
Capabilities: Describing What Services Can Do�

Phillipa Oaks, Arthur H.M. ter Hofstede, and David Edmond

Centre for Information Technology Innovation - Faculty of Information Technology
Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia
{p.oaks,a.terhofstede,d.edmond}@qut.edu.au

Abstract. The ability of agents and services to automatically locate
and interact with unknown partners is a goal for both the semantic web
and web services. This, “serendipitous interoperability”, is hindered by
the lack of an explicit means of describing what services (or agents) are
able to do, that is, their capabilities. At present, informal descriptions of
what services can do are found in “documentation” elements; or they are
somehow encoded in operation names and signatures. We show, by ref-
erence to existing service examples, how ambiguous and imprecise capa-
bility descriptions hamper the attainment of automated interoperability
goals in the open, global web environment. In this paper we propose a
structured, machine readable description of capabilities, which may help
to increase the recall and precision of service discovery mechanisms. Our
capability description draws on previous work in capability and process
modeling and allows the incorporation of external classification schemes.
The capability description is presented as a conceptual meta model. The
model supports conceptual queries and can be used as an extension to
the DAML-S Service Profile.

1 Introduction

In recent times the Semantic Web, and Web Services have converged into the no-
tion of self-describing semantic web services. These are web services that provide
and use semantic descriptions of the concepts in their domain over and above
the information provided by WSDL1 and UDDI2. Two W3C groups (Semantic
Web and Web Services) have described a need for service descriptions that are
sufficiently expressive to allow services to be located dynamically without hu-
man intervention. The requirements for the W3C’s Web Services Architecture
and Web Services Description working groups describe the need for “semantic
descriptions that allow the discovery of services that implement the required
functionality” [1]. The Web Ontology Language (OWL) requirements describe
“serendipitous interoperability” as the ability of devices to “discover each others’
� This work is supported by the Australian Research Council SPIRT Grant “Self-

describing transactions operating in a large, open, heterogeneous and distributed
environment” involving QUT, UNSW and GBST Holdings Pty Ltd.

1 http://www.w3.org/TR/wsdl12/
2 http://www.uddi.org

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 1–16, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.w3.org/TR/wsdl12/
http://www.uddi.org
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

2 P. Oaks, A.H.M. ter Hofstede, and D. Edmond

functionality and be able to take advantage of it” [2]. This sentiment can also
be applied to web services.

At present web services are described using the Web Services Description
Language (WSDL). WSDL only provides for the description of web service in-
terfaces. There are two alternative ways of dealing with this as far as determining
the capability of the service is concerned. The first way is for users to manually
search for services and read the documentation to see what the service can do,
then hard wire the service invocation and interaction. The second way is to locate
services based on matching keywords representing the required capability with
words used in the interface description. This is particularly prone to problems,
as most software developers use names and words idiosyncratically according
to their local culture, rules and naming conventions. These conventions often
require words to be mashed together, and the words may or may not bear any
relevance to what the service actually does. In the world of web services it is no
longer possible to assume that all users will share the local conventions of the
service provider.

Service descriptions must explicitly state what they can do, and the context
the service operates on and within. The advantage of this higher level capabil-
ity description, is that users can select and use specific functionality. This is
in contrast to the current situation, where service users must make their own
determination of the functionality and requirements of each operation.

To enable the dynamic discovery of services, a mechanism is required to
describe behavioural aspects of services, i.e. what services do. A semantic de-
scription of services should include the following: the capabilities a service can
provide, under what circumstances the capabilities can be provided, what the
service requires to provide the capability, and what results can be delivered.
The description should also provide references to definitions of all the words
and terms it uses. The capability description has to provide enough information
for users to identify and locate alternative services without human intervention.
Non-functional aspects of services, such as cost and quality of service [3] are nec-
essary for the evaluation, selection, and configuration of services following their
discovery. A description of these aspects is outside of the scope of this work.

In this paper we are concerned with advertising web services in such a way
that the discovery of their capabilities can be automated. Although the other
phases of service interaction, such as evaluation, selection, negotiation, execution
and monitoring are important, the discovery phase is the crucial first step.

2 Existing Work in Capability Description

A set of criteria for evaluating capability description languages were described
by Sycara et.al. [4] in reference to agent capabilities. These requirements include
expressiveness, abstraction, support for inferences, ease of use, application on
the web, and avoiding reliance on keyword extraction and comparison. We be-
lieve these high level criteria are also relevant in the context of semantic web
services but they do not address the specific requirements of dynamic web service
discovery. To address these requirements, a capability language should provide:

Capabilities: Describing What Services Can Do 3

1. The ability to declare what action a service performs.
2. The ability to allow a capability to have different sets of inputs.
3. The ability to declare preconditions and effects in some named rule definition

language.
4. The ability to describe objects that are not input but are used or affected

by the capability.
5. The ability to refer to ontological descriptions of the terms used in the de-

scription and thus place the use of the terms in context.
6. The ability to make explicit the domain or context in which the service

operates.
7. The ability to classify capabilities based on aspects of the description en-

abling exact or partial matches between required and provided capability
descriptions.

The genesis of the requirements is illustrated below, and we refer to them using
this notation (req. 1) with the number corresponding to the requirement listed
above.

There are several areas where we draw from existing work in capability de-
scription. We were influenced by the conclusions drawn in [5] and [6], where it
was concluded after reviewing various description mechanisms and languages,
that frame based representations were the most expressive and flexible means
to represent the capabilities of intelligent agents. We start with an overview of
case frames and look at several capability representations based on them, in the
context of software agents and software reuse. Then we look at one of the current
mechanisms for describing web services to see how well it provides a description
of service capabilities.

Case Frames. [7] Much of the work in agent capability description has been based
on the work of Charles Fillmore. We briefly review this work to understand why
case frames are used to describe what agents and services do, and how they have
been adapted over time.

Fillmore proposed a structure, called a case frame, to describe information
about a verb. Each case describes some aspect of the verb and a completed
case frame describes an action, its context and its consequences. The case frame
provides a mechanism to state the who, what, where, when, how questions for
actions. Fillmore elaborated several cases and postulated that other cases may
exist. The base cases he described for verbs or actions are:

– Agentive - who does the action.
– Dative - who it happens to.
– Instrumental - what thing is involved.
– Factive - the object or being resulting from the action.
– Locative - where the action happens.
– Objective - things affected by the action.

In the context of semantic web service descriptions the case frame provides a
convenient way of structuring the description of what behaviours, actions or
capabilities a service provides.

4 P. Oaks, A.H.M. ter Hofstede, and D. Edmond

For the purpose of representing service capabilities within a case frame struc-
ture, we can assume the agentive case implicitly represents the service itself and
the dative case implicitly represents the service user, so these do not have to be
elaborated explicitly. This does however imply that the capability description of
a service is always from the perspective of what the service (as the agentive case)
does or provides. For example, a service that provides goods that customers can
buy, is a selling service. A service that finds and buys the lowest priced goods is
a purchasing service.

The instrumental case represents things involved in the action. In the follow-
ing paragraphs we will see how this has been used to represent the inputs for an
action.

The objective case represents those objects that are involved in the perfor-
mance of a service but not explicitly provided as inputs by the user. For example,
a third party web service may offer to search for books by looking in the Amazon
book catalog3. A user then may decide to use the third party service because
they are unable to access Amazon directly and have heard that Amazon provides
a competitively priced delivery service.

The factive case represents the results of the action and, in subsequent work
discussed below, has been translated to represent the outputs or effects of an
action.

In recent times Fillmore has been involved with the Berkeley FrameNet
project4, which is in the process of describing the frames (conceptual struc-
tures) of many verbs in common use [8]. The FrameNet system will be useful
for the automated generation of descriptions, by providing base frames for many
different kinds of service capabilities. For example the FrameNet frame for the
verb sell contains the cases; Buyer, Seller, Money, Goods, Rate, Unit, Means
and Manner. These are the possible cases for sell, therefore a description of a
selling capability will need to incorporate some if not all of these cases to be
effective.

2.1 Capability Descriptions for Software Agents

EXPECT [9,10] provides a structured representation of goals, based on verb
clauses, it allows the representation of both general and specialized goals for
agent planning systems. The structured representation allows reasoning about
how goals relate to one another and allows inexact matching for loose coupling
between representations of goals and capabilities descriptions. The representa-
tion is tied to a domain ontology to ensure the terms have consistent semantics
amongst all users.

The verb clause consists of a verb and one or more roles or slots (cases). The
role can represent objects involved in the task, parameters, or a description of
the task. Roles can be populated by different types of objects including; concepts
or instances from some ontology, literals, data types, sets, or descriptions.
3 http://www.amazon.com
4 http://www.icsi.berkeley.edu/˜framenet/

http://www.amazon.com
http://www.icsi.berkeley.edu/~framenet/

Capabilities: Describing What Services Can Do 5

An example (from [10]) of an Expect capability description for calculating
the weight of objects is shown below:

((name calculate-total-cargo-weight-objects)
(capability (calculate (obj (?w is (spec-of weight)))
(of (?fms is (set-of (inst-of object))))))

(result-type (inst-of weight))
(method (sum (obj (r-weight ?fms)))))

When we apply the criteria from [4] noted above, this description would
succeed on the expressiveness and inferences criteria but fail on ease of use
and web applicability. Apart from keywords in the name “calculate-total-cargo-
weight-objects”, there is little in this capability description that could be used
for discovery .

A consistent semantics is necessary for the representation of the structure of
the capability description. However, in an open environment there will be many
diverse contexts in which the capability description is used. This means a single
ontology for the representation of the content of the description is not feasible.

The advantage of this description is the ability to use a rule notation to ex-
press conditions and effects. The use of rules to describe aspects of capabilities
was also advocated in [6] where the ability to explicitly declare which rule lan-
guage was being used is also provided (req. 3). The disadvantage of this capability
description is that it would require training in order to write the descriptions.

Language for Advertisement and Request for Knowledge Sharing (LARKS) [11,
4] is a refined-frame based language for the specification of agent capabilities.
It comprises a text description of the capability, with a structured description
of the context, types, input, output, and constraints of an agent. An ontological
description of terms used in the description can also be provided. The primary
purpose of a LARKS specification is to allow inferencing and efficient accurate
matchmaking.

In the current environment, where ontologies are proliferating, it is more
likely that terms will be described by reference to external ontologies, rather
than incorporated as an ontological description within the capability description
itself (req. 5).

LARKS does not provide sufficient information in the form of a structured
description of its purpose to enable discovery. The example below (from [4])
shows a capability description for a portfolio agent.

Context: Stock, StockMarket;
Types: StockSymbols = {IBM, Apple, HP},

Money = Real;
Input: symbol:StockSymbols;

yourMoney:Money;
shares:Money;

Output: yourStock:StockSymbols;
yourShares:Money;
yourChange:Money;

6 P. Oaks, A.H.M. ter Hofstede, and D. Edmond

InConstraints: yourMoney >= shares*currentPrice(symb);
OutConstraints: yourChange =

yourMoney-shares*currentPrice(symb);
yourShares = shares;
yourStock = symbol;

ConcDescriptions:
TextDescription: buying stocks from IBM,Apple,HP

at the stock market.

The information available for discovery is the unstructured text description “buy-
ing stocks from IBM, Apple, HP at the stock market”, thus leaving keyword
extraction as the only way of deciding what the service actually does. The ca-
pability of the agent being described is unclear, is it buying stocks on the stock
market or directly from the company at the stock market?

In terms of the criteria, the language is expressive, and it allows inferences.
It appears to be easy to use, although the example has an error5 and other
inconsistencies. This representation does not do well on the web applicability
criteria but it has been used as the basis of the web accessible DAML-S Profile,
which we look at in section 2.3.

The lack of an explicit action description means the capability has to be
derived from keywords and unstructured text descriptions, but the advantages
of this description mechanism are the ability to refer to ontological description
of terms, comprehensive coverage of constraints and effects (rules) (req. 3), in-
put/output (data), and the context the service operates in (req. 6). The ability
to “matchmake” (req. 7) based on IOPE’s was reported in [11].

2.2 Capability Description for Reuse

Web services are software, so we draw on work that has been done in the context
of describing the capabilities of reusable software.

Reuse of Software Artifacts (ROSA). [12] The ROSA system is used for the
automated indexing and retrieval of software components. In contrast to faceted
classification, ROSA uses a conventional case frame structure, along with con-
straints and heuristics, to automatically extract lexical, syntactic and semantic
information from free text software descriptions.

The automated interpretation of descriptive phrases into case frames makes
this a potential tool for the generation and indexing of web service capabil-
ity descriptions. However, apart from a few papers preceding [13] we have not
been able to access this promising resource. Similar work has been reported in
[14], where a web interface allows the entry of natural language descriptions of
required components.

In terms of the criteria ROSA is expressive and capable of supporting infer-
encing. Comparisons are easily made between the “normalized” internal repre-
sentations. ROSA is easy to use as the descriptions can be made in free text
5 Input shares has to be a quantity to have meaning in the OutConstraint yourChange

Capabilities: Describing What Services Can Do 7

and automatically translated into a structured description. The use of WordNet
implies the use of other ontologies could also be supported (req. 5).

ROSA, being intended for the manual discovery of reusable software assets,
rather than global automated web service invocation, does not deal with the
possibility that some capabilities may be context dependent, if that is the case
then the context should be made explicit (req. 6).

2.3 Web Service Description

DAML-S Profile 6 [15,16,17] builds on work on LARKS and ATLAS7. The
DAML-S profile is a “yellow pages” description of a service, it is intended to
specify what the service requires and what it provides. The service capability
is described in terms of input and output parameters, preconditions and effects
(IOPEs). The description also includes the service profile name, a text descrip-
tion, a reference to a Process specification (how it works), a service category
(NAICS etc), and a quality rating. The profile allows the definition of service
parameters to describe (non-functional) aspects of the service such as “MaxRe-
sponseTime”, and information about the service provider or requester, such as
their name, title, address, web URL etc.

The DAML-S Profile has further refined the basic case frame down to the
description of capabilities only in terms of IOPEs. In the process it has lost the
ability to explicitly declare what the service actually does. It has also lost the
ability to describe the objects that are used but are not inputs in the description
of the service [18].

To illustrate several points the extract below has been taken from the DAML-
S V0.7 Congo Book example service profile description. The example represents
the information in the profile that is machine processable and the types of the
IOPE’s.

serviceName Congo_BookBuying_Agent
textDescription This agentified service provides

the opportunity to browse a book
selling site and buy books there

NAME TYPE
(Inputs)
bookTitle xsd:string
signInInfo CongoProcess:SignInData
createAcctInfo CongoProcess:CreateAcct
creditCardNumber xsd:decimal
creditCardType CongoProcess:CreditCardType
creditCardExpirationDate time:TemporalEntity
deliveryAddress xsd:string
packagingSelection CongoProcess:PackagingType
DeliveryType CongoProcess:DeliveryType

6 http://www.daml.org/services/daml-s/0.7/
7 http://www-2.cs.cmu.edu/˜softagents/larks.html,
http://www.daml.ri.cmu.edu/index.html

http://www.daml.org/services/daml-s/0.7/
http://www-2.cs.cmu.edu/~softagents/larks.html
http://www.daml.ri.cmu.edu/index.html

8 P. Oaks, A.H.M. ter Hofstede, and D. Edmond

(Outputs)
EReceipt CongoProcess:EReceipt
ShippingOrder CongoProcess:ShippingOrder
AccountType CongoProcess:CreateAcctOutputType
(Preconditions)
AcctExists CongoProcess:AcctExists
CreditExists CongoProcess:CreditExists
(Effects)
BuyEffectType CongoProcess:BuyEffectType

The lack of an explicit means of declaring what the service actually does means
that keyword extraction from the service name and description is necessary to
discover the service’s capabilities (req. 1). In this example, this is made more
difficult by the description which states it is a BookBuying Agent when it is a
service that sells books.

In the text accompanying the example it is implied that the service provides
two capabilities, “catalog browsing” and “selling books”, neither of these are
clear from the information provided in the form of IOPEs. In fact, there are also
the implied capabilities to “accept credit card payments from the customer”, to
“check the customers credit availability” and to “deliver books to the customer”.
On one hand, it could be argued that these are capabilities that do not need to
be exposed for discovery, on the other hand they are implicitly exposed by being
declared as input parameters in the service profile.

The problem seems to be that the service profile does not have a mechanism
to explicitly declare that a service may comprise several capabilities; and that
each capability may have a different set of IOPEs. In addition, it needs to be
able to hide the IOPEs that are not directly related to discovery.

Recent work by Sabou [19] in using DAML-S to describe a web service has
revealed problems with describing services that may have alternative (sets of)
inputs. The problem arises mainly in terms of the binding to WSDL, but it
highlights the case where each capability provided by a service may have its own
sets of alternative inputs (req. 2).

It is possible that the explicit declaration of capability has been replaced by
the explicit declaration of the effects of the service. This is a valid modeling choice
if it is used correctly. For example, instead of saying “we have the capability to
sell books”, the service could say “the effect of this service is that a book is
purchased”. The example does not support this interpretation.

In terms of the criteria, DAML-S has the potential to be sufficiently expres-
sive to model both atomic and complex services and allows description at an
abstract level. Being based on DAML+OIL/OWL it is implicitly capable of sup-
porting inferencing and machine processing. The language appears easy to use
well (and poorly). It is the best example of a web enabled language for the au-
tomated exchange and processing of capability information that we have looked
at.

The shortcomings of the DAML-S Profile are the inability to describe the
actual action performed (req. 1), and to describe the objects it may use or affect
that are not provided as inputs (req. 4). It should also be possible to associate
(sets of) inputs with specific capabilities (req. 2).

Capabilities: Describing What Services Can Do 9

3 A Conceptual Model of Capability

In this section we present a conceptual model (figure 1) for capability descrip-
tions. We believe that the model fully delivers all the requirements listed in
section 2 and also satisfies the criteria proposed in [4]. In addition to the require-
ments and criteria, this model of capability descriptions is sufficiently detailed
to facilitate the location of functionally equivalent or similar services. It is ex-
pressive enough to model simple atomic services as well as the functionality of
complex, possibly composed, services. The model will allow the creation of ca-
pability descriptions that work human to human as well as machine to machine
[20], because ultimately it is people who design and create software applications.

The capability description is presented as an Object Role Modeling (ORM)
[21] model. ORM is a well known visual conceptual data modeling technique. The
advantages of using ORM are that it has an associated modelling methodology
and conceptual query language. It is implementation independent and has a
formal semantics. It also has the advantage of being able to include a sample
population, shown below the fact types, which helps to validate the model and
demonstrate how it is used.

We briefly describe some of the main concepts of ORM is to assist the reader
to interpret the schema presented below. The ellipses represent entity types
(e.g. Capability), while the boxes represent the roles played by the entities in
a fact type and a fact type can consist of one or more roles. Double arrows
represent uniqueness constraints over roles (e.g. a Capability has at most one
output Signature set), while solid dots represent mandatory role constraints (e.g.
every Capability has an action Verb). A string, in parenthesis below the name
of an entity type (e.g. (id)), indicates the presence of a value type with a name
which is the concatenation of that entity type name and that string. In this case
instances of the value type uniquely identify instances of that entity type (e.g.
Signatureid is a value type providing identification for entity type Signature).

The sample population demonstrates the description of three capabilities.
The first capability is the ability to book tickets for a performance of the opera
“Carmen”, at the Queensland Performing Arts Center (QTAC). The second ca-
pability provides valuations for pre-war Belgian stamps, and the third capability
retrieves ontologies that contain a given string.

A Capability is described, in the first instance, by an action Verb that ex-
presses what the capability does (req. 1). To allow for the fact that different
verbs may be used to express the same action, synonyms are provided directly,
and a definition is available in an Ontological source (e.g. dictionary, thesaurus,
ontology, specification or standard) (req. 5). The ability to provide alternatives
to the primary verb assists similarity matching of capabilities (req. 7).

From the case frame point of view, we have modelled cases as roles. We
have grouped the roles according to the type of objects that play those roles.
We distinguish between cases that play an informational role, such as location,
topic, manner etc., from roles that are played by a Signature, and roles that are
played by Rules.

A Signature represents a set of Parameters. A capability can have zero or
more input, uses and affects signature sets, including the empty set (req. 2, 4).

10 P. Oaks, A.H.M. ter Hofstede, and D. Edmond

has action

cp1 reserve
cp2 value
cp3 discover

Ontological
source

(id)

Capability

Rule

Data type
(name)

has
classification in
cp1 os9
cp2 os31

has location

cp1 QPAC address
p1 Concert hall

has source

p6 Belgium
p6 before WW2

has
destination

has duration
p1 7200

has date/time

p1 2003-07-15:20.00

Signature
(id)

Parameter

has input

cp1 set1
cp1 set2
cp1 set5
cp1 set10
cp2 set6
cp3 set8

has output

cp1 set4
cp2 set7
cp3 set9

uses

cp1 set3

affects

cp1 set3

belongs to

os1 /cogsci.princeton.edu/cgi-bin/webwn
os2 /m-w.com/netdict.htm
os12 /QPAC.org
os17 /QPAC.org
os3 /example.org/performance event
os18 /QPAC.org
os4 /example.org/payment
os19 /QPAC.org
os5 /example.org/storage/file
os20 /QPAC.org
os6 /example.org/event
os8 /QPAC.org/rules
os9 /CPC /ver1.1
os11 /QPAC.org/theatres
os15 /example.org/performance type
os16 /QPAC.org/scheduled performance
os22 /w3.org/2000/10/XMLSchema
os23 /QPAC.org/messages
os24 /example.org/Philately
os25 /my.org/assets/Stamp
os26 /example.org/ISO 4217:2001/
os27 /m-w.com/netdict.htm
os28 /example.org/Date/world events
os29 /my.org/assets/Stamp
os30 /m-w.com/netdict.htm
os31 /census.gov/epcd/naics02/def/
os32 /w3.org/2000/10/XMLSchema
os33 /w3.org/TR/owl-ref/

specified by

os1 #reserve
os2 #book~2
os12 #Address
os17 #Performance
os3 #Event Details
os18 #Payment
os4 #Payment Details
os19 #Bookings Database
os5 #Database
os20 #Ticket
os6 #Ticket
os8 #PerformanceIsScheduled
os9 #96230
os11 #Concert Hall
os15 #opera
os16 #Carmen
os22 #string
os23 #Booking request
os24 #Stamp data
os25 #stamp 204
os26 #USD
os27 #dictionary&va=value
os28 #WW2 start date
os29 #stamp 204 value
os30 #dictionary&va=discover
os31 #ND453998 Collector's items shops (e.g., autograph, card, coin, stamp)
os32 #anyURI
os33 #Header

Ontology
(uri)

Fragment

defined in

Event details os3
Payment details os4
File os5
Ticket os6
string os22
Stamp details os24
US Dollar os26
url os32

U

expressed
in

r1 BRML

has rule
expression

r1 os8has
precondition
cp1 r1

has effect
U

Rule
Language

(name)

has manner

p1 opera

has topic

p1 Carmen

Capability or
Parameter

(id)

is of

cp1 Capability
performance Parameter
payment Parameter
Bookings Database Parameter
Ticket Parameter
Booking request Parameter
cp2 Capability
stamp Parameter
value Parameter
cp3 Capability
word Parameter
ontologies Parameter

Capability or
Parameter

type
(name)

{Capability,
Parameter}

each Capability is a
Capability or Parameter
that is of Capability or
Parameter type 'Capability'

each Parameter is a
Capability or Parameter
that is of Capability or
Parameter type
'Parameter'

elsewhere
defined in

p1 os17
p2 os18
p3 os19
p4 os20
p5 os23
p6 os25
p7 os29
p8 os31
p9 os33

is described in

QPAC address os12
Concert hall os11
opera os15
Carmen os16
before WW2 os28

Case
description

(name)

Ueu

Service
(name)

provides

QPACBooking cp1
TicketTek cp1
TicketTek cp4
StampValuer cp2
StampMarket cp2
OntologyFindercp3

is synonym
of

reserve book
value worth
value amount
valuation price
discover find
discover detect

has
definition in
reserve os1
value os27
discover os30

has descriptive
name

p1 performance
p2 payment
p3 Bookings database
p4 ticket
p5 Booking request
p6 stamp
p7 valuation
p8 word
p9 ontologies

has

p1 Event details
p2 Payment details
p3 File
p4 Ticket
p5 string
p6 Stamp details
p7 US dollar
p8 string
p9 list of url

contains

set1 p1
set1 p2
set3 p3
set4 p4
set5 p5
set6 p6
set7 p7
set8 p8
set9 p9
set10 p1

Lexical term

is of

ticket Noun
Booking request Noun phrase
reserve Verb
valuation Noun
value Verb

Lexical
type

(name)

{ Verb,
Noun,
Noun phrase}

Verb

Noun or
Noun phrase

has
description in
ontologies os33
payment os18
performance os17
reserve os1
stamp os25
valuation os29
value os27
word os31

Period
(sec)

each Noun is a Lexical
term that is of Lexical type
'Noun'

each Noun phrase is a
Lexical term that is of
Lexical type 'Noun phrase'

each Verb is a Lexical
term that is of Lexical type
'Verb'

DateTime
(ISO8601)

Fig. 1. A conceptual meta model of capability

For example, a service may take as input a name (string) and an age (integer),
or an email address (URI) and an age (integer), or nothing at all. Each signature
set must contain a different combination of elements, this is shown by the “eu”

Capabilities: Describing What Services Can Do 11

constraint [22] on the role that connects to Parameter. Each Parameter and its
associated Data type are defined in an Ontological source (req. 5).

The output role is constrained to have only one signature set, as we take the
view that different output set would represent a different capability.

We created a supertype Capability or Parameter so we could share the defi-
nition of the informational roles, location etc. between the two types Capability
and Parameter. These roles are played by a Case description described in an
Ontological Source (req. 5).

We have distinguished the cases for preconditions and effects (PEs) and mod-
elled these as roles played by Rules; as opposed to the input and output (IO)
roles played by Signatures. This is because rules and signatures are fundamen-
tally different and require a different treatment in the conceptual model. Each
rule is associated with a named Rule Language and a rule expression (req. 3) in
an Ontological source.

The use of an explicit domain or context identifier (req. 6) is provided by
the role has classification. The classification itself is contained in an Ontological
source.

An issue that may cause confusion, is that in this model we show verbs, nouns
and noun phrases as subtypes of Lexical term. There is potentially a problem if
the same word is used as a noun and as a verb. For example, the verb ‘reserve’
has ‘book’ as a synonym, however the noun ‘book’ would have a completely
unrelated set of synonyms. We think this problem may be resolved by using a
namespace identifier in conjunction with the word, rather than the abbreviated
version shown in the model.

In terms of Fillmore’s cases (section 2) the Agentive case is the service pro-
viding the capability, and the Dative case is the user, these are implicit. The
Instrumental case is modeled as the has input and uses roles. The Factive case
is modeled as the has output and has effect roles. The Objective case is shown
as the role affects, and the Locative case can made explicit using has location,
has source and has destination for both capabilities and parameters.

3.1 Evaluation of the Model

In this section we show how our capability description model satisfies the re-
quirements listed in section 2.

1. The action declaration is explicitly provided by the role has action. The
verb representing the action is defined in an ontological source. Alternative
action words such as synonyms that are equivalent to the primary verb in
this context can also be defined using the role has synonym. The explicit
provision of alternative terms assists in service matching.

2. The model provides for different sets of inputs by allowing a capability to
have different signatures for the roles has input, uses and effects. The sig-
nature is a possibly empty set of parameters. Each parameter is declared
with a name (by convention the name should indicate its purpose) and its
data type. However, the model does not only rely on descriptive parameter
names it also allows both the parameter and its data type to refer to external
definitions for more information.

12 P. Oaks, A.H.M. ter Hofstede, and D. Edmond

3. Preconditions and effects can be defined by reference to an expression, using
a named rule language, in an ontological source. The use of an explicit name
for the rule language caters for the fact that web enabled rule languages
are still being developed and until a clear favourite emerges, it is safer to
explicitly state which one applies.

4. Objects that may be used or affected by the capability, but are not part of
the input provided by the user, can be explicitly described using the uses
and affects roles.

5. Most of the elements in the model can make reference to an ontological
source for further information and clarification on how terms are intended
to be used in the context of the capability.

6. The domain or context the capability operates within is made explicit by
the has classification in role. Categorization schemes such as UNSPSC8 and
NAICS9 can be used to describe the context in which a capability is per-
formed.

7. The capability description provides many aspects that can be used for clas-
sifying capabilities. The has classification in role is similar to the level of
classification available in UDDI. However, this capability description allows
classification along much broader lines including the type of action per-
formed, the location of the service, its manner of operation, and its topic
of concern amongst others.

3.2 Querying the Model

A collection of capability descriptions can be easily queried using a conceptual
query langauge like ConQuer [23,24]. An implementation of ConQuer is available
in the Active Query tool, but we have been unable to access it yet, so the syntax
shown below is based on the references above, rather than the output of the
software tool. For users unfamiliar with ConQuer, the tick symbol is similar
to the SQL select clause and these elements are returned or displayed. The +-
symbol should be interpreted as “and”, and alternatives are shown explicitly as
“or”.

The ability to query a collection of capability descriptions, based on the
conceptual model, is of benefit to those users who have specific requirements
beyond the types of input and output parameters provided by WSDL. Concep-
tual queries can access any of the objects and the relationships between objects
shown in the model. The ability to make queries at the conceptual level will also
be of benefit to service composers, allowing them to determine in advance what
kinds of capabilities are available, and what kinds of objects a particular capa-
bility uses and has an effect upon in the performance of its function. This kind of
information about the side-effects of a service or capability are important, and
as far as we know are not available in any other structured service description
mechanism. All of the major elements in the model provide the ability to access
8 Universal Standard Products and Services Classification (UNSPSC),
http://eccma.org/unspsc/

9 North American Industry Classification System (NAICS),
http://www.ntis.gov/product/naics.htm

http://eccma.org/unspsc/
http://www.ntis.gov/product/naics.htm

Capabilities: Describing What Services Can Do 13

further information in the form of ontologies, to assist with disambiguation and
clarification.

Two examples of the types of queries the model can support are shown below.
1. Find a service that will allow me to book tickets for the opera “Carmen”

and tell me when and where it will be held.
√

Service
+- provides Capability

+- has output Signature
+-contains Parameter has Datatype “Ticket”

+- has input Signature
+- contains Parameter

+- has descriptive name Noun or Noun
phrase “performance”
or is synonym of Noun or Noun phrase

“performance”
+- has manner Case description “opera”
+- has topic Case description “Carmen”√

has date time DateTime√
has location Case description

2. Find me a service that provides stamp valuations and show the type of
input the service requires. Use the NAICs code 452998 that covers many types
of specialist retailers including “Collector’s items shops (e.g., autograph, card,
coin, stamp)”, to narrow the search.
√

Service
+- provides Capability

+- has classification in Ontological source
+- belongs to Ontology

“www.census.gov/epcd/naics02/def/”
+- specified by Fragment

“ND453998 Collector’s items shops
(e.g., autograph, card, coin, stamp)”

+- has output Signature
+- contains Parameter

+- has descriptive name Noun or Noun
phrase “valuation”
or is synonym of Noun or Noun

phrase “valuation”
+-has input Signature

contains Parameter√
has Data type

4 Realisation

Various existing services and tools can be used to automate the generation of
capability descriptions. The FrameNet frame [8] for the selected operation can
be used as the basis of the capability description. Natural language descriptions
[13,14] can be used along with WordNet verb synsets (groups of related terms)

14 P. Oaks, A.H.M. ter Hofstede, and D. Edmond

to generate alternative verbs, nouns and noun phrases to populate the capability
description.

Alternatively, the MIT Process Handbook10 could be used to describe a ca-
pability as is, or with case refinements as described by Lee and Pentland in [25].
A capability could be declared to be equivalent to some process in the handbook,
or it could be a specialization or generalization of a process description in the
handbook. Klein and Bernstein [26] also suggest using the Process Handbook
as a means to describe and locate semantic web services, and they provide the
basis of a query language to use as an alternative to manual navigation of the
handbook.

The more publicly accessible external classification schemes, standards, spec-
ifications, ontologies and other sources of information that are used in the capa-
bility description, the more likely it is that interaction partners will be able to
find a common ground for understanding the terms the service uses.

5 Conclusion

The capability description we introduced in this paper can be used to advertise
the capabilities of web services. The structure can also be used by service com-
posers and planners to describe what they expect services to provide. Service
composition planners can use the conceptual query language to interrogate a
collection of capability descriptions. In addition, this capability description can
be readily translated into a machine processable ontology. An explicit struc-
tured description of service capabilities allows the dynamic location of services
based on their advertised capabilities rather than keyword searches and this will
improve the efficiency and effectiveness of the discovery process.

One issue that still needs to be addressed is the specialization (by extension or
restriction) of capability descriptions for specific contexts. The semantics of this
are complex, as a capability description could potentially be both extended with
additional cases, and existing cases could have their range of values restricted or
removed.

The capability description we propose is not trivial, it will require much
greater effort on the part of those describing services. We believe this level of
complexity is unavoidable if we want to be able to achieve the goal of automated
ad-hoc interaction between web services.

References

1. Haas, H., Orchard, D.: Web Services Architecture Usage Scenarios, W3C Working
Draft 30 July 2002 (2002) Available from:
http://www.w3.org/TR/ws-arch-scenarios/, (11 March 2003).

2. Heflin, J.: Web Ontology Language (OWL) Use Cases and Requirements, W3C
Working Draft 31 March 2003 (2003) Available from:
http://www.w3.org/TR/webont-req/, (15 April 2003).

10 http://ccs.mit.edu/ph/

http://www.w3.org/TR/ws-arch-scenarios/
http://www.w3.org/TR/webont-req/
http://ccs.mit.edu/ph/

Capabilities: Describing What Services Can Do 15

3. O’Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a service? Towards ac-
curate description of non-functional service properties. Distributed and Parallel
Databases Journal - Special Issue on E-Services 12 (2002) 117–133

4. Sycara, K., Widoff, S., Klusch, M., Lu, J.: LARKS: Dynamic Matchmaking Among
Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-
Agent Systems (2002) 173–203

5. Wickler, G., Tate, A.: Capability representations for brokering: A survey (1998)
Submitted to Knowledge Engineering Review, December 1999. Available from:
http://www.aiai.ed.ac.uk/˜oplan/cdl/cdl-ker.ps, (4 October 2002).

6. Wickler, G.J.: Using Expressive and Flexible Action Representations to Reason
about Capabilities for Intelligent Agent Cooperation. PhD thesis, University of
Edinburgh, Edinburgh, UK (1999)

7. Fillmore, C.: The Case for Case. Universals in Liguistic Theory. Holt, Rinehart
and Winston, New York (1968)

8. Fillmore, C.J., Wooters, C., Baker, C.F.: Building a Large Lexical Databank Which
Provides Deep Semantics. In: Proceedings of the Pacific Asian Conference on Lan-
guage, Information and Computation, Hong Kong, Language Information Sciences
Research Centre, City University of Hong Kong, PACLIC 15 (2001)

9. Swartout, W., Gil, Y., Valente, A.: Representing Capabilities of Problem-Solving
Methods. In: In Proceedings of 1999 IJCAI Workshop on Ontologies and
Problem-Solving Methods, Stockholm, Sweden, CEUR Publications
(http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/
Vol-18/) (1999)

10. Gil, Y., Blythe, J.: How Can a Structured Representation of Capabilities Help
in Planning? (2000) In AAAI 2000 workshop on Representational Issues for Real-
world Planning Systems.

11. Sycara, K.P., Klusch, M., Widoff, S., Lu, J.: Dynamic service matchmaking among
agents in open information environments. SIGMOD Record 28 (1999) 47–53
citeseer.nj.nec.com/article/sycara99dynamic.html, (1 February 2002).

12. Girardi, M.R., Ibrahim, B.: Using English to Retrieve Software. The Journal of
Systems and Software, Special Issue on Software Reusability 30 (1995) 249–270

13. Girardi, M.R.: Classification and Retrieval of Software through their Descriptions
in Natural Language. PhD thesis, University of Geneva (1995) Ph.D. dissertation,
No. 2782.

14. Sugumaran, V., Storey, V.C.: A Semantic-Based Approach to Component Re-
trieval. The DATA BASE for Advances in Information Systems 34 (2003) 8–24
Quarterly publication of the Special Interest Group on Management Information
Systems of the Association for Computing Machinery (ACM-SIGMIS).

15. Denker, G., Hobbs, J., Martin, D., Narayana, S., Waldinger, W.: Accessing Infor-
mation and Services on the DAML-Enabled Web. In: Second International Work-
shop on the Semantic Web - SemWeb’2001, Workshop at WWW10, Hongkong
(2001)

16. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McIlraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T., Sycara, K., Zeng, H.: DAML-S: Semantic
Markup For Web Services. In: Proceedings of SWWS’ 01 The First Semantic Web
Working Symposium, Stanford University, CA, USA (2001) 411–430

17. Paolucci, M., Sycara, K., Kawamura, T.: Delivering Semantic Web Services.
In: Proceedings of the twelfth international conference on World Wide Web,
WWW2003, Budapest, Hungary, ACM, ACM Press (2003)

http://www.aiai.ed.ac.uk/~oplan/cdl/cdl-ker.ps
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/
Vol-18/
citeseer.nj.nec.com/article/sycara99dynamic.html

16 P. Oaks, A.H.M. ter Hofstede, and D. Edmond

18. Wroe, C., Stevens, R., Goble, C., Roberts, A., Greenwood, M.: A Suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. In-
ternational Journal of Cooperative Information Systems 12 (2003) 197–224

19. Sabou, M., Richards, D., van Splunter, S.: An experience report on using DAML-S.
In: Proceedings of the Twelfth International World Wide Web Conference Work-
shop on E-Services and the Semantic Web (ESSW ’03), Budapest (2003)

20. Kovitz, B.: Ambiguity and What to Do about it. In: Proceedings IEEE Joint
International Conference on Requirements Engineering, Essen, IEEE (2002) 213

21. Halpin, T.: Information Modeling and Relational Databases: from conceptual anal-
ysis to logical design. Morgan Kaufmann Publishers, San Diego, CA, USA (2001)

22. ter Hofstede, A.H.M., van der Weide, T.P.: Deriving Identity from Extensionality.
International Journal of Software Engineering and Knowledge Engineering 8 (1998)
189–221

23. Bloesch, A.C., Halpin, T.A.: ConQuer: A Conceptual Query Language. In Thal-
heim, B., ed.: Proceedings of ER’96: 15th International Conference on Conceptual
Modeling. Lecture Notes in Computer Science v. 1157, Cottbus, Germany, Springer
Verlag (1996) 121–133

24. Bloesch, A.C., Halpin, T.A.: Conceptual Queries using ConQuer-II. In: Proceed-
ings of ER’97: 16th International Conference on Conceptual Modeling. Lecture
Notes in Computer Science v. 1331, Los Angeles, California, Springer Verlag (1997)
113–126

25. Lee, J., Pentland, B.T.: Grammatical Approach to Organizational Design (2000)
Available from: http://ccs.mit.edu/papers/pdf/wp215.pdf, (24 April 2003).

26. Klein, M., Bernstein, A.: Searching for services on the semantic web using pro-
cess ontologies. In: Proceedings of SWWS’ 01 The First Semantic Web Working
Symposium, Stanford University, California, USA (2001) 431–446 Available from:
http://www.daml.org/services/daml-s/2001/05/, (20 September 2001).

http://ccs.mit.edu/papers/pdf/wp215.pdf
http://www.daml.org/services/daml-s/2001/05/

	Introduction
	Existing Work in Capability Description
	Capability Descriptions for Software Agents
	Capability Description for Reuse
	Web Service Description

	A Conceptual Model of Capability
	Evaluation of the Model
	Querying the Model

	Realisation
	Conclusion

