
QoS Computation and Policing in Dynamic Web Service
Selection

Yutu Liu
∗

Department of Computer
Science

Texas State University
San Marcos, Texas

alinux@neo.tamu.edu

Anne H.H. Ngu
Department of Computer

Science
Texas State University

San Marcos, Texas

hn12@txstate.edu

Liangzhao Zeng
IBM T.J. Watson Research

Center
New York, USA

lzeng@us.ibm.com

ABSTRACT
The emerging Service-Oriented Computing (SOC)

paradigm promises to enable businesses and organizations
to collaborate in an unprecedented way by means of
standard web services. To support rapid and dynamic
composition of services in this paradigm, web services that
meet requesters’ functional requirements must be able to
be located and bounded dynamically from a large and con-
stantly changing number of service providers based on their
Quality of Service (QoS). In order to enable quality-driven
web service selection, we need an open, fair, dynamic and
secure framework to evaluate the QoS of a vast number of
web services. The fair computation and enforcing of QoS
of web services should have minimal overhead but yet able
to achieve sufficient trust by both service requesters and
providers. In this paper, we presented our open, fair and
dynamic QoS computation model for web services selection
through implementation of and experimentation with a
QoS registry in a hypothetical phone service provisioning
market place application.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Management, Experimentation, Algorithms

Keywords
QoS, Web Services, extensible QoS Model, Ranking of QoS

1. INTRODUCTION
Web services are self-describing software applications that

can be advertised, located, and used across the Internet us-
ing a set of standards such as SOAP, WSDL, and UDDI [8].
Web services encapsulate application functionality and in-
formation resources, and make them available through stan-
dard programmatic interfaces. Web services are viewed as

∗Yutu Liu is currently pursuing his graduate study at De-
partment of Computer Science, Texas A&M. This work was
conducted while he was a master student at Texas State
University

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

one of the promising technologies that could help business
entities to automate their operations on the web on a large
scale by automatic discovery and consumption of services.
Business-to-Business(B2B) integration can be achieved on a
demand basis by aggregating multiple services from different
providers into a value-added composite service.

In the last two years, the process-based approach to web
service composition has gained considerable momentum and
standardization [1]. However, with the ever increasing num-
ber of functional similar web services being made available
on the Internet, there is a need to be able to distinguish them
using a set of well-defined Quality of Service (QoS) criteria.
A service composition system that can leverage, aggregate
and make use of individual component’s QoS information to
derive the optimal QoS of the composite service is still an
ongoing research problem. This is partly due to the lack of
an extensible QoS model and a reliable mechanism to com-
pute and police QoS that is fair and transparent to both
service requesters and providers.

Currently, most approaches that deal with QoS of web
services only address some generic dimensions such as price,
execution duration, availability and reliability [12, 6]. In
some domains, such generic criteria might not be sufficient.
QoS model should also include domain specific criteria and
be extensible. Moreover, most of the current approaches
rely on service providers to advertise their QoS information
or provide an interface to access the QoS values, which is
subject to manipulation by the providers. Obviously, ser-
vice providers may not advertise their QoS information in a
“neutral” manner, for example, execution duration, reliabil-
ity, etc. In approaches where QoS values are solely collected
through active monitoring, there is a high overhead since
QoS must be checked constantly for a large number of web
services. On the other hand, an approach that relies on a
third party to rate or endorse a particular service provider
is expensive and static in nature. In our framework, the
QoS model is extensible, and QoS information can either be
provided by providers, computed based on execution mon-
itoring by the users, or collected via requesters feedback,
depending on the characteristics of each QoS criterion. In
a nutshell, we propose a framework that aims at advancing
the current state of the art in QoS modeling, computation
and policing. There are three key aspects to our work:

• Extensible QoS model. In the presence of multiple
web services with overlapping or identical functional-
ity, service requesters need objective QoS criteria to

66



distinguish one service from another. We argue that
it is not practical to come up with a standard QoS
model that can be used for all web services in all do-
mains. This is because QoS is a broad concept that
can encompass a number of context-dependent non-
functional properties such as privacy, reputation and
usability. Moreover, when evaluating QoS of web ser-
vices, we should also take into consideration domain
specific criteria. For example, in the domain of phone
service provisioning, the penalty rate for early termina-
tion of a contract and compensation for non-service, of-
fered in the service level agreement are important QoS
criteria in that domain. Therefore, we propose an ex-
tensible QoS model that includes both the generic and
domain specific criteria. In our approach, new domain
specific criteria can be added and used to evaluate the
QoS of web services without changing the underlying
computation model.

• Preference-oriented service ranking. Different
users may have different preferences or requirements
on QoS. It is important to be able to represent QoS
from the perspective of service requesters’ preference.
For example, service selection may be driven com-
pletely by price, regardless of the time it takes to exe-
cute the service. A different requester may be very
service sensitive. This means that criteria such as
penalty rate or the ability to return the goods after
the purchase are viewed as more important than the
price and the time. Another service selection may be
driven completely by time because of tight deadlines.
A QoS model should provide means for users to ac-
curately express their preferences without resorting to
complex coding of user profiles.

• Fair and open QoS computation. Once a set of
QoS criteria have been defined for a particular domain,
we must ensure that QoS information is collected in a
fair manner. In our framework, QoS information can
be collected from service properties that are published
by providers, execution monitoring, and requesters’
feedback based on the characteristic of quality crite-
rion. For example, execution price can be provided
by service providers, execution duration can be com-
puted based on service invocation instances, while ser-
vice reputation is based on service requesters’ feed-
back. We also build a policing mechanism that will
prevent the manipulation of QoS value from a single
service requester by requiring each requester to have a
valid pair of user id and password to update the QoS
registry. Furthermore, this pair of id and password
must be verified by the service providers at the con-
sumption of the service to ensure that only the actual
consumer of the service is allowed to give feedback. On
the other hand, to be completely fair, providers can re-
view those criteria and can improve their QoS if they
desire to. Moreover, providers can update their QoS
information (e.g., execution price, penalty rate) at any
time. Providers can also check the QoS registry to see
how their QoS is ranked among other service providers.

We believe that an extensible, transparent, open and fair
QoS model is necessary for the selection of web services.
Such a model can benefit all participants. Although this

model requires all requesters to update their usage experi-
ences with a particular type of service in a registry, this over-
head on the user is not large. In return, QoS for a particular
service is actively being policed by all requesters. Each re-
quester can search the registry to get the most-updated QoS
of listed providers. Service providers can view and change
their services at any time. With such an open and dynamic
definition of QoS, a provider can operate its web services to
give its end-users the best user experience.

This paper is organized as follows. In Section 2, we give
the details of an extensible QoS model and its computation.
In Section 3, we describe the implementation of QoS registry
and explain how QoS information can be collected based on
active monitoring and active user feedback. Section 4 dis-
cusses the experiments that we conducted to confirm the
fairness and the validity of the various parameters used in
QoS computation. Finally, we discuss related work in Sec-
tion 5 and conclude in Section 6.

2. QOS-BASED SERVICE SELECTION
Currently, in most SOC frameworks, there is a service

broker which is responsible for the brokering of functional
properties of web services. In our framework, we extend
capability of the service broker to support non-functional
properties. This is done by introducing an extensible and
multiple dimensions QoS model in the service broker. We
aim to evaluate QoS of web services using an open, fair
and transparent mechanism. In the following subsections,
we first introduce the extensible QoS model, and then we
give the details on how to evaluate web service based on our
model.

2.1 Extensible QoS Model
In this section, we propose an extensible QoS model,

which includes generic and domain or business specific crite-
ria. The generic criteria are applicable to all web services, for
example, their pricing and execution duration. Although the
number of QoS criteria discussed in this paper is limited (for
the sake of illustration), our model is extensible. New crite-
ria (either generic or domain specific) can be added without
fundamentally altering the underlying computation mecha-
nism as shown in Section 2.2. In particular, it is possible to
extend the quality model to integrate non-functional service
characteristics such as those proposed in [7], or to integrate
service QoS metrics such as those proposed by [11].

2.1.1 Generic quality criteria
We consider three generic quality criteria which can be

measured objectively for elementary services: (1) execution
price, (2)execution duration, and (3) reputation. Criteria
such as availability and reliability is not required in our
model due to the use of active user feedback and execution
monitoring.

• Execution price. This is the amount of money which
a service requester has to pay to the service provider
to use a web service such as checking a credit, or the
amount of money the service requester has to pay to
the service provider to get a commodity like an en-
tertainment ticket or a monthly phone service. Web
service providers either directly advertise the execu-
tion price of their services, or they provide means for
potential requesters to inquire about it. Let s be one

67



web service, then qpr(s) is the execution price for using
that service s.

• Execution duration. The execution duration qdu(s)
measures the expected delay in seconds between the
moment when a request is sent and the moment when
the service is rendered. The execution duration is
computed using the expression qdu(s) = Tprocess(s) +
Ttrans(s), meaning that the execution duration is the
sum of the processing time Tprocess(s) and the trans-
mission time Ttrans(s). Execution time is obtained via
active monitoring.

• Reputation. The reputation qrep(s) of a service s is
a measure of its trustworthiness. It mainly depends
on end user’s experiences of using the service s. Dif-
ferent end users may have different opinions on the
same service. The value of the reputation is defined as
the average ranking given to the service by end users,

i.e., qrep =
∑n

i=1 Ri

n
, where Ri is the end user’s rank-

ing on a service’s reputation, n is the number of times
the service has been graded. Usually, end users are
given a range to rank Web services. For example, in
Amazon.com, the range is [0, 5].

2.1.2 Business related criteria
The number of business related criteria can vary in dif-

ferent domains. For example, in phone service provision-
ing domain, the penalty rate for the early termination and
the fixed monthly charge are important factors for users to
consider when selecting a particular service provider. We
use the generic term usability to group all business related
criteria. In our chosen application, we measure usability
from three aspects, transaction, compensation rate and the
penalty rate.

• Transaction support is used for maintaining data
consistency. In prior QoS models, no transactional
criteria is being used in the computation of QoS value.
However, from the perspective of a requester, whether
a web service provides an undo procedure to rollback
the service execution in certain period without any
charges is an important factor that will affect his/her
choice. Transactional property can be evaluated by
two dimensions: whether undo procedure is supported
qtx(s) and what’s the time constraints qcons(s) on undo
procedure. It should be noted that qtx(s) = 0/1, where
1 indicate the web service supports transaction and 0
otherwise; qcons(s) indicates the duration of undo pro-
cedure is allowed.

• Compensation rate qcomp(s) of a web service indi-
cates percentage of the original execution price that
will be refunded when the service provider can not
honor the committed service or deliver the ordered
commodity.

• Penalty rate qpen(s) of a web service indicates what
percentage of the original price service requesters need
to pay to the provider when he/she wants to cancel
the committed service or ordered commodity after the
time out period for transaction to roll back is expired.

2.2 Web Service QoS Computation
The QoS registry is responsible for the computation of

QoS value for each service provider. Assuming that there is
a set of web services that have the same functional proper-
ties, where S (S = {s1, s2, ..., sn}), web service computation
algorithm determines which service si is selected based on
end user’s constraints. Using m criteria to evaluate web ser-
vice, we can obtain the following matrix Q. Each row in
Q represents a web service si, while each column represents
one of the QoS criteria.

Q =




q1,1 q1,2 . . . q1,m

q2,1 q2,2 . . . q2,m

...
...

...
...

qn,1 qn,2 . . . qn,m


 (1)

In order to rank the web services, the matrix Q need to be
normalized. The purposes of normalization are: 1) to allow
for a uniform measurement of service qualities independent
of units. 2) to provide a uniform index to represent service
qualities for each provider. Provider can increase and de-
crease his/her quality index by entering a few parameters,
3) to allow setting a threshold regarding the qualities. The
number of normalizations performed depends on how the
quality criteria are grouped. In our example criteria given
in Section 2, we need to apply two phases of normalization
before we can compute the final QoS value. The second
normalization is used to provide uniform representation of a
group of quality criteria (e.g. usuability) and set threshold
to a group of quality criteria.

• First Normalization
Before normalizing matrix Q, we need to define two
arrays. The first array is N = {n1, n2, ..., nm} with
1 ≤ j ≤ m. The value of nj can be 0 or 1. nj = 1
is for the case where the increase of qi,j benefits the
service requester while nj = 0 is for the case where
the decrease of qi,j benefits the service requester. The
second array is C = {c1, c2, ..., cm}. Here cj is a con-
stant which sets the maximum normalized value. Each
element in matrix Q will be normalized using the fol-
lowing equation 2 and equation 3.

vi,j =




qi,j
1
n

∑n
i=1 qi,j

if 1
n

∑n
i=1 qi,j �= 0

and
qi,j

1
n

∑n
i=1 qi,j

< cj

and nj = 1

cj if 1
n

∑n
i=1 qi,j = 0

and nj = 1

or
qi,j

1
n

∑n
i=1 qi,j

≥ cj

(2)

vi,j =




1
n

∑n
i=1 qi,j

qi,j
if qi,j �= 0

and nj = 0

and
1
n

∑n
i=1 qi,j

qi,j
< cj

cj if qi,j = 0
and nj = 0

or
1
n

∑n
i=1 qi,j

qi,j
≥ cj

(3)

In the above equations, 1
n

∑n
i=1 qi,j is the average value

68



of quality criteria j in matrix Q. Applying these two

equations to Q, we get matrix Q
′

which is shown be-
low:

Q
′
=




v1,1 v1,2 . . . v1,m

v2,1 v2,2 . . . v2,m

...
...

...
...

vn,1 vn,2 . . . vn,m


 (4)

Example 1. Data in the following example is taken
from our QoS registry implementation. We assume
that there are two web services in S and that their
values of quality criteria are: Q=(q1,1, q1,2, q1,3, q1,4,
q1,5, q1,6, q1,7,q2,1, q2,2, q2,3, q2,4, q2,5, q2,6, q2,7 )
= (25,1,60,0.5,0.5,100,2.0,40,1,200,0.8,0.1,40,2.5). The
quality criteria are in the order of Price, Transaction,
Time Out, Compensation Rate, Penalty Rate, Exe-
cution Duration and Reputation. For array N, since
the increase of price, penalty rate and execution du-
ration doesn’t benefit the service requester, and the
increase of the remaining quality criteria benefits the
service requester, the value for each element in array
N is {0, 1, 1, 1, 0, 0, 1}. For array C, each element in
the array is set to 5 which is considered as a reason-
able maximum normalized value in this implemented
domain. Using equation 2 and equation 3, we have

the normalized matrix: Q
′
=(v1,1, v1,2, v1,3, v1,4, v1,5,

v1,6, v1,7,v2,1, v2,2, v2,3, v2,4, v2,5, v2,6, v2,7 ) = (1.3,
1.0, 0.462, 0.769, 0.64, 0.7, 0.8894, 0.8134, 1.0, 1.538,
1.23, 3.0, 1.75, 1.111)

• Second Normalization
In our QoS model, quality criterion can also be rep-
resented as a group and manipulated as a group. For
example, the usability criteriion. Each group can con-
tain multiple criteria. For example, both compensa-
tion and penalty rates belong to the usability group.
To compute the final QoS value for each web service,
we introduce Matrix D and Matrix G. Matrix D is
used to define the relationship between quality criteria
and quality groups. Each row in Matrix D represents
a quality criterion, and each column in Matrix D rep-
resents one quality group value. Matrix G represents
QoS information based on the values of quality group
of web services. Each row in Matrix G represents a
web service, and each column in Matrix G represents
one quality group value. Matrix D and Matrix G are
shown below:

D =




d1,1 d1,2 . . . d1,l

d2,1 d2,2 . . . d2,l

...
...

...
...

dm,1 dm,2 . . . dm,l


 (5)

G =




g1,1 g1,2 . . . g1,l

g2,1 g2,2 . . . g2,l

...
...

...
...

gn,1 gn,2 . . . gn,l


 (6)

Here, l is the total number of groups of quality criteria.
For the value of each element in matrix D, di,j = 1 if

the ith quality criterion in Q
′
is included in jth group

in G. By applying Matrix D to Q
′
, we have matrix

G. The equation is shown below:

G = Q
′ ∗ D (7)

To normalize matrix G, two arrays are needed. In the
first array T = {t1, t2, ..., tl}, tj is a constant which
sets the maximum normalized value for the group j. In
the second array F = {f1, f2, ..., fl}, fj is a weight for
group j such as price sensitivity and service sensitivity
etc. This is used to express users’ preferences over jth
group. Each element in matrix G will be normalized
using equation 8.

hi,j =




gi,j
1
n

∑n
i=1 gi,j

if 1
n

∑n
i=1 gi,j �= 0

and
gi,j

1
n

∑n
i=1 gi,j

< tj

tj if 1
n

∑n
i=1 gi,j = 0

or
gi,j

1
n

∑n
i=1 gi,j

≥ tj .

(8)

In the above equations, 1
n

∑n
i=1 gi,j is the average

value of group criteria j in matrix G. Applying equa-

tion 8 to G, we get matrix G
′

which is shown below:

G
′
=




h1,1 h1,2 . . . h1,l

h2,1 h2,2 . . . h2,l

...
...

...
...

hn,1 hn,2 . . . hn,l


 (9)

Finally, we can compute the QoS value for each web

service by applying array F to matrix G
′
. The formula

of QoS is shown below:

QoS(si) =
l∑

j=1

(hi,j ∗ fj) (10)

Example 2. This example continues the computation
of QoS from Example 1. For array T, each element in
the array is set to 5 which is considered as a reason-
able maximum normalized value in this implemented
domain. For array F, each weight is given as 1. This
means user gives the same preference to every group.
The defined D, which determines the grouping of the
quality criteria in this example, is shown below:

D =




1 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 1 0 0
0 0 0 1




The column in D is in the order of Price, Time,
Usability and Reputation. First, by applying D to

69



matrix Q
′
, we obtained G= (0.813, 1.75, 7.068, 1.111,

1.3, 0.7, 3.531, 0.889). Second, we apply equation 8

to G to have a normalized G
′
= (h1,1, h1,2, h1,3, h1,4,

h2,1, h2,2, h2,3, h2,4) = (0.769, 1.429, 1.334, 1.111,
0.946, 0.571, 0.666, 0.889). Finally, using equation 10,
we have QoS(s1)=4.643 and QoS(s2)=3.072

3. IMPLEMENTATION OF QOS
REGISTRY

To demonstrate our proposed QoS model, we implemented
a QoS registry as shown in Figure 1 within a hypothetical
phone service (UPS) provisioning market place. The UPS
market place is implemented using BEA Weblogic Workshop
web service toolkit. It consists of various service providers
who can register to provide various type of phone services
such as long distance, local phone service, wireless and
broadband. The market place also has a few credit checking
agencies which offer credit checking service for a fee. The
UPS market place has web interfaces which allow a customer
to login and search for phone services based on his/her pref-
erences. For example, the customer can specify whether the
search for a particular type of service should be price or ser-
vice sensitive. A price sensitive search will return a list of
service providers who offers the lowest price. A service sen-
sitive search will return a list of service providers with the
best rated services.

The market place also has web interfaces that allow ser-
vice providers to register their web services with the QoS
registry, update their existing web services in the registry or
view their QoS ranking in the market place. The registry’s
other interfaces are available for requesters/end-users to give
feedback on the QoS of the web services which they just con-
sumed.

Web Service
Service
Provider

Data 
base

Publish
(WSDL)

Update
services

XML

Service
Description
(WSDL)

message
exchange
(SOAP)

Get
ServiceQoS

Feedback

Web Browser

QoS Ranking

QoS Registry

QoS
Monitoring

Service 
Requester

QoS 
Computation

Figure 1: Architecture Diagram of QoS Registry.

3.1 Collecting Service Quality Information
In our framework, we distinguish two types of criterion:

deterministic and non-deterministic. Here, deterministic in-
dicates that the value of QoS quality criterion is known or
certain when a service is invoked, for example, the execu-
tion price and the penalty rate. The non-deterministic is for
QoS quality criterion that is uncertain when web service is
invoked, for example execution duration. For deterministic

criterion, we assume that service providers have mechanisms
to advertise those values through means such as web service
quality-based XML language as described in [2]. How all
service providers come to an agreement of deterministic set
of QoS criteria to advertise is beyond the scope of this pa-
per. In this section, we discuss how all QoS criteria in our
model can be collected in a fair, open and objective manner
via active monitoring and active user’s feedback.

• Collecting quality information from active ex-
ecution monitoring. The actual service execution
duration is collected by the service requester. This
requires interfaces used by all service requesters to im-
plement some mechanisms to log the actual execution
time. Although this approach puts more burden on
the service requester, it has the following advantages
over approaches where the service broker or QoS reg-
istry is required to perform the monitoring: 1) it lowers
the overhead of QoS registry and simplifies the imple-
mentation of QoS registry, 2) data is collected from
actual consumption of the service which is up to date
and objective, 3) it avoids the necessity to install ex-
pensive middleware to poll the large number of service
providers constantly.

Through active execution monitoring, when a service
requester gets a different set of values for those de-
terministic criteria advertised by the service provider,
this difference can be logged. If this phenomenon is
common in a particular domain, we can expand the cri-
teria for Reputation to record the difference between
the actual deterministic quality criteria and the ad-
vertised deterministic quality criteria from the service
provider. The bigger the difference, the lower the QoS
will be for that service provider.

• Collecting quality information from users feed-
back. Each end-user is required to update QoS of ser-
vice he/she has just consumed. This ensures that the
QoS registry is fair to all end-users since QoS values
can be computed based on real user experience with
up to date runtime execution data. To prevent the ma-
nipulation of QoS by a single party, for each feedback,
the end-user is given a pair of keys. This pair of keys
must be authenticated by the service provider before
the user is allowed to update the QoS value. The up-
date must take place in a limited time-frame to prevent
the system from being overloaded with un-consumed
service requests.

We assume that service requester can either download a
plug-in from QoS registry for providing feedback on QoS
or access the services via a portal which must implement
the active monitoring mechanism as outlined above for QoS
computation.

4. EXPERIMENTS
We conducted a series of experiments to: 1) investigate

the relationship between QoS value and the business crite-
ria, 2) study the effectiveness of price and the service sen-
sitivity factors in our QoS computation. The experiments
are conducted on a Pentium computer with a 750Mhz CPU
and 640MB RAM. We first simulated 600 users searching for
services, consuming the services and providing feedbacks to
update the QoS registry in the UPS application. This will

70



Providers Price Transaction Time Compensation penalty Execution Reputation
out Rate Rate Duration

ABC 25 yes 60 0.5 0.5 100 2.0
BTT 40 yes 200 0.8 0.1 40 2.5

Table 1: Comparing Service Quality Data of two providers

generate a set of test data for those non-deterministic qual-
ity criteria such as reputation and execution duration for
each service provider in the QoS registry. The determinis-
tic quality criteria (price, penalty rate) have been advertised
and stored in the QoS registry for each service provider prior
to the simulation.

Table 1 shows the values of various quality criteria from
two phone service providers with respect to local phone ser-
vice. From this table, we can see that provider ABC has
a better price but the various criteria that are related to
services are not very good. Its time out value is small, this
means it is not so flexible for end-users. Its compensation
rate is lower than BTT, and its penalty rate is higher than
BTT. Its execution time is longer than BTT and reputation
is lower than BTT as well. Using our QoS computation algo-
rithm, can we ensure that ABC will win for a price sensitive
search or BTT will win for a service sensitive search?

Table 2 shows that BTT has a QoS value of 3.938 with
a price sensitivity search and a QoS value of 5.437 with
a service sensitivity search. On the other hand, ABC has
a QoS value of 4.281 with a price sensitivity search and a
QoS value of 3.938 with a service sensitivity search. ABC is
winning for a price sensitive search (4.281 > 3.938), BTT is
winning for a service sensitive search (5.437 > 4.281) which
verifies our original hypothesis.

The following three figures show the relationship between
the QoS value and the price, the compensation rate, the
penalty rate, and the sensitivities factors. From Figure 2,
we can see that the QoS increases exponentially as the price
approaches zero. As the price reaches 9x20 = 180, the QoS
becomes very stable. This gives us the confidence that price
can be used very effectively to increase QoS within certain
range. It also shows that in our QoS computation model,
QoS cannot be dominated by price component indefinitely.

Price

0
1
2

3
4
5
6

7
8
9

1 3 5 7 9 11 13 15 17 19

Price Unit = 20

Q
o

S

Price

Figure 2: Relationship between QoS and Price.

Figure 3 shows the relationship between QoS and services.

For the penalty, it shows that the QoS value decreases as the
penalty rate increases. For the compensation, it shows that
the QoS value increases as the compensation rate increases.
This concludes that QoS computation cannot be dominated
by these two components indefinitely.

Compensation and Penalty Rate

3.95
4

4.05
4.1

4.15
4.2

4.25
4.3

4.35
4.4

1 3 5 7 9 11 13 15 17 19

Rates Unit = 0.1
Q

o
S Compensation Rate

Penalty Rate

Figure 3: Relationship between QoS, Compensation and
Penalty Rate.

Figure 4 indicates that QoS value increases almost four
times faster for the service sensitivity than the price sensi-
tivity. This shows that using the the same sensitivity value
for both price and service factors will not be effective for
the price sensitivity search in our QoS registry. To get an
effective price and service sensitivity factors for a domain,
we need to analyze the sensitivity factors after the QoS reg-
istry has been used for a while and re-adjust the values by
performing experiment mentioned in Figure 4.

Price and Service Sensitivity

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19

Sensitivities Unit = 0.1
Initital Value = 1 

Q
o

S Price Sensitivity

Service Sensitivity

Figure 4: Relationship between QoS, Price and Service
Sensitivity factors.

71



Providers Price Service QoS
Sensitivity Sensitivity Value

ABC 1 2 4.675
BTT 1 2 5.437
ABC 2 1 4.281
BTT 2 1 3.938

Table 2: Results of Sensitivity Experiments

5. RELATED WORK
Multiple web services may provide similar functionality,

but with different non-functional properties. In the selec-
tion of a web service, it is important to consider both func-
tional and non-functional properties in order to satisfy the
constraints or needs of users. While it is common to have
a QoS model for a particular domain, an extensible QoS
model that allows addition of new quality criteria without
affecting the formula used for the overall computation of
QoS values has not been proposed before. Moreover, very
little research has been done on how to ensure that service
quality criteria can be collected in a fair, dynamic and open
manner. Most previous work is centered on the collection of
networking level criteria such as execution time, reliability
and availability etc [12]. No model gives details on how busi-
ness criteria such as compensation and penalty rates can be
included in QoS computation and enforced in an objective
manner.

In a dynamic environment, service providers can appear
and disappear around the clock. Service providers can
change their services at any time in order to remain compet-
itive. Previous work has not addressed the dynamic aspects
of QoS computation. For example, there is no guarantee
that the QoS obtained at run time for a particular provider
is indeed the most up to date value. Our proposed QoS com-
putation which is based on active monitoring and consumers’
feedback ensures that QoS value of a particular provider is
always up to date.

In [9], the author proposed a QoS model which has a QoS
certifier to verify published QoS criteria. It requires all web
service providers to advertise their services with the QoS cer-
tifier. This approach lacks the ability to meet the dynamics
of a market place where the need of both consumers and
providers are constantly changing. For example, it does not
provide methods for providers to update their QoS dynam-
ically, and does not give the most updated QoS to service
consumers either. There are no details on how to verify the
QoS with the service providers in an automatic and cost
effective way.

In [10], the authors proposed a QoS middleware infras-
tructure which required a build-in tool to monitor metrics
of QoS automatically. If such a tool can be built, it needs
to poll all web services to collect metrics of their QoS. Such
an approach requires the willingness of service providers to
surrender some of their autonomy. Moreover, if the polling
interval is set too long, the QoS will not be up to date. If the
polling interval is set too short, it might incur a high per-
formance overhead. A similar approach which emphasizes
on service reputation is proposed in [5, 4]. A web service
agent proxy is set up to collect reputation rating from pre-
vious usage of web services. The major problem with this
approach is that, there is no mechanism in place to pre-

vent false ratings being collected. We have a mechanism to
ensure that only the true user of the service is allowed to
provide feedback.

In [3], the author discusses a model with service level
agreement (SLA) which is used as a bridge between service
providers and consumers. The penalty concept is given in
its definition of SLA. The main emphasis about this concept
is what should be done if the service provider can not deliver
the service under the defined SLA, and the options for con-
sumers to terminate the service under the SLA. Penalty is
not included as a service quality criteria which can be used
in QoS computation. In [2], a language-based QoS model
is proposed. Here, QoS of a web service is defined using
a Web Service QoS Extension Language. This XML-based
language can define components of QoS in a schema file
which can be used across different platforms and is human
readable.

6. CONCLUSION
The quality-based selection of web services is an active

research topic in the dynamic composition of services. The
main drawback of current work in dynamic web service se-
lection is the inability to ensure that the QoS of published
web services remain open, trustworthy and fair. We have
presented an extensible QoS model that is open, fair and dy-
namic for both service requesters and service providers. We
achieved the dynamic and fair computation of QoS values
of web services through a secure active users’ feedback and
active monitoring. Our QoS model concentrates on criteria
that can be collected and enforced objectively. In particu-
lar, we showed how business related criteria (compensation,
penalty policies and transaction) can be measured and in-
cluded in QoS computation. Our QoS model is extensible
and thus new domain specific criteria can be added without
changing the underlying computation model. We provided
an implementation of a QoS registry based on our extensi-
ble QoS model in the context of a hypothetical phone service
provisioning market place. We also conducted experiments
which validate the formula we used in the computation of
QoS values in the phone service provisioning domain.

The formula for computing the QoS values can be varied
for different domains by using different sensitivity factors
or different criteria with its associated groupings. Addi-
tional factors, different groupings, or criteria might serve
certain domains better. We provided a mechanism for ser-
vice providers to query their QoS computed by the registry,
and update their published services to become more com-
petitive at anytime.

The success of this model depends on the willingness of
end-users to give feedback on the quality of the services that
they consume. Our future work includes ways to automate
the collection of feedback data. To ensure that all users will

72



provide feedback, we need to make providing feedback very
straight forward. We also want to see that the implemented
QoS registry becomes intelligent internally and externally.
Internal intelligence refers to the ability to infer the appro-
priate sensitivity factors to use to get the list of providers
which meets end-users requirements. External intelligence
refers to the ability of QoS registry to be able to predict
the trend of QoS from certain providers at runtime. For
example, we want to have a system which knows how much
the QoS value decreases in the morning and increases in the
evening or during different time of the year, and takes ac-
tion to notify its users. For the service provider, we want to
have the ability to notify the provider when the QoS of its
service is below a certain threshold.

7. REFERENCES
[1] Boualem Benatallah and Fabio Casati, editors.

Distributed and Parallel Database, Special issue on
Web Services. Springer-Verlag, 2002.

[2] Peter Farkas and Hassan Charaf. Web services
planning concepts. Journal of WSCG, 11(1), February
2003.

[3] Li jie Jin and Vijay Machirajuand Akhi Sahai.
Analysis on Service Level Agreement of Web Services.
Technical Report HPL-2002-180, Software Technology
Laboratories, HP Laboratories, June 2002.

[4] E. Michael Maximilien and Munindar P. Singh.
Conceptual Model of Web Services Reputation.
SIGMOD Record, October 2002.

[5] E. Michael Maximilien and Munindar P. Singh.
Reputation and Endorsement for Web Services. ACM
SIGecom Exchanges, 3(1):24–31, 2002.

[6] Daniel A. Menasce. QoS Issues in Web Services. IEEE
Internet Computing, 6(6), 2002.

[7] J. O’Sullivan, D. Edmond, and A. ter Hofstede.
What’s in a Service? Distributed and Parallel
Databases, 12(2–3):117–133, September 2002.

[8] M.P. Papazoglou and D. Georgakopoulos.
Serive-Oriented Computing. Communcications of the
ACM, 46(10):25–65, 2003.

[9] Shuping Ran. A Model for Web Sevices Discovery
with QoS. ACM SIGecom Exchanges, 4(1):1–10, 2003.

[10] Amit Sheth, Jorge Cardoso, John Miller, and Krys
Kochut. Qos for service-oriented middleware. In
Proceedings of the 6th World Multiconference on
Systemics, Cybernetics abd Informatics (SCI02), pages
528–534, July 2002.

[11] Aad van Moorsel. Metrics for the Internet Age:
Quality of Experience and Quality of Business.
Technical Report HPL-2001-179, HP Labs, August
2001. Also published in 5th Performability Workshop,
September 2001, Erlangen, Germany.

[12] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas,
Jayant Kalagnanam, and Quan Z. Sheng. Quality
Driven Web Services Composition. In Proceedings of
the 12th international conference on World Wide Web
(WWW), Budapest, Hungary. ACM Press, May 2003.

73


