
Reasoning about Actions for e-Service Composition

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{berardi,calvanese,degiacomo,mecella}@dis.uniroma1.it

Content Areas: knowledge representation, reasoning about actions and change,

semantic web, AI and Internet applications, web agents

Abstract

Composition of e-Services is the issue of synthesiz-
ing a new composite e-Service, obtained by com-
bining a set of available component e-Services,
when a client request cannot be satisfied by avail-
able e-Services. In this paper we study the problem
of composition synthesis in a general framework.
We consider e-Services as arbitrary (possibly infi-
nite) execution trees, i.e., as trees of all potential
interactions with clients, and characterize composi-
tion in this abstract setting. We then show how this
setting can be realized using Reasoning About Ac-
tions, in particular reasoning in Situation Calculus,
and exploiting a correspondence with Determinis-
tic Propositional Dynamic Logic, we provide auto-
mated procedures and complexity results for per-
forming composition.

1 Introduction
e-Services, also referred to as Web Services, represent a new
model in the utilization of the Web, in which self-contained,
modular applications can be described, published, located
and invoked dynamically over the Web, in a programming
language independent way. The commonly accepted and min-
imal framework for e-Service, referred to as Service Oriented
Architecture (SOA [Pilioura and Tsalgatidou, 2001]), con-
sists of some basic roles: (i) the service provider, (ii) the ser-
vice directory and (iii) the service requestor.

The service provider is the subject (e.g., an organization)
providing services; available services are described using a
service description language, and advertised on a public avail-
able service directory. The service directory is the subject
providing a repository/registry of service descriptions, where
providers publish their services and requestors find services.
The service requestor, also referred to as client, is the sub-
ject looking for and invoking the service in order to fulfill
some goals; it can be either a human or another service. A
requestor discovers the most suitable service in the directory,
then it connects to the specific service provider and uses the
service.

Composition of e-Services addresses the situation when a
client request cannot be satisfied by an available e-Service,
but a composite e-Service, obtained by combining a set of

available component e-Services, might be used. Each com-
posite e-Service can be regarded as a kind of client wrt its
components, since it (indirectly) looks for and invokes them.
e-Service composition leads to enhancements of the SOA, by
adding new elements and roles, such as brokers and integra-
tion systems, which are able to satisfy client needs by com-
bining available e-Services.

Composition involves two different issues. The first, of-
ten referred to as orchestration, is concerned with coordi-
nating the various component e-Services according to some
given specification, and also monitoring control and data flow
among the involved e-Services, in order to guarantee the cor-
rect execution of the composite e-Service. The second, some-
times called composition synthesis, or simply composition, is
concerned with automatically synthesizing a new e-Service
starting from component e-Services, thus producing a spec-
ification of how to coordinate the component e-Services to
obtain the composite e-Service.

Several recent works address the problem of orchestration.
In [Casati and Shan, 2001], an e-Service that performs co-
ordination of e-Services is considered as a (meta) e-Service,
referred to as Composite e-Service, that can be transparently
invoked by clients. In [Fauvet et al., 2001], a composite e-
Service is modeled as an activity diagram, and its enactment
is carried out through the coordination of different state coor-
dinators (one for each component e-Service and one for the
composite e-Service itself), in a decentralized way, through
peer-to-peer interactions. In [Shegalov et al., 2001], coordi-
nation of e-Services is obtained by an enactment engine inter-
preting process schemas modeled as statecharts [Wodtke and
Weikum, 1997]. Finally, in [Mecella et al., 2002], orchestra-
tion of e-Services is addressed by means of Petri Nets.

Instead, composition synthesis remains still almost unex-
plored. Interestingly, the best known contributions are based
on planning and reasoning about actions in AI. In particu-
lar, in [Aiello et al., 2002] a way of composing e-Services
is presented, based on planning under uncertainty and con-
straint satisfaction techniques, and a request language for
specifying client goals is proposed. In [McIlraith et al., 2001;
McIlraith and Son, 2002], composition of e-Services is ad-
dressed by using the Situation Calculus-based programming
language CONGOLOG; specifically, component e-Services
are represented as CONGOLOG programs, while the client’s
needs are specified through suitable forms of constraints.
Composition synthesis is based on using such constraints for

pruning the tree of possible executions of the available e-
Services.

In this paper, we study the problem of composition syn-
thesis in a general framework. We consider e-Services as ar-
bitrary (possibly infinite) execution trees, i.e., as trees of all
potential interactions with clients. An interaction consists of
the client invoking a command and waiting for the fulfillment
of the task and the return of some information. In this setting,
we define what a composition of the component e-Services
in order to realize a target e-Service amounts to. Namely, it
consist in deciding for each interaction with the client in the
target e-Service, which of the component e-Services should
execute it, in such a way that each component e-Service ex-
ecutes computations that are legal according to its execution
tree. Then we show that this abstract model of composition
synthesis can in fact be realized using reasoning about actions
formalisms to represent the execution trees of the e-Services,
and satisfiability for synthesizing the composition. In partic-
ular, we focus on one of the best known of such formalisms:
the propositional variant of Reiter’s Situation Calculus Ba-
sic Action Theories. Finally, we show that we can use rea-
soning procedures developed for Propositional Dynamic Log-
ics [Kozen and Tiuryn, 1990] to perform compositions in this
case, thus getting effective algorithms and complexity results.

The remainder of this paper is as follows. Section 2
presents the formal framework for representing e-Services
and e-Service composition based on execution trees. Sec-
tion 3 shows how we can use reasoning about actions for-
malisms, and in particular Situation Calculus, for represent-
ing e-Services and synthesizing compositions. Section 4
shows the use of Propositional Dynamic Logics reasoning
procedures for getting effective algorithms and complexity
results to perform composition synthesis. Finally, Section 5
concludes the paper.

2 Framework
In this work, an e-Service is considered as a “black-box” soft-
ware artifact (delivered over the Internet) that executes certain
programs interacting with its clients (either human users or
other e-Services). An interaction consists of a client invok-
ing a command on the e-Service and waiting for the fulfill-
ment of the specific task and (possibly) the return of some
information.

After executing the computation triggered by the invoked
command, the e-Service is ready to receive new commands.
In general, not all commands are invocable at a given point:
the possibility of invoking them depends on the previously
executed ones. On the basis of the information returned by the
previous commands, the client chooses the next interaction to
perform.

Under certain circumstances the e-Service can be consid-
ered terminated and the client can stop stepping through it.
Notice that, in principle, it may be that a given e-Service
needs to interact with the client for an unbounded, or even
infinite, number of steps, thus providing to the client a con-
tinuous service.

When a client needs a new e-Service, he asks to an
e-Service Integration System to synthesize a composite e-
Service , i.e., a new e-Service obtained by coordination of
different available e-Services, in order to fulfill the client’s

needs. The client specifies the e-Service he is looking for to
the

From the specification of the client e-Service and the avail-
able e-Services, the e-Service Integration System derives a
specification of how to orchestrate the available e-Services
such that the e-Service requested by the client is realized. The
e-Service Integration System keeps the formal specifications
of the e-Services registered into the service directory. The
composer module, which is the core of the system, specifi-
cally addresses the issue of determining how to compose the
available e-Services. After being synthesized, composite e-
Services are made available for execution. Clients, during in-
teractions, are not aware they are interacting with a composite
e-Service instead of simpler ones; all happens in a transpar-
ent manner for clients. Composite e-Services are not exe-
cuted directly by e-Service providers, but their specification
is enacted by the e-Service Integration System by suitably or-
chestrating the available e-Services. We will not address the
issues of execution further, since they go beyond the scope of
our paper. Note that in this framework, we have made the as-
sumption that the e-Service Integration System has complete
knowledge on the available e-Services and the e-Service re-
quested by the client.

In this paper, e-Services will be considered from an ab-
stract point of view. In particular, each e-Service is repre-
sented as an execution tree, i.e., as the tree of all potential
interactions of the e-Service with the client. We do not repre-
sent the information returned to the client, since the purpose
of such information is to let the client choose the next com-
mand, and the rationale behind this choice depends entirely
on the client.

As usual, we consider a tree T over an alphabet Σ as a
prefix closed (possibly infinite) set of finite words over Σ, i.e.,
a set of words T ⊆ Σ∗, called nodes, such that if x·c ∈ T ,
with x ∈ Σ∗ and c ∈ Σ, then also x ∈ T . The empty word
ε is called the root of T , and for every x ∈ T , the node x·c,
with c ∈ Σ, is called the successor of x. A labeled tree is
a pair (T , f), where T is a tree and f is a labeling function
assigning to each node of T an element of a given labeling
domain.

Let eS be an e-Service, and let Σ be the alphabet of inter-
actions supported by the e-Service. The execution tree of eS
is a labeled tree T eS = (T ,fin), where T is a tree over Σ
and fin is a boolean labeling function. Intuitively:

• Each node of T eS represents the history of the executed
sequence of interactions between the client and the e-
Service.

• The root of T eS represents the fact that the client has
not yet performed any interaction with the e-Service.

• For every node x in T eS , the successor x·c represents
the fact that, after performing the sequence of interac-
tions x, the client chooses to invoke the command c,
among those available. Therefore, each node represents
a choice point at which the client makes a decision on
the next (atomic) computation the e-Service should per-
form.

• The nodes that are labeled true by fin are called final,
and represent the fact that the e-Service can successfully
terminate its computation at this point. In other words,

a=auth

s=search

l=listen

c=add to cart

b=buy

a·s

ε

a·s·l

a

a·s·c·s

a·s·c·s·l

a·s·c·s·l·c
a·s·l·c·s·l

a·s·c·s·l·b

a·s·c

a·s·l·c·s

a·s·l·s

a·s·l·c·s·ba·s·l·s·c

a·s·l·c a·s·c·b

a·s·l·s·l·c

a·s·l·s·l·c·b
a·s·c·s·l·c·s

a·s·l·s·l
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

Figure 1: Example of e-Service execution tree

the client can quit an e-Service when it is in a final node,
and only then.1

Example 1 Figure 1 shows an execution tree representing an
e-Service that allows for searching and buying mp3 files2.
After an authentication step (interaction auth), in which
the client provides userID and password, the e-Service waits
for searching parameters (e.g., author or group name, album
or song title) and returns a list of matching files (interac-
tion search); then, the client can: (i) select and listen to
a song (interaction listen), and choose if performing an-
other search or if adding the selected file to the cart (in-
teraction add to cart); (ii) add to cart a file without
listening to it. Then, the client chooses if performing those
interactions again. Finally, by providing its payment method
details the client buys and downloads the contents of the cart
(interaction buy).

In the figure, a specific sequence of interactions is high-
lighted (shown in thick lines); it corresponds to an e-Service
execution in which the client provides its credentials and
search parameters, searches for and listens to two mp3 files,
adds the latter to the cart, and buys it.

Note that, after the interaction auth, the client may quit
the e-Service since he may have submitted wrong authenti-
cation parameters. On the contrary, the client is forced to
buy, within the single interaction buy, a certain number of
selected songs, contained in the cart, possibly after choosing
and listening some songs zero or more times.

We are now ready to give the definition of e-Service com-
position. Let eS1, . . . , eSn be n e-Services, called compo-
nent e-Services , defined over the same set of interactions
Σ, and let eS0 be the e-Service, called target e-Service ,

1Typically, in an e-Service, the root is final, to model that the
computation of the e-Service may not be started at all by the client.

2Final nodes are represented by two concentric circles.

requested by the client (also defined over Σ). Let T eS
i =

(Ti,fini) be the execution tree of eSi, for i = 0, 1, . . . , n.
We call composition labeling of T eS

0 wrt T eS
1 , . . . , T eS

n a la-
beling function comp : T0 → T1 × · · · × Tn that satisfies the
following conditions:

1. comp(ε) = 〈ε, . . . , ε〉;
2. for every node x ∈ T0, let comp(x) = 〈x1, . . . , xn〉;

then comp(x·c) = 〈y1, . . . , yn〉, where yi = xi·c if the
e-Service eSi performs the interaction c, and yi = xi

otherwise; moreover, yi = xi·c for at least one i.

3. for every node x ∈ T0, if fin0(x) = true and
comp(x) = 〈x1, . . . , xn〉, then fin i(xi) = true for
i = 1, . . . , n.

Intuitively, comp labels each node of T eS
0 by an n-tuple

〈x1, . . . , xn〉, where each xi denotes the current node of the
execution tree T eS

i . Requirement (1) on the root states that
all e-Services start from the beginning of their computation.
Requirement (2) models that each interaction of the target e-
Service is in fact executed by at least one, but possibly many,
of the component e-Services. Requirement (3) models the
fact that, when the target e-Service can be left, then all com-
ponent e-Services must be in a final configuration so that they
can terminate.

We say that a target e-Service eS0 can be composed using
a set of component e-Services eS1, . . . , eSn if there exists a
composition labeling comp of T eS

0 wrt T eS
1 , . . . , T eS

n . In-
deed, if such a composition labeling exists, then one can or-
chestrate the n component e-Services to obtain eS0 by step-
ping each component e-Service according to what specified
by the labeling comp.

3 e-Service Composition in Situation Calculus
We have characterized e-Service behavior and composition
in general terms by means of execution trees. This abstract
view needs to be refined in order to get a finite representa-
tion of e-Services that can be concretely manipulated. 3 In
this paper we propose to use formalisms developed for Rea-
soning about Actions to represent e-Services, and to use logi-
cal reasoning, in particular, satisfiability, to solve the problem
of e-Service composition. This approach gives us the ability
of dealing with a large class of e-Services using a compact
and high-level representation. There are many possible ac-
tion languages that can be used for representing e-Services.
Here we focus on Reiter’s Situation Calculus Basic Action
Theories [Reiter, 2001], which are widely known and allow
us to concentrate on the aspects specific to our problem. For
the sake of simplicity, we consider them in a propositional
setting.

We will not go over the Situation Calculus [McCarthy and
Hayes, 1969] here, except to note the following components:
there is a special constant S0 used to denote the initial sit-
uation, namely that situation in which no actions have yet
occurred; there is a distinguished binary function symbol do,
where do(a, s) denotes the successor situation to s resulting
from performing the action a; propositions whose truth val-
ues vary from situation to situation are called (propositional)

3Obviously, not all execution trees can be represented in a finite
way.

fluents, and are denoted by predicate symbols taking a situa-
tion term as their last argument; and there is a special pred-
icate Poss(a, s) used to state that action a is executable in
situation s. Within this language, we can formulate domain
theories that describe how the world changes as the result of
the available actions. One possibility are Reiter’s Basic Ac-
tion Theories, which have the following form [Reiter, 2001]:

• Axioms describing the initial situation, S0.

• Action precondition axioms, one for each primitive ac-
tion a, of the form ∀s.Poss(a, s) ≡ Ψa(s), where Ψa(s)
is a Situation Calculus formula (uniform in s) with s as
the only free variable and in which Poss does not ap-
pear.

• Successor-state axioms, one for each fluent F , of the
form ∀a, s.F (do(a, s)) ≡ ΦF (a, s), where ΦF (a, s) is
a Situation Calculus formula (uniform in s) with a and
s as the only free variables and in which Poss does not
appear. These axioms take the place of effect axioms,
but also provide a solution to the frame problem.

• Unique names axioms for the primitive actions plus
some foundational, domain independent axioms.

We represent each e-Service eS as a Basic Action Theory
Γ, where each interaction is represented by a Situation Cal-
culus action. Γ includes among its fluents a special fluent
Final , denoting that the e-Service execution can stop in that
situation. Also, Γ fully specifies the value of each fluent in
the initial situation S0. This means that we have complete in-
formation on the initial situation, and, because of the action
precondition and successor-state axioms, we have complete
information in every situation.

Observe that the fluents used in Γ have a meaning only to
the e-Service Integration System, since they are not attached
in any way to the actual e-Services. In contrast, actions rep-
resents interactions meaningful both to the client and the e-
Service the client interacts with.

Intuitively, the part of the situation tree [Reiter, 2001]
formed only by the actions that are possible (as specified
by Poss) directly corresponds to the execution tree of the
e-Service, where the final nodes are the situations in which
Final is true. To formally define such an execution tree, we
first inductively define a function n(·) from situations to se-
quences of actions (i.e., nodes of the execution tree) union a
special value undef :

• n(S0) = ε;

• n(do(a, s)) = n(s) · a if n(s) �= undef and Poss(a, s)
holds;

• n(do(a, s)) = undef otherwise.

The execution tree T eS = (T ,fin) generated by Γ is defined
as T = {n(s) | n(s) �= undef }, and fin(n(s)) = true
iff Final(s) holds. It is easy to check that T eS is indeed an
execution tree.

Once we have settled how to represent e-Services in Sit-
uation Calculus, we turn to solving e-Service composition.
Let Γ1, . . . , Γn, be the theories for the component e-Services,
and let Γ0 be the theory for the target e-Service. The basic
idea to model e-Service composition is to represent which e-
Services are executed when an action of the target e-Service

is performed. We do this by means of special predicates
Stepi(a, s), denoting that e-Service eSi executes action a in
situation s. Formally, we construct a Situation Calculus the-
ory ΓC formed by the union of the axioms below.

• Γ0;

• Γ′
i, for i = 1, . . . , n, where Γ′

i is obtained from Γi:

1. by renaming each fluent F , including Final , to F i;
2. by renaming Poss to Poss i;
3. by modifying the successor-state axioms as fol-

lows: ∀a, s.Fi(do(a, s)) ≡ (Stepi(a, s) ∧
ΦFi(a, s)) ∨ (¬Stepi(a, s) ∧ Fi(s));

• ∀a, s.(Poss(a, s) ∧ ¬Final (s)) ⊃
∨n

i=1 Stepi(a, s) ∧
Poss i(a, s)

• ∀s.Final (s) ⊃
∧n

i=1 Final i(s)

Observe that, due to the last two axioms, the resulting the-
ory ΓC is not a Basic Action Theory. In ΓC , we do not have
anymore complete knowledge on the value of the fluents of
the various e-Services. This is due to the new form of the
successor-state axioms, which make fluents depend on the
predicates Stepi, whose value is not determined uniquely by
ΓC . Note however that if we did know such values in ev-
ery situation, then the value of all the fluents would be de-
termined. Note also that the value of Step i is constrained by
the last two axioms so that, in every situation that is not final
for the target e-Service eS0, at least one of the component
e-Services steps forward. Finally, the last axiom states that, if
eS0 is final, then so are all component e-Services.

Theorem 1 Let Γ0, Γ1, . . . , Γn be the Basic Action Theories
representing the e-Services eS0, eS1, . . . , eSn respectively,
and let ΓC be the theory defined as above. Then, ΓC is satisfi-
able if and only if eS0 can be composed using eS1, . . . , eSn.

Proof (sketch). Let T eS
0 , T eS

1 , . . . , T eS
n be the execution

trees generated by Γ0, Γ1, . . . , Γn, respectively.
“If”: If eS0 can be composed using eS1, . . . , eSn,

there exists a composition labeling comp of T eS
0 wrt

T eS
1 , . . . , T eS

n . From T eS
0 and comp we can obtain a model

M of ΓC as follows.
First, from T eS

0 it is straightforward to build a model M0

of Γ0. From comp, we can then extend such a model to M ′
0

by adding the truth-value of Step i(a, s) for every component
e-Service eSi, every action a, and every situation s. Now
consider that Poss i and all fluents Fi, including Final i, are
completely determined once each Step i is determined, due to
the form of precondition and successor-state axioms, respec-
tively. This means that we can further extend M ′

0 to a model
M of Γ′

1, . . . , Γ
′
n. Moreover, by construction of comp, such

a model M satisfies the last two axioms of ΓC , and hence the
whole ΓC .

“Only If”: Let M be a model of ΓC . Note that ΓC is an
extension of Γ0, hence the execution tree generated by ΓC is
T eS

0 . Now, by using the truth values of Step i(a, s) for every
component e-Service eSi, every action a, and every situa-
tion s, one can construct a labeling function comp : T eS

0 →
T eS

1 ×· · ·×T eS
n . Due to the constraints posed to the interpre-

tation of Step1, . . . ,Stepn by the theory ΓC , comp is indeed
a composition labeling.

Example 2 Suppose we have two e-Services, eS1 and eS2,
both of them dealing with mp3 files. Specifically, eS1, al-
lows a client to search a file on the basis of some searching
parameters (e.g., author or group name, album or song title –
interaction search) and then to select and listen to a song
(interaction listen); this can be executed repeatedly and
the e-Service can be quit at any time.

The e-Service eS2, consists of an authentication step (in-
teraction auth), in which clients provide userID and pass-
word; then the e-Service waits for searching parameters and
returns a list of matching files (interaction search); at this
point the client can: (i) select and listen to a sample of a
song (interaction listen sample), and choose if perform-
ing another search or if adding the selected file to the cart
(interaction add to cart); (ii) add to cart a file with-
out listening to it. Then, the client chooses if performing
those interactions again. Finally, by providing its payment
method details the client buys and downloads the contents of
the cart (interaction buy).

Note that the e-Service eS2 differs from the one proposed
in Example 1 due to the interaction listen sample in-
stead of listen. Note also that the interaction listen is
provided by eS1.

Under the assumption that the two e-Services eS1 and eS2

deals with the same files, we can obtain the target e-Service
eS0 presented in Example 1 by composing the eS1 and eS2.
This can be done by representing eS0, eS1, and eS2 as Situ-
ation Calculus theories Γ0, Γ1, Γ2, construct from them ΓC ,
and check its satisfiability.

4 Computing e-Service Composition
Next we turn to the problem of actually computing e-Service
composition. To do so, we resort to a correspondence be-
tween the propositional Situation Calculus and Deterministic
Propositional Dynamic Logic (DPDL) [Kozen and Tiuryn,
1990]. DPDL formulas are built by starting from atomic
propositions and deterministic atomic actions as follows:

φ −→ P | ¬φ | φ1 ∧ φ2 | 〈r〉φ | [r]φ

where P is an atomic proposition and r is a regular expres-
sion over the set of actions. That is, DPDL formulas are com-
posed from atomic propositions by applying arbitrary propo-
sitional connectives, and modal operators 〈r〉φ and [r]φ. The
meaning of the latter two is, respectively, that there exists an
execution of r reaching a state where φ holds, and that all ter-
minating executions of r reach a state where φ holds. Let u be
an abbreviation for (∪a∈Σa)∗, then [u] represents the master
modality, which can be used to state universal assertions.

DPDL enjoys two properties that are of particular interest
for our aims. The first is the tree model property, which says
that every model of a formula can be unwound to a (possibly
infinite) tree. The second is the small model property, which
says that every satisfiable formula admits a finite model of
size at most exponential in the size of the formula itself.

We define a mapping δ from (uniform) Situation Calcu-
lus formulas with a free situation variable s to propositional
DPDL formulas as follows:

δ(F (s)) = F, for each fluent F

δ(Poss(a, s)) = Poss a, (sim. for Poss i(a, s))
δStepi(a, s) = Step ai, for each i ∈ 1..n

δ(¬ϕ(s)) = ¬δ(ϕ(s))
δ(ϕ1(s) ∧ ϕ2(s)) = δ(ϕ1(s)) ∧ δ(ϕ2(s))

Next, we define the DPDL counterpart ∆C of ΓC as the
conjunction of the following formulas.

• to model the situation tree, we add the conjunct
[u](

∧
a∈Σ〈a〉true), and implicitly take into account the

tree model property;

• to model the initial situation Φ0, we add the conjunct
δ(Φ0); 4

• for each precondition axiom ∀s.Poss(a, s) ≡ Ψa(s),
we add the conjunct [u](δ(Poss(a, s)) ≡ δ(Ψa(s)));
similarly for the modified precondition axioms in
Γ′

1, . . . , Γ′
n;

• for each successor-state axiom ∀a, s.F (do(a, s)) ≡
ΦF (a, s), we first instantiate the axiom for each action
in Σ and we simplify the equalities on actions. Then, for
each instantiated successor-state axiom F (do(ā, s)) ≡
Φā

F (s) – where Φā
F (s) is what we obtain from ΦF (a, s)

once we instantiate it on the action ā and resolve the
equalities on actions – we add the conjunct [u]([ā]F ≡
δ(Φā

F (s)));
• for the last two axioms of ΓC , we add the conjuncts

[u](Poss a ∧ Final ⊃
∨n

i=1 Step ai ∧ Poss ai) and
[u](Final ⊃

∧n
i=1 Final i).

Note that, in the above construction, it is necessary to in-
stantiate the successor-state axioms for each action, since,
contrary to the Situation Calculus, DPDL does not admit
quantification over actions.

Theorem 2 The DPDL counterpart ∆C of ΓC is satisfiable
if and only if ΓC is so.

Proof (sketch). Given a model of ΓC , one can easily con-
struct a model of ∆C . For the converse, we need to resort to
the tree model property, and show that for every tree model
of ∆C (possibly obtained by unwinding an arbitrary model),
we get a model of ΓC .

Observe that the size of ∆C is at most equal to the size
of ΓC times the number of actions in Σ. Hence, from the
EXPTIME-completeness of satisfiability in DPDL and from
Theorem 2 we get the following complexity result.

Theorem 3 Checking the existence of an e-Service composi-
tion can be done in EXPTIME.

Observe that, because of the small model property, from
∆C one can always obtain a model which is at most expo-
nential. From such a model one can immediately extract a fi-
nite (possibly exponential) representation of the composition
labeling.

From a practical point of view, because of the correspon-
dence between PDLs and Description Logics [Calvanese et
al., 2001], one can use current highly optimized Description

4Note that [u]· does not appear in front of the propositional for-
mula Φ0.

Logic systems [Baader et al., 2002]5 to check the existence
of e-Service compositions. Since these systems are based on
tableaux techniques that construct a model when checking for
satisfiability, one can, with minor modifications, also return
the composition labeling.

5 Discussion
In this paper we have studied e-Services in an abstract frame-
work, that of the execution trees, which has allowed us to
avoid the peculiarities of any particular representational for-
malism. One of the main contributions of this paper is to
clarify, at least under certain assumptions, the notion of com-
position in this very general setting. We have also argued
that such an abstract view can indeed be realized in reason-
ing about actions formalisms, focusing in particular on the
well-known Situation Calculus.

Note that our definition of e-Service composition does not
require execution trees to be finite branching (i.e. to have only
a finite set of possible interactions), but also allows for infi-
nite branching execution trees. This opens up the possibility
of having parametrized actions, whose parameters are arbi-
trary terms. To capture e-Services and e-Service composition
in this case, one has to resort to the full (non-propositional)
Situation Calculus. Observe that the logical theories that rep-
resent execution trees need to be complete (we have complete
information on such trees) and that particular care must be
taken in order to have terms denoting each action (i.e., one
needs some form of infinite domain closure, expressible only
in second-order logic). Naturally, in general, decidability of
composition is lost in this case, and it becomes of interest to
understand for which theories decidability is preserved.

In this paper we have made use of Situation Calculus, espe-
cially because it is one of the best known formalism for rea-
soning about actions. However, the basic ideas of this paper
may be easily exported to other reasoning about actions for-
malisms. Of particular interest is looking at e-Service compo-
sitions, as defined here, in the framework proposed by [McIl-
raith et al., 2001; McIlraith and Son, 2002]. That is each
e-Service, including the target e-Service, is represented by a
GOLOG/CONGOLOG program (which indeed defines an ex-
ecution tree, although possibly nondeterministic). Observe
that one of the main differences between our approach an
that in [McIlraith et al., 2001; McIlraith and Son, 2002] is
that in our approach the client’s needs are themselves ex-
pressed by an e-Service, while in [McIlraith et al., 2001;
McIlraith and Son, 2002] they are expressed as customiza-
tion conditions on available e-Services.

Finally, note that e-Service composition is indeed a form of
program synthesis as is planning. The main conceptual dif-
ference is that, while in planning we typically are interested
in synthesizing a new sequences of actions (or more gener-
ally a program, i.e., an execution tree) that achieves the client
goal, in e-Service composition, we try to obtain (the execu-
tion tree of) the target e-Service by reusing in a suitable way
fragments of the executions of the component e-Services. It is

5In fact, current Description Logics systems cannot handle
Kleene star. However, since in ∆C , ∗ is only used to mimic universal
assertions, and such systems have the ability of handling universal
assertions, they can indeed check satisfiability of ∆C .

interesting to notice that the notion of reuse has also arisen in
planning. One of the best known contributions in this sense is
that in [Firby, 1987], where a planning approach is presented,
based on fulfilling the goal by suitably selecting the right plan
from a plan library. There, the plan was only selected from
those in the plan library, and possibly customized to achieve
the current goal. One could think of performing planning
composition by reusing parts of the plans in the library, ex-
actly following the ideas at the base of e-Service composi-
tion. The study in this paper can be a starting point for such a
research.

Acknowledgments
This work has been partially supported by MIUR
through the “Fondo Strategico 2000” Project VISPO
(Virtual-district Internet-based Service PlatfOrm)
(http://cube-si.elet.polimi.it/vispo/index.htm)
and the “FIRB 2001” Project MAIS (Multi-channel Adaptive
Information Systems).

The work of Massimo Mecella has been also partially
supported by the European Commission under Contract No.
IST-2001-35217, Project EU-PUBLI.com (Facilitating Co-
operation amongst European Public Administration Employ-
ees) (http://www.eu-publi.com/).

References
[Aiello et al., 2002] M. Aiello, M.P. Papazoglou, J. Yang, M. Car-

man, M. Pistore, L. Serafini, and P. Traverso. A request language
for web-services based on planning and constraint satisfaction. In
Proc. of VLDB-TES’02, 2002.

[Baader et al., 2002] Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2002. To appear.

[Calvanese et al., 2001] D. Calvanese, G. De Giacomo, M. Lenz-
erini, and D. Nardi. Reasoning in expressive description logics.
In Handbook of Automated Reasoning, pages 1581–1634. Else-
vier, 2001.

[Casati and Shan, 2001] F. Casati and M.C. Shan. Dynamic and
adaptive composition of e-services. Information Systems, 6(3),
2001.

[Fauvet et al., 2001] M.C. Fauvet, M. Dumas, B. Benatallah, and
H.Y. Paik. Peer-to-peer traced execution of composite services.
In Proc. of VLDB-TES’01, 2001.

[Firby, 1987] J. Firby. An investigation into reactive planning in
complex domains. In Proc. of AAAI’87, 1987.

[Kozen and Tiuryn, 1990] D. Kozen and J. Tiuryn. Logics of pro-
grams. In Handbook of Theoretical Computer Science — Formal
Models and Semantics, pages 789–840. Elsevier, 1990.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J. Hayes.
Some philosophical problems from the standpoint of aritificial
intelligence. Machine Intelligence, 4:463–502, 1969.

[McIlraith and Son, 2002] S. McIlraith and T. Son. Adapting golog
for composition of semantic web services. In Proc. of KR’02,
2002.

[McIlraith et al., 2001] S.A. McIlraith, T.C. Son, and H. Zeng. Se-
mantic web services. IEEE Intelligent Systems, 16(2), 2001.

[Mecella et al., 2002] M. Mecella, F. Parisi Presicce, and B. Per-
nici. Modeling e-service orchestration through petri nets. In Proc.
of VLDB-TES’02, 2002.

[Pilioura and Tsalgatidou, 2001] T. Pilioura and A. Tsalgatidou. e-
services: Current technologies and open issues. In Proc. of
VLDB-TES’01, 2001.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical Sys-
tems. The MIT Press, 2001.

[Shegalov et al., 2001] G. Shegalov, M. Gillmann, and G. Weikum.
XML-enabled workflow management for e-services across het-
erogeneous platforms. VLDB Journal, 10(1), 2001.

[Wodtke and Weikum, 1997] D. Wodtke and G. Weikum. A for-
mal foundation for distributed workflow execution based on state
charts. In Proc. of ICDT’97, 1997.

