Some History

- Bar code technology allowed retailers to collect massive volumes of sales data
 - **Basket data**: transaction date, set of items bought
 - Data is stored in tertiary storage

- Leverage information for marketing
 - How to design coupons?
 - How to organize shelves?

- The **birth of data mining**!
 - Agrawal et al. (SIGMOD 1993) introduced the problem of mining a large collection of basket data to discover association rules
 - Many papers followed…
Example: Supermarket Shelf-Management

- **Goal**: Identify items that are bought together by sufficiently many customers
- **Approach**: Process the sales data collected with barcode scanners to find dependencies among items
 - Given a set of transactions (market-basket model), find rules that will predict the occurrence of an item based on the occurrences of other items in the transactions
- **A classic rule**:
 - If one buys diaper and milk, then he is likely to buy beer
 - Don't be surprised if you find six-packs next to diapers!

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:

- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}

Application Examples of Association Rules

- **Items** = products; **baskets** = sets of products someone bought in one visit to the store
- **Reveals** typical buying behaviour of customers
 - **Marketing and sales promotion** (suggests tie-in “tricks”)
 - a product \(p\) appearing as rules’ consequent can be used to determine what should be done to boost \(p\) sales
 - a product \(p'\) appearing as rules' antecedent can be used to see which other products would be affected if the store discontinues selling \(p'\)
 - a rule \(p' \rightarrow p\) an be used to see what products \(p'\) should be sold to promote sale of \(p\), e.g., run sale on diapers and raise beer’ price
 - **Shelf management**: position certain items strategically
 - **Recommendation**, e.g., Amazon’s people who bought \(X\) also bought \(Y\)
- **High support** needed, or no €€’s
- Only useful if many buy diapers & beer
The Market-Basket Model

- A large set of items, e.g., things sold in a supermarket
 \[I = \{i_1, i_2, \ldots, i_n\} \]

- A large set of baskets/transactions, e.g., the things one customer buys in one visit to the store
 \[t \text{ a set of items, and } t \subseteq I \]

- Transaction Database \(T \): a set of transactions \(T = \{t_1, t_2, \ldots, t_n\} \)

- Our interests: Identify associations among “items”, not “baskets”
 \[\text{E.g., People who bought Diaper tend to buy Beer} \]

Market-Baskets and Associations

- A many-many mapping (association) between two kinds of things
 \[\text{E.g., 90\% of transactions that purchase diaper&milk also purchase beer} \]

- Given a set of baskets, discover association rules
 \[\text{The technology focuses on common events, not rare events (“long tail”)} \]

- 2-step approach
 \[\text{Find frequent itemsets} \]
 \[\text{Generate association rules} \]

Rules Discovered:
\[\{\text{Milk}\} \rightarrow \{\text{Coke}\} \]
\[\{\text{Diaper, Milk}\} \rightarrow \{\text{Beer}\} \]
Causation vs. Association

\[X \rightarrow Y \]

- In machine learning, \(X \rightarrow Y \) usually implies a causal relationship
 - "a change in \(X \) (seen as cause) forces a change in \(Y \) (seen as effect)"
 - causation is complex and difficult to prove relationship
- In rule mining, \(X \rightarrow Y \) is an association relationship
 - "\(X \) is associated with \(Y \)"
 - Much easier to calculate and prove
 - of less interest for medical research than for market research
- Association rules indicate only the existence of a statistical relationship between \(X \) and \(Y \)
 - They do not specify the nature of the relationship

Frequent Itemsets

- Simplest question: find sets of items, called itemsets, that appear "frequently" in the baskets
 - E.g., \{milk, diaper, bear\} is an itemset
- Support for itemset \(A \) = the number of baskets containing all items in \(A \)
 - Often expressed as a fraction of the total number of baskets
- Given a support threshold \(s \), sets of items that appear in at least \(s \) baskets are called frequent itemsets

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Support of \{Milk, Diaper\} = 3
Support of \{Milk, Diaper, Beer\} = 2
Example: Frequent Itemsets

- Items = \{milk, cereal, diaper, beer, juice\}
- Support = 3 baskets
 - \(B_1 = \{m, c, b\}\)
 - \(B_2 = \{m, d, j\}\)
 - \(B_3 = \{m, b\}\)
 - \(B_4 = \{c, j\}\)
 - \(B_5 = \{m, d, b\}\)
 - \(B_6 = \{m, c, b, j\}\)
 - \(B_7 = \{c, b, j\}\)
 - \(B_8 = \{b, c\}\)

- Frequent itemsets: \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{b, c\}, \{c, j\}

The Market-Basket Model

- A \(k\)-itemset is an itemset with \(k\) items
 - E.g., \(A = \{\text{milk, diaper}\}\) is a 2-itemset
 - E.g., \(A' = \{\text{milk, bear, diaper}\}\) is a 3-itemset

- A transaction \(t\) contains an itemset \(A\) in \(I\), if \(A \subseteq t\)
 - E.g., basket \(B_6 = \{\text{milk, cereal, bear, diaper}\}\) contains the 3-itemset \(A\)

- An association rule is an implication of the form:
 \[A \rightarrow B, \text{ where } A, B \subseteq I, \text{ and } A \cap B = \emptyset\]
Association Rules

- **If-then rules** about the contents of baskets
 - \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is likely to contain \(j \)”

- A general form of an association rule is \(\text{Body} \rightarrow \text{Head} [\text{Support}, \text{Confidence}] \)
 - **Antecedent**, left-hand side (LHS), body
 - **Consequent**, right-hand side (RHS), head
 - **Support**, frequency
 - **Confidence**, strength

- **Example**: diapers \(\rightarrow \) beer \([50\%, 60\%]\)
 - “IF buys diapers, THEN buys beer in 60\% of the cases in 50\% of the transactions”

Support and Confidence

- **Support** for the rule \(A \rightarrow B \): denotes the frequency of the rule within all transactions in the database \(T \), i.e., the probability that a transaction contains the union of \(A \) and \(B \)
 - \(\text{support}(A \rightarrow B [s,c]) = p(A \cup B) = \text{support}({A,B}) \)

- **Confidence** of the rule \(A \rightarrow B \): denotes the percentage of transactions in the database \(T \), containing \(A \) which also contain \(B \), i.e., the conditional probability that a transaction containing \(A \) also contains \(B \)
 - \(\text{confidence}(A \rightarrow B [s,c]) = p(B | A) = p(A \cup B) / p(A) = \text{support}({A,B}) / \text{support}({A}) \)
Example: Confidence

\[B_1 = \{m, c, b\} \quad B_2 = \{m, d, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, d, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

\[B_1 \subseteq B_2 \quad B_3 \subseteq B_4 \quad B_5 \subseteq B_6 \quad B_7 \subseteq B_8 \]

- An association rule: \(\{m, b\} \rightarrow c \)
 - Support (\(\{m, b\} \)) = 4, Support (\(\{m, b, c\} \)) = 2
 - Confidence (\(\{m, b\} \rightarrow c \)) = \(\frac{2}{4} = 50\% \)

\[\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)} \]

Finding Association Rules

- **Goal**: Find all rules that satisfy the user-specified minimum support (\textit{minsup}) and minimum confidence (\textit{minconf})
 - \(\text{support} \geq s \) and \(\text{confidence} \geq c \)

- **Key Features**
 - Completeness: find all rules
 - Mining with data on disk (not in memory)

- **Hard part**: Finding the frequent itemsets
 - If \(A \rightarrow B \) has high support and confidence, then both \(A \) and \(B \) will be frequent
How to Set the Appropriate MinSup?

- Many real data sets have skewed support distribution

- If minsup is too high, we could miss itemsets involving interesting rare items (e.g., expensive products)

- If minsup is too low, it is computationally expensive and the number of itemsets is very large

- A single minsup threshold may not be always effective

Association Rule Mining Task

- Brute-force approach:
- List all possible association rules
 - Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of ARs = R

 $$R = 3^d - 2^{d-1} + 1$$

- Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - Computationally prohibitive!
Counting Frequent Itemsets in One pass

- Each itemset is a **candidate** frequent itemset
- Count the support of each candidate by scanning the database

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

- Match each basket against every candidate
- Complexity ~ $O(N M^w)$ => Expensive since $M = 2^d$
 - Need a lot of memory space else swapping counts in/out is very “expensive”

Frequent Itemset Generation Strategies

- Reduce the **number of candidates** (M)
 - Complete search: $M = 2^d$
 - Use pruning techniques to reduce M

- Reduce the **number of transactions** (N)
 - Reduce N as the size of itemset increases

- Reduce the **number of comparisons** ($N M$)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction
Reducing the Number of Candidates: The Apriori algorithm

- Rules originating from the same itemset have identical support but can have different confidence
 - Thus, we may decouple the support and confidence requirements
- Two steps:
 - **Frequent Itemsets**: Find all itemsets \(I \) that have minimum support
 - usually a computationally expensive phase!
 - Key idea: (anti-)monotonicity property of the support measure
 - If an itemset is frequent, then all of its subsets must also be frequent
 - If an itemset is not frequent, then all of its supersets cannot be frequent
 \[\forall A, B: (A \subseteq B) \Rightarrow s(A) \geq s(B) \]
 - The support of an itemset never exceeds the support of its subsets
 - This is known as the anti-monotone property of support

The Apriori algorithm

- **Rule generation**: Use frequent itemsets \(I \) to generate rules
 - For every subset \(A \) of \(I \), generate rule \(A \rightarrow I \setminus A \)
 - Since \(I \) is frequent, \(A \) is also frequent
 - Variant 1: Perform a single pass to compute the rule confidence
 - \(\text{conf}(A, B \rightarrow C, D) = \frac{\text{supp}(A, B, C, D)}{\text{supp}(A, B)} \)
 - Variant 2: Filter out bigger rules from smaller ones
 - Observation: If \(A, B, C \rightarrow D \) is below confidence, so is \(A, B \rightarrow C, D \)
- Output rules above confidence threshold
- In general, confidence does not have an anti-monotone property
 - \(\text{conf}(ABC \rightarrow D) \) can be larger or smaller than \(\text{conf}(AB \rightarrow D) \)
- But confidence of rules generated from the same itemset has an anti-monotone property
 - e.g., \(I = \{A, B, C, D\} \): \(\text{conf}(ABC \rightarrow D) \geq \text{conf}(AB \rightarrow CD) \geq \text{conf}(A \rightarrow BCD) \)
- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
Example

\[B_1 = \{m, c, b\} \quad B_2 = \{m, d, j\} \]
\[B_3 = \{m, c, b, n\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, d, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- Support threshold \(s = 3 \), confidence \(c = 0.75 \)

1) Frequent itemsets:
- \(\{b, m\} \quad \{b, c\} \quad \{c, m\} \quad \{c, j\} \quad \{m, c, b\} \)

2) Generate rules:
- \(b \rightarrow m: c = 4/6 \quad b \rightarrow c: c = 5/6 \quad b, c \rightarrow m: c = 3/5 \)
- \(m \rightarrow b: c = 4/5 \quad \ldots \quad b, m \rightarrow c: c = 3/4 \)
- \(b \rightarrow c, m: c = 3/6 \)

\[\text{conf}(A \rightarrow B) = \frac{\text{supp}(A, B)}{\text{supp}(A)} \]

Frequent Itemset Generation

Given \(d \) items, there are \(2^d \) possible candidate itemsets
Illustrating the A-Priori Principle

Low Confidence Rule

Rule Generation Example

Pruned Rules
How to Improve A-priori Efficiency

- **Hash-based itemset counting**
 - A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent

- **Transaction Reduction**
 - A transaction that does not contain any frequent k-itemset is useless in subsequent scans

- **Partitioning**
 - Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of the DB

- **Sampling**
 - Mining on a subset of given data, lower support threshold + a method to determine completeness

- **Dynamic itemset counting**
 - Add new candidate itemsets only when all of the subsets are estimated to be frequent

Compacting Output Rules: Classes of Itemsets

- To reduce the number of rules we can post-process and only output:
 - **Maximal Frequent itemsets**: no immediate superset is frequent
 - Can generate all frequent itemsets (without support)
 - **Closed itemsets**: no immediate superset has the same count (>0)
 - Can generate all frequent itemsets and their support
 - Alternately:
 - **Free itemset**: no immediate subset has the same count (>0)
Example: Maximal/Closed

<table>
<thead>
<tr>
<th>Count</th>
<th>Maximal (s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B 5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C 3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB 4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC 2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC 3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC 2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Frequent, but superset BC also frequent
- Frequent, and its only superset, ABC, not freq
- Superset BC has same count
- Its only superset, ABC, has smaller count

Non-redundant Association Rules

- An association rule is “redundant” when it can be inferred by others
- Non redundant rule with minimal body and head (free itemsets)
 - For all $X, Y \subseteq A$ and $X \cap Y = \emptyset$, the rule $X \rightarrow Y$ is non redundant iff it does not exist another different rule $X' \rightarrow Y'$, such that $X' \subseteq X$ and $Y' \subseteq Y$, $s(X \rightarrow Y) = s(X' \rightarrow Y')$ and $c(X \rightarrow Y) = c(X' \rightarrow Y')$
- Non redundant rule with maximal body and head (closed itemsets)
 - For all $X, Y \subseteq A$ and $X \cap Y = \emptyset$, the rule $X \rightarrow Y$ is non redundant iff it does not exist another different rule $X' \rightarrow Y'$, such that $X \subseteq X'$ and $Y \subseteq Y'$, $s(X \rightarrow Y) = s(X' \rightarrow Y')$ and $c(X \rightarrow Y) = c(X' \rightarrow Y')$
- Non redundant rule with minimal body and maximal head (free and closed itemsets)
 - For all $X, Y \subseteq A$ and $X \cap Y = \emptyset$, the rule $X \rightarrow Y$ is non redundant iff it does not exist another different rule $X' \rightarrow Y'$, such that $X' \subseteq X$ and $Y' \subseteq Y'$, $s(X \rightarrow Y) = s(X' \rightarrow Y')$ and $c(X \rightarrow Y) = c(X' \rightarrow Y')$
Types of Association Rules

- **Types of values handled**
 - **Boolean** association rules
 - **Quantitative** association rules (rules with intervals)
 - $\text{age}(x, "34-35") \land \text{income}(x, "30-50K") \Rightarrow \text{buys}(x, "HR TV")$

- **Levels of abstraction involved**
 - **Single-level** association rules
 - **Multilevel association rules** (items are in a taxonomy)
 - Bread, Butter \rightarrow FruitJam
 - BakedGoods, MilkProduct \rightarrow PreservedGoods

- **Dimensions of data involved**
 - **Single-dimensional** association rules
 - $\text{buys}(x, "milk") \Rightarrow \text{buys}(x, "bread")$
 - **Multidimensional** association rules
 - **Inter-dimension assoc. rules** *(no repeated predicates)*
 - $\text{age}(x, "19-25") \land \text{occupation}(x, "student") \Rightarrow \text{buys}(x, "coke")$
 - **hybrid-dimension assoc. rules** *(repeated predicates)*
 - $\text{age}(x, "19-25") \land \text{buys}(x, "popcorn") \Rightarrow \text{buys}(x, "coke")$

Finding Frequent Itemsets
Computing Itemsets

- Back to finding frequent itemsets
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk, basket-by-basket
 - Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all itemsets of size k

- Note: To find frequent itemsets, we have to count them
 - To count them, we have to generate them

Computation Model

- In practice, association-rule algorithms read data in passes
 - We measure the cost by the number of passes over the data
 => Cost of mining is the number of disk I/Os

- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count/keep track of those itemsets that in the end turn out to be frequent

- For many frequent-itemset algorithms main-memory is the critical resource
 - The number of different things we can count as we read baskets is limited by main memory
Finding Frequent Pairs

- The hardest turns out to be finding the frequent pairs of items \(\{i_1, i_2\} \)
- Often, frequent pairs are common, frequent triples are rare
 - The probability of being frequent drops exponentially with size; number of sets grows more slowly with size

Naïve Algorithm:
- Read file one, counting in main memory the occurrences of each pair
 - From each basket of \(n \) items, generate its \(\frac{n(n-1)}{2} \) pairs using two nested loops
- Problem: fails if \(n^2 \) exceeds main memory
 - Suppose \(10^5 \) items, counts are 4-byte integers
 - Number of pairs of items: \(10^5(10^5-1)/2 = 5*10^9 \)
 - Therefore, \(2*10^{10} \) (20 gigabytes) of memory needed

Counting Pairs in Memory

Two approaches:
- Approach 1: Count all pairs using a matrix keeping only the counts
- Approach 2: Keep a table of triples \([i, j, c] = \) “the count of the pair of items \(\{i, j\} \) is \(c \)”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead to organize the table for efficient search (“hashtable”)

Note:
- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)
Triangular Matrix

Approach 1: Triangular Matrix

- \(n \) = total number of items
- Count pair of items \(\{i, j\} \) only if \(i < j \)
 - So use only half of the two-dimensional array
- A more space-efficient way is to use a one-dimensional triangular array
- Keep pair counts in lexicographic order:
 - \(\{1, 2\}, \{1, 3\}, \ldots, \{1, n\}, \{2, 3\}, \{2, 4\}, \ldots, \{2, n\}, \{3, 4\}, \ldots \)
- Pair \(\{i, j\} \) is at position: \((i-1)(n-i/2) + j - 1 \)
- Total number of pairs \(n(n-1)/2 \); total bytes = \(2n^2 \)
- Triangular Matrix requires 4 bytes per pair

Comparing the two Approaches

- **Approach 2** uses 12 bytes per occurring pair (but only pairs with count > 0)
 - Total bytes used is about \(12p \), where \(p \) is the number of pairs that actually occur
 - Beats Approach 1 if less than 1/3 of possible pairs actually occur
 - May require extra space for retrieval structure, e.g., a hash table

Problem is if we have too many items so the pairs do not fit into memory. Can we do better?
A-Priori Algorithm

Example

Market-Basket transactions

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

Items (1-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk}</td>
<td>3</td>
</tr>
<tr>
<td>{Bread, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Bread, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Milk, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Milk, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Beer, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Pairs (2-itemsets)

(no need to generate candidates involving Coke or Eggs)

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Triplets (3-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum Support = 3

If every subset is considered,
\[6C_1 + 6C_2 + 6C_3 = 41 \]

With support-based pruning,
\[6 + 6 + 1 = 13 \]
Candidate Generation

- Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets.
- Basic principle (Apriori):
 - An itemset of size $k+1$ is candidate to be frequent only if all of its subsets of size k are known to be frequent.
- Main idea:
 - Construct a candidate of size $k+1$ by combining two frequent itemsets of size k.
 - Prune the generated $k+1$-itemsets that do not have all k-subsets to be frequent.
- So, how does A-Priori find frequent pairs?
 - A two-pass approach limiting the need for main memory counts.

A-Priori Algorithm

- **Pass 1**: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to \#items.
 - Items that appear at least s times (minsup) are the frequent items.
- **Pass 2**: Read baskets again and count in main memory only those pairs where both elements were found in Pass 1 to be frequent.
 - Requires memory proportional to square of frequent items only (for counts).
 - Plus a list of the frequent items (so you know what must be counted).
Details for A-Priori

- You can use the triangular matrix method with $m =$ number of frequent items
 - May save space compared with storing triples

- Trick: re-number frequent items $1, 2, \ldots, m$ and keep a table relating new numbers to original item numbers

Frequent Triples, Etc.

- For each k, we construct two sets of k-tuples (sets of size k):
 - $C_k =$ candidate k-sets = those that might be frequent sets (support $\geq s$) based on information from the pass for $k - 1$
 - $L_k =$ the set of truly frequent k-tuples

\[
\begin{align*}
C_1 & \rightarrow \text{Filter} \rightarrow L_1 \rightarrow \text{Construct} \rightarrow C_2 \\
& \quad \text{First pass} \quad \text{Frequent items} \\
& \quad \text{All items} \\
& \quad \text{Count the items} \\
& \quad \text{All pairs of items from } L_1 \\
& \quad \text{Count the pairs} \\
& \quad \text{To be explained}
\end{align*}
\]
The Apriori algorithm

Level-wise approach

\[C_k = \text{candidate itemsets of size } k \]
\[L_k = \text{frequent itemsets of size } k \]

1. \(k = 1, C_1 = \text{all items} \)
2. While \(C_k \) not empty

3. Scan the database to find which itemsets in \(C_k \) are frequent and put them into \(L_k \)

4. Use \(L_k \) to generate a collection of candidate itemsets \(C_{k+1} \) of size \(k+1 \)

5. \(k = k+1 \)

Recall: Example from Last time

\[B_1 = \{m, c, b\} \quad B_2 = \{m, d, j\} \]
\[B_3 = \{m, c, b, n\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, d, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- Frequent itemsets (s = 3):
 - \{b\}, \{c\}, \{j\}, \{m\}
 - \{b,m\} \{b,c\} \{c,m\} \{c,j\}
 - \{m,c,b\}

- How we can compute them with A-Priori?
A-Priori Algorithm Example

Generate $C_1 = \{ \{ b \} \{ c \} \{ j \} \{ m \} \{ n \} \{ p \} \}$
Count the support of itemsets in C_1
Prune non-frequent: $L_1 = \{ b, c, j, m \}$

Generate $C_2 = \{ \{ b, c \} \{ b, j \} \{ b, m \} \{ c, j \} \{ c, m \} \{ j, m \} \}$
Count the support of itemsets in C_2
Prune non-frequent: $L_2 = \{ \{ b, m \} \{ b, c \} \{ c, m \} \{ c, j \} \}$

Generate $C_3 = \{ \{ b, c, m \} \{ b, c, j \} \{ b, m, j \} \{ c, m, j \} \}$
Count the support of itemsets in C_3
Prune non-frequent: $L_3 = \{ \{ b, c, m \} \}$

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1.
But that one can be more careful with candidate generation. For example, in C_3 we know $\{ b, m, j \}$ cannot be frequent since $\{ m, j \}$ is not frequent.

A-Priori Algorithm: Memory Details

- The first pass of A-Priori
 - Create two tables
 - Translate items (e.g. strings) to numbers
 - Counters of singletons

- Between the passes of A-priory
 - Many singletons won’t be frequent
 - Create new numbering 1..m just for frequent items
 - Create frequent-items table: array of size n
 - i-th element is zero if not frequent or number 1..m

- The second pass of A-Priori
 - Count all the pairs that consist of two frequent items
 - Maintain triangular matrix of $4*m^2/2$ bytes (or triples structure)
Improvements to A-Priori

Observations

- In pass 1 of the Apriori scheme
 - Only individual item counts are stored
 - Remaining memory is unused

- In pass 2 of the Apriori scheme, it is possible that \((i, j)\) is not frequent even though \(i\) and \(j\) are frequent
 - But we still must count them (and hence need to store them in memory)

- Can we use the idle memory (in pass 1) to reduce the memory required in pass 2?
PCY (Park-Chen-Yu) Algorithm

- **Pass 1 of PCY**: In addition to item counts, maintain a hash table with as many buckets as fit in memory
 - Keep a count for each bucket into which pairs of items are hashed (not the actual pairs that hash to the bucket!)
 - Number of buckets can be smaller than number of pairs
 - Collision is possible!
- **Multistage** improves PCY (latter)

Observations about Buckets

- We are not just interested in the presence of a pair, but whether its count is at least the support s threshold
- If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent (false positives)
 - So, we cannot use the hash table to eliminate any member (pair) of a “frequent” bucket
- If a bucket is not frequent, no pair that hashes to that bucket could possibly be a frequent pair
 - For a bucket with total count < s, none of its pairs can be frequent
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
- **Pass 2 of PCY**: we only count pairs that hash to frequent buckets
 - There are still infrequent pairs that slipped through
PCY Algorithm – Pass 1

- Pairs of items need to be generated from the input file
 - they are not present in the file!
- Before Pass 1 Organize Main Memory
 - Space to count each item: One (typically) 4-byte integer per item
 - Use the rest of the space for as many integers, representing buckets, as we can

```plaintext
FOR (each basket) {
    FOR (each item in the basket)
        add 1 to item’s count;

    FOR (each pair of items) {
        hash the pair to a bucket;
        add 1 to the count for that bucket
    }
}
```

PCY Algorithm – Between Passes

- In pass 2, only need to count pairs that hash to frequent buckets
 - We must count again because we did not keep the information on the pairs, and also because of the collision
 - However, we do not need the count information from pass 1 any more
 - What we need is an indication on whether a pair is possibly frequent or not
- Bit vector serves this purpose well (and consumes less space)
 - 1 means bucket count exceeds the support s (i.e., is frequent);
 - 0 means it did not
 - The hash value now corresponds to the bit position
- 4-byte integers are replaced by bits, so the bit-vector requires $1/32$ of memory
- Also, decide which items are frequent and list them for the second pass
PCY Algorithm – Pass 2

- Count all pairs \(\{i,j\} \) that meet the conditions for being a candidate pair:
 - Both \(i \) and \(j \) are frequent items
 - The pair \(\{i, j\} \), hashes to a bucket number whose bit in the bit vector is 1
- Both conditions are necessary for the pair to have a chance of being frequent

PCY Scheme (Pass 2): Memory Details

- Buckets require a few bytes each
 - Note: we don’t have to count over \(s \)
 - # buckets is \(O(\text{main-memory size}) \)

- On second pass, a table of \((\text{item, item, count})\) triples is essential
- Cannot use triangular matrix scheme. Why?
 - Pairs of frequent items that PCY avoid counting are placed randomly within the triangular matrix
 - No known way of compacting the matrix to avoid leaving space for the uncounted pairs

- Thus, the hash table must eliminate 2/3 of the candidate pairs for PCY to beat A-priori
Refinement: A Multistage Algorithm

- Limit the number of candidates to be counted
 - Remember: memory is the bottleneck
 - Still need to generate all itemsets but we only want to count/keep track of the ones that are frequent

- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY
 - \(i \) and \(j \) are frequent, and
 - \(\{i, j\} \) hashes to a frequent bucket from Pass 1

- On middle pass, fewer pairs contribute to buckets, so fewer false positives—frequent buckets with no frequent pair

- Uses several successive hash tables—requires more than two passes

Multistage Picture

- **Main memory**
 - First hash table
 - Second hash table

- **Pass 1**
 - Item counts
 - Hash pairs \(\{i, j\} \)

- **Pass 2**
 - freq. items
 - Bitmap 1
 - Hash pairs \(\{i, j\} \) into Hash2 iff: \(i, j \) are frequent, \(\{i, j\} \) hashes to freq. bucket in B1

- **Pass 3**
 - freq. items
 - Bitmap 1
 - Bitmap 2
 - Counts of candidate pairs
 - Count pairs \(\{i, j\} \) iff: \(i, j \) are frequent, \(\{i, j\} \) hashes to freq. bucket in B2
Multistage – Pass 3

- Count only those pairs \{i, j\} that satisfy these candidate pair conditions:
 - Both \(i\) and \(j\) are frequent items
 - Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1
 - Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1

- Important Points
 - The two hash functions have to be independent
 - We need to check both hashes on the third pass
 - If not, we would wind up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket

Refinement: The Multihash Algorithm

- Key idea: use several independent hash tables on the first pass

- Risk: halving the number of buckets doubles the average count
 - We have to be sure most buckets will still not reach count \(s\)

- If so, we can get a benefit like multistage, but in only 2 passes!
So far, …

- Numerous approaches and refinements have been studied to keep memory consumption low
 - PCY and its refinements (multistage, multihash)

- Either multistage or multihash can use more than two hash functions
 - In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory
 - For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$

Limited Pass Algorithms
All (Or Most) Frequent Itemsets in < 2 Passes

- A-Priori, PCY, etc., take \(k \) passes to find frequent itemsets of size \(k \)
- Can we use fewer passes?
- Use 2 or fewer passes for ALL sizes, but may miss some frequent itemsets
 - Approximate solution
 - Simple algorithm: Use random sampling
 - Savasere, Omiecinski, and Navathe (SON) algorithm
 - Toivonen

Random Sampling – (1)

- Take a random sample of the market baskets
- Run A-priori or one of its improvements (for sets of all sizes, not just pairs),
 - load the sample into the main memory
 - so you don’t pay for disk I/O each time you increase the size of itemsets
 - reduce support threshold proportionally to match the sample size
 - be sure you leave enough space for counts
- Use as your support threshold a suitable, scaled-back number
 - E.g., if your sample is 1/100 of the baskets, use \(s/100 \) as your support threshold instead of \(s \)
Random Sampling:– Option

- **False positives** will result
 - Itemset may be frequent in the sample but not in the entire data set (because of the reduced minsup threshold)
 - Run a second pass through the entire dataset to verify that the candidate pairs are truly frequent
 - Can remove false positives totally

- **False negatives** will also result
 - Itemset is frequent in the original dataset but not picked out from the sample
 - Scanning a second time does not help
 - Using smaller threshold helps catch more truly frequent itemsets, but requires more space

SON Algorithm

- Repeatedly read small subsets of the baskets into main memory and perform the first pass of the simple algorithm on each subset
 - This is not sampling but processing the entire file in memory-sized chunks
- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets
- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set
- **Key “monotonicity” idea:** an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset
 - Subset (chunk) contains fraction p of whole file (number of chunks is $1/p$)
 - If itemset is not frequent in any chunk, then support in each chunk is less than $p \times s$
 - Support in whole file is less than s: not frequent!
 - $(1/p) p \times s = s$
SON Distributed Version

- SON lends itself to distributed data mining
 - Map Reduce

- Baskets distributed among many nodes
 - Subsets of the data may correspond to one or more chunks in distributed file system
 - Compute frequent itemsets at each node
 - Phase 1: Find candidate Itemsets
 - Distribute candidates to all nodes
 - Accumulate the counts of all candidates
 - Phase 2: Find true frequent Itemsets

SON MapReduce: Phase 1

- Map
 - Input is a chunk/subset of all baskets; fraction p of total input file
 - Find itemsets frequent in that subset:
 - Use support threshold $= s \cdot p$
 - Output is set of key-value pairs (FrequentItemset,1) where FrequentItemset is found from the chunk

- Reduce
 - Each reduce task is assigned a set of keys, which are itemsets
 - Produce keys that appear one or more times
 - Frequent in some subset; these are candidate itemsets
SON MapReduce: Phase 2

- **Map**
 - Each Map task takes a chunk of the total input data file as well as the output of Reduce tasks from phase 1
 - All candidate itemsets go to every Map task
 - Output is set of key-value pairs (CandidateItemset, support) where the support of the CandidateItemset is computed among the baskets of the input chunk

- **Reduce**
 - Each Reduce task is assigned a set of keys, which are candidate itemsets
 - Sums associated values for each key: total support for CandidateItemset
 - If total support of itemset >= s, emit itemset and its count

www.hadooptpoint.com/finding-frequent-itemsets-using-hadoop-mapreduce-model/
SON Algorithm

- Given sufficient main memory, uses one pass over a small sample and one full pass over data
 - Gives no false positives (always check against the whole)

- BUT, there is a small but finite probability it will fail to produce an answer
 - Will not identify frequent itemsets (false negatives)

- Then must be repeated with a different sample until it gives an answer
 - Need only a small number of iterations

Toivonen’s Algorithm

- First find candidate frequent itemsets from sample
- Start as in the random sampling algorithm, but lower the threshold slightly for the sample
 - For fraction p of baskets in sample, use 0.8ps (0.9ps) as support threshold
 - Example: if the sample is 1% of the baskets, use s/125 as the support threshold rather than s/100
- Goal: avoid missing any itemset that is frequent in the full set of baskets
 - The smaller the threshold the more memory is needed to count all candidate itemsets and the less likely the algorithm will not find an answer
- Add to the itemsets that are frequent in the sample their negative border
 - An itemset is in the negative border if it is not deemed frequent in the sample, but all its immediate subsets are (subset by deleting a single item)
Example: Negative Border

- $ABCD$ is in the negative border if and only if:
 1. It is not frequent in the sample, but
 2. All of ABC, BCD, ACD, and ABD are

- A is in the negative border if and only if it is not frequent in the sample
 - Because the empty set is always frequent
 - Unless there are fewer baskets than the support threshold (silly case)

Toivonen’s Algorithm

- In a second pass, count all candidate frequent itemsets from the first pass, and also count their negative border

- If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are exactly the frequent itemsets

- What if we find that something in the negative border is actually frequent?
 - We must start over again!

- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory
If Something in the Negative Border is Frequent . . .

We broke through the negative border. How far does the problem go?

... tripletons doubletons singletons

Frequent Itemsets from Sample

Theorem

- If there is an itemset that is frequent in the entire set of baskets, but not frequent in the sample, then there is a member of the negative border for the sample that is frequent in the whole
 - False negatives appear in the negative border

- Proof: Suppose not; i.e.,
 1. There is an itemset S frequent in the whole but not frequent in the sample, and
 2. Nothing in the negative border is frequent in the whole
- Let T be a smallest subset of S that is not frequent in the sample
- All subsets of S are also frequent in the whole (S is frequent + monotonicity)
 - T is frequent in the whole
- Thus, T is in the negative border (else not “smallest”)
Summary

- Market-Basket Data and Frequent Itemsets
 - Many-to-Many relationship
- Associating rules
 - Confidence and Support
- The A-Priori Algorithm
 - Combine only frequent subsets
- The PCY algorithm
 - Hash pairs to reduce candidates
- Multistage and Multihash algorithm
 - Multiple hashes
- Randomized and SON algorithm
 - Sample, Divide into Chunks and treat as samples by MapReduce
- Toivonen’s Algorithm
 - Negative Border

References

- CS246: Mining Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman, Stanford University, 2014
- CS5344: Big Data Analytics Technology, TAN Kian-Lee, National University of Singapore 2014
- CS059: Data Mining, Panayiotis Tsaparas University of Ioannina, Fall 2012
Research on Pattern Mining: A Road Map

Kinds of patterns and rules

Basic Patterns
- Frequent pattern
- Association rule
- Closed/max pattern
- Generator

Multivalued & Multidimensional Patterns
- Multivalued (unranked, varied, or
- Multidimensional pattern (incl. high-dimensional pattern)
- Continuous data
- Discretization (based, or statistical)

Extended Patterns
- Approximate pattern
- Uncertain pattern
- Compromised pattern
- Rare patterns
- Aggregate pattern
- High-dimensional and co-relational patterns

Basic Mining Methods
- Candidate generation (Apriori, partitioning, sampling, ...)
- Pattern growth (FPgrowth, HMM, FIMax, Glosset, ...)
- Vertical format (EClat, GHANA, ...)

Mining Interesting Patterns
- Interestingness (subjective vs. objective)
- Constraint-based mining
- Correlation rules
- Exception rules

Distributed, Parallel & Incremental
- Distributed parallel mining
- Incremental mining
- Stream pattern

Extended Data Types
- Sequential and time-series patterns
- Structural (e.g., tree, lattice, graph) patterns
- Spatial (e.g., co-location) pattern
- Temporal (evolutionary, periodic)
- Image, video and multimedia patterns
- Network patterns

Applications
- Pattern-based classification
- Pattern-based clustering
- Pattern-based semantic annotation
- Collaborative filtering
- Privacy preserving