
An experience report on using DAML-S

Marta Sabou
Dept. of Artificial Intelligence

Vrije Universiteit
Amsterdam, The Netherlands

marta@cs.vu.nl

Debbie Richards
Div. of I.C.S.

Macquarie University
Sydney, Australia

richards@ics.mq.edu.au

Sander van Splunter
Dept. of Artificial Intelligence

Vrije Universiteit
Amsterdam, The Netherlands

sander@cs.vu.nl

ABSTRACT
Though DAML-S is growing into ade factostandard for seman-
tic web-service markup, we have only found few complete service
descriptions and even less papers discussing technical issues about
the markup process. We addressed this lack by (1) reporting on our
experiences in describing a set of services, (2) concluding several
limitations of the latest DAML-S version (v0.7) and (3) making our
work accessible to the research community1.

1. INTRODUCTION
DAML-S is an initiative of the Semantic Web community to fa-

cilitate automatic discovery, invocation, composition, interopera-
tion and monitoring of web-services (WSs) through their seman-
tic description[4]. DAML-S is a DAML+OIL ontology conceptu-
ally divided into three sub-ontologies for specifyingwhat a service
does? (Profile2), how the service works?(Process3) andhow the
service is implemented?(Grounding4).

We decided to apply the latest release (v0.7) to one of our WS
projects. Our preliminary literature study yielded four types of us-
age scenarios. First, within the DAML-S coalition two complete,
fictitious examples (on the DAML-S site) and two concrete appli-
cations[7] are provided. Second, several projects use only certain
parts of the DAML-S ontology, eg. matchmaking research tends to
focus on the Profile ontology [3, 8]. Third, we found work which
extends parts of DAML-S: [2] enriches the Process ontology, [9]
extends the Profile ontology with bio-informatics related proper-
ties, [6] extends the specification of conditions. Finally, some pa-
pers mention use of complete DAML-S as is, but the purpose of
the papers was to describe other research work. Common to all the
above referenced papers is that none of them describe the process
of writing the DAML-S markup. We were also concerned that very
little of the DAML-S markup we found pointed to actual services.

We sought to fill this gap by providing a set of complete, real
web service descriptions and sharing our modelling experiences.
For space, this paper only presents the two simplest services we
marked up and discusses a set of emerging, noteworthy issues.

A brief description of DAML-S, WSDL and our application sce-
nario (section 2) is followed by our practical experiences in de-
scribing increasingly complex services (3), a discussion of emerg-
ing global observations (4) and our conclusions (5).

1http://www.cs.vu.nl/˜marta/services/
2http://www.daml.org/services/daml-s/0.7/Profile.daml
3http://www.daml.org/services/daml-s/0.7/Process.daml
4http://www.daml.org/services/daml-s/0.7/Grounding.daml

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ISBN 963-311-355-5.

2. TECHNOLOGY AND CASE STUDY

2.1 DAML-S
The information about a DAML-S Service instance is distributed

in three main entities. We will explain these entities and introduce
the schematic service representations we use through this paper.

A service presents aServiceProfilewhich describes the capabil-
ities of the service for discovery purposes. The Profile ontology
contains the vocabulary to describe the ServiceProfile. Its central
concept, Profile, is a subclass of ServiceProfile and contains the
contact information of providers, an extensible set of service char-
acteristics and a functionality description by specifying the inputs,
outputs, preconditions and effects of the service (IOPE’s). It also
points to the described Process. In this paper, for each Profile in-
stance we depict the process it describes (hasProc) and its func-
tional characteristics (IOPE’s) together with their type. In the ex-
ample below, the Bib2Rdf service presents the Pr1 Profile, which
describes Process P1, has a BibFile input and an RdfFile output.

Service Bib2Rdf:
*Profile:Pr1 (hasProc P1)(I(BibFile), O(RdfFile))
*ProcessModel:

AtomicProcess:P1 (I(BibFile),O(RdfFile))
*WSDLGrounding:

WsdlAtomicProcessGrounding: Gr1 (P1->op1)
*WSDL:

Service(PortType:Translator (
op1 (IMsg(url), OMsg(stream))))

A ServiceModeldescribes the internal workings of the service
and it is further specialized as a ProcessModel in the Process ontol-
ogy. A ProcessModel has a single Process which can be atomic,
simple or composite (composed from atomic processes through
various control constructs). Each Process has a set of IOPE’s. In
our notation, for each service we represent its ProcessModel with
its Process. For each Process we depict its type, the involved con-
trol constructs, the IOPE’s and their types. Bib2Rdf has a single
AtomicProcess P1, with a BibFile input and an RdfFile output.

A ServiceGroundinglinks the abstract description of the service
to actual implementation details, such as message exchange for-
mats and network protocols so that automatic invocation of the ser-
vice is possible. Currently support is offered for grounding DAML-
S to WSDL service descriptions. The Grounding ontology spe-
cializes the ServiceGrounding as WSDLGrounding which contains
a set of WsdlAtomicProcessGrounding elements, each grounding
one of the atomic processes specified in the ProcessModel. We
depict each atomic process grounding by showing the link between
the atomic process and the corresponding WSDL element. Bib2Rdf
has a single atomic process grounding where Process P1 is grounded
to op1, which is a WSDL operation. See the next subsection.



2.2 WSDL
WSDL is an industry standard for describing web-accessible ser-

vices. As an XML-based language, it is machine processable, being
a structured and standardized way to describe web-interfaces of ser-
vices. However the intended meaning (semantics) of the interface
elements is only accessible to human readers.

In WSDL a service is seen as a collection of network endpoints
which operate on messages. A WSDL document has two major
parts. First, it specifies an abstract interface of the service. Com-
plex data types are defined and used to construct messages. A mes-
sage has a name and a set of parts of certain type. Messages rep-
resent either an input parameter set or the output of some abstract
operations, which are conceptually grouped together into a Port-
Type. Second, an implementation part binds the abstract interface
to concrete network protocols and message formats (SOAP, HTTP).
A service is a collection of ports of various PortTypes.

We depict the WSDL representation by presenting the main Port-
Types and the operations which are contained by each port. For
each operation we show the input and the output messages, and for
each message we enumerate its parts. It follows that Bib2Rdf has a
single port (of type Translator) with one operation (op1), where the
input and output messages have a single part.

2.3 Case Study - the Semantic University
The goal of the SW@VU5 project is to use Semantic Web tech-

nology within the Vrije Universiteit Amsterdam. The first case
study was to share the bibliographic data of the involved researchers
through semantic portals.

While building the infrastructure for this experiment, a set of
web-accessible software components were created. The task of cre-
ating the portal simply became shipping data from one service to
another. First, each available BibTex file is converted to RDF(S)
using theBib2Rdf service then saved in a web-accessible RDF(S)
repository and query engine,Sesame6. When merging our data,
syntactically different resources pointed to the same person. We
useddaml:sameIndividualAs to encode this redundancy and
extended Sesame’s reasoning capabilities to interpret this new tag.
To provide automated support for the task of finding the resources
referring to the same person we developed theSIA(SameIndividualAs)
service. Using machine learning techniques on the RDF(S) source,
SIA extracts the resources which might refer to the same person.
It returns tuples of similar resources. Therefore the second step is
to extract all the data from Sesame, send it to SIA, obtain the re-
dundancy file and save it back to Sesame. Finally, portal creator
software creates the portals of publications by querying Sesame.

By augmenting our web-services with a semantic description we
allow automatic execution of a set of services in a pre-defined way.
However, we envision more “intelligent” service composition that
will be able to adapt according to changes in the requirements. For
example, the portal creation task could be performed by different
sets of services. Or, if RDF(S) source is provided there is no need
for translation. Also, a single data source would not require any
redundancy checking. We aim to support such adaptive service
composition.

3. MODELLING EXPERIENCES
We used DAML-S to describe services with an increasing level

of complexity. We present our experiences related to the Bib2Rdf
and SIA services. We describe the main issues/pitfalls we encoun-
tered. In retrospect, some of what we learned was available in the

5http://www.cs.vu.nl/˜mcaklein/SW@VU/
6http://sesame.aidministrator.nl

documentation, but the counterintuitiveness of some aspects of the
language meant we had to learn them for ourselves. Therefore, to
provide the basis for discussion of some of the features we found
difficult in DAML-S, we do not only convey our final solutions but
describe the major design decisions we took during modelling.

3.1 Modelling a simple service - Bib2Rdf
Bib2Rdf7 is a simple service: it transforms a BibTex file into a

RDF(S) representation. The service takes as input the URL of a
BibTex file and returns the RDF(S) encoding of this data.

Using domain knowledge for service description.It is
important to realize that the Profile makes use of already speci-
fied domain knowledge (ontology). If multiple services are de-
scribed using the same ontology, matchmaking and integration will
be based on this ontology. We have modelled a set of terms from
our application domain in the ProfileTaxonomy8 ontology and used
them in our service descriptions. For example we have declared
that a “Translator” specializes the “InformationSystem” Profile.

The Profile of a service uses domain knowledge in two situa-
tions. First, it can be of a type described in the domain ontology:
the Bib2Rdf Profile instance is of type “Translator”. Second, we
used domain concepts for the functional description of the service.
The DAML-S Profile ontology models a service in terms of a set
of parameters. Inputs, outputs, preconditions and effects (IOPE’s)
are subproperties ofprofile:parameter . Each parameter has
a ParameterDescription which mandates describing the parameter
through theprofile:restrictedTo property (see DAML-
S specification bellow). This property has an unspecified range,
therefore it can refer both to a DAML+OIL concept or to a data
type. We recommend specifying a domain level concept: this gives
the “semantics” of the parameter.

<daml:ObjectProperty rdf:ID="parameter">
<daml:domain rdf:resource="#Profile"/>
<daml:range rdf:resource="#ParameterDescription"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="restrictedTo">
<daml:domain rdf:resource="#ParameterDescription"/>

</daml:ObjectProperty>

<daml:Class rdf:about="#ParameterDescription">
<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#restrictedTo"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

The ProcessModel also makes use of domain concepts. For Bib2Rdf
we declared the input and the output of the Process P1 in terms con-
cepts defined in the domain ontology: BibFile and RdfFile.

How does a ServiceProfile relate to a ServiceModel?.
The ServiceProfile and ServiceModel are two different descriptions
of the same service, and naturally links exist between them. Identi-
fying these links and specifying them correctly ensures the consis-
tency of the description.

Firstly, each Profile instance states the Process it describes through
the unique propertyhas_process . Secondly, the IOPE’s of a
Profile correspond to the IOPE’s of the described Process. Under-
standing this correspondence is not trivial because the IOPE’s play

7http://www.cs.vu.nl/˜marta/services/Bib2Rdf/Bib2RdfService.daml
8http://www.cs.vu.nl/˜marta/services/ProfileTaxonomy.daml



different roles for the Profile and the Process. In the Profile on-
tology they are treated equally as parameters of the Profile (they
are subproperties of theprofile:parameter property). In the
Process ontology only IO’s are regarded as subproperties of the
process:parameter property. The PE’s are just simple prop-
erties of the Process. While technically the IOPE’s are properties
both for Profile and Process, the fact that they are treated differently
at a conceptual level is misleading.

Even more, this leads to a DAML-S model that favors inconsis-
tencies. As suggested by the following DAML-S specification, the
Profile ontology enforces that each ParameterDescriptionrefersTo
exactly one element of typeprocess:paramater .

<daml:ObjectProperty rdf:ID="refersTo">
<daml:domain rdf:resource="#ParameterDescription"/>
<daml:range rdf:resource="&process;#parameter"/>

</daml:ObjectProperty>

<daml:Class rdf:about="#ParameterDescription">
<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#refersTo"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

This induces two problematic scenarios. First, one would ex-
pect that Profile parameters of a certain type can only refer to Pro-
cess parameters of the same type. However, this is not enforced:
one can easily make a link between parameters of different types
(eg. profile:input andprocess:output ). The DAML-
S coalition states that they do allow inconsistencies between Pro-
file and Process and that identification of inconsistencies will occur
when something breaks[4]. Since matchmaking is based on the
Profile description, the break may occur during usage of the ser-
vice. The rationale for this design decision is not clear.

Second, because the Process ontology does not model PE’s as
subproperties ofprocess:paramater , it is inconsistent to use
entities of this type as values forprofile:refersTo . There-
fore Preconditions and Effects (PE) of a Profile cannot refer to cor-
responding PE’s of a Process.

We conclude that this link between the Profile and Process IOPE’s
should be corrected and made more explicit.

How does the Process relate to the WSDL ground-
ing?. The first task for realizing grounding is creating a WSDL
file. Our service has an HTTP interface. Unfortunately most ef-
forts/examples in WSDL concentrate on describing SOAP inter-
faces, so we had to expend significant effort in understanding the
HTTP binding as it is different in many ways from SOAP bindings.

The mapping between the elements of the DAML-S semantic de-
scription and those of the WSDL file is bi-directional: the WSDL
file specifies the link back to Process elements, while the Wsdl-
Grounding builds a bridge between the elements of the Process and
the WSDL interface. The specification syntax is rather heavy and
the multiple interdependencies make the grounding process com-
plicated and frustrating.

There are a few rules which define the mapping between these
two models[5]. First, each DAML-S AtomicProcess corresponds
to a WSDL operation. Consequently, each input of the DAML-S
AtomicProcess is mapped to a message-part in the input message of
the corresponding WSDL operation. Similarly, each output of the
DAML-S AtomicProcess is mapped to a corresponding message-
part in the output message of the WSDL operation.

3.2 Modelling a service with multiple inter-
faces - SIA

The SIA (SameIndividualAs) service is essentially as simple as
the Bib2Rdf service: it acts upon an RDF file, determines resources
that possibly point to the same physical person and returns an RDF
file with tuples of identical resources. The only element of com-
plexity is that this service can acquire the RDF source in multiple
ways: (1) by reading it from a URL, (2) by accepting the data itself
as a string and (3) by reading the data from a Sesame repository,
given the name of the repository and the log-in information.

Intuitively, this situation is similar to the well-known parametric
polymorphism mechanism: a certain method allows different sig-
natures, but essentially it executes the same function. The available
documentation about DAML-S provided little guidance on how to
model this situation.

[1] have considered the problem of supporting multiple inter-
faces and offer a solution for the situation where the number of
arguments are the same and in the same order but where the data
types may differ, i.e. type polymorphism. The solution offered is
to define a higher level concept that covers all possible alternative
data types. This approach does not address our problem where we
have a different number of arguments. This solution also has prob-
lems at the grounding level, as we show in our presentation of the
alternative descriptions we developed.

One very simple solution to our problem would be to treat each
alternative interface as a separate service. We rejected this solution
for conceptual, practical and reuse reasons. At a conceptual level,
we are describing one and the same service. If we made them sep-
arate services, DAML-S did not provide any way of identifying
that they were in fact the same service. Knowing that a service
and/or its description is related or in fact identical may be impor-
tant when it comes to choosing services. From a practical point
of view, marking up a service is time-consuming enough without
having to perform the activity for every possible interface. From
a reuse point of view, we wanted to share and reuse as much as
possible between these alternative ways of accessing the service.

In order to provide the semantics that would allow more intelli-
gent matchmaking and to handle interfaces with different data types
and number of parameters, we have tried a number of alternatives.
The first variant (SIA1) was based on a top-down design starting
with a service model and working down to the service ground-
ing. Due to the problems we faced in SIA1, the second variant
(SIA2) used a bottom-up approach starting with the WSDL defini-
tion. SIA2 clarified the DAML-S view of a service as being primar-
ily defined by its IOs, rather than its effects. We developed SIA3
to support the new view of our service as a composite process, in-
volving data readers and translators, rather than an atomic process.
The first three descriptions were not valid solutions as they were
either conceptually wrong or impossible to specify using DAML-S
and WSDL. Our final design (SIA4) was a compromise that pro-
vided a valid solution but which did not completely represent our
conceptual model of the service. It also involved significant rep-
etition of descriptions. These variants are presented next in more
detail, along with discussion of our rationale, choices and conclu-
sions during our design. A schematic description of each variant is
provided to clarify the discussion.

(SIA19) Because the effect of the service is not altered by the
way in which the RDF file is provided, our first intuition was to
model SIA as a single service and to make the differentiation be-
tween the three ways of accessing it at the grounding level. At
the Profile (Pr1) / Process (P1) level we described the service as

9http://www.cs.vu.nl/˜marta/services/sia/Sia1Service.daml



accepting an RdfFile and producing another RdfFile. The WSDL
representation of the service consists of a port with three operations
(op1, op2, op3) which differ through their input messages. The first
expects a url, the second a string and the third receives four Sesame
related parameters (server url, password, login, repository name).

*Service SIA1:
*Profile:Pr1 (hasProc=P1)(I(RdfFile), O(RdfFile))
*ProcessModel:

AtomicProcess:P1(I(RdfFile),O(RdfFile))
*WSDLGrounding:

WsdlAtomicProcessGrounding: Gr1 (P1->op1)
WsdlAtomicProcessGrounding: Gr2 (P1->op2)
WsdlAtomicProcessGrounding: Gr3 (P1->op3) !!!

*WSDL:
Service(PortType:SIA(

op1 (IMsg(url), OMsg(stream))
op2 (IMsg(string), OMsg(stream))
op3 (IMsg(url,pse,ln,rep), OMsg(stream))))

Specifying the first two groundings was easy. However for the
third grounding we realized that it was impossible to build a one-
to-one mapping between the single input of process P1 and the four
parameters of the WSDL operation, op3. Grounding an input to a
whole message is not possible.

As stated in [4] the second assumption of the DAML-S/WSDL
mapping is that ”each atomic process input and output corresponds
to a WSDL message part”. The DAML-S coalition acknowledges
that this could be a possible limitation, but do not give a concrete
example of a problematic scenario. This example shows that the as-
sumption prohibits modelling of parametric polymorphism. There-
fore we encourage its revision.

(SIA210) After SIA1, we changed our strategy to bottom-up mod-
elling. Based on the structure of the WSDL file, we modelled two
AtomicProcesses: one with a single input (P1), just like before, and
one with four parameters (P2) needed when a Sesame repository is
used as the data source. With this model we excluded any ground-
ing problem, but new issues emerged.

The first issue relates to whether the distribution of these two
Processes should be within one or two ServiceModel instances.
Previously we decided to model a single service, and a service can
have at most one ServiceModel (maxCardinality(describedBy )=1).
Therefore both our processes have to be part of a single Service-
Model. However, the ServiceModel can only accommodate a sin-
gle Process (of type Atomic, Simple or Composite) because the
process:has_process property has an exact cardinality of
”1”. This requires combination of the two atomic processes into a
composite one. Theprocess:Choice control construct is clos-
est to our needs: it expresses that only one process can be chosen
for execution. We modelled a composite process(CP) as a ”Choice”
between the two atomic processes and included it in a single Ser-
viceModel entity.

The second issue relates to the Profile. Keeping the Profile as in
the previous example is technically correct: we can link the input
and the output of the Profile to the IO’s of the Process P1, while
the parameters of P2 are not referenced from the Profile. However,
this means that when advertised, the service does not expose its
ability to read data directly from Sesame. Adding the other four
parameters to the profile is not a solution either because we can-
not specify how these parameters relate. This would be misleading
at matchmaking. We decided to create two Profile instances: Pr1
generically describes the IO’s and maps to P1, while Pr2 reflects
the parameters of P2. The service has three groundings, two for the
generic Process P1 and one for the Sesame Process P2.

10http://www.cs.vu.nl/˜marta/services/sia/Sia2Service.daml

*Service SIA2:
*Profile:Pr1 (hasProc=P1)(I(RdfFile),O(RdfFile))
*Profile:Pr2 (hasProc=P2)(I(server),I(url),I(psw),

I(ln),O(RdfFile))
*ProcessModel:

CompositeProcess: CP:Choice
{ AtomicProcess:P1(I(RdfFile),O(RdfFile))

AtomicProcess:P2(I(server),I(url),I(psw),
I(ln),O(RdfFile))}

*WSDLGrounding:
WsdlAtomicProcessGrounding: Gr1 (P1->op1)
WsdlAtomicProcessGrounding: Gr2 (P1->op2)
WsdlAtomicProcessGrounding: Gr3 (P2->op3)

*WSDL: same as SIA1

This design was based on the constraints imposed by the DAML-
S model. The constraints that had the most impact on our decisions
were the following:

• There should be a one-to-one correspondence between the
IO(PE)’s of all modelling levels (even if directly not imposed
but for the sake of consistency)

• What defines a services is not its effect but its signature.
Therefore our approach for SIA1 (and P1 for SIA2) was con-
ceptually inconsistent with the DAML-S view: we should
provide a different Profile for each of the different ways to
access the service. These Profiles provide the meaning of the
IOPE’s.

With this new view of what it means to define a service we con-
sidered another model based on the observation that our service
is a combination of four processes: a translator process and three
different data acquisition processes.

(SIA311) We modelled the service as having a complex Process-
Model. We consider that the service offers three CompositePro-
cesses (CP1, CP2 and CP3) combined in a global CompositePro-
cess (CP). Each of these processes is a sequence of a DataReader
(DR) and the Translator (T1) process itself. The service has three
Profiles (Pr1, Pr2, Pr3) each describing one of the three composite
processes. The same WSDL file can be used.

Service SIA3:
*Profile:Pr1 (hasProc=CP1)(I(url),O(RdfFile))
*Profile:Pr2 (hasProc=CP2)(I(RdfStream),O(RdfFile))
*Profile:Pr3 (hasProc=CP3)(I(server),I(url),I(psw),

I(ln),O(RdfFile))
*ProcessModel

CompositeProcess: CP:Choice
{

CompositeProcess:CP1: Sequence
{

AtomicProcess:DR1(I(url),O(RdfFile))
AtomicProcess:T1(I(RdfFile),O(RdfFile))}

CompositeProcess:CP2: Sequence
{

AtomicProcess:DR2(I(RdfStream),O(RdfFile))
AtomicProcess:T1(I(RdfFile),O(RdfFile))}

CompositeProcess:CP3: Sequence
{

AtomicProcess:DR3(I(server),I(url),I(psw),
I(ln),O(RdfFile))

AtomicProcess:T1(I(RdfFile),O(RdfFile))}
}

*WSDLGrounding:
WsdlAtomicProcessGrounding: Gr1 (CP1->op1) !!!
WsdlAtomicProcessGrounding: Gr2 (CP2->op2) !!!
WsdlAtomicProcessGrounding: Gr3 (CP3->op3) !!!

*WSDL: same as SIA1

11http://www.cs.vu.nl/˜marta/services/sia/Sia3Service.daml



We have encountered a new grounding problem. Conceptually
each composite process corresponds to a WSDL operation: the in-
puts of the DataReader are the same as the inputs of the WSDL
operation, and the output of the Translator corresponds to the out-
put of the WSDL operation. However the first assumption of the
existing mapping states that ”a single atomic process corresponds
to a single WSDL operation”[4]. Therefore we cannot perform this
mapping. The DAML-S coalition acknowledge that this could be
a possible limitation, but they are skeptic about ”the importance of
relaxing this assumption”[4]. This example shows that the assump-
tion prohibits modelling of a complex internal structure if it is not
directly reflected in the web interface of the service. We see this as
a serious limitation to conceptual modelling.

(SIA412) Based on all of these experiences and aware of the limi-
tations of the model our final model is reflected in SIA4. We model
a single service with three different profiles (Pr1, Pr2, Pr3) each
describing one of the three different functionalities of the service.
The service has a single ProcessModel containing a composite pro-
cess (CP). This indicates that the service can perform one of three
possible atomic processes (P1, P2, P3). We then mapped each of
these atomic processes to one WSDL operation. This is essentially
the same as SIA3, however we must give up the conceptual com-
plex internal model of processes so that we are able to map them
to WSDL operations. This description is also similar to SIA2 but
reflects that we are dealing with three different signatures, not just
two.

Service SIA4:
*Profile:Pr1 (hasProc=P1)(I(url),O(RdfFile))
*Profile:Pr2 (hasProc=P2)(I(RdfStream),O(RdfFile))
*Profile:Pr3 (hasProc=P3)(I(server),I(url),I(psw),

I(ln),O(RdfFile))
*ProcessModel:

CompositeProcess: CP:Choice
{
AtomicProcess:P1(I(RdfStream),O(RdfFile))}
AtomicProcess:P2(I(RdfFile),O(RdfFile))}
AtomicProcess:P3(I(server),I(url),I(psw),

I(ln),O(RdfFile))}
}

*WSDLGrounding:
WsdlAtomicProcessGrounding: Gr1 (P1->op1)
WsdlAtomicProcessGrounding: Gr2 (P2->op2)
WsdlAtomicProcessGrounding: Gr3 (P3->op3)

*WSDL: same as SIA1

We are not completely satisfied with this model as we are unable
to model the P1, P2 and P3 processes as composite processes which
we feel better reflects the structure of the service. Also, we are con-
cerned with the amount of effort involved in providing (and main-
taining) this rather large set of descriptions. While at the Service
superclass level we only have one definition, which is appropriate
conceptually, this document is the smallest of all. The amount of
repetition that exists in the three Profile and Grounding documents
is considerable. Of course, cut and pasting will reduce the initial
effort and defining concepts in one document and pointing to them
in the other two can reduce maintenance overheads. However, the
verbosity of this approach seems somewhat excessive. Our greatest
concern with this final compromise is that we are unsure whether
this model would be consistent with the model developed by an-
other team to represent this same service. We feel that if semantics
are to be added in a meaningful and useful way, greater direction
and precision should be provided by the modelling language so that
this uncertainty is minimal.

12http://www.cs.vu.nl/˜marta/services/sia/Sia4Service.daml

4. MAJOR OBSERVATIONS
Based on our experiences with the above mentioned problems

we have distilled some general observations about DAML-S.
The strength of DAML-S is that it goes beyond syntactic descrip-

tion of a service by providing a semantic description. Semantics al-
lows reasoning about a service and moves us towards the ultimate
goal of dynamic service discovery and usage. The DAML-S up-
per ontologies provide semantics for high level concepts concern-
ing web services. Further meaningful description can be achieved
by describing the service in terms of domain concepts contained
in a domain ontology. This is particularly valuable for matchmak-
ing where the requestor may use alternative terms. The domain
ontology can use the SameClassAs relation to identify synonyms
and the SubClassOf relation to identify hypernyms and hyponyms.
This supports matchmaking where different levels of abstraction
are used between the requestor and provider.

The other key strength of DAML-S is that it links to an industry
standard, namely WSDL. In this way, it indeed fulfills its role as a
link between the Semantic Web community and industry.

However, we also encountered a set of shortcomings.
A) Imprecise conceptual model. While it is commendable that

DAML-S seeks to provide flexibility and thus has not fully defined
a number of its concepts, this flexibility comes at the expense of
clarity. The result of this imprecision is that DAML-S has an im-
precise underlying conceptual model.

We base this on the following facts:

• Different models within DAML-S. The parts of DAML-S em-
ploy different metaphors to describe services. At the Profile
level a service has four types of parameters: IOPE’s. At the
Process level IO’s and PE’s are treated conceptually differ-
ently as they emerge from two different views of a service.
A service viewed as a program is defined by its IO’s, while
when seen as an action the PE’s are important. The concep-
tual gap is even wider when one tries to align the DAML-S
model to the WSDL model which defines services as col-
lections of ports. These alternative conceptual models make
specification of services difficult and mapping between mod-
els almost impossible. Even within DAML-S the different
models can lead to inconsistencies in the specification.

• Unclear links between models. Several links exist between
the conceptual models however they are often unclear. Insuf-
ficient descriptions are provided in the DAML-S documenta-
tion to discover the intended meaning of certain properties
and in particular which properties are related to properties in
one or more of the other models. The lack of precise speci-
fication of the interconnections between models and the pos-
sibility of inconsistent models is admitted by the DAML-S
Coalition.

• No clear correspondence of DAML-S concepts with software
engineering (SE) concepts.Many, if not the majority, of in-
tended users of DAML-S are software engineers. We feel
that reference to and support for SE concepts, perhaps in
the form of concept mappings, would ease the understand-
ing of DAML-S. While WSDL intuitively models different
interfaces as PortTypes and allows grouping operations in
ports (as the methods of an interface), it seems that DAML-S
only considers the very simple function metaphor (methods).
More complex concepts such as parametric polymorphism,
re-use are not supported. We think that the SE model would
both disambiguate some of the concepts and give a shared
framework for DAML-S and WSDL.



The imprecise underlying conceptual model induces some ef-
fects:

• Multiple modelling possibilities.While simple services present
small problems, modelling of more complex situations is not
as straightforward. Because there is no clear view of what
services are one can produce a variety of models. Unfortu-
nately, most of them cannot be expressed because of various
language constraints/inconsistencies.

• Parametric polymorphismis not just a term used in soft-
ware engineering, but a mechanism equally valid in an e-
commerce scenario. For, example any e-commerce site would
optimally allow multiple ways of paying: by credit card or by
bank transfer. Basically, the same effect would be achieved
(i.e. paying for the item) even if the money would be ob-
tained from different sources. From a SE point of view this
is only a method so it should be modelled as a single service.
Then inherent unclarities arise about how to model these dif-
ferent facets of the same service in DAML-S. It is not only
a question to conform to the limitations of the ontology but
also to know if our model is conceptually correct.

B) Mapping to WSDL limits DAML-S expressivity. During
our work we have experienced that the chosen mapping to WSDL
often limits the expressivity of DAML-S. Just by modelling a sim-
ple service we conflicted with two out of three basic assumptions
that underlie the mapping. This forced us to revise our models so
that a grounding was possible at the expense of giving up paramet-
ric polymorphism (SIA1) or an accurate specification of a complex
internal structure (SIA3). We feel that DAML-S is influenced too
much by the actual grounding details.

C) Difficult to learn. One of our major comments (and worries)
is that it was quite difficult to get started with writing DAML-S.
The previously mentioned lack of conceptual model played a fair
role in this. Other inhibiting factors were:

• Limited tool support. DAML-S consists of three different on-
tologies with some shared links. When one writes a DAML-
S description it is critical to be sure that these links are prop-
erly made. This implies working with multiple ontologies
and descriptions at the same time. The only tool support for
now are simple text editors making the task complex, error-
prone and frustrating. An exception is the DAML-S Match-
maker13 which allows a Profile description to be developed
using form filling but offers no support for specifying the
Process or Grounding. Since only the Profile can be entered
using the tool, we get no assistance with specifying and ver-
ifying the mappings between models.

• Few and limited examples.The DAML-S site provides two
complex examples. Our complaint is that these examples
were artificially created to fit the language rather then being
real-life examples. As a consequence they ignore situations
that arise in the case of real life services.

• Knowledge of DAML/WSDL/SOAP required.The pre-requisites
to start writing complete DAML-S descriptions is rather high:
one has to know DAML and WSDL/SOAP. For users who are
only partly familiar with these techniques it is quite a burden
to learn all of them in sufficient depth to ensure that they are
consistent with one another and convey the intended mean-
ing.

13http://www.damlsmm.ri.cmu.edu

5. CONCLUSIONS AND FUTURE WORK
DAML-S has generated a lot of interest through its promise to

add semantics to web service descriptions. Despite that interest we
were only able to find a small number of DAML-S descriptions of
web services and most of these did not point to real services and
were from the DAML-S community. To fill in this gap we have
used DAML-S to mark up some of our own web services.

We have concluded that DAML-S is superior to existing WS lan-
guages as it allows use of formally defined domain knowledge.
However it also presents a series of weak points which surface
when confronting the language with real life situations. We hope
that our observations would guide the DAML-S coalition in its
work towards version 1.0.

The work reported in this paper provides a set of examples based
on actual services that augments the existing available DAML-S
descriptions. We are currently marking up a more complex service
which is part of this application. We have already raised a consid-
erable number of issues just from the two simple services we have
described. We encourage other work similar to ours, i.e. mark-
ing up different services with DAML-S, to further contribute to the
development of DAML-S and to extend the services available for
semantic discovery. The development of a tool to allow creation of
descriptions based on multiple ontologies would greatly assist such
work.

We hope that both our observations and actual examples will
contribute to the development and large scale usage of DAML-S
and move our community closer to realizing the Semantic Web.

6. REFERENCES
[1] A. Ankolenkar, F. Hutch, and K. Sycara. Concurrent

Semantics for the Web Services Specification Language
DAML-S. In Proc. of The Fifth International Conference on
Coordination Models and Languages), 2002.

[2] J. Brison, D. Martin, S.I. McIlraith, and L. A. Stein.
Agent-Based Composite Services in DAML-S: The
Behavior-Oriented Design of an Intelligent Semantic Web.
http://www.cs.bath.ac.uk/ jjb/ftp/springer-daml.pdf.

[3] J. Cardoso and A. Sheth. Semantic e-Workflow Composition.
Technical report, LSDIS Lab, Computer Science, University
of Georgia, July 2002.

[4] DAML Services Coalition. DAML-S: Semantic Markup for
Web Services. DAML-S v. 0.7 White Paper, October 2002.

[5] DAML-S Coalition. Describing Web Services using DAML-S
and WSDL. DAML-S Coalition working document,
http://www.daml.org/services/daml-s/0.7/daml-s-wsdl.html,
August 2002.

[6] A. Lopes, S. Gaio, and L.M. Botelho. From DAML-S to
Executable Code. InProc. of the Workshop Challenges in
Open Agent Systems AAMAS 2002.

[7] M. Paolucci, K. Sycara, and T. Kawamura. Delivering
Semantic Web Services. Technical report cmu-ri-tr-02-28,
Robotics Institute, Carnegie Mellon University, 2002.

[8] M. Somacher, M. Tomaiuolo, and P. Turci. Goal Delegation in
Multiagent System. InIn Proc. Tecniche di Intelligenza
Artificiale per la ricerca di informazione sul Web, 2002.

[9] C. Wroe, R. Stevens, C. Goble, A. Roberts, and
M. Greenwood. A Suite of DAML+OIL Ontologies to
Describe Bioinformatics Web Services and Data .Journal of
Cooperative Information Science, 2003.


