
Decentralized and Flexible Workflow Enactment
Based on Task Coordination Agents

Gregor Joeris

Intelligent Systems Department, Center for Computing Technologies
University of Bremen, PO Box 330 440, D-28334 Bremen, Germany

joeris@tzi.de

Abstract. Flexibility and distribution are major
challenges of an advanced workflow manage-
ment system, but have been addressed mostly
separately from each other. In this paper, we
present an agent-based workflow enactment
service which combines flexible and decentral-
ized workflow execution. Every task is coordi-
nated by its own task (coordination) agent
which interacts with related task agents by
event passing. Realized as reactive agents, the
task agents know how to react to state changes
as well as to structural workflow changes so
that workflow changes can be handled also in a
decentralized enactment architecture. Instead
of generating different task or workflow objects
for the different task types of a workflow
schema, the execution behavior of a task agent
is extracted from the workflow schema and ex-
plicitly represented within the task agents. Fi-
nally, on schema level, the behavior definition
can be customized in order to express an ade-
quate behavior for heterogeneous and flexible
processes. This is not only the basis for defin-
ing less restrictive workflows in advance, but
also for supporting dynamic workflow changes
in every possible situation.

1. Introduction

Flexibility and distribution are major chal-
lenges of an advanced workflow management
system, but have been addressed mostly sepa-
rated from each other. Support for flexible

workflows in schema-based workflow man-
agement systems (WFMS) has to cope with two
fundamental challenges (cf. [ElNu96, Joe99]):

(a) A-priori flexibility focuses on the speci-
fication of a flexible workflow execution be-
havior to express an accurate and less restric-
tive behavior in advance; flexible and adaptable
control and data flow mechanisms have to be
taken into account in order to support ad hoc
and cooperative work at the workflow level and
to allow for a certain degree of freedom in
workflow execution. Furthermore, a flexible
workflow management approach should cap-
ture and support different kinds of processes
consisting of well-structured and less-
structured parts and encompassing human-
oriented as well as system-oriented tasks.

(b) A-posteriori flexibility (flexibility by
dynamic adaptation) is provided by the change
and evolution of workflow models in order to
modify workflow specifications on the schema
and instance level due to dynamically changing
situations of a real process (cf. [EKR95,
ReDa98, JoHe98]). Note, that in the case of
dynamic modifications we also have to define
a-priori when, i.e. in which context and in
which state of execution, certain modifications
are allowed in order to ensure the dynamic and
semantical consistency of a process. This
workflow evolution behavior depends on the
involved task types and the particular situation,
it cannot be defined globally and uniformly for
any types of workflows.

Since a posteriori flexibility requires human
intervention, it implies an additional and very
crucial design goal: a workflow modeling lan-
guage on a high level of abstraction is needed
which is easy to use and supports the visualiza-
tion of its elements (cf. [SuOs97]). In particu-
lar, the trade-off between high-level formal-
isms, such as graph-based modeling ap-
proaches, and low-level mechanisms, such as
rule-based specifications which are hard to un-
derstand for humans and difficult to analyze but
provide a great flexibility, has to be resolved.

Beside flexibility, distributed workflow enact-
ment is a key requirement for a scalable and
fault-tolerant WFMS and hence the basis for
enterprise-wide and inter-organizational
workflow support (cf. [GHS95]). A central and
monolithic workflow engine as suggested by
the WfMC reference model is therefore not suf-
ficient. But, support for a-priori flexible
workflows as well as support for a-posteriori
workflow changes make distributed workflow
enactment more difficult – in particular in the
case of a highly decentralized workflow enact-
ment (cf. [Mil+96]) which we follow.

In this paper, we present an agent-based
workflow enactment service which combines
flexible and decentralized workflow execution.
Every task is coordinated by its own task (co-
ordination) agent which interact with related
task agents by event passing. Realized as reac-
tive agents, the task agents know how to react
on state changes as well as on structural
workflow changes so that workflow changes
can be handled also in a decentralized enact-
ment architecture. Instead of generating differ-
ent task or workflow objects for the different
task types of a workflow schema, the execution
behavior of a task agent is extracted from the
workflow schema, explicitly represented within
the task agent and updated when the workflow
schema is changed. In contrast to autonomous
or intelligent agents, the task agents behave as

defined in the workflow schema where the be-
havior of heterogeneous and flexible processes
can be modeled on a high level of abstraction.

Section 2, characterizes different approaches of
agent-based workflow management. In section
3, we introduce the underlying decentralized
enactment model which is based on reactive
task coordination agents. With these enactment
concepts in mind, we outline in section 4 the
workflow meta model and in particular the
concepts of behavior definition and customiza-
tion on schema level. Section 5 gives examples
of the definition of flexible workflows within
this approach. Finally, section 6 gives a short
conclusion.

2. Agent-Based Workflow-
Management

Agent technology can be used in different ways
for managing workflows and realizing
workflow management systems:1

1. Agents as cooperating actors (role-based;
autonomous agents): In this approach, dif-
ferent agent types are built for different
tasks and fulfill different roles (cf. [Kir96]).
E.g., a specialized agent for risk analysis in
the field of claim processing performs or
assists in performing a specific task and in-
teracts with other agents. Based on an agent
architecture designed for managing business
processes, agencies are designed for and
adapted to different application areas where
the designed agents perform a workflow
autonomously. This approach reflects di-
rectly the organizational structure where a
business process takes place. It is charac-
terized by the role-based design of different

1 A fourth approach which is proposed by Chang and Scott

[ChSc97] does not directly apply agents to process man-
agement but uses agents to facilitate various parts of ex-
isting workflows. Different agents which act on behalf of
a user are introduced as a front end to existing WFMS.

agent types, but does not follow an activity-
oriented process modeling methodology.
Rather, the workflow is encapsulated in
domain-specific application knowledge and
in the interaction/negotiation strategies used
by the agents. ADEPT [Jen+96, Jen+00],
PEACE+ [ALO96], [Sin97, SiHu98], and
[YuSc99] follow this approach.

2. Agent technology as a key infrastructure
technology for building flexible workflow
engines (activity-based approach; reactive
task coordination agents): This approach
follows the classical activity-oriented proc-
ess modeling and workflow management
methodology. Activities, roles, and actors
are separate aspects within a workflow

Figure 1: Structure and functionality of a reactive task agent

schema. The control and data flow is mod-
eled explicitly between activities. The
workflow schema is used to coordinate the
execution of tasks. Agent technology is
used in order to realize a flexible and de-
centralized enactment architecture. Reactive
agents coordinate the execution of tasks as
defined within the workflow schema with-
out the need for a central workflow enact-
ment service. Furthermore, they can support
complex control flow patterns needed for
coordinating flexible and heterogenous pro-
cesses and handle dynamic workflow
changes. We will follow this approach since
it meets our design goals for a flexible and
distributed but still activity-oriented and
schema-based WFMS. We compare this ap-
proach to other decentralized enactment ar-
chitectures in section 3.3.

3. Mobile agents realizing a migrating
workflow: Mobile agent technology is a
good starting point for realizing the concept
of migrating workflows [CiRu98]. A
workflow instance is migrated to different
“service stations” where tasks can be per-
formed. Mobile agents can control the mi-
gration by selecting appropriate “service
stations” and can control the execution of
tasks and gather their results. In particular,
this approach can be used in an inter-
organizational setting (cf. [Mer+96]). But,
the migrating workflow instances make it
very difficult to support workflow schema
changes and to coordinate flexible
workflows which consist of complex con-
trol flow dependencies.

3. Decentralized Workflow Enact-
ment by Reactive Task Agents

We start introducing our workflow modeling
and enacting approach by describing the (low-
level) execution model which follows the idea
of treating tasks as reactive components (cf.

[HJKW96, Das+97, TGD97]): instead of inter-
preting a workflow instance by a (centralized)
workflow engine, a workflow is directly en-
acted by distributed task coordination agents
(short: task agent) which interact by event
passing. The execution behavior of every task
agent is defined by a structured set of specific
ECA rules. After introducing the underlying
execution model in this section, we show in
section 4 how workflows can be modeled on a
high-level of abstraction on the schema level,
how the context-free and context-dependent
behavior can be customized, and how the exe-
cution behavior of the task agents can be de-
rived from the workflow schema.

3.1 Overview on Decentralized
Workflow Enactment by Reactive
Task Agents

A task agent is a quite simple but powerful re-
active agent which has a typical three-layered
architecture consisting of a communication
layer, a layer for decision finding, and a opera-
tional layer (figure 1a). The operational layer is
represented by the class Task and contains all
built-in operations/transitions2 which can be
categorized into state transitions, actor assign-
ment operations, operations for handling of
(versioned) inputs and outputs, and workflow
change operations.

For every operation, the task agent has the
knowledge about when to trigger the operation,
a condition that must hold for executing the op-
eration, and a list of receivers to which events
are passed. Furthermore, the task agent knows
its related tasks agents (i.e., predecessors, suc-
cessors, subtasks, super-task, supplier of inputs,
and consumer of outputs). Thus, the knowledge
of how to react on events is explicitly repre-
sented in the decision- finding layer in terms of

2 We use operation and transition synonymously through-

out this paper (but with different emphasizes on arbitrary
operations or state transitions, respectively)

specific event-condition-action (ECA) rules
and decoupled from the built-in operations.
This is the most basic characteristic of an agent
architecture [GeKe94]. However, these agents
are neither intelligent nor autonomous agents
[WoJe95], since their execution behavior is de-
rived from the workflow schema (see section 4)
and they behave exactly as defined within the
schema. Thus, the information system charac-
teristic of the WFMS predominates where the
agent-oriented execution model leads to a
flexible and distributed architecture.

The communication between task agents is
based on passing primitive events. An event

consists of an event name (denoting the event
type), a reference to the producer of the event,
and a set of arbitrary attribute-value pairs
(which we omit in the following). This simple
communication language is sufficient for this
application and also shows the differences to
intelligent agents. Every task agent encom-
passes its own event queue (EventQueue). The
event queue and the execution state (state) to-
gether form the execution state configuration of
a task agent.

Example: Figure 2 shows a cutout of an change
request process that is enacted by interacting

ECA rules
context

built-in operations

Change
Request

Ê process_selected

Ê finished

do enable
 on process_selected by { ChangeRequest }, ...
 if ChangeRequest.state=active

do enable
 on process_selected by { ChangeRequest }, ...
 if ChangeRequest.state=active

Ê finished

: standard control flow dependency : visualization of event passing Ê event

Transition behavior defined by specific ECA rules (cutout)

Functional
review

Project plan
review

Evaluationan
d

xo
rChange propo-

sal for target
specification

and

and

Exclusion

do enable
 on finished by { ChangeProposal, FunctionalReview }
 aborted by { FunctionalReview }, ...
 if ChangeRequest.state=active and
 ChangeProposal.state=done and
 FunctionalReview.state != running
do disable
 on started by { FunctionalReview },
 suspended by { ChangeRequest }, ...
 if not condition_of(enable)

do enable
 on finished by { ChangeProposal, FunctionalReview }
 aborted by { FunctionalReview }, ...
 if ChangeRequest.state=active and
 ChangeProposal.state=done and
 FunctionalReview.state != running
do disable
 on started by { FunctionalReview },
 suspended by { ChangeRequest }, ...
 if not condition_of(enable)

Exclusion : control flow group

Ê finished

Ê started, finished

Ê finished

Ê finished

created

suspended active

donefailed

running resume

suspend
finishabort

terminatediterate

truncate

disabled ready

waiting
enable

disable
start

select-
process

not_executed

Underlying predefined state transition diagram

Figure 2: Example of decentralized workflow enactment by reactive task agents

task agents. For the time being, we neglect the
details of the partially illustrated ECA rules of
the different task agents (see below) and first
explain a typical workflow enactment. Fur-
thermore, we assume a state transition diagram
which defines the fundamental state and state
transitions of a task agent (see upper right cor-
ner in figure 2). As explained in section 4, this
diagram is part of the context-free behavior
definition that every task type inherits.

After starting the super-task “ChangeRe-
quest”, choosing a task realization for execu-
tion – following a late binding concept (in this
case a complex process definition) –, and cre-
ating sub-tasks, an event “process_selected” is
passed to the first tasks of the process (here:
“ChangeProposal”). This event normally trig-
gers the enable transition of task agent, i.e. its
applicability is evaluated and, on success, the
transition fires. When a task is enabled for exe-
cution, the role resolution is activated if no ac-
tor has yet been assigned explicitly. In the case
of automatic tasks, the start transition will be
directly triggered by the enable event. When a
task is finished, a corresponding event is sent to
all succeeding task agents. This again results in
the evaluation of the enable transition of the
corresponding task agents. Furthermore, for all
end tasks, the finish event is also sent to the su-
per-task, triggering the termination of the su-
per-task, when all subtasks are state “done” or
have been truncated. The truncate transition is
used for dead path elimination.

The example gives also an impression of the
realization of more complicated control flows.
The control flow group “Exclusion” shown in
the example forces its members to execute
mutually exclusively. This behavior is ex-
pressed by a restricted application condition
(e.g., enabling of the task “ProjectPlanReview”
requires that “FunctionalReview” is not active
and vice versa) and by additional triggers and
event passing rules in order to react to the start-
/finish-transition of the related tasks.

3.2 Representation and Semantics of the
Execution Behavior of a Task Agent

The execution behavior of a task agent is de-
fined by means of state transitions and the tran-
sition’s behavior description (TransitionExecBe-
havior) which determine when an opera-
tion/transition is invoked and when it is appli-
cable (see figure 1b). A transition is defined by
its name, a “controllable” flag indicating
whether the transition may be invoked by an
external user or not (borrowed from [KrSh95]),
a set of source states, a target state, and the
event type that is generated by the transition.
Furthermore, a transition consists of a behavior
description whose underlying concept is in
principle similar to an ECA rule or to a state-
chart transition label. Its textual notation which
we use in the examples (see e.g. fig. 2) is de-
fined by the following EBNF (see also corre-
sponding elements within the meta model in
figure 1b):

ECArule ::= "DO" transition "ON" trigger { "," trigger }
"IF" application_condition
"SEND_TO" receiver_expr

trigger ::= event_name ["BY" event_producer_set]
["WHEN" trigger_condition]

First of all, the transition or operation itself is
the action part of the rule. Beside a state
change, the built-in operations may cause addi-
tional actions like updating the work lists, con-
suming input data etc. However, a process en-
gineer cannot customize these actions; rather,
he/she can customize only the behavior that
determines when an operation is invoked or ap-
plicable. For this, the transition’s ECA rule
consists of a set of triggers, an application con-
dition, and a set of event receivers.

Transition triggering: The transition invocation
is defined by a set of triggers. A trigger consists
of a primitive event type, a set of event produc-
ers and a trigger condition. When an incoming

event matches an arbitrary trigger and when the
task is in the source state of the corresponding
transition, the transition is activated (see defi-
nition 1 using OCL expressions). An event
matches a trigger when the event names are
identical, the event producer is listed in the set
of legal event producers of the trigger, and the
trigger condition holds. Thus, the reaction on
an event can be defined in dependency to the
task agent which has generated the event. E.g.,
a task agent reacts differently on the event fin-
ished, depending on whether the event was re-
ceived from a predecessor or from a sub-task
(triggering the enable or finish transition, re-
spectively; see figure 2). The same holds for
the trigger condition which is used to select an
appropriate transition rather than to define the
applicability of a transition. The most important
usage of a trigger condition is to react differ-
ently in the case of an OR-split. Depending on
the split condition a task may be enabled or
truncated when a preceding task has been fin-
ished. The truncation event is further propa-
gated leading to a decentralized processing of
dead path elimination.

Definition 1: Activated Transitions

TaskAgent::getActivatedTransitions(event : Event) :
Set(Transition):
post: if self.eq.empty() then result->isEmpty

else result = self.beh->select(src_states->
includes(self.state))->select(tr |
tr.trigger->exists(tt |
tt.event_name = event.name and
tt.producers->includes(event.producer) and
self.evalCondition(tt.trigger_condition)))

endif
TaskAgent::evalCondition(condition : Condition) :
boolean:

-- evaluates an OCL-condition in the context of
-- a task agent

Semantics of transition firing: From all acti-
vated transitions of a task, one transition is cho-

sen non-deterministically, the event is con-
sumed, and the transition is invoked. The invo-
cation of a transition first causes the evaluation
of the transition’s application condition. In
contrast to the trigger condition, this condition
acts as a guard, i.e., the transition is performed
only when the condition holds (otherwise
nothing is done; in particular, no other acti-
vated transition is performed). We allow only
the definition of atomic events, which are used
only for triggering the evaluation of the transi-
tion’s application condition. These state-based
semantics avoid the difficulties of defining
complex event-based semantics (and differs
from ECA rules or statecharts [HaGe96])3.
Moreover, user-controllable operations can be
invoked externally. In this case, the condition
still ensures that the operation is applicable.
Thus, invocation and applicability of a transi-
tion are strictly separated.

When a triggered transition is applicable, it
is performed (performTransition) and after exe-
cuting the transition a corresponding event is
generated and sent to all receivers (sendEvent).
In contrast to statecharts, we use events for in-
ter-agent communication and hence do not pre-
scribe a broadcast of events to all tasks in order
to avoid communication overhead. The receiv-
ers of an event are rather defined by the re-
ceiver set of an ECA rule (receivers). On
schema level, the receiver set is defined in
terms of a relative path expression over the
workflow structure (e.g., horizontally to suc-
ceeding tasks as well as vertically to super- or
subtasks). The expression is resolved to actual
task agents on instance level.

The following definition gives the formal
semantics of transition firing regarding the exe-
cution states of the task agents and the gener-
ated events. The shown definition neglects all

3 In fact, event-triggercondition-applicationcondition-tran-

sition rule would better describe the approach but would
lead to an illegible presentation.

additional changes which are performed by the
built-in operations (e.g., update of the work
lists, changes of the workflow schema in the
case of change operations etc.). In particular,
transitions may have an effect although they do
not change the execution state (in this case, the
target state is not specified). Finally, the new
state of the event queue results from dequeuing
the first event (which has no effect on an empty
event queue) and enqueuing all generated
events from all fired transitions where the task
agent is part of the receiver set. All new events
of one step are enqueued in an arbitrary order
(enqueueSet).

Definition 2: Transition firing

Let Τ be the set of task agents of a workflow case. Let
εk = tk.eq.front() be the first event of a task tk ∈ Τ and
δk ∈ tk.getActivatedTransitions(εk) be a (non-determinist-
ically chosen) activated transition for the task tk according
to the event εk. For tk.eq.empty() we set δk = ⊥.

The set of the chosen and applicable transitions is then
defined as
∆ = { δk | δk ≠ ⊥ ∧ k ∈ {1,.., |Τ*|} ∧

 tk.evalCondition(δk.application_condition) = true }

Then, the new execution state for the task agents tk (k ∈
{1,.., |Τ|}) results from the firing of the transitions δk as
follows:

3.3 Comparison of Decentralized
Workflow Execution Architectures

In comparison to other decentralized architec-
tures like CodAlf/BPAframe [ScMi96], Me-
teor2 [Das+97], EvE [TGD97], our approach
differs in two important points which both con-
cern mainly flexibility features: first, we do not

generate and compile different task managers
from the workflow schema which implicitly
contain the distributed execution knowledge (as
illustrated in figure 3a), but configure task
agents with their specific execution behavior
(as it is described in section 4.4 and illustrated
in figure 3b). Thus, the execution knowledge is
explicitly represented in terms of ECA rules
which are interpreted by the task agents. In
particular, this rule base can be updated when
the workflow schema has been changed and
hence dynamic workflow changes can be sup-
ported (see section 5.2). Since the rules are
structured by the transitions (or more precisely
describe the transitions’s behavior), an update
of the execution behavior can be done incre-
mentally.
Second, we do not create a copy of the
workflow schema when a workflow case is in-
stantiated and do not migrate it between differ-
ent enactment services because workflow
schema changes are hardly supported in this
case. We rather follow an integrated modeling
and enacting architecture, where a task agent is
related to its relevant schema elements, where
these interrelationships are explicitly main-
tained, and where the relevant execution
knowledge is derived from the schema. In
conjunction with a workflow schema version-
ing concept, this allows to support different
workflow schema evolution strategies and to
update the execution behavior upon schema
modifications (see [JoHe98] for details). Fur-
thermore, schema changes can be analyzed re-
garding to their impact on running instances.

4. Workflow Modeling and Behav-
ior Definition on Schema Level

So far, we have introduced an execution model
whose execution behavior is defined by spe-
cific ECA rules. The ECA rules are structured
according to a task and a transition, respec-
tively, so that a decentralized enactment is di-

tk.state =
 δk.trg_state if δk ∈ ∆ ∧ δk.trg_state ≠ ""
 tk.state otherwise

tk.eq = tk.eq@pre->dequeue()->enqueueSet(
 { (δ h.generated_event, t h, data(δh)) |

 δh ∈ ∆ ∧ tk ∈ δh.receivers })

rectly supported. Although this structuring
would help to specify workflow schemata on a
low-level of abstraction, the representation
formalism remains inadequate for workflow
modeling and lacks support for reusability of
behavior definitions.

Therefore, we introduce in this section how
the context-free and context-dependent behav-
ior of a task can be defined and customized on
schema level and how workflow can be mod-
eled by means of task graphs on a high-level of

abstraction without loosing the flexibility of
rule-based specifications. The interplay of both
concepts is based on user-definable control
flow types which encapsulate partitioned sets
of ECA rules (section 4.2 & 4.3) and the con-
figuration of the execution behavior of a task
from the workflow schema (section 4.4). We
start introducing the workflow modeling con-
cepts with an overview on the workflow meta
model.

Task
Manager

Task
Manager

Task
Manager

Task
Manager

andand

Task TaskTask

Workflow
Model

Repository

Automatic
Code Generation

MonitorDesigner

(A) Decoupled modeling and enacting architecture (in Meteor2)

w
or

kf
lo

w
 in

st
an

ce

ClientClientClientClient ClientClient

and

and
TaskAgent A
do ... on ... if ...

Base operations

TaskAgent B
do ... on ... if ...

Base operations

TaskAgent D
do ... on ... if ...

Base operations

TaskAgent C
do ... on ... if ...

Base operations

Repository for workflow schemata and workflow instance data

explicit
instantiation
relationships

done done

active

disabled

Monitor & Log

Derivation/extraction of the execution
behavior from the workflow schema

Separation of the execution
behavior and the underlying

built-in operations

A

B D

C

task definition X
 process definition Y

and

and

schema level
instance level

DesignerClientDesignerClient ActorClientActorClient ActorClientActorClient

(B) Integrated modeling and enacting architecture based on an agent-oriented execution model

Figure 3: Decentralized workflow enactment models

4.1 Overview on the Workflow Model-
ing Concepts

A task definition (or task type) is the building
block of our workflow meta model on schema
level. It is separated into the definition of the
task interface which specifies ‘what is to do’,
and potentially several process definitions (task
realization), which specify how the task may be
accomplished (how to do) (see figure 4 and 5).

The task interface is defined by attribute,
parameter, exception, and process constraint
definitions (all neglected throughout this paper)
and by a behavior definition. The behavior
definition at the task interface specifies the ex-
ternal context-free behavior of a task type by a
statechart variant (e.g., transactional or non-
transactional) as explained in section 4.2; on
the other hand, the context-dependent behavior
is given by the application of a task type within
a certain process definition (see below).
Whereas the separation of context-free and

context-dependent behavior is irrelevant for the
representation of the execution behavior on in-
stance level, it is fundamental for a modular
and reusable workflow model on schema level.

A process definition defines how a task has to
be done. The decision which process definition
of a task definition is used to perform a task is
taken at run-time (late binding). Every process
definition has a condition which acts as a guard
and restricts the allowed task realizations ac-
cording to the current case. A process defini-
tion can be atomic, consisting only of a process
description or system invocation, or complex.

A complex process is defined in an activity-
oriented manner by a task graph which consists
of process steps and data inlets and outlets,
which are linked by control and data flow de-
pendencies. Process steps are further divided
into task components, connectors, and event
components:
� Process Steps: A task component is an ap-

plied occurrence of a task definition repre-

Figure 4: Workflow meta model for task and process definitions and their instance-relationships

senting the invocation hierarchy. If a task
definition is applicable only in a certain
context, it can be locally declared within
another task definition, restricting their
visibility to this task type. For every process
step a split and join type (none/and/or/ xor)
can be specified. In order to provide con-
nectors independently of a task component,
connector components are predefined as
“empty” tasks which just realize splits and
joins.

� Control flow dependencies: Process steps
are linked by control flow dependencies. It-
erations within this task graph are modeled
by a special predefined feedback relation-
ship. A condition can be associated to every
dependency to support conditional branches
(by default, this condition is set to true). We
allow to define different control flow de-
pendency types which can be applied and
reused within several process definitions.
The semantics of a control flow dependency
type is defined by ECA rules as introduced
in section 4.3. These rules define fine-
grained state dependencies (cf. [Att+96])
between the source and target component.

On the other hand, the application of a con-
trol flow dependency within a task graph
abstracts from these details and allows to
model flexible processes on a high-level of
abstraction.

� Groups and blocks: Similar to the definition
of control flow dependencies we support
the definition of group relationship types. A
group relationship is used within a process
definition in order to group arbitrary proc-
ess steps of a task graph; it applies the be-
havior, which is defined by the group rela-
tionship in terms of ECA rules, to its com-
ponents (e.g., to realize mutual exclusion).

� Dataflow relationships: Finally, task com-
ponents can be linked by dataflow relation-
ships according to the input and output pa-
rameters of their task definitions. Further-
more, a data inlet (or outlet) is used in a
task graph as a data source (or sink) in order
to realize a vertical dataflow between the
parameters of the task definition and their
use within the workflow.

The workflow meta model in figure 4 as well as
the example in figure 5 show the different in-
stantiation relationships which have been men-

task_definition ChangeRequest is_a TASK
parameter_definitions
 input initial_problem_report : ProblemReport
 in endstate rejected: output rejection : DocumentedChangeRequest
 in endstate approved: output changed_spec : TargetSpecification
workflow_definitions
 workflow_definition StandardCR
 guard (initial_problem_report.change_type != minimal)

 workflow_definition SimpleCR [...]

task_definition Evaluation is_a MANUAL_TASK [...]

data outlet:
changed_spec

task component

performed_by

instance_of

task_context

instance_of

: dataflow

(A) Schema Level (B) Instance Level

: controlflow dependency : instance-schema-relationships : related tasks derived from the context within the workflow

Change propo-
sal for target
specification

and

and Evaluationan
d

xo
r

Change
proposal

Exclusion

execuition behavior
(derived from schema)

built-in operations

Change
Request

Change propo-
sal for target
specification

and

and

Functional
review

Evaluationan
d

xo
r

Project plan
review

Project plan
review

Functional
review

task_context

changed_spec

rejection

split
type

join
type

initial-
problem-

report

[...] [...]

Figure 5: Example of task and process definitions and their instance-relationships

tioned in section 3.3. Beside the explicit repre-
sentation of the type-instance relationship (in-
stance_of), also the process definition which has
been selected dynamically for execution (se-
lected_process) as well as the context of a task
instance, i.e. the component it plays within a
process definition (task_component), is captured.
These relationships allow to derive the execu-
tion behavior of a task agent from the workflow
schema, to analyze workflow schema changes
according to their impact on running instances,
and to update the execution behavior upon
changes.

4.2 Definition of Context-Free Behavior
Types with Partial Definition of
ECA rules on Schema Level

The context-free behavior of a task type is de-
fined by a statechart variant, which is encap-
sulated by the class BehaviorDefinition (see figure
6) The statechart defines the states and the op-
erations/transitions of a task type. We allow for
the composition of states into complex states
(OR-states), but we disallow concurrent states
(AND-states). Furthermore, exactly one con-

text-free ECA rule can be defined for every
transition.

A task definition can inherit from an ab-
stract task definition, i.e., a task definition
which has neither parameter definitions nor
process definitions. Thus, the is_a hierarchy is
used to define different behavior classes of
tasks (e.g., non-transactional, transactional,
etc.; cf. [KrSh95] for detailed examples).
Within an inherited statechart, new states can
be added and atomic states can be refined.
Also, transitions can be added and redefined by
redefining the source state, refining the target
state, and by redefining and adding ECA rules.

Definition of ECA rules on schema level: Thus,
the separation of context-free and context-
dependent behavior definition leads also to a
separated and relative definition of ECA rules
on schema level. When we recall the ECA rule
of the enable-transition of the task “Pro-
jectPlanReview” in figure 2, we can see that
some parts of the rule are context-independent
(e.g., that a subtask can be enabled only if the
super-task is active) whereas other parts depend
on the context (e.g., that enabling the task de-

Figure 6: Meta model for context-free behavior definitions and control flow type definitions

pends on finishing the change proposal). In
particular, one ECA rule can be specified con-
text-free for a transition defining context-
independent triggers and application condi-
tions; any further ECA rules which are associ-
ated with a transition are defined by control
flow types which we will introduce below.

Therefore, on schema level ECA rules are
defined partially, i.e. expressing only a certain
aspect of the execution behavior. Triggers, an
application condition, or a receiver expression
can be omitted in a partially defined ECA rule
(see EBNF in definition 3). Furthermore, on
schema level we use relative path expressions
when referring to related tasks instead of the
absolute references on instance level. These
expressions refer to super- and subtasks, to
predecessor and successor task (possibly quali-
fied by a specific dependency type), to con-
sumer and supplier of outputs, to all tasks of a
complex workflow or a group. This is essential
for reusability since it avoids context-
dependent definitions (such as traditional rule
based workflow specifications like “on X.done
do ...”).

Example: Every task definition inherits from a
predefined task definition, which consists of a
statechart that defines the basic states, transi-
tions (as already shown in figure 2), and con-
text-free ECA rules. Figure 7 shows a cutout of
the predefined ECA rules and gives examples
of their definition on schema level. E.g., several
triggers can be defined context-free for the en-
able transition (e.g., a supplier has released an
output so that a new input is available, the exe-
cution of the super-task is resumed, dynamic
changes of the process context have been per-
formed so that the task may now be enabled
and so on). Furthermore, we can partially de-
fine the application condition for the enable-
transition requiring that the supertask is active
(if it exists) and that all mandatory inputs are
available (using a predefined predicate). On the

other hand, all context-dependent aspects are
left open (e.g., triggers that react on the finish-
ing of preceding process steps; corresponding
state dependencies in the application condi-
tion). Finally, a special predicate “condi-
tion_of” can be used on schema level in order
to refer to the condition of another transition.
This is particularly useful for the disable-
transition and avoids redundant specifications.

4.3 Definition of Control Flow Types

As already mentioned, rather than providing a
fixed set of control flow types, different control
flow dependency types (DependencyType) and
group relationship types (GroupType) can be
defined by a process engineer in our approach
[JoHe99]. They are defined by a label, an in-
formal description, and a set of partially speci-
fied ECA rules – at most one for a transition –
which give the semantics of the control flow
type. Within the task graph, the control flow
dependencies (Dependency) or group relation-
ship (Group) can be used by their labels ab-
stracting from the detailed definition and reus-
ing complex control flow schemes. Thus, the
ECA rules defined by a control flow type de-
fine how to react on events depending on the
context. This leads to a combined approach
which integrates the flexibility of rule-based
techniques with the high-level constructs of
task graphs. Furthermore, structural restrictions
on the application of the control flow types
within a task graph can be specified: the al-
lowed task types between which a control flow
is modeled or the allowed combination of dif-
ferent control flow types.

As a first example, we briefly explain the defi-
nition of the standard end-start dependency
which consists of several rules shown in figure
8b. We concentrate on the first rule, which de-
fines an “end-start behavior” for the enable
transition of the target component (using the
keyword “OF target”; represented by the flag

ECA::for_source): first, the trigger ’on finished by
predecessor(Standard) when condition_of(depen-
dency)’ defines that the enable transition should
be invoked when a predecessor according to
the dependency “Standard” has been finished
and the condition of the actual dependency
within a task graph holds (referred to by the
placeholder condition_of(dependency)). When the
condition evaluates to false, the complementary
trigger of the truncate transition matches so that
the task (and transitively the whole path) is
truncated. Second, the application condition
’source.state= done and condition_of (dependency)’
gives the state-based semantics of the end-start
dependency where “source” is a placeholder for
the actual source component of the depend-
ency.

Figure 8b shows also the control flow group
type “Exclusion” as an example of a group re-
lationship type which defines a control flow
dependency between an arbitrary set of process
steps. The semantics of mutual exclusion is en-
sured by the application condition ‘related-
members_of(Exclusion)->forall(state != run-
ning)’. Furthermore, additional receiver expres-
sions are defined in order to propagate the start-
and finish-events between the group members.

An additional trigger for the disable transition
ensures that all group members are disabled
once another member has been started so that
the corresponding work items will disappear
from the actors’ worklists.

Since a task component can be involved in sev-
eral dependencies and group relationships
types, the user can specify
• which task types can be related by the con-

trol flow type (source-/target_type, ele-
ment_type) so that only only subtypes of the
specified task types are allowed,

• whether different control flow types can be
combined (heterogenous_split-/join),

• which split- and join-types are allowed for a
component (src_split-/trg_join_type_restriction)
and whether a dependency condition can be
used (conditional) in conjunction with a par-
ticular dependency type (in particular, con-
ditional branches (or-splits) can be used
only with certain dependency types), and

• how the ECA rules defined by different
control flow types are fused together for a
component (fusion_type).

ECA rules of the predefined task type ’TASK’

 FOR enable DEFINE:
 ON resumed BY supertask,
 process_selected BY supertask,
 output_released BY supplier,
 context_changed,
 [...]
 IF supertask.state=active AND
 mandatoryInputsAvailable()

 FOR disable DEFINE:
 ON suspended BY supertask
 output_unreleased BY supplier,
 context_changed,
 [...]
 IF NOT condition_of(enable)

 FOR finish DEFINE:
 ON finished BY subtask WHEN automatic
 IF subtasks->forall(state=done OR

 state=not_executed)
 SEND_TO supertask
[...]

Figure 7: Predefined ECA rules

Definition 3: Grammar for the textual notation of ECA
rules on the schema level

contextfreeRule ::= "FOR" transition "DEFINE" ECArule_body
dependencytypeRule ::= "FOR" transition "OF"

("source" | "target") "DEFINE"
["WITH_FUSION" fusionype] ECArule_body

grouptypeRule ::= "FOR" transition "DEFINE"
["WITH_JOIN_TYPE" fusiontype] ECArule_body

fusiontype ::= "and" | "or" | "of_component" | "inverted" |
"overwrite"

ECArule_body ::= ["ON" trigger { "," trigger }]
["IF" application_condition]
["SEND_TO" receiver_expr { “,” receiver_expr }]

trigger ::= event_name ["BY" event_producer_expr]
["WHEN" trigger_condition]

The latter is of particular interest for the deri-
vation of the task’s execution behavior and ex-
plained in the next sub-section in detail.

4.4 Configuration of the Execution Be-
havior of a Task Agent

The execution behavior of a task agent is de-
fined by a set of transitions which are declared
by the task type and by the transitions’s execu-
tion behavior which is given by the ECA rules
as introduced in section 3. In order to de-
rive/configure the execution behavior of a task
agent, we have to fuse all relevant partially
specified ECA rules for every transition and to
resolve the placeholders and path expressions
used in the definition of ECA rules on schema
level. The derivation procedure is in contrast to
centralized approaches (e.g. [Kap+95],
[CCPP96]) which realize a workflow engine on

top of an active database and derive one global
set of ECA rules. We start introducing this pro-
cedure by explaining the example shown in
figure 8c. We concentrate on the enable transi-
tion of the task “FunctionalReview” and its
ECA rule. For this task and transition, the fol-
lowing ECA rules are relevant:
• the context-free ECA rule of the task type

which forms the baseline of the resulting
ECA rule: in particular, its application con-
dition is conjunctively joined with the con-
text-dependent applications conditions.

• the context-dependent ECA rules of the Ex-
clusion-group where the task is part of: by
default, the application conditions defined
by a group type are joined conjunctively; in
the case of the enable condition, it is re-
quired, that the “ProjectPlanReview” is not
running.

(B) Definition of control flow types

 DEPENDENCY TYPE Standard : TASK -> TASK is defined by

 FOR enable OF target DEFINE: (1)
 ON finished BY predecessor(Standard)

 WHEN condition_of(dependency)
 IF (source.state=done and condition_of(dependency))

 FOR disable OF target DEFINE: (2)
 ON iterated BY predecessors

 FOR truncate OF target DEFINE WITH_FUSION inverted: (3)
 ON truncated BY predecessors(Standard),
 finished BY predecessors(Standard)
 WHEN not condition_of(dependency)
 IF ((source.state = done and not condition_of(dependency))
 or source.state = not_executed)

 FOR iterate OF target DEFINE: (4)
 ON iterated BY predecessors

 FOR iterate OF source DEFINE: (5)
 SEND_TO successors(Standard)

GROUP TYPE Exclusion : TASK

 FOR disable DEFINE: (i)

 ON started BY related_members_of(Exclusion)

 FOR enable DEFINE: (ii)

 ON finished BY related_members_of(Exclusion)

 IF related_members_of(Exclusion)->forall(state != running)
 FOR start DEFINE: (iii)
 SEND_TO related_members_of(Exclusion)
 FOR finish DEFINE: (iv)
 SEND_TO related_members_of(Exclusion)

(C) Derived ECA rule for a "functional review"-instance

DO enable
 ON finished BY { ChangeProposal, ProjectPlanReview },
 [...]
 IF (ChangeProposal.state=done and true) and
 (ProjectPlanReview.state != running) and
 (ChangeRequest.state=active and from context-free
 mandatoryInputsAvailable()) behavior definition
 SEND_TO { FunctionalReview }
DO disable
 ON started BY { ProjectPlanReview },
 iterated BY { ChangeProposal },
 suspended BY { ChangeRequest }, from context-free
 [...] behavior definition
 IF not condition(enable)
[...]

(A) Workflow with different control flow types

Functional
review

Project plan
review

Evaluationan
d

xo
rChange propo-

sal for target
specification

and

and

Exclusion

Figure 8: Example of task and process definitions and their instance-relationships

• the context-dependent ECA rules that are
defined by the standard dependency type for
the target component regarding to the stan-
dard dependency between “ChangePro-
posal” and “FunctionalReview”: by default,
the application conditions which are defined
by a dependency type for the target compo-
nent are joined according to the join-type
specified for the component (when no join-
type is specified, an and-join is assumed).
Therefore, the condition “ChangePro-
posal.state = done” is added conjunctively.

• the context-dependent ECA rules that are
defined by the standard dependency type for
the source component regarding to the stan-
dard dependency between “FunctionalRe-
view” and “Evaluation”: these rules usually
define to whom the event generated by the
transition has to be passed and are defined
for the standard dependency for propagating
the finished, iterated, and truncated events
(not shown for the task instance behavior in
figure 8c).

The default fusion method of an ECA rule
(more precisely: of their application condition)
can be overwrote using the fusion types "and"
(default for group types), "or", "of_component"
(the default for dependency types), "inverted"
and "overwrite". The inverted-fusion type fuses a
condition with the complement of the compo-
nent’s connect type. For example, this fusion-
type is used for the ECA rule of the truncate
transition (see figure 8b): a task has to be trun-
cated in the case of an and-join when one pre-
ceding task has not been executed or the de-
pendency condition evaluates to false, but in
the case of an or-join it can be truncated only if
all preceding tasks have been truncated. Fi-
nally, when using the overwrite-fusion type all
application conditions defined by other relevant
ECA rules are neglected, i.e. the application
condition of the ECA rule is already the final
condition. This requires, that different control

flow types cannot be combined when they in-
clude conflicting overwrite-statements.

Beside combining the partially defined appli-
cation conditions, we have to fuse also the dif-
ferent triggers and receivers which are defined
by the different ECA rules. Independently of
the specified fusion type, always the union is
created for both cases (omitting the details of
the union operator on triggers).

The formal definition of this procedure is
mainly based on the definition of the relevant
ECA rules for task agent regarding to a transi-
tion and the fusion of these relevant rules. An
ECA rule is relevant for task agent t (see defi-
nition A1 in the appendix where OCL in the
context of the above UML diagrams is used), if
• the ECA rule is defined by the statechart of

the task definition of t (context-free ECA
rule) (A1.1), or

• t refers to a source (target) component of a
control flow dependency of type D in a task
graph, and the ECA rule is defined by D for
the source (target) component (A1.2), or

• t refers to a component in a task graph,
which is part of a group relationship of type
G, and the ECA rule is defined by G (thus,
the ECA rules of a group relationship are
associated to all group members) (A1.3).

On this basis, we can define the set of all tran-
sition execution behaviors which forms the
execution behavior of a task agent. First, every
state transition defined by the statechart variant
of the task type is adopted with its structural
information (A2.1). Next, the relevant ECA
rules of the schema level are fused together re-
sulting in the transition’s execution behavior on
instance level. This is done by
• creating the union of the triggers that are

defined by the ECA rules and by resolving
the event producer expression (A2.2) (using
a simple equivalence relationship on trig-
gers so that equivalent rules are amalga-

mated by creating the union of the event
producers),

• generating a application condition accord-
ing to fusion-types of the ECA rules (A2.3)
(for which the ECA rules are partitioned as
follows

• resolving the receiver expressions and cre-
ating their union resulting in the receiver set
(A2.4).

5. Behavior Definition and Adapta-
tion for Flexible Processes

In this section, we show how the introduced
concepts of behavior definition can be used to
define a priori flexible workflows and to adjust
the application condition of and the reaction to
dynamic changes.

5.1 Examples of Control Flow Types
and their Usage for Defining Less-
restrictive Workflows

Figure 9 shows a change request management
process which can be found alike in any engi-
neering domain and which has been analyzed in
the MOKASSIN project [Gro+99]. The skele-
ton of the process is well-structured and con-
sists of several mandatory tasks which are exe-
cuted in a prescribed order: create change re-
quest, impact analysis, discussion in project
meeting, change proposal, review, evaluation
and acceptance. However, we find also a high
degree of freedom within (see corresponding
numbering in figure 9). User-definable control
flow types allow to model a workflow schema
on a high level of abstraction which supports
this a-priori flexibility:
1. When a change request (CR) is initiated a

first provisional version of the CR is often
passed to the configuration control board
in order to early start a preliminary discus-
sion about the CR and the underlying
problem. This results in valuable feedback

information and improves the technical
quality of the CR. In this case, the discus-
sion task can start early (as soon as the first
provisional version of the CR is released)
and will respond with feedback informa-
tion. Thus, both activities can overlap and
pass intermediate results overcoming a
black-box view of a task – in correspon-
dence to the design of a reactive task
agent. But, in order to avoid a chaotic pro-
cess the discussion task must not terminate
before the CR creation task. This kind of
dependency is denoted as simultaneous
[HJKW96]; its definition is given in figure
9. Furthermore, document interchange
between both tasks is versioned and hence
traceability is ensured.

2. Although the preliminary discussion is of-
ten needed, it is not mandatory. Therefore,
the discussion in the development meeting
only has to wait for the termination of the
preliminary discussion if it has been started
or still can be started. The Softsync-
dependency (cf. [ReDa98]) indicates this
behavior. The discussion task can be
skipped without causing in deadlock.

3. When the CR has been accepted, a par-
tially similar process starts for working out
the change proposal of the target specifi-
cation. Again, questions may arise and
have to be clarified with the initiator for
which an optional consultation task is pro-
vided. This task can be started as long as
the change proposal task is active (during-
dependency, see figure 9) and if an inquiry
has passed to the consultation task (value
dependency given by data flow relation-
ships). When the consultation task has
been activated, the change proposal task
must not terminate before the consultation
task has finished (conditional end synchro-
nization established by CondEndSync-
dependency). This scenario also includes
data interchanges between running tasks.

4. Afterwards, the created change proposal is
reviewed according to functional and ad-
ministrative consistency; minor changes
and corrections are made directly. There-
fore, both review tasks should not be per-
formed concurrently, but can be performed
with a free choice of their order. This be-
havior is realized by the exclusion group
relationship introduced above.

5.2 Situation-dependent Handling of
On-the-fly Changes

Our approach to dynamic changes of enacting
workflow instances is based on applying ECA
rules also to change operations. Every change
primitive is encapsulated by a pre-condition

which restricts its application, and by raising a
corresponding event which is handled by the
affected instances in order to ensure the be-
havioral consistency of the execution states.
Thus, conceptually a change operation can be
treated like a state transition, and on-the-fly
changes are supported in the presence of dis-
tributed workflow enactment since every task
instance object has the knowledge about how to
react on a change. Furthermore, the evolving
workflow schemata are managed on the basis
of a detailed workflow schema versioning con-
cept which allows to support different evolu-
tion strategies [JoHe98].

Whether a change is allowed and how to re-
act on it highly depends on the particular situa-

Impact Anaylsis
of CR

Preliminary
discussion

Functional
review

Project plan
review

Evaluationan
d

xo
r

[accepted]

[rejected]

Consultation
with initiator

C
ondE

ndS
ync

D
uring

remark

remark Change
proposal

Change propo-
sal for target
specification

and

and

Simultaneous

[rejected]
Create/
Revise

Change request

andxo
r

iterate

[CR to be revised]

Document
rejectionxo

r

SoftSync

Exclusion

[accepted]

(1)

(2)

(3)

(4)

feedback

feedback

report

Discussion in
development

meeting

xoran
d

task component with
 split- and join-type

output, dataflow, input

control flow dependency with
dependency condition

control flow group relationship

non-standard confrol flow
dependency types

[...]

DEPENDENCY TYPE simultaneous : TASK -> MANUAL_TASK is defined by

 FOR enable OF target DEFINE: -- relaxed activation condition:
 ON finished BY predecessor(simultaneous) WHEN condition_of(dependency)
 started BY predecessor(simultaneous) WHEN condition_of(dependency)
 IF (source.state=done or source.state=active) and condition_of(dependency)

 FOR finish OF target DEFINE: -- ensure that target does not
 IF source.state=done -- finish before source is done

 FOR start OF source DEFINE:
 SEND_TO successors(Simultaneous)
 [...]

DEPENDENCY TYPE During : TASK -> TASK
(unconditional) is defined by

 FOR enable OF target DEFINE:

 ON started BY predecessors(During)
 IF (source.state=running and condition_of(dependency))

 FOR truncate OF target DEFINE:

 ON finished BY predecessors(During),
 aborted BY predecessors(During)

 FOR start OF source DEFINE:

 SEND_TO sucessors(During)

Figure 9: Flexible workflow of a change request management process

tion and the behavior of the involved tasks. For
example, within several approaches [EKR95,
HoJa98, ReDa98] the insertion of a new pre-
ceding task is allowed only if the task has not
been started. However, an active manual task
can be suspended, a batch task can be just re-
started, transactional tasks can be aborted, or
executed tasks can be compensated possibly.
The capabilities for behavior definition and
customization support such situations (see
[Joe99] for details).

6. Conclusion

In this paper, we have proposed an approach to
modeling and enacting of heterogeneous and
flexible processes that deals with the challeng-
ing requirements of flexibility, reuse, distribu-
tion, and provision a process modeling lan-
guage at a high level of abstraction. We have
shown, that the definition of control flow de-
pendency and group relationship types on the
basis of ECA rules is a powerful concept for
supporting a-priori and a-posteriori flexibility
in a WFMS. In particular, the agent-based ar-
chitecture combines decentralized workflow
enactment with this flexibility. Finally, the
combination of rule-based techniques with the
high-level constructs of task graphs results in a
great flexibility without losing the ability of
high-level workflow modeling.

Future work will focus on cross-
organizational workflows. A first extension of
our approach which goes in this direction has
been undertaken [Gro+99]. The introduced
concepts have been fully implemented in the
project MOKASSIN – which has been funded
by the German Ministry for Research and
Technology (BMBF) – using IONAs CORBA
realization Orbix 2.3.

References
[ALO96] Alloui, I.; Latrous, S.; Qquendo, F.: “A

Multi-Agent Approach for Modeling, Enacting
and Evolving Distributed Cooperative Software
Processes”. In Software Process Technology -
Fifth European Workshop EWSPT’96, LNCS
1149, Springer, Berlin, 1996; pages 225-235.

[Att+96] Attie, P. C.; Singh, M. P.; Emerson, E. ;
Sheth, A.; Rusinkiewicz, M.: “Scheduling
Workflows by Enforcing Intertask Dependen-
cies“. Distributed Systems Engineering, 3(4)
(1996), pp. 222-238.

[CCPP96] Casati, F.; Ceri, S.; Pernici, B.; Pozzi, G.:
“Deriving Active Rules for Workflow
Enactment", in Wagner, R.R.; Thoma, C.H. (eds.)
Proc. of 7th Intl. Conf. on Database and Expert
System Applications (DEXA’96), Zurich, Swiss,
1996, pp. 94-115.

[ChSc97] Chang, J.W.; Scott, C.T.: “Agent based
Workflows: TRP Support Environment (TSE)”,
in ECRIM/W4G International Workshop on
CSCW and the Web, 1997.

[CiRu98] Cichocki, A.; Rusinkiewicz, M.: “Migra-
ting Workflows“, in Dogac, A. et al. (eds.):
Workflow Management Systems and Interopera-
bility. Berlin, Heidelberg (Springer Verlag) 1998.
pp. 339-355.

[Das+97] Das, S.; Kochut, K.; Miller, J.; Sheth, A.;
Worah, D.: “ORBWork: A Reliable Distributed
CORBA-based Workflow Enactment System for
METEOR_2”, Technical Report UGA-CS-TR-
97-001, Department of Computer Science, Uni-
versity of Georgia, Feb. 1997.

[EKR95] Ellis, C. A.; Keddara, K.; Rozenberg, G.:
“Dynamic Change Within Workflow Systems“, in
Comstock, N.; Ellis, C. (ed.): Proc. of the Conf.
on Organizational Computing Systems COOCS
’95. New York (ACM Press) 1995; pp. 10-21.

[ElNu96] Ellis, C.A.; Nutt, G.J.: “Workflow: The
Process Spectrum”, in NSF Workshop on
Workflow and Process Automation in Information
Systems, Athens, Georgia, 1996.

[GeKe94] Genesereth, M.R.; Ketchpel, S.P.: “Soft-
ware Agents”. Communications of the ACM,
37(7), 1994; pp. 48-53.

[GHS95] Georgakopoulos, D.; Hornick, M.; Shet,
A.: “An Overview of Workflow Management:

From Process Modeling to Workflow Automation
Infrastructure”. Distributed and Parallel Databa-
ses, 3(2), 1995; pp. 119-153.

[Gro+99] Gronemann, B; Joeris, G.; Scheil, S.;
Steinfort, M.; Wache, H.: “Supporting Cross-
Organizational Engineering Processes by Distri-
buted Collaborative Workflow Management -
The MOKASSIN approach“, in Proc. of the 2nd
Intl. Conf. on Concurrent Multidisciplinary Engi-
neering (CME’99) Bremen, Germany 1999.

[HaGe96] Harel, D.; Gery, E.: “Executable Object
Modeling with Statecharts”, in Proc. of the 18th

Int. Conf. on Software Engineering, Berlin, Ger-
many, 1996; pp. 246-257.

[HJKW96] Heimann, P.; Joeris, G.; Krapp, C.-A.;
Westfechtel, B.: "DYNAMITE: Dynamic Task
Nets for Software Process Management", in Proc.
of the 18th Int. Conf. on Software Engineering,
Berlin, Germany, 1996; pp. 331-341.

[HoJa98] Horn S. and Jablonski S.: "An Approach to
Dynamic Instance Adaption in Workflow Man-
agement Applications", in Proc. of the CSCW-98
Workshop - Towards Adaptive Workflow Systems,
Seattle, WA, Nov. 1998

[JaBu96] Jablonski, St.; Bussler, Ch.: “Workflow
Management - Modeling Concepts, Architecture
and Implementation”, International Thomson
Computer Press, London, 1996.

[Jen+00] Jennings, N.R.; Norman, T.J.; Faratin, P.;
O'Brien, P.; Odgers, B.: “Autonomous Agents for
Business Process Management“ International
Journal of Applied Artificial Intelligence, to ap-
pear, 2000.

[Jen+96] Jennings, N.R.; Faratin, P.; Johnson, M.J.;
Norman, T.J.; O'Brien, P.; Wiegand, M.E.:
“Agent-based Business Process Management“
International Journal of Cooperative Information
Systems, 5(2&3) (1996), pp. 105-130.

[Joe99] Joeris, G.: “Defining Flexible Workflow
Execution Behaviors“ in P. Dadam, M. Reichert
(ed.) Enterprise-wide and Cross-enterprise
Workflow Management - Concepts, Systems,
Applications, GI Workshop Proceedings - Infor-
matik'99, Ulmer Informatik Berichte Nr. 99-07,
University of Ulm, 1999, S. 49-55.

[JoHe98] Joeris, G; Herzog, O.: "Managing Evol-
ving Workflow Specifications", in Proc. of the 3rd

Int. IFCIS Conf. on Cooperative Information Sy-

stems (CoopIS’98), New York, Aug. 1998; pp.
310-319.

[JoHe99] Joeris G.; Herzog O.: “Towards Flexible
and High-Level Modeling and Enacting of Proc-
esses“, in Proc. of the 11th Int. Conf. on Advanced
Information Systems Engineering (CAiSE’99),
LNCS 1626, Springer, 1999; pp. 88-102.

[Kap+95] Kappel, G.; Pröll, B.; Rausch-Schott, S.;
Retschitzegger, W.: “TriGSflow – Active Object-
Oriented Workflow Management”, in Proc. of the
28th Hawaii Intl. Conf. On System Sciences
(HICSS’95), Jan. 1995; pp. 727-736.

[Kir96] Kirn, St.: “Kooperativ-Intelligente Softwa-
reagenten” IM - Information Management, 11(1),
1996; pp. 18-28.

[KrSh95] Krishnakumar, N.; Sheth, A.: "Managing
Hetereogeneous Multi-system Tasks to Support
Enterprise-wide Operations", in Distributed and
Parallel Databases, 3, 1995; pp. 1-33.

[Mer+96] Merz, M.; Liberman, B.; Müller-Jones, K.;
Lamersdorf, W.: “Inter-organizational workflow
management with mobile agents in COSM“, in
Proc. of the 1st Int. Conf. on Practical Applica-
tions of Intelligent Agents and Multi-Agent
Technology, 1996; pp. 405-420.

[Mil+96] Miller, J. A.; Sheth, A. P.; Kochut, K. J. ;
Wang, X.: “CORBA-Based Run-Time Architec-
tures for Workflow Management Systems“ Jour-
nal of Database Management, Special Issue on
Multidatabases, 7(1) (1996), pp. 16-27.

[ReDa98] Reichert, M; Dadam, P.: “ADEPTflex –
Supporting Dynamic Changes of Workflows
Without Losing Control”, Journal of Intelligent
Information Systems - Special Issue on Workflow
Managament, 10(2), Kluwer Academic Publi-
shers, March 1998; pp. 93-129.

[ScMi96] Schill, A.; Mittasch, C.: “Workflow Ma-
nagement Systems on Top of OSF DCE and
OMG CORBA“ Distributed Systems Engi-
neering, 3(4) (1996), pp. 250-262.

[SiHu98] Singh, M. P.; Huhns, M. N.: “Multiagent
Systems for Workflow“. Int. Journal of Intelli-
gent Systems in Accouting, Finance and Mana-
gement, Vol. 8, 1999, pp. 105-117.

[Sin97] Singh, M. P.: “A Customizable Coordination
Service for Autonomous Agents“, in Singh, M.
P.; Rao, A.; Wooldridge, M. J. (eds..): Intelligent
Agents IV. Agent Theories, Architectures, and

Languages. Rhode Islad, USA (Springer Verlag,
LNCS. 1365) 1997; pp. 93-106.

[SuOs97] Sutton Jr., S.M.; Osterweil, L.J.: "The De-
sign of a Next-Generation Process Language", in
Jazayeri, M; Schauer, H (eds.), Software Engi-
neering - ESEC/FSE’97, Proceedings, LNCS
1301, Springer, 1997; pp. 142-158.

[TGD97] Tombros, D.; Geppert, A; Dittrich, K.R.:
"Semantics of Reactive Components in Event-
Driven Workflow Execution", in Proc. of the 9th

Intl. Conf. on Advanced Information System En-

gineering (CAiSe'97), Springer, LNCS 1250,
1997; pp. 409-420.

[WoJe95] Wooldridge, M.; Jennings, N.R.: “Intelli-
gent Agents: Theory and Practice”, in Knowledge
Engineering Review, 10(2), 1995; pp. 115-152.

[YuSc99] Yu, L.; Schmid, B.F.: “A Conceptual
Framework For Agent Oriented and Role Based
Workflow Modeling“, in Proc. of the 1st Int. Bi-
Conference Workshop on Agent-oriented Infor-
mation Systems (AOIS’99), Seattle, USA & Hei-
delberg, Germany, 1999.

Appendix

Definition A1: Relevant ECA rules of a task agent

Denote TD = t.instance_of the task definition of a task instance t, s = t.step the corresponding process step of t within a
task graph, and ST = TD.behaviorDefinition.state.stateTransition the set of state transitions defined for t by TD.
The context-free ECA rule of a transition τ ∈ ST is defined by the following OCL-expression

ecaτ
cf = τ.eCA->select(eca | eca.controlFlowType->isEmpty) (A1.1)

The relevant context-dependent ECA rules ECAcd of a transition τ ∈ ST are defined by ECAτ
cd = ECAτ

dep->union(ECAτ
group)

with
 ECAτ

dep = ECAsrc->union(ECAtrg)->select(eca | eca.defined_for = τ) (A1.2)

 ECAτ
group = s.group.refers_to.eCA->union(s.part_of.eCA)->select(eca | eca.stateTransition = τ) (A1.3)

 ECAsrc = s.dependency->select(d | d.src = s).refers_to.eCA->select(eca | eca.for_source)
 ECAtrg = s.dependency->select(d | d.trg = s).refers_to.eCA->select(eca | not eca.for_source)

Definition A2: Fusion of ECA rules and derived execution behavior of a task agent

Let TD, ST, ecaτ
cf and ECAτ

cd be defined as above for a task t and transition τ ∈ ST. We partition ECAτ
cd as follows:

ecaτ
overwrite = ECAτ

cd->select(eca | eca.fusion_type = overwrite) (| ecaτ
overwrite | ≤ 1)

ECAτ
and = ECAdep->select(fusion_type = and), ECAτ

comp = ECAdep->select(fusion_type = of_component),
ECAτ

or = ECAdep->select(fusion_type = or), ECAτ
inv = ECAdep->select(fusion_type = inverted).

The set Πτ of triggers that are defined for a transition τ on schema level is given by
Πτ := ecacf->union(ECAcd).eCATrigger

Πτ is partitioned into a set of equivalence classes Πτ = { [φ]∼ | φ ∈ Πτ } by the (equivalence) relationship ∼ on triggers:
φ ∼ γ : ⇔ φ.event_name = γ.event_name ∧ φ.trigger_condition = γ.trigger_condition

Then, the execution behavior Γ of a task agent t is derived from the workflow schema as follows:
Γ = { δ : TransitionExecBehavior | τ ∈ ST ∧ δ.name = τ.name ∧ δ.controllable = τ.controllable ∧ (A2.1)

δ.src_states = τ.source.sub*.name ∧ δ.trg_state = τ.target ∧ δ.generated_event = τ.generates.event_name
∧ δ.trigger = π ∧ δ.application_condition = χ ∧ δ.receivers = Ψ }

with

w π = { tt : Trigger | [φ]∼ ∈ Πτ ∧ tt.event_name = φ.triggered_on.event_name ∧ tt.trigger_condition =
φ.trigger_condition ∧ tt.producers = U t.evaluatePathExpr(γ.event_producer) } (A2.2)

 γ ∈ [φ]∼

ecacf.condition ∧ τ.target.entry_condition ∧ ecaoverwrite.condition if ecaτ
overwrite ≠ ∅

w χ = ecacf.condition ∧ τ.target.entry_condition if ECAτ
cd = ∅ ∧ ecaτ

overwrite = ∅ (A2.3)
ecacf.condition ∧ τ.target.entry_condition ∧ χcd otherwise

 with χcd = (∧ e.condition) ∧ (∨ e.condition) ∧ (Θ e.condition) ∧ (Ξ e.condition)
e ∈ ECAτ

and e ∈ ECAτ
or e ∈ ECAτ

comp e ∈ ECAτ
inv

w Ψ = t.evaluatePathExpr(ecacf.receiver_expr) ∪ U t.evaluatePathExpr(e.receiver_expr) (A2.4)
 e ∈ ECAτ

cd

and Θ =
 ∧ if t.step.join_type ∈ { none, and }
 ∨ if t.step.join_type ∈ { xor, or }

 Ξ ∈ { ∧, ∨ } \ { Θ }

