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Abstract
Standard client-server workflow management systems
have an intrinsic scalability limitation, their centralized
architecture that hinders the scalability of the system.
The whole system is usually executed in a central server
that usually represents a single point of failure, which
compromises the availability of the system. We propose a
fully distributed architecture for workflow management
systems. It is based on the idea that the case (an instance
of the process) migrates from host to host, executing the
case activities, following a process plan. This approach
is implemented in the form of a mobile agent. This basic
architecture is improved with the addition of other com-
ponents so that other requirements for Workflow Man-
agement Systems, besides scalability, are also addressed.
A CORBA-based implementation of such architecture is
discussed, with its limitations, advantages and project
decisions described. We conclude presenting some per-
formance tests showing the feasibility of such approach.

Keywords: Large-scale workflow management systems,
distributed software architectures, CORBA, distributed
systems, and mobile agents.

1. Introduction

Workflow Management Systems (WFMSs) are used to
coordinate the execution of a vast set of cooperative ap-
plications ranging from business processes, such as loan
approval and insurance reimbursement, to large scale
software development projects and manufacturing sys-
tems control, to list some examples. Such processes are
represented as workflows: computer interpretable de-
scriptions of activities (or tasks), and their execution or-
der. A workflow can also describe the data available and
generated by each activity, parallel and optional execu-
tion paths, synchronization points and other aspects of
the execution of complex inter-dependent cooperative

tasks. Some of these aspects include policy constrains
such as when the activities should be executed, a specifi-
cation of who can or should perform each activity, and
which tools and programs are needed during the their
execution [4].

Many academic prototypes and commercial WFMSs
are based on the standard client-server architecture de-
fined by the WFMC (Workflow Management Coalition)
[18]. In such systems, the workflow engine, the core of a
WFMS, is executed in a logically centralized server that
typically stores both the application data (the data that is
used and generated by each activity within the work-
flow), and the workflow data (its definition, the state and
history information about each instance of the workflow,
and any other data related to its execution). Workflow
activities are executed and coordinated under the com-
mand of this server.

This client-server centralized architecture imposes a
limiting scalability barrier for the execution of large-
scale workflow applications, with many instances of
process being executed concurrently. Furthermore, the
use of a central database in these systems creates a per-
formance bottleneck and a single point of failure that can
paralyze the whole system and, possibly, the whole busi-
ness itself. Therefore, WFMSs based on centralized cli-
ent-server architectures are limited in providing appro-
priate levels of scalability, fault tolerance and availabil-
ity, which may limit their use on important sets of appli-
cations [1].

In this paper we introduce the WONDER (Workflow
ON Distributed EnviRonment) architecture, a WFMS
architecture based on the mobile agent paradigm. In the
WONDER architecture, the control, the storage of data,
and the execution of the activities are all distributed over
the many hosts of an enterprise computer network. In
this paper, we argue that a totally distributed architecture
based on mobile agents paradigm can provide the scal-
ability, flexibility and availability necessary for large-
scale WFMSs. Other requirements of WFMSs, such as
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failure recovery, auditing, monitoring and dynamic allo-
cation of users can also be accomplished with this model.

1.1. Scenario

To illustrate our approach, consider the following sim-
plified example. ABC mortgage is a leader mortgage
company in Brazil. It has branches operating in many
states which are responsible for analyzing and approving
thousands of finance applications a day. Loan applica-
tions represent a significant set of these proposals. Hun-
dreds of requests are received every hour. These requests
are issued electronically in the form of standard web
forms, informing the loan amount requested, the client
information and the purpose of the loan. Each request is
analyzed separately, in a different loan application proc-
ess. Once received, the form is routed to an annalist, in
the credit department, that checks the client's credit his-
tory. This usually requires the access of different credit
companies databases. Once approved, the request is for-
warded to another analyst, in the finance department,
which calculates the appropriate interest rate and issues a
personalized loan contract to the client. If a client has an
insufficient credit history, the loan application can be
rejected or, according to the analyst criteria, an adjusted
proposal can be issued, with a reduced credit amount. In
both cases, a final proposal is then issued to the client
which can accept or reject the proposal. If the propose is
accepted, a loan manager in the local branch of the com-
pany processes the request and issues a payment order in
the name of the client. At the end, whether successful or
unsuccessful, the whole process is archived for future
reference. The workflow for this scenario is represented
in Figure 1 as follows.

Chek credit
history

Issue
Proposal

Issue adjusted
Proposal

Issue rejection
letter

Get client
approval

Issue pay
order

Finalize and
arquive process

OR split

OR join

OR join

Figure 1. Loan approval process description

1.2. Terms

We will use, from now on, the following definitions.
A process definition or a plan is described in terms of
the WFMC primitives: sequencing, and-join, and-split,
or-join, and or-split [18]. A case is an instance of a proc-
ess. Thus, if loan approval is a process, then “Joe's Friday
$10,000.00 loan request to buy a car” is a case. Processes

are defined in terms of activities or tasks (boxes in
Figure 1), which represent a set of atomic actions per-
formed by a single person or by a program. Activities can
be executed sequentially or in parallel (in AND or OR
branches). Role is the generic description of a set of
abilities required to a person in order to perform an activ-
ity. Thus, credit analyst, finance analyst and branch
manager are roles. People or programs that perform the
activities are called users or actors, and a particular user
can perform many roles. If the user is a person, she has a
preferential host, a computer to where all her work re-
lated notifications and activities are send. In particular,
the notifications are sent to her task list.

1.3. Requirements for Workflow Systems

The main objective of this paper is to present and ana-
lyze the characteristics of a distributed architecture that
address the scalability issues of large-scale WFMS,
hence, the WONDER architecture focuses on addressing
the following requirements:

Scalability: The WFMS should not have its perform-
ance degraded due to the increase of: concurrent proc-
esses, cases or activity instances. It should also support a
large volume of application data and/or large set of ac-
tors.

Failure recovery: The WFMS should be able to de-
tect and deal with both software and hardware failures
with the minimum user intervention as possible.

Availability: The system must not get unavail-
able/unreachable for long periods of time, especially due
to failures and use overload.

Monitoring: The WFMS should be able to provide in-
formation about the current state of all cases and activi-
ties in execution.

Traceability: History (trace) information of current
executing as well as terminated cases must be provided
by the WFMS.

Interoperability. Different WFMS should be able to
inter-operate, in special, among inter-organizational
boundaries.

Support for external applications. The execution of
a particular activity may require external tools (such as
word processors, spreadsheets, CAD systems, expert sys-
tems, and so on). The WFMS should be able to interface
with these applications and determine when these tools
have been terminated, managing the data read and pro-
duced by these applications.

1.4. Paper Description
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The next section discusses the main components of the
WONDER architecture. Section 3 discusses the imple-
mentation of this architecture using CORBA (Common
Object Request Broker Architecture). Section 4 presents
results obtained during the execution of performance
tests with a system prototype, Section 5 describes related
work and Section 6 presents some conclusions.

2. The Distributed Model

Using general terms, the WONDER architecture is
based on the idea that each case is represented as a set of
mobile agents that migrate from host to host to perform
the case activities. The agent encapsulates both, the case
data (forms and documents) and the plan for that case
(the process description). The case moves to a particular
user's host once it determines the user/host that will per-
form the next activity. Once the activity is finished, the
agent identifies another user to perform the next activity
and moves to his/her host carrying the data produced in
that process step. The use of mobile agents provides
autonomy and processing load distribution to the system,
coping with the scalability requirement, since there is no
central control or data server, and there is no perform-
ance bottleneck.

Some additional components were defined in order to
deal with further requirements. The plan is a generic
description of the workflow process and does not specify
a particular user as the performer of an activity. Instead,
it defines activity executors in terms of roles. Consider a
credit history checking activity example, the plan will
state that a “credit evaluator”, and not a specific actor,
should perform the activity of “credit history checking”.
In order to cope with this requirement, a role coordinator
component, containing information of each role, was
defined. In the example above, the case queries the credit
evaluator coordinator, and asks it about a user to perform
that activity. Once identified the user, the case moves to
that user's preferential host.

Monitoring is also an issue in our architecture. How to
determine, without broadcasting, the current state of the
case, composed of many activities scattered over a com-
puter network? This task is performed by a case coordi-
nator component, that keeps track of the case status as it
moves along. Each time the case moves to a new user's
host, it sends a notification to its particular case coordi-
nator, allowing this component to track the progress and
current state of the case.

Another important problem for the mobile agent ar-
chitecture is failure recovery. The distributed characteris-
tic of our architecture introduces many failure-candidate
points, but keeps the failure isolated from other proc-
esses. What happens to the case if the host where it is

executing crashes? To deal with it, some caching policies
were specified. For the eventuality of a crash, while the
case is executing in the current host, a persistent copy of
its last state is stored at the previous hosts visited by the
activities of the case. As soon as the failure is detected,
the case coordinator elects another host/user to restart or
resume the process in a consistent state before the crash.
Furthermore, in not very reliable networks, to improve
fault tolerance, the case coordinator may direct hosts to
transfer this information to a backup server.

In its essence, the WONDER architecture is structured
as a distributed hierarchy of monitoring and policy en-
forcement components that support the migration and
execution of the workflow activities represented as mo-
bile agents. These components correspond to the case
coordinator, the role coordinator, the backup server and
others described in the next section.

On one hand, our current approach of decentralized
components eliminates the bottleneck of traditional
workflow systems. On the other hand, distribution is
known to increase communication among the decentral-
ized servers, a problem that must be investigated in de-
tail. For example, a case coordinator manages one spe-
cific instance of a process and receives very short asyn-
chronous notifications from the mobile agents (activi-
ties). These notifications comprise only the agents' cur-
rent status and destination host. On the other hand, the
backup server may receive large amounts of data, but this
transfer is done asynchronously when network and server
load allows for it. The only standard servers, in a client-
server sense, are the role coordinators (there is one for
each role), which receive a query and must return an an-
swer before the agent migration proceeds. However, the
respective amount of information exchanged is also
small, involving the sending of a short query and the
return of a user identity as an answer. Therefore, since
message exchanging is small and asynchronous, the
communication overhead is not a problem.

2.1. Main Components of the Architecture

The architecture, represented in Figure 2, is composed
of autonomous distributed components, which are de-
scribed in the next subsections.
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Figure 2. The main components of the architecture

2.1.1. Process Coordinator. The process coordinator is
responsible for the creation and management of case co-
ordinators that manage instances of a particular process.
Upon a request for a new loan approval, for instance, the
“the $2,000.00 loan application for the purchase of a
computer”, the "loan approval" process coordinator will
create a new case coordinator for this particular request.
This case coordinator will be responsible for managing
this loan application activities.

The process coordinator keeps track of all of its case
coordinator instances in execution, being responsible for
location, initialization, changing and termination of
these cases. For example, if the definition of the process
is changed, say to introduce a new pre-approval credit
activity, the process coordinator will update its own defi-
nition and will propagate these changes to all new cases.

2.1.2. Case coordinator. The case coordinator tracks and
manages the execution of a particular process instance. It
is responsible for detecting activity failures and for coor-
dinating their recovery procedures. It executes the final-
ization process of a case, collecting cache information
left by activity managers in the hosts of the system, and
stores the collected data in the history server. It also an-
swers queries about the current state of a case, notifies
the process coordinator when a case is terminated, as
well as other management procedures.

The case coordinator creates a synchronization activ-
ity for each and-join specified in the process definition,
adding their addresses (or names) to the plan used to
configure the first activity of the case (see 2.1.4).

A new case coordinator is created for each new proc-
ess instance. Its location in the network can be specified
at creation time, by the process coordinator, to comply
with load balance policies. When the case finalizes, the
case coordinator is terminated.

2.1.3. Role Coordinator. The role coordinator is a re-
source locator component. It is responsible for the identi-
fication of users qualified to perform a particular activity.
It also periodically collects information about the current
user status, such as the activities that she is currently

executing. With this information, a “finance analyst role
coordinator” can answer queries like “Who is the least
loaded analyst?” or “Who are the available analysts?”.
There is one role coordinator per role in the system.

The role coordinator may also have access to the His-
tory Server (which stores information about completed
cases), and to corporate databases. With the help of these
servers, the role coordinator can answer queries like:
“Who is the analyst with most experience in that kind of
loan?” or “Who was the analyst that approved that line of
credit?”.

In summary, the role coordinator is the component re-
sponsible for selecting the user (or users) that will per-
form a particular activity. There is not much literature on
user selection policies, but we can anticipate some useful
policies, all of which can be computed with the proposed
architecture: "choose randomly among the users that can
fill the role", "choose the least loaded user", "choose in a
round-robin way", and so on. We can conceive other
policies that use historical information about all cases,
such as choosing the user with most experience with that
customer, for example.

2.1.4. Synchronization Activity. And-joins and Or-Joins
are a particular problem in our workflow model based on
mobile agents. Each join of a case must be created before
the case begins, otherwise a mobile agent would not
know where to go when it needs to synchronize with
other mobile agents executing in different branches of the
same case. The synchronization activity will wait for all
notifications (and-join) or the first notification (or-join)
from its preceding activities before starting the following
(output) activities. For example, in the workflow of
Figure 1, synchronization activities have to be created
representing the or-joins before the activities “get client
approval” and “finalize and archive process”. During
these or-joins, once one of the two possible mobile agents
of this example has finalized and moved its data and
state to the synchronization activity, this component
merges all case data, and composes a new single agent
that will execute the next activity. In an and-join syn-
chronization activity, all input agents have to arrive be-
fore triggering the sequencing of the next activity.

A synchronization activity may also wait for other
synchronization signals, such as external events. Al-
though that is not contemplated in the WFMC definition,
one can conceive that, for example, a meeting can only
take place after all its preparatory activities are com-
pleted (the input activities for the and-join), but it may
also have to wait for an external event that informs that
the meeting room is available. In this case, the synchro-
nization activity would also wait for this external event
notification before proceeding to the next activity.
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2.1.5. Task List. The user interface is implemented as a
task list, similar to an e-mail reader. The task list notifies
the user of new activities that she is supposed to perform.
This allows the user to accept or to reject the incoming
activity according to the current specified policy. Fur-
thermore, the task list is the user's main interface to the
WFMS itself. It allows the user to customize its preferred
external applications, the policies for sorting the coming
activities, her preferential host, and so on. It also moni-
tors the user activity and collects her current workload
state, forwarding this information to the role coordina-
tors. The task list also provides access to the user work-
space, the set of files and data necessary to execute each
activity.

2.1.6. History Server. The history server (or servers) is a
front-end for the repository of completed cases. When a
case coordinator finishes its work, all relevant data used
by the case are stored in the history repository. Such pro-
cedure allows for the cases to be audited and the memory
of the cases to be archived for further review.

2.1.7. Backup Server. The backup server (or servers)
is(are) a front-end(s) for the repository of the intermedi-
ary state of the active cases. As we mentioned before, a
copy of the mobile agent execution state and the work-
flow data is stored in some of the hosts where the activity
manager executed. These hosts are neither trusted to
store this information indefinitely, nor to be active when
this cached data is needed (in recovery procedures for
example). The backup server runs in a more reliable and
powerful machine. It collects the cached data left by the
mobile agents, under the command of the case coordina-
tor. Once the backup is performed, the state information
can be erased from the users' hosts.

There may be many backup servers in the systems,
one per process, one for a group of processes, or many for
a single process. The identity of the backup server and
the moment to perform the backup is parameterized in
the case coordinator. This decision is based on many pa-
rameters such as network and server loads. Once the
backup is made, the user host can erase the past state
information of that case.

2.1.8. Activity Manager. This component implements
the mobile agent that executes and conveys the case data
throughout the network of user's hosts. The mobile agent
is implemented using a weak migration strategy [9]:
there is no mobility of code between hosts, only the agent
execution state and the necessary case data are trans-
ferred between hosts.

Each time it migrates, the activity manager coordi-
nates the execution of an instance of an activity for a par-
ticular case. When the activity manager detects the end
of the current activity, it initiates the migration process.
Using the weak migration process, the current activity
manager creates an instance of itself in the preferential
host of the user that will perform the activity. This new
activity manager instance is, then, configured with the
next activity specific data, and the current activity case
state.

Only the necessary data is transferred from one activ-
ity to another. The plan has the last location of all the
case data in the form of links. This allows the current
activity to fetch the necessary data for its execution. Once
modified, a piece of data is stored in the local host of the
current activity and its new location is updated in the
plan.

Once created, the next activity is started at the point
that the previous one had stopped. The previous activity
manager is terminated and has its state and data saved to
a special repository in the local host. The plan interpreta-
tion is resumed in the new host and the activity is per-
formed using the appropriate applications, through the
use of application wrappers. The recent created activity
becomes the current one. This activity manager waits
until the user finishes the activity execution and then
computes who should execute the next activity (by inter-
preting the plan that came along with the case state, and
by querying the appropriate role coordinator). If the next
activity is to be performed by a user, the activity manager
sends the appropriate information to that user's task list,
notifying the case coordinator that the activity has ended
and who is the user selected to perform the next activity.
After that, it transfers the case information to the created
activity manager and the process is repeated until the end
of the case.

2.1.9. Application Wrappers. An application wrapper is
a component that controls the execution of a particular
invoked application. It launches the application with its
necessary initialization parameters, together with the
activity data, collecting the application output. It is a
bridge between specific programs and the activity man-
ager. When the task finishes, the Wrappers notify the
corresponding Activity Manager that collects the gener-
ated data and proceeds in its execution.

2.1.10. Gateway Activity. In order to address the
WFMC Interoperability requirement, the gateway activity
component was defined. It is responsible for bi-
directional conversion of workflow data and control be-
tween two different WFMSs, defining a special bridge to
external applications in the WONDER model.
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3. CORBA Implementation

CORBA [11] was chosen as the middleware to support
the WONDER architecture implementation. It provides a
set of services and communication transparencies that
improve the distributed applications development.
CORBA specifies an object-oriented distributed bus, pro-
viding transparencies of access (independence of hard-
ware, language or operating system) and location (inde-
pendence of the host where the object is executing). It
offers all object-oriented programming advantages, such
as inheritance, information hiding, reusability and poly-
morphism. It also enables the use of legacy applications,
which were developed for different hardware and soft-
ware platforms. This is possible through the definition of
the IIOP (Internet Inter Orb Protocol) and the CORBA
IDL (Interface Definition Language) that allows the gen-
eration of interfaces to a large set of programming lan-
guages.

Each component of the architecture, described in the
previous section, was mapped to a particular CORBA
object. In order to fully support our approach some addi-
tional services had to be implemented on top of the stan-
dard CORBA implementation. A more detailed descrip-
tion of this mapping is described in [13].

3.1. References to CORBA Objects

The CORBA 2.0 standard IORs (Interoperable Object
References) is not fully adequate for our application.
IORs uniquelly identify an object in the CORBA name
space. These references are dynamically allocated by the
ORB and include information such as the IP address and
port number that respectively locate the access point to
an object interface in a particular host.

Since the total execution time of a case may least
many days, or even months (in a large software develop-
ment process for example), one cannot assume that, for a
whole case execution lifecycle, an object (such as the
synchronization activities or case coordinator) will be
active, on the same port it was created, having the same
IOR. Objects need to be deactivated when inactive for a
long time, in order to allow the execution of other proc-
esses, or even due to host and connection failures.

Recently, the OMG (Object Management Group) fin-
ished the specification of the object persistency service.
However, by the time of the implementation of the
WONDER architecture, the CORBA implementation
used did not provide such service, hence, our own persis-
tency service had to be developed. In our scheme, the
objects are locally stored, and identified using the follow-
ing naming scheme: [host, process, case, actor, activity,

file] for files; [host, process, case, actor, activity] for ac-
tivities; [host, process, case] for case coordinators; [host,
process] for process coordinators; [host, backup-server]
for backup servers, and so on.

In order to provide transparent object persistence,
each host has a Local Object Activator (LOA). It exe-
cutes as a hook in the WONDER runtime environment
daemon (orbixd – OrbixWeb locator daemon) and inter-
mediates the object creation (bind), activation, deactiva-
tion and persistence, saving the object state and data in a
local reserved disk area (the object repository). For ex-
ample, the case coordinator for a $500.00 loan approval,
(case C4375), of the process "loan approval" (process
P12), in the host abc.def.com is identified by
(abc.def.com, P12, C4375). To access this object (or for-
mally to bind to this object), a process must send the ref-
erence (P12, C4375) to the LOA in the machine
abc.def.com, which will activate and restore the state of
that case coordinator. This activation uses the informa-
tion previously stored in the object repository. The LOA
then returns the new IOR of the restored object to be im-
mediately used.

3.2. CORBA Services

Many CORBA based Workflow architectures use a
subset of the OMA CORBA Services [12][16]. The most
commonly used services are the Naming, Event, Notifica-
tion, Security and Transaction. Due to the large-scale
requirements of the WONDER architecture, and its mo-
bile object approach, some inadequacy points of these
services came up. These issues are discussed as follows.

Some workflow implementations use the CORBA
Transaction Service to coordinate the data flow among
many different servers [12][15]. This approach creates a
fail-safe data transfer protocol among different activities,
providing a set of “transactional communication chan-
nels”.

Large systems require transactional semantics, but
may not always require distributed transactions [14]. In
the WONDER architecture the Activity Manager peers
manage the consistence of the data transfer. All the data
and the case state are transferred simultaneously, in a
single operation invocation, from one activity manager to
another. During splits, this process is iterated for each
activity in the branch. Hence, the CORBA method invo-
cation mechanism is sufficient for our implementation.
Errors are handled using retransmission policies. If some
error occurs during the remote operation invocation, due
to a temporary link crash, for example, the ORB throws a
SystemException. This exception is caught and resolved
by the data sender which, according to the failure reason,
can result in another method invocation when the link is
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up again. If the fail persists, the case coordinator carries
on the error handling procedure, creating an alternative
path to be followed. This simple approach dispenses a
more complex control implemented by a transaction
server.

The CORBA Event and the Notification Services de-
couple the producer and consumer objects, implementing
a message queue. These messages can be made persistent
in some COSNotification proprietary implementations
[Web-1]. This safe event channel, however, increases the
failure detection complexity: how can an activity man-
ager identify the failure of a case coordinator if their
communication is de-coupled by the notification service?

The WONDER architecture does not rely on any stan-
dard CORBA naming service because of the IOR prob-
lems described in section 3.1. Instead, each host executes
an activation agent that resolves markers (OrbixWeb
human-readable object names) to IOR object references,
working as a local name service. This activation agent,
operating with the LOA, is also used to implement the
objects activation and deactivation, besides their persis-
tence. The activation agent is implemented using the
OrbixWeb orbixd daemon and an OrbixWeb LoaderClass
hook, which specialization implements the LOA object.

3.3. Execution Scenarios

In this section, some execution examples are pre-
sented. They emphasize on the behavior of the main ob-
jects of the architecture, showing their communication
and interaction. For simplicity, we will not represent the
interaction with the LOA object in our diagrams. This
interaction occurs each time an object is created, re-
started or reconnected. The scenarios are described using
the UML sequence diagram notation.

1: Start
Activity()

2: Init()
3: SetEvent
(Running)

4:Exec()
5: Finish

Notification()
6: SetEvent
(Finish)

7: SetEvent
(Sequencing)

8: QueryUsers
9:QueryData()

10: Suggest
Activity()

11: Accept
Activity

12: true

13: <create>>
14: Bind()
{wake up}

15: GetData()
16: SetData()
17: Add
Activity()

18: Start
activity

19: Init()

20: Set
Event
(Starting)

21: SetEvent
(Finishing)

22: Save()

24: Save 23: Exit()

25: Exit()

AM1:Activity
Manager

User1
TL1:Task

List
AM2:Activity

Manager
CC1:Case
Coordinator

RC1:Role
Coordinator

TL2:Task
List User2

AM3:Activity
Manager

HS3:History
Server

Figure 3. Activity sequencing diagram

3.3.1. Activity Sequencing. The Figure 3 presents a typi-
cal example of an activity sequencing (or agent mi-
gration) procedure. Generic activity and case coordinator
names are used. When the activity execution ends (send-
ing messages 5 and 6), the activity manager AM2 starts
the new activity sequencing process. The case coordina-
tor CC1, executing in a different host, receives an “end of
the activity” notification (6). The AM2 activity interprets
the process plan and determines which activity will be
performed next. The AM2 queries RC1 (the role coordi-
nator for the role to execute the next activity - message
8), which selects an appropriate user for that task. The
AM2 notifies the user about the new activity. This mes-
sage is sent to TL2 (10). If the selected user accepts the
activity, the migration procedure starts (10 to 13). The
activity manager AM2 requests the creation of the next
activity manager, AM3, in the user’s preferential host
(13), and transfers all necessary data to this object (16).
Since AM2 does not have all necessary pieces of data to
send to AM3 locally, it collects the necessary data files
from AM1 (14 and 15). The data is wrapped in a data
container together with the case state. Finally the AM3
activity manager is inserted in the User2 task list (17). It
is initialized (19) and the AM2 activity is finalized (21 to
23).

For performance reasons, only data necessary for the
created activity is transferred. The remainder data are
passed as links, in order to be retrieved by subsequent
activities.



8

1:CreateNe
wCase()

2: <<create>>

3: SetData()

4: Init()

5: *[for every
join in the plan] <<create>>

6:QueryUsers()
7: QueryData()

8: Suggest
Activity()

9: accept
10: true

11: <<create>>

12: SetData()
13: Add
Activity()

14: Init()

PC1:Process
CoordinatorUser1

CC1:Case
Coordinator

RC1:Role
Coordinator

TL2:Task
List User2

HS3:History
Server

SA1:Synchro
nizationAct

AM1:Activity
Manager1

Figure 4. Case creation sequence diagram

3.3.2 Case Creation. The case creation procedure, pre-
sented in Figure 4, is initiated by a user (User 1) request
in the process coordinator PC1 interface (1). This request
results in the case coordinator CC1 creation and configu-
ration (2 and 3). The setup process starts and the CC1
creates the synchronization activities for the case (5).
After querying the RC1 role coordinator for a user to
perform this activity (User 2), and after the activity ac-
ceptance by this user (8 to 10), the CC1 creates the first
case activity AM1 (11 to 14) and the case starts.

3.3.3. Activities And-Split. The and-split is imple-
mented as a parallel sequence of activities, the procedure
described in Figure 3 is iterated for each activity in the
branch. The new created activities follow independent
paths until a synchronization activity (and-join) is found.

3.3.4. Activities Synchronization. The synchronization
activities are created by the case coordinator, and their
localization is placed in the process plan at the beginning
of the case. When an activity ends, and its following ac-
tivity is an and-join, the plan will have a reference to this
synchronization activity address.

The synchronization procedure involving the activities
AM1, AM2, and SA4 is described in Figure 5. During
this synchronization process, each activity manager noti-
fies the synchronization activity SA4 and the case coor-
dinator CC1 (2 and 3). After both activity managers
(AM2 and AM1) have notified SA4, it starts the follow-
ing activity in the standard way as described in 3.3.1. As
usual, CC1 is kept informed of the progress of the case,
managing the case and handling its failures.

1: SetData()

2: Synchroniz()

3: SetEvent
(finish)

4: SetData()

5: Synchroniz()

6: SetEvent
(finish)

7: Save() 9:QueryUsers()

8: Exit() 10: Suggest
Activity()

12: Save() 11: Accept

13: Exit() 14: True

15: SetEvent
(sequencing)

16:<<Create>>

17: SetData()

18: AddActivit()

19: Init()
20: SetEvent
(finish)

22: Save()
21: SetEvent

(started)

23: Exit()

CC1:Case
Coordinator

RC1:Role
Coordinator

TL2:Task
List User2

SA4:Synchro
nizationAct

AM1:Activity
Manager

AM2:Activity
Manager

AM3:Activity
Manager

Figure 5. An and-join synchronization diagram

3.3.5. Case Finalization. The Figure 6 presents the se-
quence diagram of a case finalization procedure. By the
end of each case, data stored at each host that executed at
least one activity of the case, and all case data stored in
the backup server(s) are removed by the case coordinator
CC3 (9, 11 and 13). An execution summary containing
relevant data for future queries is stored in the History
Server HS2 (12).

1: SetEvent
(finish)

2: SetEvent
(finish)

3: Save()

5: Garbage
Collect()

4: Exit()

6: *[for each
activity in the
case]

bind()

7: GetData()

8: Exit()
9: Remove

Data()

10: Exit()
11: Remove
Object()

12: SetData()

13: Remove
Data ()

14: Exit()

AM80:Activity
Manager

?:Activity
Manager

CC3:Case
Coordinator

PC2:Process
Coordinator

HS2:History
Server

BS2:Backup
Server

Figure 6. A sequence diagram of a finalizing case

3.3.6. Failure Recovery. The failure recovery process
consists in: halting the current process (current executing
activities), restoring the system to a previous stable state,
modifying the case process definition (adding compensa-
tion activities), and finally resuming the case. This rou-
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tine is managed by the Case Coordinator, using data
stored in the object repository of each host, and in the
backup servers scattered over the system.

4. Performance Tests

This section describes the performance tests executed
to validate our approach. The tests were designed to ana-
lyze the feasibility and behavior of the architecture com-
ponents in different distributed and centralized configu-
rations.

For these tests, the core components of the WONDER
architecture, including the Activity Manager, LOA, Syn-
chronization Activity, as well as the Case, Process and
Role coordinators were implemented. The remaining
components were partially implemented in order to
mimic the behavior of the real system.

The system was developed in Java (Sun JDK1.1), us-
ing the Iona OrbixWeb 3.1c, a CORBA 2.0 compatible
ORB implementation.

The test was performed using SUN OS workstations.
In special, pairs of similar machines were used: two Sun
Ultra 2 (252 MB RAM), two Sun Ultra Enterprise (512
MB RAM), and two Sun SPARCStation 4 (64MB RAM).
These hosts were connected by a 10Mb Ethernet Local
Area Network.

4.1. Overhead Tests

In order to determine the influence of the WONDER
runtime environment in the overall performance of the
machines, we defined an experiment in which a case was
executed in different distributed configurations. For this
test, there were no external applications invoked by the
case, nor any additional case data being used by the ac-
tivities. For this set of tests, the time intervals described
in Figure 7 were collected. Two comparative charts with
the results are presented in Figure 8 and Figure 9. The
test consisted in the execution of a single case, with 20
consecutive activities in two different configurations,
centralized and distributed, for every pair of machines
used in the tests. In the centralized tests the activities of
the test case and the coordinators execute in a single
host. In the distributed tests, the activities were pro-
grammed to alternate between a pair of equivalent hosts,
so that consecutive activities execute in different ma-
chines. The coordinators were configured to execute in a
third host.

Inicializationi Wrap. Execi Negoi Createi Confi

Inicializationi+1 Wrap. Exei+1 Negoi+1 Createi+1 Confi+1

Activity Total Time i+1

Activity Total Timei

Sequence Timei

Sequence Timei+1

Activity i+1

Activity i

Bind()

setD
ata()

init()

Figure 7. Activity times collected during tests.

The activity execution times were computed by the
case coordinator. The time measures, described in Figure
7, represent all the phases of the life cycle of an activity.
This information was collected by the case coordinators
in distributed and centralized scenarios. The results are
presented side-by-side in Figure 8 for comparison.

Activity Execution Average Times - Distributed x Centralized
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Figure 8. Comparison among average distributed and
centralized activity execution times. Execution of a single

case.

In general, the distributed execution was faster than
the centralized one in machines with the slowest and
medium processing power machines as the SPARC-
Station4 and Ultra2 pairs. In these hosts, the addition of
a new concurrent activities has a more prominent influ-
ence in the overall performance of the system.

The better performance of the distributed executions is
also a consequence of the execution of the case coordina-
tors in a third machine. During the tests performed in
centralized environments, the coordinators were executed
in the same host as the activities, which contributes to the
loading of the whole system. This influence is more ex-
pressive as the processing capacity of the host is lower.
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Relative Activity Execution Times
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Figure 9. Relative comparison among average distributed
and centralized execution times. Single case execution

The Figure 8 allows the comparison of the relative
proportions of the sequence times. As shown in the
graph, these relative values are very similar in the tests.
The relative differences between local and remote invoca-
tions are not expressive. This can be explained by the use
of the same communication mechanism (IIOP over Sock-
ets) implemented by OrbixWeb, in both local and remote
server communications. The chart also reveals that the
network latency is not very expressive in the overall exe-
cution time.

One can argue that the 23 seconds average migration
and initialization time, measured for SPARCStation 4
hosts, the slowest machines, is an expensive price to pay.
This overhead is relatively big for runtime applications,
for example. However, for conventional business applica-
tions, which activities can elapse minutes or even hours,
this migration latency is acceptable.

It can also be observed that the time intervals spent in
message exchange operations, negotiation and configura-
tion do not represent more than 20% of the total activity
time. The biggest latency is associated to the CORBA
objects creation, specially the loading of independent
Java virtual machines that execute each one of the
CORBA objects involved in these tests.

4.2. Scalability Tests

The objective of these tests is to analyze the behavior of
the system when multiple cases are being executed in
parallel on distributed and centralized scenarios. We

measure the average execution times of the activities and
the whole case, in three different conditions. In the first
set of tests (Figure 11), the activities did not invoke ex-

ternal applications; in the second case (
Figure 12), a highly CPU consuming operation (bub-

ble sort) was executed during each case step. Finally, the

last test analyzes the influence of the case data in the
execution times of the cases. This last test (Figure 13)
had the objective of exploiting the use of the workflow
for activities in which a large amount of data needs to be
transferred between activities.

.

Activ. 1.1 Activ. 2.1 Activ. 3.1 Activ. 4.1

Activ. 1.2 Activ. 2.2 Activ. 3.2 Activ. 3.4

Activ. 1.3 Activ. 2.3 Activ. 3.3 Activ. 4.3Wait

Wait

Activities in
Memory

Time

Figure 10 Parallel activities initiation procedure

The concurrent cases were initiated as described in
Figure 10. In each one of the following tests, 20 concur-
rent cases, having 20 activities each, were executed. The
number of concurrent cases was incremented by 5 at each
test round. A delay after each case start was specified in
order to avoid a sudden overload of the system.
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Figure 11. Average case execution time. No wrapper exe-
cution. 1-20 concurrent cases.

In Figure 11, the distributed configuration performs
better than the distributed one. This difference becomes
more expressive as the number of concurrent cases in-
crease. The delays associated with the case execution
have a linear growth with the increase of number of con-
current cases.
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Averange Case Execution Time

y = 203,02x + 43,045

R2 = 0,9724
y = 230,6x + 11,595

R2 = 0,9933

y = 587,35x - 410,56

R2 = 0,9896

0

500

1000

1500

2000

2500

1 5 10 15 20

Number of Concurrent Cases

T
im

e
(s

ec
.)

Distributed 2
hosts

Centralized

Distributed 4
hosts

Linear
(Distributed 4
hosts)
Linear
(Distributed 2
hosts)
Linear

Figure 12. Average case execution time. Bubble sort of
1000 random numbers. 1-20 concurrent cases

In
Figure 12, in the presence of heavy processing activi-

ties, the system presented the same linear behavior. The
more hosts are added in the distribution set of servers,
the lower the increase (angular coefficient of the ap-
proximation line) of the case execution delay.
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Figure 13. Average case execution time. Increase of data
exchanged among consecutive activities. Single case.

In
Figure 13, the increase of the case data, exchanged be-

tween consecutive activities did not significantly affect
the performance of the system, as in the previous two
tests. A ten fold increase in the size of the data resulted
in 20% increase in the average execution time of the
case.

4.3. Tests Conclusions

The architecture presents a linear increment of the av-
erage case execution time with the increase of the num-
ber of concurrent cases, the volume of data exchanged
between consecutive activities, and the work load of the
wrappers executed. The angular coefficient of the ap-
proximation lines (the delay increase rate) in the charts
decreases with the increase of the number of hosts used
in the tests.

4.3.1 The influence of notifications

During the tests, there were not significant delays as-
sociated with the asynchronous notifications, sent by the
activities to the case coordinators. The same behavior is
observed in the transmission of notifications from the
case coordinator to the process coordinator. This indi-
cates that the scalability of the system can be increased
with the addition of new hosts and the distribution of the
activities between them.

4.3.2 Prototype versus full implementation
Even though the tests were performed using a simpli-

fied prototype implementation, its behavior would not be
very different if the other components were fully imple-
mented. The notification sent to the coordinators are
asynchronous. The processing of these messages do not
introduce delays in the agent migration procedure.
Backup servers would only execute during low usage
periods of the system.

The only component that could introduce delays in the
agent migration procedure is the Role Coordinator. More
complex queries, requesting history information could
delay the negotiation phase of the agent in some seconds.
This query is specific of some activities and is out of the
scope of the present work.

4.3.3 Java and CORBA Issues
The average execution time associated with the cen-

tralized execution of the tests overcame the distributed
execution after the first increase in the number of concur-
rent cases. Hence, the use of CORBA objets written in
Java, executing in different virtual machines, do not have
a good performance in centralized environments, where
the number of concurrent cases is big. In distributed sce-
narios, however, where the number of servers executing
in one node is smaller, its performance is acceptable.

The biggest delay, associated to the mobility of the ar-
chitecture agent is the creation of these objects. This pro-
cedure consumes memory and CPU, influencing the per-
formance of the other objects executing in the same host.

This overload of the centralized execution is explained
by the way the OrbixWeb manages CORBA objects. It
does not differentiate local and remote method invoca-
tions. Hence, the method invocations between client and
server objects is performed using the IIOP over the
TCP/IP stack whether these objects are local or remote.
The WONDER architecture does not implement any lo-
cal data transfer optimization since this responsibility
should be provided by the CORBA middleware imple-
mentation.

4.3.4 General considerations: accidental versus
fundamental issues

We consider these later CORBA and Java implemen-
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tation issues as accidental, i.e., they are dependent on
particular CORBA implementation issues and are inde-
pendent of the model itself. The execution of CORBA
objects as threads instead of different processes as well as
the use of local inter-process communications between
local objects (as shared memory for example) are features
available in more up to date CORBA implementations.

The use of the optimizations described in the last
paragraph would only “raise the bar” in or tests, allowing
the execution of more concurrent cases in a single host.
The fundamental problem of centralized execution, how-
ever, would still persist. With a significant increase of
the number of concurrent cases, the system would be
overloaded if not with tenths, with hundreds of concur-
rent cases, and the centralized bottleneck would still per-
sist. In this case, the addition of new hosts, as in the dis-
tributed execution tests, would be used to distribute the
case execution and obtain the same results as described
in Figures 11 to 13.

5. Related Work

Some of the components of the Exotica project
[5,6,7,8], developed at IBM Almaden Research Center,
have similarities to our proposal. In particular the Exot-
ica/FMQM (Flowmark on Message Queue Manager) ar-
chitecture is a distributed model for workflows, using a
proprietary standard (MQI - Message Queue Interface) of
persistent queues. The case data is bundled in a message
that is conveyed from one activity to the other through a
fault tolerant persistent queue. Nevertheless, the proposal
is not very detailed on how to deal with all the other re-
quirements for a WFMS.

The OMG Workflow Management Facility [10] im-
plements a workflow framework that satisfies the basic
workflow management requirements. This specification
is based on the WFMC standards and defines a set of
basic objects and interfaces. Because of its generality,
this specification was not designed to handle the large-
scale workflow specific requirements.

The Mentor Project [11] of the University of Saarland
is a scalable, traceable workflow architecture. Fault toler-
ance is achieved by using TP-Monitors and logs. CORBA
is used as a communication and integration support for
heterogeneous commercial components. Scalability is
achieved by replicating the data in backup servers. Simi-
lar to our architecture, the data and references to data are
exchanged between Task List Managers when the activi-
ties are being executed and terminated. A limited first
prototype was implemented and future extensions should
include support for dynamic change of processes and the
rollback of cancelled or incomplete workflows.

Rusinkiewicz et. al, from the Houston University, de-

veloped a workflow model based on INCAs (Information
Carriers) [14]. This model was developed to support the
execution of dynamic workflow processes. The process is
executed over autonomous execution units (hosts). In this
architecture, the process definition and the workflow data
are wrapped in a container called INCA.

The WONDER architecture extends the INCA con-
cept with the mobile agent paradigm, defining active
entities (the ActivityManagers) which interpret the case
plan. INCAs are passive entities which execute in active
hosts (service providers). On the other hand, the WON-
DER model defines active entities that execute in passive
hosts.

Instead of defining compensation actions for fault tol-
erance, like the INCAs model, the WONDER allows the
specification of compensation activities. The INCAs
checkpointing police, which stores copies of the agent in
the hosts of the system, is also used in the WONDER
model. The auditing, monitoring and dynamic allocation
of actors is not addressed by the INCAs model.

Recent projects [15] and [16] have shown the use of
the mobile agents paradigm and CORBA in the enact-
ment of WFMSs. Their study is focused on the use of
these technologies to provide interoperability and
integration of business processes from different organiza-
tions. These studies also highlight the advantage of the
model in obtaining load balancing and dynamic recon-
figuration of the workflow in case of failures and excep-
tion handling or dynamic process change. None of them,
however, study the feasibility of this technology to ad-
dress the requirements of large-scale workflow.

6. Conclusions

In this paper, we present the WONDER, a distributed
architecture for large-scale workflow enactment. The
architecture is based on the idea that the case moves
through different workstations to the user’s actual host.
The migration follows a workflow plan which provides
autonomy to the activities. The case is implemented as a
mobile agent, in which there is no code mobility. A set of
coordinators and servers were added to the basic archi-
tecture so that all other requirements of a WFMS could
also be addressed. Such decentralization of control and
data allows for the definition, enactment and manage-
ment of large-scale workflows, providing the necessary
scalability, decentralization of control and fault tolerance
for these applications.

The WONDER uses the CORBA communication
framework as its basic communication and distribution
system. The CORBA hides all low-level communication
and distribution issues, providing location and access
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transparences in a standard object-oriented programming
framework.

The use of CORBA as the support environment for
such architecture has problems with the persistence of
objects. The standard CORBA references were not de-
signed for applications in which objects can be dynami-
cally deactivated and reactivated, in different host ports,
during its lifecycle.

The information about where an activity should be
created and executed is an important issue in our archi-
tecture. An application specific naming space was cre-
ated using persistent location-dependent object names.
Some CORBA services were not used due to simplifica-
tions and requirements of our architecture.

A prototype version of the system was implemented.
Some performance tests were executed. Because we could
not compare the WONDER approach with other central-
ized systems, the feasibility of the model was studied
instead. The architecture was compared with itself in
different arrangements, showing that the system was best
suited for distributed execution in terms of performance.

The tests demonstrate that the delays associated with
the workflow execution are minimized as new hosts are
used by the system. The more hosts are used in the sys-
tem, the better its execution performance. In an ideal
case, in which each user has his own host and not many
simultaneous activities are being performed by each user,
the system provides adequate scalability.

In these tests, the system had a linear increase of the
execution times with the addition of new concurrent
cases. The costs associated to Java and CORBA are de-
pendent on the way the ORB used for the tests is imple-
mented, representing an accidental issue that can be
solved by the use of new and optimized ORB implemen-
tations. The fundamental problem of scalability can be
solved by the distribution of the many activities of each
process instance by different hosts in a system.

The ability to arrange the WONDER components in
different configurations (centralized or distributed), as
demonstrated by the tests, shows the flexibility of the
approach and its potential use in different load-balancing
and distributed arrangements.

This flexibility, however, pays a price. It increases the
security vulnerability of the system since copies of impor-
tant workflow information is deposited in less reliable
workstations. This approach also introduces many poten-
tial points of failure in the system, in a way proportional
to the number of hosts used. These occurrence of a fail-
ure, however, if compared to a centralized approach, do
not make the whole system unavailable since the fault of
a host affects only the cases that have activities in execu-
tion in that host, not hindering the whole system execu-
tion.

Future extensions include support for dynamic change
of process definitions, and ad-hoc workflows. The
WONDER distributed and autonomous approach facili-
tates the change of the plan during the case execution,
since the workflow activities and user allocation is done
on demand, at runtime, using the process definition en-
acted by the mobile object.

The study of approaches to safely store the workflow
data, as encryption and access control, is also part of the
future work.
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