
Discovering Web Services Using Behavioural
Constraints and Ontology

Natenapa Sriharee and Twittie Senivongse

Department of Computer Engineering
Chulalongkorn University

Phyathai Road, Pathumwan, Bangkok 10330 Thailand
Tel. +66 2 2186991 Fax. +66 2 2186955

natenapa.s@student.chula.ac.th, twittie.s@chula.ac.th

Abstract. The ability to locate useful on-line Web Services is becoming critical
for today’s service-oriented business applications. A number of efforts have
been put to enhance the service discovery process by using conceptualised
knowledge, called ontology, of particular service domains to describe service
characteristics. This paper presents an ontology-based approach to enhance
descriptions of Web Services that are expressed in WSDL with ontology-based
behavioural information, i.e. input, conditional/unconditional output,
precondition, and conditional/unconditional effect of the services. Having a
service ontology associated with each Web Service description, queries for
services based on behavioural constraints can benefit from inferring semantics
of the service from the service ontology. The service discovery process
becomes closer to discovery by service semantics or behaviour, in contrast with
discovery by matching of service attributes values – the mechanism that is
supported currently by Web Services.

1 Introduction

Web Services are networked applications that are able to interact using standard
application-to-application Web protocols over well-defined interfaces [1]. Standard
Web Service architecture provides UDDI as a registry for service providers to
advertise information about themselves and their services so that service consumers
can search for the required providers and services [2]. The information model in
UDDI roughly defines attributes that describe the service provider (i.e. business
entity), the relationships with other providers (i.e. publisher assertion), the provided
service (i.e. business service), and how to access the service instance (i.e. binding
template). This set of information may refer to a tModel which is a specification of
particular technical information (e.g. the interface and protocol used by the Web
Service and expressed in WSDL [3]). Search can be done by name/key/category of
business entities, services, or tModel. For example, a query could be “give me a list
of providers who are in travel business” or “give me a flight booking service”. UDDI
will then match the attribute values as constrained in the query against those listed in
the business or service descriptions.

The fixed set of attributes in UDDI limits the way queries can be composed. There
are times when service consumers may look for a particular service with some
semantics or behaviour. For example, a service consumer may want to find a flight
booking service that can deliver the ticket to the consumer’s address after payment
has been made. It may be difficult for a service provider to describe such behavioural
information in terms of attributes. Also, as UDDI places no requirement on a
business service to be exposed as a Web Service, many service providers may use
UDDI only as a channel to advertise their homepages. For this reason, WSDL which
can be seen as describing behavioural information, although in a low-level form of
interface signature and communication protocol, is not applicable in such a case,
and therefore it is not used by UDDI when searching for services.

This paper adopts the idea of Semantic Web [4], which uses ontology to describe
semantics of information, by supporting discovery of Web Services based on their
ontological semantics. We define an upper ontology that models the capability of a
Web Service. The capability is behaviour-oriented and represented by the service
operation, input, conditional/unconditional output, precondition, and
conditional/unconditional effect. Based on this upper ontology, a shared ontology of
a particular service domain can be defined. Service providers can adhere to a shared
service ontology to advertise the behaviour of their services. In the case that the
shared ontology does not realise all detailed concepts of the service, the providers are
allowed to extend it with a local ontology. We enhance the behavioural information
of a Web Service expressed in WSDL by adding to it the ontology-based behaviour
and present a framework for advertising and querying Web Services by behavioural
constraints. Rule-based reasoning is also supported by the framework for
determining the behaviour of the service when output or effect of the service are on
some conditions. With this framework, behaviour-related query can be issued
and service matching can take advantage of ontological inference.

Section 2 gives an overview of the ontology concept and Section 3 discusses
related work on discovering Web Services using ontologies. Section 4 presents our
upper ontology and service ontology and we show how ontology-based behavioural
information can be added to a Web Service description in WSDL in Section 5. The
framework for semantic service discovery is in Section 6 and we conclude the paper
in Section 7.

2 Why Ontology?

An ontology is a formal explicit specification of a shared conceptualisation [5]. It
was developed in Artificial Intelligence area to facilitate knowledge sharing and
reuse. Fig. 1 shows an example of a NaturallyOccurringWaterSource ontology [6]. It
shows common concepts or vocabularies (i.e. Class and Property) in such a
knowledge domain and also the relationships between those concepts. A particular
information instance or resource (i.e. Yangtze) can refer to its domain ontology and
describe its own semantics. An inference engine can then infer more facts about the
information instance (i.e. Yangtze is a Stream and a NaturallyOccuringWaterSource
and EastChinaSea is a BodyOfWater).

(a) <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xml:base="http://www.geodesy.org/water/naturally-occurring">

 <daml:Class rdf:ID="NaturallyOccurringWaterSource"/>

 <daml:Class rdf:ID="Stream">
 <daml:subClassOf rdf:resource="#NaturallyOccurringWaterSource"/>

 </daml:Class>

 <daml:Class rdf:ID="River">
 <daml:subClassOf rdf:resource="#Stream"/>

 </daml:Class>

 <daml:Property rdf:ID="emptiesInto">
 <rdfs:domain rdf:resource="#River"/>
 <rdfs:range rdf:resource="#BodyOfWater"/>

 </daml:Property>

 <daml:Property rdf:ID="length">
 <rdfs:domain rdf:resource="#River"/>
 <rdfs:range
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

 </daml:Property>
 ...
(b) <River rdf:ID="Yangtze"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://www.geodesy.org/water/naturally-occurring#">
 <length>6300 kilometers</length>
 <emptiesInto rdf:resource="http://www.china.org/ geography#EastChinaSea"/>

 </River>
 </rdf:RDF>

Fig. 1. NaturallyOccurringWaterSource in DAML+OIL (a) Ontology (b) Resource instance

Several XML-based markup languages are available for describing ontologies
including RDF, RDFS, DAML+OIL, and OWL [4]. W3C has developed RDF with
the goal to define a simple model for describing relationships between Web resources
in terms of their properties and values. RDFS adds on to RDF the concept of classes
of resources, class and property inheritance or subsumption, and domain and range of
property. Based on top of these two languages, DAML+OIL [7] can additionally
describe constraints on relationships of resources and their properties. These include
cardinality, restrictions, and axioms describing, for example, disjunction, inverse, and
transitivity rules. OWL is built upon DAML+OIL and will be a W3C
recommendation for Web ontology language. To date, most of the available tools
support DAML+OIL such as OilED and Protégé for ontology editing; Jess, JTP,
BOR, and RACER for ontological reasoning; DQL and RDQL for querying. For the
time being, we hence choose DAML+OIL for our knowledge representation.

NaturallyOccurring
WaterSource

Stream BodyOf
Water

Brook River

Tributary

Lake
Ocean

Sea

subClassOf

3 Related Work

Using the ontology concept to enhance service discovery has now become a hot
research topic. The work in [8] presents how a service registry can use an RDF-based
ontology as a basis for advertising and querying for services. In [9], DAML project
proposes a DAML+OIL-based language called DAML-S as a new service description
language. DAML-S consists of the Service Profile ontology which describes
functionalities that a Web Service provides, the Process ontology which describes
services by a process model, and the Grounding ontology which describes transport
details for access to services. The Service Profile ontology specifies the descriptions
of the service and service provider, functional attributes such as service category and
quality rating, and functional behaviour described in terms of the operation provided,
input, output, precondition, and effect of the operation. Their consequent paper [10]
shows a query to find a service with a required operation, input, and output, and a
matching algorithm is devised based on ontological inference. The work in [11]
annotates the operation, input, and output description of a Web Service, described in
WSDL format, with DAML+OIL-based ontological concepts. Precondition and
effect of the service are also added to WSDL as additional information, but they are
not used for queries as only the matching of the operation, input, and output is
considered.

Our work is very close to the work in [10] and [11]. Both consider behavioural
aspects in their service models but those aspects are not fully considered or used as
query constraints for service matching. In our work, we enhance WSDL with
DAML+OIL-based ontological information and consider a Web Service by its
behavioural aspects all round. We allow the operation, input, output, precondition,
and effect to be used as query constraints, and additionally consider the case when
output or effect of the service has some conditions placed on them - the case when we
provide a rule-based reasoning to determine the output and effect for query matching.

4 Ontologies for Service Descriptions

Semantics of services can be described by upper ontology and service ontology.
Upper ontology models general capability and behaviour of services while service
ontology represents semantic concepts that are specific to application domains of
services. Service ontology is further classified into shared ontology and local
ontology. Shared ontology is common for service providers in a particular service
domain whereas local ontology can be derived from shared ontology in order to
represent further concepts of the service.

4.1 Upper Ontology

This upper ontology focuses on capability and behavioural aspects of a Web Service
(Fig. 2). It refers to the classes of concepts that are related to a service including its
service community, operations that it supports, data for input and output, effects of
the operations, and conditions before invoking the operation and for producing
outputs or effects.

Fig. 2. Upper ontology for services

Properties of the concepts in the upper ontology consist of:
- isMemberOf specifies the service community to which the service belongs.
- hasOperation specifies an operation of the service.
- hasInput specifies an input data of an operation.
- hasOutput specifies an unconditional output data of an operation.
- hasConditionalOutput specifies a conditional output of an operation, i.e. the

output that will be produced based on a certain condition.
- hasPrecondition specifies a condition that must be true before the execution

of the operation.
- hasEffect specifies an effect or a change in the world after the execution of

the operation.
- HasConditionalEffect specifies a conditional effect of an operation, i.e. the

effect that will be produced based on a certain condition.
- hasCondition specifies a condition that must be true for producing a

particular output or effect.
- DecisionOn specifies a resource or data whose value will determine the

logical value of the condition for a particular output or effect.

Object property relation
(domain, range)

operation

service
community

effect

service

data
condition

hasOperation

hasEffect

hasInput
hasOutput

decisionOn
hasPreCondition

hasConditionalEffect

isMemberOf

DAML class

hasCondition

hasConditionalOutput

4.2 Service Ontology

Semantic information specific to a particular service and common for service
providers can be defined as a shared ontology. Service providers of the same service
can refer to the shared ontology when creating their own WSDL descriptions. A
shared ontology may be proposed by a group of service providers and built upon the
upper ontology, some concepts that are shared with other ontologies, and the
conceptual knowledge that is specific to this particular service domain. Fig. 3 (a) is
an example of a shared ontology for a flight booking service.

Fig. 3. Service contology
(a) Shared ontology for flight booking service (b) Local ontology for AmexTravel

Some of the semantic information in the shared flight booking ontology includes:
- TravelAgent that is a subclass of service community.
- FlightBooking that is a subclass of service and a member of TravelAgent.
- AmexTravelBooking that is a subclass of FlightBooking service.
- BookingFlightTicket that is a subclass of operation.
- BookingFlightInfo that is an input and a subclass of data, consisting of

CreditcardInfo, SourceRoute, DestinationRoute etc.
- CreditcardInfo which is a subclass of data, consisting of CardType (such as

amex, visa), name of holder etc.
- AirTicket that is an output and a subclass of data.
- TicketDelivered and CreditcardCharged that are subclasses of effect.
- CreditcardHolder that is a precondition and a subclass of condition, saying

that the service consumer holds a credit card.
- hasCreditcardType, hasHolderName, hasSourceRoute, hasCreditcardInfo

etc. which are properties of some classes.

Generally the basic idea is for all service providers to directly map their behaviour to
one shared ontology of the service. However, it is possible that the semantics in the

Source
Route

Creditcard
Holder
Name

Booking
FlightInfo

Destination
Route

CreditCard
Info

CardType

Visa Amex

Service

hasCreditcard
Info

hasCreditcard
Type

hasHoldername

hasSource
Route

hasDestination
Route

AirTicket

Data

AirTicketWith
FeeCharged

Condition

Creditcard
Holder

Amex
Holder

OtherCards
Holder

OtherCards
{Visa, Master}

AmexCard
{Amex}

CardAccepted
{Amex, Visa,

Master}

decisionOn decisionOn
decisionOn

Shared ontology

Local ontology

Effect

MileReward
Collected

Creditcard
Charged Ticket

Delivered

Master

AmexTravel
Booking

Operation

Booking
FlightTicket

Service
Community

Travel
Agent

(a)

(b)

Flight
Booking

isMemberOf

shared ontology may not contain all detailed aspects of the service behaviour and may
not be mapped well for a particular service provider. In this case, the service
provider may define a separate local ontology by deriving from the shared ontology
of the service, and can use the concepts in both ontologies to declare links to the
service behaviour. In Fig. 3 (b), a service provider called AmexTravel derives a local
ontology from the shared flight booking ontology to refine some concepts. For
example, AirTicketWithFeeCharged is derived from AirTicket to represent a special
case of the output that the air ticket may come with extra fee. MileRewardCollected
is another refinement, saying that by buying a ticket with AmexTravel, an additional
effect is that the service consumer can collect mileage rewards. The condition
CreditcardHolder is refined by specifying the types of credit cards that AmexTravel
can accept, i.e. Amex, Visa, or Master. CreditcardHolder is further derived into the
conditions AmexHolder and OtherCardsHolder that will be used to determine
different outputs of flight booking.

5 Adding Ontological Behaviour to WSDL

Concepts within the shared ontology and local ontology will be used to annotate
WSDL descriptions of Web Services. We borrow the idea from [12] to add
behavioural semantics to WSDL file and specify a mapping to link the service’s own
behaviour to the shared and local ontology. In this way, WSDL elements that
represent the service capability (i.e. wsdl:message, wsdl:part, wsdl:operation,
wsdl:input, wsdl:output) can be associated with semantic extensions that specify the
ontological behaviour. Other semantics extensions (i.e. condition and effect) are
added as extra elements. In Fig. 4, a shared ontology called flightbooking.daml is
provided. A service provider named AmexTravel derives a local ontology called
amextravel.daml. Its service provides an operation to book a flight ticket, the input is
the required flight information, and the precondition is that the service requires a
credit card for booking. The output is however conditional; if the consumer holds an
Amex card, the output will be the air ticket; otherwise the output will be the air ticket
and a service charge. The effects of the operation are that the ticket will be delivered
to the consumer’s address and the credit card will be charged. In the case that the
consumer is an Amex cardholder, rewarding mileage points will be an additional
effect.

6 Ontology-Based Service Discovery

The annotated WSDL descriptions will be used in a framework to discover Web
Services. This section describes the discovery framework, how it integrates with
UDDI, and an example of query with behavioural constraints.

Fig. 4. Extending WSDL of AmexTravel with ontological information

6.1 Service Discovery Framework

The framework consists of several components that cooperate in semantic Web
Service discovery. The prototype is Java Web-centric using Servlet technology and

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE uridef [
<!ENTITY sh "http://www.wssemantic.com/flightbooking.daml#">
<!ENTITY lo "http://www.AmexTravel.com/amextravel.daml#">]>
<definitions

name="AmexTravel"
targetNamespace="http://www.AmexTravel.com/amextravel.wsdl"
xmlns:tns="http://www.AmexTravel.com/amextravel.wsdl"
xmlns:WSDLext="http://www.wssemantic.com/WSDLext.dtd"
xmlns:sh="&sh;"
xmlns:lo="&lo;" ...>

...
 <portType name="AmexTravelPortType">

<operation name="BookingTicket"
 WSDLext:semantic-operation="&sh;BookingFlightTicket">
 <documentation>Provide service for booking air ticket
 </documentation>
 <input message="tns:BookingTicketRequest"
 WSDLext:semantic-data="&sh;BookingFlightInfo">
 </input>
 <WSDLext:precondition
 WSDLext:semantic-condition="&sh;CreditcardHolder"/>
 <output message="tns:BookingTicketResponse" />
 <WSDLext:conditionalOutput
 WSDLext:semantic-data="&sh;AirTicket">
 <WSDLext:condition
 WSDLext:semantic-condition="&lo;AmexHolder">

 <WSDLext:conditionalEffect
 WSDLext:semantic-effect="&lo;MileRewardCollected"/>

 </WSDLext:condition>
 </WSDLext:conditionalOutput>
 <WSDLext:conditionalOutput
 WSDLext:data="&lo;AirTicketWithFeeCharged">
 <WSDLext:condition
 WSDLext:semantic-condition="&lo;OtherCardsHolder"/>
 </WSDLext:conditionalOutput>
 <WSDLext:effect WSDLext:semantic-effect="&sh;TicketDelivered"/>

 <WSDLext:effect WSDLext:semantic-effect="&sh;CreditcardCharged"/>
 </operation>
</portType>
 <binding name="AmexTravelBinding" type="tns:AmexTravelPortType">
 ...
<service name="AmexTravel"
 WSDLext:semantic-service="&lo;AmexTravelBooking "/>
 <WSDLext:servicecommunity
 WSDLext:semantic-community="&sh;TravelAgent"/>
 <port binding="tns:AmexTravelBinding" name="AmexTravelPort">
 <soap:address
 location="http://www.AmexHolder.com/BookingAmexTicket"/>
 </port>
</service>

</definitions>

integrating existing ontology-supporting tools (Fig. 5). In step (a), an ontology
engineer can use the Ontology Builder to build a shared ontology for a service. A
service manager, in the same manner, can build a local ontology, based on the shared
ontology, by using the Ontology Builder. OilEd [13] is adopted for Ontology Builder
in our prototype although other ontology editors will do also. When ontologies are
available, the service manager will, in step (b), add ontological information into an
existing WSDL description by using Semantic Mapper. As a result, the Semantic
Mapper will generate an annotated WSDL and an RDF service description which
corresponds to the annotated WSDL. The service manager can also, in step (c), use
the Condition Builder to translate preconditions and conditions for outputs and effects
in the shared ontology and local ontology into the rules for Jess engine [14]. Jess
rules are stored in the Rule DB and will be used later to determine service behaviour
at service matching time.

Fig. 5. Semantic Web Services discovery framework

 In step (d), the RDF service description from step (b), the shared ontology, and
the local ontology will be parsed by Jena module [15] within the Semantic Reasoning
Interface in order to extract facts about the service. The facts are stored in the Fact
DB in Jena’s N-triple tuple format (i.e. <subject, predicate, object>). To reason for
more facts, the Semantic Reasoning Interface is integrated with Jess which also
provides a reasoning engine. The Semantic Reasoning Interface transforms existing
N-triple tuple facts into Jess facts by using our predefined fact template, and then Jess
engine can infer more facts especially those about the relations between the shared
ontology and local ontology. Resulting facts from Jess will be transformed back to

Service
manager

(a)

(c)

(b)

(e)

(d)

��������������
��������������
��������������
��������������

Local onto
(e.g.Amex

Travel
Onto)

(L)

Ontology
builder
(OilEd)

Ontology
engineer

Fact DB
Ontology
builder

��������������
��������������
��������������
��������������

Shared
ontology

�������������
�������������
�������������
�������������
Shared
ontology

(S)

N-Triple2DB
load/store (fact/new fact)

used in

used in

Jess
(reasoning)

Condition
builder

Rule DB
(Jess script)

gen. Jess
script

used in

�������������
�������������
�������������
�������������

Input
Doc.

(W,S,L)

Semantic
mapper

publish with UDDI server
Publish

interface

link to

publish with
Semantic Web Services discovery server

UDDI Server

used in

Documents (both input and output documents):
 WSDL document (W), Annotated WSDL (A), Service in RDF document (R),
Shared ontology (S), Local ontology (L)

Semantic
Reasoning
 Interface

(Jena)

N-Triple2Jess

�������������
�������������
�������������
�������������

Input
Doc.
(S,L)

Jess
(matching) Matching

Semantic Web Services Discovery server

Load related
candidate services

SemanticWS
-UDDI DB

Discovery

�������������
�������������
�������������
�������������

Input
Doc.
(S)

UDDI
request

Semantic
request

Service
Consumer

used in

�������������
�������������
�������������
�������������

Input
Doc.

(S,L,R)

���������������
���������������
���������������
���������������

Output
Doc.

(A, R)

<tModel>
name = “FlightBooking”

URL=http://flightbooking.wsdl

N-triple tuples and stored in the Fact DB. Facts in this DB will be consulted when
matching a query against service descriptions.

In step (e), the service manager will publish service descriptions via the Publish
Interface. A traditional Web Service description for a particular service provider (i.e.
business entity, publisher assertion, business service, and binding template) will be
registered with a UDDI server in a usual manner, with the annotated WSDL defined
as a tModel for the binding template. To also provide for semantic discovery, an
additional semantic entry will be registered with the Semantic Web Services
Discovery Server (SemanticWS-DS). The semantic entry consists of the annotated
WSDL and the reference keys to a particular business service and business entity in
UDDI server. With these keys, after we query by service behaviour and a service
provider is found a match, we can retrieve the complete information about this
provider from the UDDI server. This semantic entry is stored in the SemanticWS-
UDDI DB.

The SemanticWS-DS performs semantic service matching. A service consumer
can compose an RDF query based on the upper ontology and shared ontology of the
service. The SemanticWS-DS extracts information from the query and loads the facts
about the services from the Fact DB to compare with the query. The resulting
candidate services will be further checked by Jess rule engine to determine their exact
behaviour against the constraints in the query. For those matched services, their
complete description will then be retrieved from the UDDI server by using the
reference keys stored in the SemanticWS-UDDI DB. The steps taken by the
SemanticWS-DS are exemplified in Section 6.2.

6.2 Query by Behavioural Constraints

Suppose that a service consumer wants to query for a flight booking service that
accepts a visa card, returns an air ticket as the output, and delivers the ticket to the
consumer’s address. The consumer will issue an RDF query based on the concepts in
the upper ontology and the shared ontology of the flight booking service to the
SemanticWS-DS. The information extracted from the query is in Fig. 6 (a). The
consumer requests for a FlightBooking service in the TravelAgent community and the
service has the operation BookingFlightTicket. The precondition CreditcardHolder
and the CardType says that the operation must allow booking with credit card and
visa card is accepted. The operation must return an AirTicket with an effect
TicketDelivered for the consumer. This extracted information is queried against the
facts about the available services that are stored in the Fact DB in N-triple tuple
format. Consider some facts that are obtained by inferring from the shared flight
booking ontology and the local ontology of AmexTravel in Fig. 6 (b). The service
community, service, and operation concepts in the query match with those in the
service description of AmexTravel. The output AirTicketWithFeeCharged of
AmexTravel is defined as a subclass of the output AirTicket of the query so it is
considered a match according to subsumption. Since AmexHolder and
OtherCardsHolder defined in AmexTravel description are subclasses of the
precondition CreditcardHolder of the query, AmexTravel is still a candidate service

but further evaluation is required to check whether it accepts a visa card. The Fact
DB returns all candidate services with exact or partial match with the query to the
SemanticWS-DS.

The matching process continues by loading Jess rule scripts of the candidate
services from the Rule DB in order to determine their behaviour that is based on some
conditions. Fig. 6 (c) shows three Jess rules of AmexTravel. The information
extracted from the RDF query is translated to Jess facts that are asserted into Jess rule
engine. In this example, the assertion that specifies the precondition
CreditcardHolder with the card type visa fires the precondition-CardAccepted rule,
and therefore the precondition of AmexTravel satisfies the precondition of the query.
Since this assertion also fires the conditionalOutput-OtherCards rule, all of its output
and effects are compared with the output and effect specified in the query. The result
is that the output AirTicketWithFeeCharged of AmexTravel matches the output
AirTicket of the query by subsumption, and the effect TicketDelivered matches
exactly. By satisfying all constraints, AmexTravel is returned as a search result to the
consumer.

Fig. 6. Query by behavioural constraint (a) Semantics of query
(b) N-triple facts of AmexTravel (c) Jess rule script of AmexTravel

7 Conclusion

This paper has proposed an approach to extend WSDL descriptions for Web Services
with ontological information, based on an upper ontology, a shared service ontology,
and a local ontology, in order to benefit from ontological reasoning. The approach

Rule-based
Engine
(Jess)

Fact DB

gen.
sql SQL

Related
candidate
services

Jess
fact

Rule DB
(Jess script)

gen. Jess fact

Jess
rule

Match

 Jess rule script of AmexTravelBooking service:
 (defrule precondition-CardAccepted
 (or (CreditcardHolder decisionOn Amex)
 (CreditcardHolder decisionOn Visa)
 (CreditcardHolder decisionOn Master))
 => (precondition-satisfy))
 (defrule check-OtherCards
 (CreditcardHolder decisionOn Visa)
 => (assert (OtherCardsHolder decisionOn Visa)))
 ...
 (defrule conditionalOutput-OtherCards
 (or (OtherCardsHolder decisionOn Visa)
 (OtherCardsHolder decisionOn Master))
 =>
 (output:AirTicketWithFeeCharged)
 (effect:TicketDelivered)
 (effect:CreditcardCharged))

loadretrieve

(c)

"assert (CreditcardHolder decisionOn Visa)"

subject
AmexHolder
OtherCardsHolder
AirTicketWithFeeCharged
BookingTicket
AmexTravelBooking
AmexTravelBooking
AmexTravelBooking

N-triple information of AmexTravelBooking service:
relation
subclass
subclass
subclass
sameClassAs
subclass
isMemberOf
hasPreCondition

resource
CreditcardHolder
CreditcardHolder
AirTicket
BookingFlightTicket
FlightBooking
TravelAgent
CreditcardHolder

(b)

request RDF
Query

Service
Consumer

Extract
semantic

info.
��
��
��
��
��
��
��

Semantic Info.
service community: TravelAgent
service: FlightBooking
operation: BookingFlightTicket
precondition: CreditcardHolder
 decisionOn: CardType =Visa
effect: TicketDelivered
output: AirTicket (a)

allows queries for services based on capability and behavioural information such as
the operation provided, input, output, and effect. Logical conditions can be placed on
output and effect, and determined by a rule engine at query time.

Ranking query results by the degree of matching is an important issue that we will
study further. Ranking may be based on the precedence assigned to those
behavioural aspects in the upper ontology, relations between concepts, or the number
of matched concepts and conditions. We also have a plan to explore the behavioural
model that can enable automatic discovery of a group of services that altogether can
satisfy a particular behaviour-related query. Such behavioural model is also expected
to be useful for proving some behavioural properties of the service.

Acknowledgements
This work is supported by Thailand-Japan Technology Transfer Project and
Chulalongkorn University-Industry Linkage Research Grant Year 2002.

References
1. W3C. Web Services (online). http://www.w3.org/2002/ws/
2. uddi.org. Universal Description, Discovery and Integration of Web Services (online).

http://www.uddi.org
3. W3C. Web Services Description Language (WSDL) 1.1 (2001) (online).

http://www.w3.org/TR/wsdl
4. semanticweb.org. Semantic Web (online). http://www.semanticweb.org
5. Gruber, T. R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition

Vol. 5 No. 2 (1993) 199-220
6. Costello, R., Jacobs, D.: RDF Schema Tutorial (online). http://www.xfront.com/rdf-

schema/
7. daml.org. DAML+OIL (online). http://www.daml.org
8. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A Semantic Web Approach to Service

Description for Matchmaking of Services. Proceedings of the International Semantic Web
Working Symposium (SWWS’01) (2001)

9. The DAML Services Coalition: DAML-S: Web Service Description for the Semantic
Web. Proceedings of the 1st International Semantic Web Conference (ISWC 2002),
Sardinia (Italy), Lecture Notes in Computer Science, Vol. 2342. Springer-Verlag (2002)

10. Paolucci, M. et al.: Semantic Matching of Web Services Capabilities. Proceedings of the
1st International Semantic Web Conference (ISWC 2002), Sardinia (Italy), Lecture Notes
in Computer Science, Vol. 2342. Springer Verlag (2002)

11. Sivashanmugan, K. et al.: Adding Semantics to Web Services Standards. Proceedings of
the International Conference on Web Services (2003)

12. Peer, J.: Bringing Together Semantic Web and Web Services. Proceedings of the 1st

International Semantic Web Conference (ISWC 2002), Sardinia (Italy), Lecture Notes in
Computer Science Vol. 2342. Springer Verlag (2002) 279-291

13. OilED, Version 3.5 (online). http://oiled.man.ac.uk/index.shtml
14. Jess the Rule Engine for the JavaTM Platform, Version 6.1, 9 April 2003 (online).

http://herzberg.ca.sandia.gov/jess/
15. Jena A Semantic Web Toolkit, Version 1.6.1 (online).

http://www.hpl.hp.com/semweb/rdql.html

