to han-

dle the call.

Telephone users generally expect plain old telephony

to be reliable, and they commonly have the same ex-

pectations for telephony services. A telephony service

that is unavailable will have a severe impact on customer

satisfaction, in addition, the service company will loose

business. Consequently, the system needs to be highly

available.

Following the categorization by Gray et al. [7], we

want the telephony service to be a highly-available sys-

tem which means it should have a total maximum down-

time of 5 minutes per year. The availability measure

will then be 0.99999. We assume the system is built

on a general purpose computer platform with special-

ized computer telephony hardware. The system is built
using a CORBA [17] Object Request Broker (ORB) to

achieve scalability and reliability through distribution.

6.1 System Architecture

We call the service execution system module

PhoneServiceSystem. As illustrated by Figure 18, it

uses an EventSystem module and a TraderService

module.

Opening up the PhoneServiceSystemmodule in Fig-

ure 19, we see its main classes and interfaces. Classes are

drawn as rectangles and interfaces as circles. Classes im-

plement and use interfaces. As an example, the diagram

shows that ServiceExecutor implements ServiceI and

uses TraderI. In the diagram we have included refer-

ences to QML pro�les|such as PlayerProfile P|of
which a subset will be described in section 6.2. To ease

the reading of the diagram we have named required and

provided pro�les so that they end with the letters R and
P respectively. We have omitted to draw some interrela-
tionships for the purpose of keeping the diagram simple.

CallHandlerI, ServiceI, and ResourceI are three
important interfaces of the system. The model also
shows that the system uses interfaces provided by the
EventService and TraderService.

When a call is made, the CallHandlerImpl receives
the incoming call through the CallHandlerI interface
and invokes the ServiceExecutor through the ServiceI
interface. CallHandlerImpl receives the telephone num-
ber as an argument and maps that to a service identity.
When CallHandlerImpl calls the ServiceExecutor it
supplies the service identi�er as an argument and a
CallHandle. The CallHandle contains information
about the call|such as the speech channel|that is
needed during the execution of the service. A new in-
stance of CallHandle is created and initialized by the
CallHandler when an incoming call is received. The in-
formation in the CallHandle remains unchanged for the
remainder of the call.

In order to execute a service, the ServiceExecutor

retrieves the service description associated with the re-
ceived service identi�er. It also needs to allocate re-
sources such as databases, players, recorders, etc. To
obtain resources, the ServiceExecutor calls the Trader.
Each resource o�er its services when it is initially started
by contacting the trader and registering its o�er. To re-
duce complexity of the diagram we omit showing that
resources use the trader.

ServiceExecutor uses the PushSupplier and imple-
ments the PushConsumer interface in the EventService
module. Resources connect to the event service by us-
ing the PushConsumer interfaces. The communication
between the service executor and its resources is asyn-
chronous. When the service executor needs a resource
to perform an operation, it invokes the resource which
returns immediately. The service executor will then con-
tinue executing the service or stop to wait for events.
When the resource has �nished its operation, it noti-
�es the service executor by sending an event through
the event service. This communication model allows the

EventService TraderService

PhoneServiceSystem

FIG. 18. High-level architecture

service executor to listen for events from many sources
at the same time, which is essential if, for example,
the service executor simultaneously initiates the play-
ing of menu alternatives and waits for responses from
the caller.

Figure 19 also includes references to QoS pro�les. In
new designs, clients and services are usually designed to
match each others needs therefore the same pro�le of-
ten speci�es both what clients expect and what services
provide. When clients and services refer to the same pro-
�les, it becomes trivial to ensure that the requirements
by a client are satis�ed by the service. To point out an
example, CallHandlerImpl requires that the ServiceI

interface is implemented with the QoS properties de�ned
by SEProfile P and at the same time ServiceExecutor
provides ServiceI according to the same QoS pro�le.

In other cases, such as the Trader, are expected
to preexist and therefore have previously speci�ed QoS
properties. In those situations we have one contract
specifying the required properties and another contract
specifying what is provided. Consequently we need to
make sure the provided characteristics satisfy the re-
quired; this is referred to as conformance and is discussed
in section 4.8.

We will now present simpli�ed versions of three main
interfaces in the design. The ServiceI interface provides
an operation, called execute, to start the execution of
a service. The service identi�er is obtained from a table
that maps phone numbers to services. The CallHandle
argument contain channel identi�ers and other data nec-
essary to execute the service.

The Trader allows resources to o�er and withdraw
their services. Service executors can invoke the find

or findAll operations on the Trader to locate the re-
sources they need. Using a trader allows us to decouple
ServiceExecutors and resources. This decoupling make
it possible to smoothly introduce new resources and re-
move malfunctioning or deprecated resources. Observe
that this is a much simpli�ed trader for the purpose of
this paper.

Finally, we have the PlayerI that represents a simple
player resource. Players allow us to play a sequence of
messages on the connection associated with the supplied
CallHandle. The idea is that a complete message can be
built up by a sequence of smaller phrases. The interface
allows the service executor to interrupt the playing of
messages by calling stop.

6.2 Reliability

We have already shown in Figure 19 how pro�les
are associated with uses and implements relationships
between interfaces and classes. We will now in more
depth discuss what the QoS pro�les and contracts should
be for this particular design. For the contracts we will
use the dimensions proposed in section 3. We will not

<<type>>
PlayerI

<<type>>
RecorderI

<<type>>
DatabaseI

<<type>>
ResourceICallHandle

ServiceI

Service
Executor

TraderService::
Trader

EventService::
PushConsumer

TraderService::TraderI

TraderService::TraderI

RecorderImpl

DatabaseImplPlayerImpl

EventService::
PushSupplier

CallHandlerImpl
CallHandlerI

OtherDatabaseImpl

EventService::
PushConsumer

TraderProfile_P

TraderProfile_R

ESPCProfile_P

ESPSProfile_R

ResourceProfile_R

PlayerProfile_P

ESPSProfile_P

RecorderProfile_P
DatabaseProfile_P

DatabaseProfile_P

SEProfile

CallHandler_P

FIG. 19. Class diagram for PhoneServiceSystem

present any development process with which you identify

important pro�les and their content.

To meet end-to-end reliability requirements, the un-

derlying communications infrastructure, as well as the

execution system, must meet reliability expectations.

We assume that the communications infrastructure is

reliable, and focus on the reliability of the service execu-

tion system.

From a telephone user's perspective, the interface

CallHandlerI represents the peer on the other side

of the line. Thus, to provide high-availability to tele-

interface ServiceI f
void execute(in ServiceId si, in CallHandle ch)

raises (InvalidSI);

boolean probe() raises (ProbeFailed);

g;

FIG. 20. The ServiceI interface

phone users, the CallHandlerI service must be highly-

available.

To provide a highly-available telephone service, we re-

quire that the CallhandlerImpl has very short recovery

time and long time between failures. Due to the expected

shopping behavior of telephone service users we must re-

quire the repair time (MTTR) to not signi�cantly exceed

2 minutes and that the variance is small.

The CallHandler does not provide any sophisticated

failure masking, but it has a special kind of object refer-

ence that does not require rebinding after a failure. We

interface TraderI f
OfferId offer(in OfferRec or, in Object obj)

raises (invalidOffer);

Match find(in Criteria cr) raises (noMatch);

MatchSeq findAll(in Criteria cr) raises (noMatch);

void withdraw(in OfferId o) raises (noMatch);

g;

FIG. 21. The TraderI interface

CallServerReliability = Reliability contract f
MTTR f

percentile 100 <= 2;

variance <= 0.3

g;
TTF f

percentile 100 > 0.05 days;

percentile 80 > 100 days;

mean >= 140 days;

g;
availability >= 0.99999;

contAvailability >= 0.99999;

failureMasking == f omission g;
serverFailure == initialState;

rebindPolicy == noRebind;

numOfFailure <= 2 failures/year;

operationSemantics == atMostOnce;

g;

CallHandlerProfile_P for CallHandlerI = pro�le f
require CallServerReliability;

g

FIG. 22. Contract and binding for CallHandler

are prepared to accept on average 2 failures per year.
If the service fails, any executing and pending requests
are discontinued and removed. This means we have a at
most once operation semantics. The contract and pro-
�le of CallHandlerI as provided by CallHandlerImpl

is described in Figure 22.
From Figure 19 we can see that the reliability of

CallHandlerI directly depends on the reliability of
service de�ned by ServiceI. ServiceExecutor can
not provide any services without resources. Unless
ServiceExecutor can handle failing traders and re-
sources the reliability depends directly on the reliability
of TraderI and any resources it uses. In this example we
want to keep the ServiceExecutor as small and simple
as possible, therefore we propagate high-availability re-
quirements from CallHandlerI to the trader and the re-
sources. This is certainly a major design decision which
will a�ect the design and implementation of the other
components of the system.

We expect the ServiceExecutor to have a short re-
covery time since it holds no information that we wish
to recover. If it fails, the service interactions it currently

interface PlayerI : ResourceI f
void play(in CallHandle ch, in MsgSeq ms)

raises (InvalidMsg);

void stop(in CallHandle ch);

g;

FIG. 23. The PlayerI interface

executes will be discontinued. We assume that users con-

sider it more annoying if a session is interrupted due to

a failure than if they are unable to connect to the ser-

vice. We therefore require the ServiceExecutor to be

reliable in the sense that it should function adequately

over the duration of a typical service call. Calls are es-

timated to last 3 minutes on average with 80% of the

calls less than 5 minutes. With this in mind, we will re-

quire that the service executor provides high continuous

availability with a time period of 5 minutes.

Since the recovery time is short, we can allow more

frequent failures without compromising the availability

requirements.

The ServiceExecutor recovers to a well de�ned

initial state and will forget about all executions that

where going on at the time of the failure. The contract

states that rebinding is necessary, which means that

when the service executor is restarted, the CallHandler

receives a noti�cation that it can obtain a reference to

the ServiceExecutor by rebinding. Pending requests

are executed at most once in case of a failure; most likely

they are not executed at all which is considered accept-

able for this system. The contract and pro�le used for

ServiceI are described in Figure 24.

Although the ServiceExecutor itself can recover

rapidly, it still depends on the Trader and the resources.

We expect the Trader to have a relatively short re-

covery time, which relaxes the mean time to failure re-

quirements slightly. We insist that all types of telephony

ServiceExecutorReliability = Reliability contract

f
MTTR < 20 sec;

TTF f
percentile 100 > 0.05 days;

percentile 80 > 20 days;

mean > 24 days;

g
availability >= 0.99999;

contAvailability > 0.999999 ;

failureMasking == f omission g;
serverFailure == initialState;

rebindPolicy == rebind;

numOfFailure <= 10 failures/year;

operationSemantics == atMostOnce;

g;

SEProfile for ServiceI = pro�le f
require ServiceExecutorReliability;

require Reliability contract

f dataPolicy == invalid; g;
g;

FIG. 24. Contract and binding for service

services can be executed when the system is up, which

means that all resources must be available and conse-

quently satisfy the high-availability requirements.

The reliability contract for the Trader (Figure 26) is

based on a general contract (HAServiceReliability)

for highly-available services. The contract is abstract in

the sense that it only states the availability requirements

and leaves several of the other dimensions unspeci�ed.

The Trader pro�le re�nes it by stating that the recovery

time should be short.

In addition, we state that o�er identi�ers and object

references returned by the trader are valid even after

a failure. This means that an o�er identi�er returned

before a failure can be used to withdraw an o�er after

the Trader has recovered. Also, any references returned

by the Trader are valid during the Trader's down period

as well as after it has recovered, assuming, of course, that

the services referred to by the references have not failed.

The start-up time for a service execution is very im-

portant; the time between a call is answered and the

service starts executing must be short and de�nitely not

more than one second. A start-up time that exceeds

one second can make users believe there is a problem

with the connection and therefore hang-up the phone,

ResourceReliability = Reliability contract f
availability >= 0.99999;

failureMasking == f failure g;
serverFailure == initialState;

rebindPolicy == rebind;

g;

PlayerReliability =

ResourceReliability re�ned by f
MTTR = 7200 sec;

TTF f
percentile 100 > 2000 days;

percentile 80 > 6000 days;

mean >= 7000 days;

g;

availability >= 0.99999;

contAvailability >= 0.999999;

failureMasking == failure;

serverFailure == initialState;

rebindPolicy == rebind;

numOfFailure <= 0.1 failures/year;

operationSemantics == least_once;

dataPolicy == no_guarantees;

g;

PlayerProfile_P for PlayerI = pro�le f
require PlayerReliability;

g;

FIG. 25. Contract and binding for resources

the consequence being both an unsatis�ed customer and

a lost business opportunity.

Having analyzed and estimated the execution times

in the start-up execution path, we require that the find

and findAll operations on the Trader respond quickly.

We do not anticipate the throughput to constitute a bot-

tleneck in this case.

We can relax the performance requirements for the

offer and withdraw operations on the Trader. The rea-

son being that these operations are not time critical from

the service execution point of view. We specify the per-

formance in Figure 26 as part of the TraderProfile P

pro�le.

The performance pro�le makes it clear that the im-

plementation of TraderI should give invocations of find

and findAll higher priority than invocations of offer

and withdraw.

A resource service represents a pool of hardware

and software resources that are expected to be highly-

available. If a resource service is down, it is likely that

there are major hardware or software problems that will

take a long time to repair. Since failing resource services

are expected to have long recovery times, they need to

have, in principle, in�nite MTTF to satisfy high availabil-

HAServiceReliability = Reliability contract f
availability >= 0.99999;

failureMasking == f omission g;
serverFailure == initialState;

rebindPolicy == rebind;

numOfFailure <= 10 failures/year;

operationSemantics == once;

g;

TraderProfile_P for TraderI = pro�le f
require HAServiceReliability re�ned by f

MTTR f
percentile 100 < 60 ;

variance <= 0.1;

g
g;

from offer.OfferId, result of find, findAll

require Reliability contract

f dataPolicy == valid; g;

from find, findAll require Performance

contract f latency f percentile 90 < 50 g; g;

from offer, withdraw require Performance

contract f latency f percentile 80 < 2000 g; g;
g;

FIG. 26. Contract and binding for the Trader

ity requirements. This does not mean that individual

resource cannot fail, but it does mean that there must

be su�cient redundancy to mask failures.

In Figure 25 we de�ne a general contract, called

ResourceReliability, for ResourceI. The contract

captures that resources need to be highly available. Each

speci�c resource type|such as PlayerReliability|

will then re�ne this general contract to specify its in-

dividual QoS properties.

6.3 Discussion

The speci�cation of reliability and performance con-

tracts, and the analysis of inter-component QoS depen-

dencies, have given us many insights and important guid-

ance. As an example, it has helped us realize that the

Trader needs to support fast fail-over and use a reliable

storage. We also found that the reliability of resources

is essential, and that, in this example system, resource

services should be responsible for their own reliability.

The explicit speci�cation also allows us to assign well-

de�ned values to various dimension which make design

goals and requirements mreo clear.

QML allows detailed descriptions of the QoS asso-

ciated with operations, attributes, and operation pa-

rameters of interfaces. This level of detail is essen-

tial to clearly specify and divide the responsibilities

among client and service implementations. The re�ne-

ment mechanism is also essential. Re�nement allows us

to form hierarchies of contracts and pro�les, which al-

lows us to capture QoS requirements at various levels of

abstraction.

Due to the limited space of this paper, we have not

been able to include a full analysis or speci�cation of

the example system. In a real design, we also need to

study what happens when various components fail, es-

timate the frequency of failures due to programming er-

rors, etc. We also need to ensure that the QoS contracts

provided by components actually allows the clients to

satisfy requirements imposed on them. There are vari-

ous modeling techniques available that are applicable to

selected types of systems; see Reibman et al. [14] for an

overview.

In our case, high availability requirements for

CallHandler have resulted in strong demands on other

services in the application. Another design alterna-

tive would be to demand that components such as

the ServiceExecutor can handle failing resources and

switch to other resources when needed. This would re-

quire more from the ServiceExecutor, but allow re-

source services to be less reliable.

Despite the limitations of our example, we believe that

it demonstrates three important points: QoS should be

considered during the design of distributed systems; QoS

requires appropriate language support; QML is useful as

a QoS speci�cation language.
Firstly, we want to stress that considering QoS dur-

ing design is both useful and necessary. It will directly
impact the design and make developers aware of non-
functional requirements.

Secondly, QoS cannot be e�ectively considered with-
out appropriate language support. We need a language

that helps designer capture QoS requirements and asso-
ciate these with interfaces at a detailed level. We also
need to make QoS requirements and o�ers �rst class cit-
izens from a design language point of view.

Finally, we believe the example shows that QML is
suitable to support designers in involving QoS consider-

ations in the design phase.

7. Related Work

Common object-oriented analysis and design lan-
guages, such as UML [2], Objectory [13], Booch nota-
tion [1], and OMT [11], generally lack concepts and con-

structs for QoS speci�cation. In some cases, they have
limited support to deal with temporal aspects or call se-
mantics [1].

Interface de�nition languages, such as OMG IDL [17],
specify functional properties and lack any notion of QoS.

TINA ODL [19] allows the programmer to associate QoS
requirements with streams and operations. A major dif-
ference between TINA ODL and our approach is that
they syntactically include QoS requirements within in-

terface de�nitions. Thus, in TINA ODL, one cannot
associate di�erent QoS properties with di�erent imple-
mentations of the same functional interface. Moreover,
TINA ODL does not support re�nement of QoS spec-

i�cations, which is an essential concept in an object-
oriented setting.

There are a number of languages that support QoS
speci�cation within a single QoS category. The SDL
language [22] has been extended to include speci�cation

of temporal aspects. The RTSynchronizer programming
construct allows modular speci�cation of real-time prop-
erties [15]. These languages are all tied to one particu-
lar QoS category. In contrast, QML is general purpose;

QoS categories are user-de�ned types in QML, and can
be used to specify QoS properties within arbitrary cate-
gories.

Zinky et al. [20, 21] present a general framework,
called QuO, to implement QoS-enabled distributed ob-

ject systems. The notion of a connection between a client
and a server is a fundamental concept in their framework.
A connection is essentially a QoS-aware communication
channel; the expected and measured QoS behaviors of a

connection are characterized through a number of QoS

regions . A region is a predicate over measurable connec-
tion quantities, such as latency and throughput. When
a connection is established, the client and server agree

upon a speci�c region; this region captures the expected

QoS behavior of the connection. After connection es-
tablishment, the actual QoS level is continuously moni-
tored, and if the measured QoS level is no longer within
the expected region, the client is noti�ed through an up-

call. The client and server can then adapt to the current
environment and re-negotiate a new expected region.

QuO does not provide anything corresponding to re-
�nement, conformance, or �ne-grained characterizations
provided by QML.

Within the Object Management Group (OMG) there

is an ongoing e�ort to specify what is required to extend
CORBA [17] to support QoS-enabled applications. The
current status of the OMG QoS e�ort is described in [18],
which presents a set of questions on QoS speci�cation

and interfaces. We believe that our approach provides
an e�ective answer to some of these questions.

8. Discussion

Developing a QoS speci�cation language is only the

�rst step towards supporting QoS considerations in gen-
eral and, as this paper suggest, as an integral part of
the design process. We need methods that address the
process aspects of designing with QoS in mind. For ex-

ample, we need methods that help the designer make
QoS-based trade-o�s, and methods that help the de-
signer decompose the application-level QoS requirements

into QoS properties for individual components. In ad-
dition to methods, we also need tools that can check
consistency and satisfaction of QoS speci�cations. For
example, it would be desirable, to have a tool that can

check whether a running service meets its QoS speci�ca-
tion. Although a speci�cation language is not a complete
solution, we still believe it is an important step.

Specifying QoS properties at design time is only the
starting point; eventually we need to implement the de-

sign and ensure that the QoS requirements are satis�ed
in the implementation. An important issue that must
be addressed in the implementation, is what action to

take at runtime if the QoS requirements cannot be sat-
is�ed in the current execution environment, for exam-
ple, what should happen if the actual response time is
higher than the stated response time requirement. In

most applications, it is not acceptable for a service to
stop executing because its QoS requirements cannot be
satis�ed. Instead, one would expect the service to adapt
to its environment through graceful degradation.

For a service to adapt to its environment, it must be

noti�ed about divergence from speci�ed requirements,
and it must be able to dynamically specify relaxed re-
quirements to the infrastructure, and to the services it

depends upon, to communicate how it can gracefully de-
grade and thereby adapt to the current execution en-
vironment. We believe that our concepts of pro�le and
contract can be used to specify QoS requirements at run-

time as well as at design time. To facilitate runtime
speci�cation, we need pro�les and contracts to be �rst
class values in the implementation language. To achieve
this, we can de�ne a mapping from QML into the im-
plementation language; for example, if the implemen-
tation language is C++, one could map contract types
into classes and contracts into objects instantiated from
those classes. The important thing to notice is that the
concepts remain the same.

9. Concluding Remarks

In this paper we argue that taking QoS into account
during the design of distributed object systems signif-
icantly inuences design and implementation decisions.
Late consideration of QoS aspects will often lead to in-
creased development and maintenance costs as well as
systems that fail to meet user expectations.

We have proposed a language, called QML, that will
allow developers to explicitly deal with QoS as they spec-
ify interfaces. In this paper we show how QML can be
used for QoS speci�cation in class model and interface
designs of distributed object systems. QML allows QoS
speci�cations to be separated from interfaces but asso-
ciated with uses and implementations of services. We
propose a re�nement mechanism that allows reuse and
customization of QoS contracts. This re�nement mecha-
nism also allows us to deal with the interaction between
QoS speci�cation and interface inheritance; thus we truly
support object-oriented design. We have also described
how we can determine whether one speci�cation satis�es
and other with conformance checking. Finally, QML al-
lows QoS speci�cation at a �ne-grained level|operation
arguments and return values|that we believe is neces-
sary in many applications and for many QoS dimensions.

Although this paper focused on the usage of QML
in the context of software design, we intend to use it
for the management of QoS in general. As an example,
based on de�ned contracts and pro�les, we intend to
emit programming language de�nitions that can be used
to construct concrete QoS parameters. Such parameters
are used to o�er and require QoS characteristics at the
application programming interface level.

Our experience suggests that the concepts and lan-
guage proposed in this paper will provide a sound foun-
dation for future QoS speci�cation languages and inte-
gration of such languages with general object-oriented
speci�cation and design languages.

References

1. Grady Booch. Object-Oriented Analysis and Design.

Benjamin-Cummings Corp. 1994.

2. Grady Booch, Ivar Jacobson, and Jim Rumbaugh. Uni�ed

Modeling Language. Rational Software Corporation, version

1.0, January 1997.

3. Kenneth P. Birman. ISIS: A System for Fault-Tolerant Dis-

tributed Computing. Department of Computer Science, Cor-

nell University. TR86-744, April 1986.

4. D. Coleman, P. Arnold, S. Bodo�, C. Dolin, F. Hayes, P. Jere-

maes. Object-Oriented Development: The Fusion Method.

Prentice-Hall. 1994.

5. Flaviu Cristian. Understanding Fault-Tolerant Distributed

Systems. Communications of the CACM , Vol. 34, No. 2,

February 1991.

6. Svend Fr�lund and Jari Koistinen. QML: A Language for

Quality-of-Service Speci�cation. Hewlett-Packard Laborato-

ries, Tech. Report HPL-98-10, February, 1998.

7. Gray and Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann. 1993.

8. Jari Koistinen. Dimensions for Reliability Contracts in Dis-

tributed Object Systems. Hewlett-Packard Laboratories, Tech.

Report HPL-97-119, October, 1997.

9. Bev Littlewood. Software Reliability Modelling. In Soft-

ware Engineer's Reference book . Section 31, Butterworth-

Heinemann Ltd.,1991.

10. Silvano Ma�eis. Adding Group Communication and Fault-

Tolerance to CORBA. Proceedings of USENIX Conference on

Object-Oriented Technologies. June 1995.

11. Jim Rumbaugh et al. Object Modeling Language. Prentice-

Hall, 1991.

12. J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Ar-

guments in System Design. ACM Transactions om Computer

Systems, Vol. 2, No. 4, November 1984.

13. Ivar Jacobson, Magnus Christerson and Persson. Object-

Oriented Software Engineering. Addison-Wesley, 1992.

14. A. L. Reibman and M. Veeraraghavan. Reliability Modeling:

An Overview for System Designers. IEEE Computer , April,

1991.

15. Shangping Ren and Gul A. Agha. RTsynchronizer: Language

Support for Real-Time Speci�cations in Distributed Systems.

ACM SIGPLAN Workshop on Languages, Compilers, and

Tools for Real-Time Systems, La Jolla, California, June 1995.

16. Richard Staehlin, Jonathan Walpole, and David Maier. A

quality-of-service speci�cation of multimedia presentations.

Multimedia Systems, 3, 1995.

17. Object Management Group. The Common Object Request

Broker: architecture and speci�cation, July 1995. revision 2.0.

18. Object Management Group. Quality of Service: OMG Green

paper . Draft revision 0.4a, June 12, 1997.

19. TINA Object De�nition Language. Telecommunications Infor-

mation Networking Consortium, June 1995.

20. John A. Zinky, David E. Bakken, and Richard D Schantz. Ar-

chitectural Support for Quality of Service for CORBA objects.

Theory and Practice of Object Systems, Vol. 3(1), 1997.

21. John A. Zinky, David E. Bakken, and Richard D Schantz.

Overview of Quality of Service for Distributed Objects. Pro-

ceedings of the Fifth IEEE conference on Dual Use, May, 1995.

22. S. Leue. Specifying Real-Time Requirements for SDL speci�-

cations | a temporal logic-based approach. Protocol Speci�-

cation, Testing, and Veri�cation XV. Proceedings of the Fif-

teenth IFIP WG6. June, 1995.

