Motivation

- Many Web-mining problems can be expressed as finding “similar” sets:
 - Pages with similar words, e.g., for classification by topic
 - NetFlix users with similar tastes in movies for recommendation systems
 - Dual: movies with similar sets of fans
 - Images of related things
 - The best techniques depend on whether you are looking for items that are very similar or only somewhat similar
 - Special cases are easy, e.g., identical documents, or one document contained character-by-character in another
 - General case, where many small pieces of one document appear out of order in another, is very hard
Comparing Documents for Near Duplicates

- **Applications**: Given a body of documents, find pairs of documents with a lot of text in common, e.g.:
 - Mirror Web sites, or approximate mirrors
 - Application: Don’t want to show both in a search
 - Plagiarism, including large quotations
 - Similar news articles at many news sites
 - Application: Cluster articles by “same story”

- Simple IR approaches are not suited:
 - Document = set of words appearing in document
 - Document = set of “important” words
 - Why? we need to account for ordering of words!

Main Issues

- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)

- When we have billions of documents, keeping the full text in memory is not an option
 - We need to find a shorter representation

- How do we do pairwise comparisons of billions of documents?
 - If exact match was the issue it would be ok, can we replicate this idea?
Three Essential Techniques for Detecting Similar Documents

- **Shingling**: convert documents, emails, etc., to *sets*
- **Minhashing**: convert *large sets to short signatures*, while preserving similarity
- **Locality-sensitive hashing**: focus on *pairs of signatures likely to be similar*

Signatures: short integer vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity

Candidate pairs

- **Shingling**: convert documents, emails, etc., to *sets*
- **Minhashing**: convert *large sets to short signatures*, while preserving similarity
- **Locality-sensitive hashing**: focus on *pairs of signatures likely to be similar*

Shingles

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* characters that appears in the document
 - Represent a document by its set of *k*-shingles

- **Example**: *k=2*; doc= `abcab`. Set of 2-shingles = `{ab, bc, ca}`
 - Option: regard shingles as a bag (multiset), and count `ab` twice

- **Working Assumption**: Documents that have lots of shingles in common have similar text, even if the text appears in different order
 - What if two documents differ by a word?
 - Affects only *k*-shingles within distance *k* from the word
 - What if we reorder paragraphs?
 - Affects only the 2k shingles that cross paragraph boundaries
Shingle Size

- Is $k=2$ a good choice for size?

- **Example**: $k=2$;
 - $doc1 = abcab$. 2-shingles = \{ab, bc, ca\}
 - $doc2 = cabc$. 2-shingles = \{ab, bc, ca\}

- **Careful decision**: you must pick k large enough, or most documents will have most shingles
 - $k = 5$ is OK for short documents
 - $k = 10$ is better for long documents

Shingles: Compression Option

- How about space overhead?
 - Each character can be represented as a byte
 - k-shingle requires k bytes

- If $k=9$, to compare shingles we need to compare 9 bytes

- To improve efficiency, we can **compress long shingles**:
 - hash them to (say) 4 bytes, and
 - represent a document by the set of hash values of its k-shingles
 - $(aaabbbccc)(abcabcabc) \rightarrow h(aaabbbccc)h(abcabcabc)$
 - 18 bytes \rightarrow 8 bytes

- **Working Assumption**: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
Thought Question

- Why is it better to hash 9-shingles (say) to 4 bytes than to use 4-shingles?
 - There are many more possible shingles, this reduces the likelihood that documents that share many shingles are not similar

- **Hint:** How random are the 32-bit sequences that result from 4-shingling?
 - Assuming 20 characters are common in English, there are \((20)^4 = 160000 \) 4-shingles
 - Using 9-shingles there are \((20)^9 \gg 2^{32} \)

MinHashing
Basic Data Model: Sets

- Many similarity problems can be couched as finding subsets of some universal set that have significant intersection

- Examples include:
 - Documents represented by their sets of shingles (or hashes of those shingles): $C_i = S(D_i)$
 - Similar customers or products

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse

- Interpret set intersection as bitwise AND, and set union as bitwise OR

Jaccard Similarity of Sets

- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union
 - $Sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$

- Example:

\[\begin{array}{c}
{A} & {B} \\
\bullet & \bullet \\
\end{array} \]

3 in intersection
8 in union
Jaccard similarity
\[= \frac{3}{8} \]
Motivation for Min-Hash

- Suppose we need to find near-duplicate documents among \(N = 1 \) million \((10^6)\) documents

- Naively, we would have to compute pairwise Jaccard similarities for every pair of docs
 - \(N(N-1)/2 \approx 5 \times 10^{11} \) comparisons
 - At \(10^5 \) secs/day and \(10^6 \) comparisons/sec, it would take 5 days

- For \(N = 10 \) million \((10^7)\), it takes more than a year…

From Sets to Boolean Matrices

- Rows = elements (shingles) of the universal set
- Columns = sets (documents)
 - 1 in row \(e \) and column \(S \) if and only if \(e \) is a member of \(S \)
 - Column similarity is the Jaccard similarity of the sets of their rows with 1

- Typical matrix is sparse (most rows are of type d, see later)
 - Sparse matrices are usually better represented by the list of places where there is a non-zero value
 - But the boolean matrix picture is conceptually useful
Example: Jaccard Similarity of Columns

\[
\begin{array}{cc}
C_1 & C_2 \\
a & 0 & 1 \\
b & 1 & 0 \\
c & 1 & 1 \\
d & 0 & 0 \\
e & 1 & 1 \\
f & 0 & 1 \\
\end{array}
\]

Sim (C_1, C_2) = \frac{2}{5} = 0.4

Outline: Finding Similar Columns

- Naïve approach:
 1. Compute signatures of columns = small summaries of columns
 2. Examine pairs of signatures to find similar columns
 - Requirement: similarities of signatures and columns are related
 3. Optional: check that columns with similar signatures are really similar

- This scheme works but …
 - What if the set of signatures (or k-shingles) is too large to fit in the memory?
 - Or the number of documents are too large?

- Idea: Find a way to hash a document (column) to a single (small size) value! and similar documents to the same value!
 - Warning: These methods can produce false negatives, and even false positives (if the above optional check is not made)
Signatures

- **Key idea:** “hash” \(h(\cdot) \) each column \(C \) to a small signature, such that:
 1. \(h(C) \) is small enough that we can fit a signature in main memory for each column
 2. \(\text{Sim}(C_1, C_2) \) is the same as the “similarity” of \(h(C_1) \) and \(h(C_2) \)
- By hashing docs into buckets we expect that “most” pairs of near duplicate docs hash into the same bucket!
- **Goal:** Find a hash function \(h(\cdot) \) such that:
 - If \(\text{sim}(C_1, C_2) \) is high, then with high probability \(h(C_1) = h(C_2) \)
 - If \(\text{sim}(C_1, C_2) \) is low, then with high probability \(h(C_1) \neq h(C_2) \)
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function!
 - There is a suitable hash function for the Jaccard similarity:
 - It is called Min-Hashing!

Minhashing

- **History:** invented by Andrei Broder in 1997 (AltaVista) to detect near duplicate web pages
- Imagine the rows of the Boolean matrix permuted under random permutation \(\pi \)
- Define a “hash” function \(h_{\pi}(C) \) = the index of the first (in the permuted order \(\pi \)) row in which column \(C \) has value 1:
 - \(h_{\pi}(C) = \min_{\pi}(C) \)
Min-hashing Example

Permutations	Input matrix	Signature matrix M
1 4 3 | 1 0 1 0 | 2 1 2 1
3 2 4 | 1 0 0 1 | 2 1 4 1
7 1 7 | 0 1 0 1 | 1 2 1 2
6 3 6 | 0 1 0 1 |
2 6 1 | 0 1 0 1 |
5 7 2 | 1 0 1 0 |
4 5 5 | 1 0 1 0 |

2nd element of the permutation is the first to map to a 1 in col 1

4th element of the permutation is the first to map to a 1 in col 3

$h_2(3)=4$ (permutation 2, column 3)

Surprising Property

- The probability (over all permutations of the rows) that $h(C_1)=h(C_2)$ is the same as $\text{Sim}(C_1, C_2)$:
 - $\Pr[h_n(C_1) = h_n(C_2)] = \text{sim}(C_1, C_2)$

- With multiple signatures we get a good approximation

- Use several independent hash functions to create a signature of a column
 - The similarity of signatures is the fraction of the hash functions in which they agree
 - Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Why?

- Let X be a document (set of shingles), $y \in X$ is a shingle
- Then: $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any shingle $y \in X$ is mapped to the \min element
- Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
- So the prob. that both are true is the prob. $y \in C_1 \cap C_2$
- $\Pr[\min(\pi(C_1)) = \min(\pi(C_2))] = |C_1 \cap C_2| / |C_1 \cup C_2| = \text{sim}(C_1, C_2)$

Four Types of Rows

- Given columns C_1 and C_2, rows may be classified as:

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Also, $a = \# \text{ rows of type a}$, etc.
- The ratio of type a, b, and c that determine the similarity and the probability that $h(C_1) = h(C_2)$
 - Note $\text{Sim}(C_1, C_2) = a / (a + b + c)$
 - Then: $\Pr[h(C_1)=h(C_2)] = \text{Sim}(C_1, C_2)$
- Look down the permuted columns C_1 and C_2 until we see a 1
 - If it’s a type-a row, then $h(C_1)=h(C_2)$
 - If a type-b or type-c row, then not
Min Hashing – Example

Input matrix

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MinHash – False Positive/Negative

- Instead of comparing sets, we now compare only 1 bit!

- False positive?
 - False positive can be easily dealt with by doing an additional layer of checking (treat minhash as a filtering mechanism)

- False negative?
 - Requiring full match of signature is strict, some similar sets will be lost

- High error rate! Can we do better?
Minhash Signatures

- Pick (say) 100 random permutations of the rows
- Think of $\text{Sig}(C)$ as a column vector
- Let $\text{Sig}(C)[i] = \text{min}(\pi_i(C))$
 according to the i th permutation, the number of the first row that has a 1 in column C

- Note: The sketch (signature) of document C is small ~ 400 bytes!
 - We achieved our goal! We “compressed” long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
 - Suppose 1 billion rows
 - Hard to pick a random permutation from 1…billion
 - Sorting would take a long time
 - Representing a random permutation requires 1 billion entries
- A good approximation to permuting rows: pick 100 (?) hash functions h_i
 - Simulate the effect of a random permutation by a random hash function that maps row numbers to as many buckets as there are rows
 - Row hashing: ordering under h_i gives a random row permutation!
- One-pass implementation
 - For each column C and each hash function h_i, keep a “slot” $M(i,C)$ for the min-hash value
 - Intent: $M(i,C)$ will become the smallest value of $h_i(r)$ for which column C has 1 in row r
 - i.e., $h_i(r)$ gives order of rows for i th permutation
Implementation

\[M(i,C) = \infty \]
for each row \(r \)
 for each column \(C \)
 if \(C \) has 1 in row \(r \) // Scan rows looking for 1s
 for each hash function \(h_i \) do
 // Suppose row \(r \) has 1 in column \(C \)
 if \(h_i(r) \) is a smaller value than \(M(i,C) \) then
 \(M(i,C) := h_i(r); \)

How to pick a random hash function \(h(x) \)?
Universal hashing:
\[h_{a,b}(x)=((a \cdot x+b) \ mod \ p) \ mod \ N \]
where:
\(a,b \) ... random integers
\(p \) ... prime number (\(p > N \))

Example

\[h(x) = x \mod 5 \]
\[g(x) = 2x+1 \mod 5 \]

<table>
<thead>
<tr>
<th>Row</th>
<th>C1</th>
<th>C2</th>
<th>Jaccard=1/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[h(1) = 1 \quad 1 \quad \infty \]
\[g(1) = 3 \quad 3 \quad \infty \]
\[h(2) = 2 \quad 1 \quad 2 \]
\[g(2) = 0 \quad 3 \quad 0 \]
\[h(3) = 3 \quad 1 \quad 2 \]
\[g(3) = 2 \quad 2 \quad 0 \]
\[h(4) = 4 \quad 1 \quad 2 \]
\[g(4) = 4 \quad 2 \quad 0 \]
\[h(5) = 0 \quad 1 \quad 0 \]
\[g(5) = 1 \quad 2 \quad 0 \]

\[M(i,C) \]
So far …

- Represent a document as a set of hash values (of its k-shingles)
- Transform set of k-shingles to a set of minhash signatures
- Use Jaccard to compare two documents by comparing their signatures
- Is this method (i.e., transforming sets to signature) necessarily “better”??

Locality-Sensitive Hashing
The BIG Picture (All-pair comparison)

- Suppose, in main memory, a representation of a large number of objects
 - May be signatures of documents as in minhashing
- We want to pair-wise compare each for finding those pairs that are sufficiently similar

Finding Similar Pairs

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns

- Naïve solution
 - For each document, compare with the other N-1 documents
 - Takes N-1 comparisons
 - Can be optimized using filter-and-refine mechanisms
 - Requires N*(N-1)/2 comparisons

- Example:
 - 10^7 columns implies ~ 10^{14} column-comparisons
 - At 1 μs/comparison 10^8 (≈ 3 years!)
Locality-Sensitive Hashing

- Use a function $f(x, y)$ that tells whether or not x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

- With only one hash function on one entire column of signature, likely to have many false negatives.

- Key idea: Apply the hash function on the columns of signature matrix M multiple times, each on a partition of the column.

 - Arrange that (only) similar columns are likely to hash (i.e., with high probability) to the same bucket.

 - Each pair of documents that hashes at least once into the same bucket is a candidate pair.

Candidate Generation from Minhash Signatures

- Pick a similarity threshold s, a fraction $0 < s < 1$.

- A pair of columns x and y is a candidate pair if their signatures agree in at least fraction s of the rows.

 - i.e., $M(i, x) = M(i, y)$ for at least fraction s values of i.

 - We expect documents x and y to have the same (Jaccard) similarity as their signatures.
Partition Into Bands

- Divide matrix M into b bands of r rows
 - For each document, compute b sets of r minhash values
 - Each set is a mini-signature with r minhash functions (or a concatenation of the r minhash values together)

$$n = b \cdot r$$ hash functions

r rows per band

b bands

Partition into Bands

- For each band, hash its portion of each column (i.e., the concatenated values) to a hash table with k buckets
 - this has the "same" effect as ensuring all columns have the same values
 - make k as large as possible to minimize collision
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Columns 2 and 6 are probably identical
Columns 6 and 7 are surely different

$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
 - Hereafter, we assume that “same bucket” means “identical in that band.”
 - Assumption needed only to simplify analysis, not for correctness of algorithm.
- Finding all pairs within a bucket become computationally cheaper!
 - Declare all pairs within a bucket to be “matching” OR
 - Perform pair-wise comparisons for those documents that fall into the same bucket.
- Much smaller than pair-wise over all documents.

Example: Effect of Bands

- Suppose 10^5 columns of M (100k docs).
- Signatures of 10^2 integers (rows).
- If each signature is represented as a 4 byte integer value, we need only $10^2 \times 4 \times 10^5 = 40$Mb of memory!
- 5×10^9 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 integers/band.
- Goal: Find pairs of documents that are at least $s = 0.8$ similar.
Suppose C_1, C_2 are 80% Similar

- Find pairs of $\geq s=0.8$ similarity, set $b=20$, $r=5$
- Assume: $\text{sim}(C_1, C_2) = 0.8$
 - Since $\text{sim}(C_1, C_2) \geq s$, we want C_1, C_2 to be a candidate pair
 - We want them to hash to at least 1 common bucket (at least one band is identical)

- Probability C_1, C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1, C_2 are not similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)

- We would find 99.965% pairs of truly similar documents

Suppose C_1, C_2 are 30% Similar

- Find pairs of $\geq s=0.8$ similarity, set $b=20$, $r=5$
- Assume: $\text{sim}(C_1, C_2) = 0.3$
 - Since $\text{sim}(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)

- Probability C_1, C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1, C_2 identical in at least 1 of 20 bands: $1-(1-0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s
LSH Involves a Tradeoff

- How to get a step-function?
- Pick:
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band to balance false positives/negatives
- Example: if we had only 20 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH – What We Want

Similarity $t = \text{sim}(C_1, C_2)$ of two sets

- Probability of sharing a bucket

What One Band Gives You

Single hash signature

- This is what 1 hash-code gives you
 \[\Pr[h_n(C_1) = h_n(C_2)] = \text{sim}(C_1, C_2) \]
What b Bands of r Rows Gives You

- The S-curve is where the “magic” happens

\[s \sim (1/b)^{1/r} \]

Probability of sharing a bucket

At least one band identical
No bands identical

Some row of a band unequal
All rows of a band are equal

Example: $b = 20; r = 5$

<table>
<thead>
<tr>
<th>t</th>
<th>$1-(1-t^r)^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>

\[s = 0.5 \sim (1/20)^{1/5} \]

Figure 3.7: The S-curve
Given a fixed threshold s

We want to choose r and b such that the
$\Pr(\text{Candidate pair})$
has a "step" right around s

Picking r and b: The S-Curve

Picking r and b to get the best S-curve

Blue area: False Negative rate
These are pairs with $\text{sim} > s$ but the X fraction won't share a band and then will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation!

Green area: False Positive rate
These are pairs with $\text{sim} < s$ but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them.
Picking \(r \) and \(b \) to Get Desired Performance

- 50 hash-functions \((r \cdot b = 50)\)

\[
\text{Threshold } s
\]

\[
r=2, \ b=25
\]

\[
r=5, \ b=10
\]

\[
r=10, \ b=5
\]

Limitations of Minhash

- Minhash is great for near-duplicate detection
 - Set high threshold for Jaccard similarity

- Limitations:
 - Jaccard similarity only
 - Set-based representation, no way to assign weights to features

- Random projections:
 - Works with arbitrary vectors using cosine similarity
 - Same basic idea, but details differ
 - Slower but more accurate: no free lunch!
LSH Generalizations

Multiple Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows

- So far, we have assumed only one hash function
 - Shorthand: $h(x)=h(y)$ implies “h says x and y are equal”

- We could have used a family of hash functions
 - A (large) set of related hash functions generated by some mechanism
 - We should be able to efficiently pick a hash function at random from such a family
Locality-Sensitive (LS) Families

- Consider a space S of points with a distance measure d
- A family H of hash functions is said to be (d_1, d_2, p_1, p_2)-sensitive if for any x and y in S:
 - If $d(x, y) \leq d_1$, then prob over all h in H that $h(x) = h(y)$ is at least p_1
 - If $d(x, y) \geq d_2$, then prob over all h in H that $h(x) = h(y)$ is at most p_2

Example of LS Family: MinHash

- Let
 - $S =$ space of all sets,
 - $d =$ Jaccard distance,
 - H is family of Min-Hash functions for all permutations of rows
- Minhashing gives a (d_1, d_2, p_1, p_2)-sensitive family for any $d_1 < d_2$
 - E.g., H is a $(1/3, 2/3, 2/3, 1/3)$-sensitive family for S and d
 - If distance $\leq 1/3$ (i.e., similarity $\geq 2/3$), then probability that minhash values agree is $\geq 2/3$
 - This is because for any hash function $h \in H$
 $$\Pr(h(x) = h(y)) = 1 - d(x, y)$$
- Simply restates theorem about Min-Hashing in terms of distances rather than similarities!
Example of LS Family: MinHash

- **Claim:** Min-hash H is a $(1/3, 2/3, 2/3, 1/3)$-sensitive family for S and d

 If distance $< 1/3$ (so similarity $\geq 2/3$)

 Then probability that Min-Hash values agree $\geq 2/3$

- For Jaccard similarity, Min-Hashing gives a $(d_1, d_2, (1-d_1), (1-d_2))$-sensitive family for any $d_1 < d_2$

- Theory leaves unknown what happens to pairs that are at distance between d_1 and d_2
 - **Consequence:** No guarantees about fraction of false positives in that range

Amplifying a LS-family

- Can we reproduce the “S-curve” effect we saw before for any LS family?

- The “bands” technique we learned for signature matrices carries over to this more general setting
 - So we can do LSH with any (d_1, d_2, p_1, p_2)-sensitive family

- Two constructions:
 - **AND** construction like “rows in a band”
 - **OR** construction like “many bands”
AND Construction of Hash Functions

- Given family H, construct family H' consisting of r functions from H

- For $h=[h_1, \ldots , h_r]$ in H', $h(x)=h(y)$ if and only if $h_i(x)=h_i(y)$ for all i, $1 \leq i \leq r$

- Note this has the same effect as "r signatures"
 - x and y are considered a candidate pair if every one of the r rows say that x and y are equal

- Theorem: If H is (d_1, d_2, p_1, p_2)-sensitive, then H' is (d_1, d_2, p_1^r, p_2^r)-sensitive
 - That is, for any p, if p is the probability that a member of H will declare (x, y) to be a candidate pair, then the probability that a member of H' will so declare is p^r
 - Proof: Use the fact that h_j's are independent

Subtlety Regarding Independence

- Independence of hash functions really means that the probability of two hash functions saying "yes" is the product of each saying "yes"
 - But two hash functions could be highly correlated
 - For example, in Min-Hash if their permutations agree in the first one million entries
 - However, the probabilities in definition of a LSH-family are over all possible members of H, H'
OR Construction of Hash Functions

- Given family \mathbf{H}, construct family \mathbf{H}' consisting of b functions from \mathbf{H}
- For $h=[h_1,...,h_b]$ in \mathbf{H}', $h(x)=h(y)$ if and only if $h_i(x)=h_i(y)$ for at least one i, $1 \leq i \leq b$
- Mirrors the effect of combining “b bands”:
 - x and y become a candidate pair if any set makes them a candidate pair
- **Theorem:** If \mathbf{H} is (d_1,d_2,p_1,p_2)-sensitive, then \mathbf{H}' is $(d_1,d_2,1-(1-p_1)^b,1-(1-p_2)^b)$-sensitive
 - That is, for any p, if p is the probability that a member of \mathbf{H} will declare (x,y) to be a candidate pair, then $(1-p)$ is the probability that it will not declare so
 - $(1-p)^b$ is the probability that none of the family h_1, h_b will declare (x,y) a candidate pair
 - $1-(1-p)^b$ is the probability that at least one h_i will declare (x,y) a candidate pair, and therefore that \mathbf{H}' will declare (x,y) to be a candidate pair

Effect of AND & OR Constructions

- **AND** makes all probabilities shrink, but by choosing r correctly, we can make the lower probability approach 0 while the higher does not
- **OR** makes all probabilities grow, but by choosing b correctly, we can make the upper probability approach 1 while the lower does not
Composing Constructions: AND-OR Composition

- r-way **AND** construction followed by b-way **OR** construction
 - Exactly what we did with minhashing
 - If b bands match in all r values hash to same bucket
 - Columns that are hashed into ≥ 1 common bucket \rightarrow candidate

- Take points x and y s.t. $\Pr[h(x)=h(y)] = p$
 - H will make (x,y) a candidate pair with probability p

- Construction makes (x,y) a candidate pair with probability $1-(1-p^r)^b$
 - The S-Curve!

Example

- **Example:** Take H and construct H' by the **AND** construction with $r = 4$. Then, from H', construct H'' by the **OR** construction with $b = 4$

- E.g., transform a $(0.2, 0.8, 0.8, 0.2)$-sensitive family into a $(0.2, 0.8, 0.8785, 0.0064)$-sensitive family
Composing Constructions: OR-AND Composition

- b-way OR construction followed by r-way AND construction
- Transforms probability p into $(1 - (1 - p)^b)^r$
 - The same S-curve, mirrored horizontally and vertically

Example

- Example: Take H and construct H' by the OR construction with $b = 4$. Then, from H', construct H'' by the AND construction with $r = 4$
- E.g., transform a $(0.2, 0.8, 0.8, 0.2)$-sensitive family into a $(0.2, 0.8, 0.9936, 0.1215)$-sensitive family
Cascading Constructions

- **Example**: Apply the (4,4) **OR-AND** construction followed by the (4,4) **AND-OR** construction

- Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9999996,.0008715)-sensitive family
 - Note this family uses 256 (= 4*4*4*4) of the original hash functions

Applications of LSH
Application 2: A LHS Family for Fingerprint Matching

- Fingerprint can be uniquely defined by its minutiae
- By overlaying a grid on the fingerprint image, we can extract the grid squares where the minutiae are located
- Two fingerprints are similar if the set of grid squares significantly overlap
 - Jaccard distance and minhash can be used, but …
- Let \(F \) be a family of functions
 - \(f \in F \) is defined by, say 3, grid squares such that \(f \) returns the same bucket whenever the fingerprint has minutiae in all three grid squares
 - \(f \) sends all fingerprints that have minutiae in all three of \(f \)'s grid points to the same bucket
 - Two fingerprints match if they are in the same bucket

LSH for Fingerprint Matching

- Suppose probability of finding a minutiae in a random grid square of a random finger is 0.2
- And probability of finding one in the same grid square of the same finger (different fingerprint) is 0.8
- Prob two fingerprints from different fingers match=\((0.2)^3\times(0.2)^3=0.000064\)
- Prob two fingerprints from the same finger match=\((0.2)^3\times(0.8)^3=0.004096\)
- Use more functions from \(F \)
- Take \(1024 \) functions and do a OR construction
 - Prob putting the fingerprints from the same finger in at least one bucket is \(1-(1-0.004096)^{1024}=0.985 \)
 - Prob two fingerprints from different fingers falling into the same bucket is \(1-(1-0.000064)^{1024}=0.063 \)
 - We have 1.5% false negatives and 6.3% false positives
- Using AND construction will
 - Greatly reduce the prob of a false positive
 - Small increase in false-negative rate
References

● CS9223 – Massive Data Analysis J. Freire & J. Simeon New York University Course 2013
● CS246: Mining Massive Datasets Jure Leskovec, Stanford University, 2014
● CS5344: Big Data Analytics Technology, TAN Kian-Lee, National University of Singapore 2014