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Abstract. As more and more data is provided in RDF format, storing
huge amounts of RDF data and efficiently processing queries on such
data is becoming increasingly important. The first part of the lecture
will introduce state-of-the-art techniques for scalably storing and query-
ing RDF with relational systems, including alternatives for storing RDF,
efficient index structures, and query optimization techniques. As central-
ized RDF repositories have limitations in scalability and failure tolerance,
decentralized architectures have been proposed. The second part of the
lecture will highlight system architectures and strategies for distributed
RDF processing. We cover search engines as well as federated query pro-
cessing, highlight differences to classic federated database systems, and
discuss efficient techniques for distributed query processing in general
and for RDF data in particular. Moreover, for the last part of this chap-
ter, we argue that extracting knowledge from the Web is an excellent
showcase – and potentially one of the biggest challenges – for the scal-
able management of uncertain data we have seen so far. The third part of
the lecture is thus intended to provide a close-up on current approaches
and platforms to make reasoning (e.g., in the form of probabilistic infer-
ence) with uncertain RDF data scalable to billions of triples.

1 RDF in centralized relational databases

The increasing availability and use of RDF-based information in the last decade
has led to an increasing need for systems that can store RDF and, more impor-
tantly, efficiencly evaluate complex queries over large bodies of RDF data. The
database community has developed a large number of systems to satisfy this
need, partly reusing and adapting well-established techniques from relational
databases [122]. The majority of these systems can be grouped into one of the
following three classes:

1. Triple stores that store RDF triples in a single relational table, usually with
additional indexes and statistics,

2. vertically partitioned tables that maintain one table for each property, and

3. Schema-specific solutions that store RDF in a number of property tables
where several properties are jointly represented.



In the following sections, we will describe each of these classes in detail, fo-
cusing on two important aspects of these systems: storage and indexing, i.e., how
are RDF triples mapped to relational tables and which additional support struc-
tures are created; and query processing, i.e., how SPARQL queries are mapped
to SQL, which additional operators are introduced, and how efficient execution
plans for queries are determined. In addition to these purely relational solutions,
a number of specialized RDF systems has been proposed that built on non-
relational technologies, we will briefly discuss some of these systems. Note that
we will focus on SPARQL3 processing, which is not aware of underlying RDF/S
or OWL schema and cannot exploit any information about subclasses; this is
usually done in an additional layer on top.

We will explain especially the different storage variants with the running
example from Figure 1, some simple RDF facts from a university scenario. Here,
each line corresponds to a fact (triple, statement), with a subject (usually a
resource), a property (or predicate), and an object (which can be a resource or a
constant). Even though resources are represented by URIs in RDF, we use string
constants here for simplicity. A collection of RDF facts can also be represented as
a graph. Here, resources (and constants) are nodes, and for each fact <s,p,o>, an
edge from s to o is added with label p. Figure 2 shows the graph representation
for the RDF example from Figure 1.

<Katja,teaches,Databases>

<Katja,works_for,MPI Informatics>

<Katja,PhD_from,TU Ilmenau>

<Martin,teaches,Databases>

<Martin,works_for,MPI Informatics>

<Martin,PhD_from,Saarland University>

<Ralf,teaches,Information Retrieval>

<Ralf,PhD_from,Saarland University>

<Ralf,works_for,Saarland University>

<Saarland University,located_in,Germany>

<MPI Informatics,located_in,Germany>

Fig. 1. Running example for RDF data

1.1 Triple Stores

Triple stores keep RDF triples in a simple relational table with three or four
attributes. This very generic solution with low implementation overhead has
been very popular, and a large number of systems based on this principle are
available. Prominent examples include 3store [56] and Virtuoso [41] from the
Semantic Web community, and RDF-3X [101] and HexaStore [155] that were
developed by database groups.

3 http://www.w3.org/TR/rdf-sparql-query/
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Fig. 2. Graph representation for the RDF example from Figure 1

Storage. RDF facts are mapped to a generic three-attribute table of the form
(subject,property,object), also know as triple table; for simplicity, we will
abbreviate the attributes by S, P, and O. To save space (and to make access
structures more efficient), most systems convert resource identifiers, properties
and constants to numeric ids before storing them in the relation, for example by
hashing. The resulting map is usually stored in an additional table, sometimes
separately for resource ids and constants. If a system stores data from more
than one source (or more than one RDF graph), the relation is often extended
by a fourth numeric attribute, the graph id (abbreviated as G), that uniquely
identifies the source of a triple. In this case, the relation is also called a quadruple
table.

Figure 3 shows the resulting three-attribute relation for the example from
Figure 1.

For efficient query processing, indexes on (a subset of) all combinations of
S, P, and OS are maintained. This allows to efficiently retrieve all matches for
a triple pattern of a SPARQL query. We will often refer to indexes with the
sequence of the abbreviations of the indexed attributes (such as SPO). Since each
index has approximately the size of the relation, the number of combinations for
which indexes are kept is usually limited, or indexes are stored in a compressed
way.

Virtuoso [40] comes with a space-optimized way of mapping resources, predi-
cates and constants to numeric ids (IRI ID). These strings are mapped to numeric
ids only if they are long (which means at least 9 bytes long), otherwise, they are
stored as text in the quadruple relation (this saves for short objects over a solu-
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Fig. 3. Triple store representation for the running example from Figure 1

tion that maps everything to ids). It uses a standard quadruple table (G,S,P,O)
with a primary key index on all four attributes together. In addition, it uses
a bitmap index on (O,G,P,S): This index maintains, for each combination of
(O,G,P) in the data, a bit vector. Each subject is assigned a bit position, and
for a quadruple (g,s,p,o) in the data, the bit position for s is set to 1 in the bit
vector for (o,g,p). Virtuoso stores distinct values within a page only once and
eliminates common prefixes of strings. An additional compression of each page
with gzip yields a compression from 8K to 3K for most pages.

RDF-3X uses a standard triple table and does not explicitly support multi-
ple graphs. However, RDF-3X never actually materializes this table, but instead
keeps clustered B+ tree indexes on all six combinations of (S,P,O). Additionally,
RDF-3X includes aggregated indexes for each possible pair of (S,P,O) and each
order, resulting in six additional indexes. The index on (S,O), for example, stores
for each pair of subject and object that occurs in the data the number of triples
with this subject and this object, we’ll refer to this index as SO*. Such an index
allows to efficiently answer queries like select ?s ?o where {?s ?p ?o}. We
could process this by scanning the SOP index, but we don’t need the exact bind-
ings for ?p to generate the result, so we read many index entries that don’t add
new results. All we need is, for each binding of ?s and ?o, the number of triples
with this subject and this object, so that we can generate the right number of
results for this binding (including duplicates). The SO* index can help a lot here.
Finally, RDF-3X maintains aggregated indexes for each single attribute, again
plus triple counts.

To reduce space requirements of these indexes, RDF-3X stores the leaves of
the indexes in pages and compresses them. Since these leaves contain triples that
often share some attribute values and all attributes are numeric, it uses delta
encoding for compression. This, together with encoding strings into comparably
short numbers, helps to keep the overall size of the database comparable or
even slightly smaller than the size of the uncompressed RDF triples in textual
representation. The original RDF-3X paper [101] includes a discussion of space-



time tradeoffs for compression and shows that, for example, compression with
LZ77 generates more compact indexes, but requires significantly more time to
decompress.

Query Processing and Optimization. Query execution on a quadruple store
is done in two steps, converting the SPARQL query into an equivalent SQL query,
and creating and executing a query plan for this SQL query.

Step 1. The conversion of a SPARQL query to an equivalent SQL query on
the triple/quadruple table is a rather straight-forward process; we’ll explain it
now for triple tables. For each triple pattern in the SPARQL query, a copy of
the triple relation is added to the query. Whenever a common variable is used
in two patterns, a join between the corresponding relation instances is created
on the attributes where the variable occurs. Any constants are directly mapped
to conditions on the corresponding relation’s attribute.

As an example, consider the SPARQL query

SELECT ?a ?b WHERE

{?a works_for ?u.

?b works_for ?u.

?a phd_from ?u. }

which selects people who work at the same place where they got their phd,
together with their coworkers. This is mapped to the SQL query

SELECT t1.s, t2.s FROM triple t1, triple t2, triple t3

WHERE t1.p=’works_for’

AND t2.p=’works_for’

AND t3.p=’phd_from’

AND t1.o=t2.o

AND t1.o=t3.o

AND t1.s=t3.s

Note that in a real system, the string constants would usually be mapped to
the numeric id space first. Further note that we can optimize away one join here
(t2.o=t3.o) since it is redundant.

Step 2. Now that we have a standard SQL query, it is tempting to simply
rely on the existing relational backends for optimizing and processing this query.
This is actually done in many systems, and even those systems which implement
their own backend system use the same operators used in relational databases.
Converting the SQL query into an equivalent abstract operator tree, for example
an expression in relational algebra, is again straight-foward.

Once this is done, the next step is creating an efficient physical execution
plan, i.e., decide how the abstract operators (joins, projection, selection) are
mapped to physical implementations in a way that the resulting execution is
as cheap (in terms of I/O and CPU usage) and as fast (in terms of processing
times) as possible. The choice of implementations is rather huge, for example a
join operator can be implemented with merge joins, hash joins, or nested loop



joins. Additionally, a number of specialized joins exist (such as outer joins and
semi joins) that can further improve efficiency. An important physical operator in
many systems are index lookups and scans which exploit the numerous indexes
that systems keep. Often, each triple pattern in the original SPARQL query
corresponds to an index scan in the corresponding index if that index is available,
for example, the triple pattern ?a works for ?b could be mapped on a scan of
the PSO index, if that exists. If the optimal index does not exist, scans of less
specific indexes can be used, but some information from that index must be
skipped. For example, if the system provides only an O index, a pattern ?a

works for MPI Informatics can be mapped to a scan of the O index, starting
at MPI Informatics and skipping all entries that do not match the predicate
constraint.

Finding the most efficient plan now includes considering possible variants of
physical plans (such as different join implementations, different join orders, etc.)
and selecting the most efficient plan. This, in turn, requires that the execution
cost for each plan is estimated. It turns out that off-the-shelf techniques imple-
mented in current relational databases, for example attribute-level histograms to
represent the distribution. These techniques were not built for dealing with a sin-
gle, large table. The main problem is that they ignore correllation of attributes,
since statistics are available only separately for each attribute. Estimates (for
example how many results a join will have, or how many results a selection
will have) are therefore often way off, which can lead to arbitrarily bad execu-
tion plans. Multi-dimensional histograms, on the other hand, could capture this
correllation, but can easily get too large for large-scale RDF data.

RDF-3X [100, 101] comes with specializes data structures for maintaining
statistics. It uses histograms that can handle any triple pattern and any join,
but assume independence of different patterns, and it comes with optimizations
for frequent join paths. To further speed up processing, it applies sideway infor-
mation passing between operators [100]. It also includes techniques to deal with
unselective queries which return a large fraction of the database.

Virtuoso [40] exploits the bit vectors in its indexes for simple joins, which
can be expressed as a conjunction of thse sparse bit vectors. As an example,
consider the SPARQL query

select ?a

where {?a works_for Saarland University.

?a works\for MPI Informatics.}

To execute this, it is sufficient to load the bit vectors for both triple patterns
and intersect them. For cost estimation, Virtuoso does not rely on per-attribute
histogram, but uses query-time sampling: If a triple pattern has constants for
p and o and the graph is fixed, it loads the first page of the bit vector for that
pattern from the index, and extrapolates selectivity from the selectivity of this
small sample.

Further solutions on the problem of selectivity estimation for graph queries
were proposed by [90, 91] outside the context of an RDF system; Stocker et
al. [135] consider the problem of query optimization with graph patterns.



1.2 Vertically Partitioned Tables

The vast majority of triple patterns in queries from real applications has fixed
properties. To exploit this fact for storing RDF, one table with two attributes,
one for storing subjects and one for storing objects, is created for each property
in the data; if quadruples are stored, a third attribute for the graphid is added.
An RDF triple is now stored in the table for its property. Like in the Triple table
solution, string literals are usually encoded as numeric ids. Figure 4 shows how
our example data from Figure 1 is represented with vertically partitioned tables.

teaches

subject object

Katja Databases

Martin Databases

Ralf Information Retrieval

works for

subject object

Katja MPI Informatics

Martin MPI Informatics

Ralf MPI Informatics

Ralf Saarland University

PhD from

subject object

Katja TU Ilmenau

Martin Saarland University

Ralf Saarland University

located in

subject object

Saarland University Germany

MPI Informatics Germany

Fig. 4. Representation of the running example from Figure 1 with vertically partitioned
tables

Sinces tables have only two columns, this idea can be further pushed by not
storing them in a traditional relational system (a row store), but in a column
store. A column store does not store tables as collections of rows, but as collection
of columns, where each entry of a column comes with a unique ID that allows
to reconstruct the rows at query time. This has the great advantage that all
entries within a column have the same type and can therefore be compressed
very efficiently. The idea of using column stores for RDF was initially proposed by
Abadi et al. [2], Sidirourgos et al. [130] pointed out advantages and disadvantages
of this technique.

Regarding query processing, it is evident that triple patterns with a fixed
property can be evaluated very efficiently, by simply scanning the table for this
property (or, in a column store, accessing the columns of this table). Query
optimization can also be easier as per-table statistics can be maintained. On the
other hand, triple patterns with a property wildcard are very expensive since
they need to access all two-column tables and form the union of the results.

1.3 Property Tables

In many RDF data collections, a large number of subjects have the same or at
least are largely overlapping set of properties, and many of these properties will



be accessed together in queries (like in our example above that asked for people
that did their PhD at the same place where they are working now). Combin-
ing all properties of a subject in the same table makes processing such queries
much faster since there is no need for a join to combine the different properties.
Property tables do exactly this: Groups of subjects with similar properties are
represented by a single table where each attribute corresponds to a property. A
set of facts for one of these subjects is then stored as one row in that table, where
one column represents the subjects, and the other columns store objects for the
properties that correspond to that column, or NULL if no such property exists.
The most prominent example for this storage structure is Jena [23,158]. Chong
et al. [27] proposed property tables as external view (which can be material-
ized) to simplify access to triple stores. Levandoski et al [80] demonstrate that
property tables can outperform triple stores and vertically partitioned tables for
RDF data collections with regular structure, such as DBLP or DBPedia.

This table layout comes with two problems to solve: First, there should not
be too many NULL values since they increase storage space, so storing the whole
set of facts in a single table is not a viable solution. Instead, the set of subjects
to store in one table can be determined by clustering subjects by the set of
their properties, or subjects of the same type can be stored in the same table if
schema information is available. Second, multi-valued properties, i.e., properties
that can have more than one object for the same subject, cannot be stored in
this way without breaking the relational paradigm. In our example, people can
work for more than one institution at the same time. To solve this, one can
either create multiple attributes for the same property, but this works only if
the maximal number of different objects for the same property and the same
subject is rather small. Alternatively, one can store facts with these properties
in a standard triple table.

Figure 5 shows the representation of the example from Figure 1 with property
tables. We grouped information about people in the People table and informa-
tion about Institutions in the Institutions table. As the works for property
can have multiple objects per subject, we store facts with this property in the
Remainder triple table.

1.4 Specialized Systems

Beyond the three classes of systems we presented so far, there are a number of
systems that don’t fit into these categories. We will shortly sketch these systems
here without giving much detail, and refer the reader to the referenced original
papers for more information.

Atre et al. [9] recently proposed to store RDF data in matrix form. Com-
pressed bit vectors help to make query processing efficient. Zhou and Wu [160]
propose to split RDF data into XML trees, rewrite SPARQL as XPath and
XQuery expressions, and implement an RDF system on top of an XML database.
Fletcher and Beck [42] propose to index not triples, but atoms, and introduce
the Three-Way Triple Tree, a disk-based index.
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Fig. 5. Representation of the running example from Figure 1 with property tables

A number of proposals aims at representing and indexing RDF as graphs.
Baolin and Bo [85] combine in their HPRD system a triple index with a path
index and a content index. Liu and Hu [84] propose to use a dedicated path
index to improve efficiency of RDF query processing. Grin [149] explicitly uses a
graph index for RDF processing. Matono et al. [92] propose to use a path index
based on suffix arrays. Bröcheler et al propose to use DOGMA, a disk-based
graph index, for RDF processing.

2 RDF in distributed setups

Managing and querying RDF data efficiently in a centralized setup is an impor-
tant issue. However, with the ever-growing amount of RDF data published on
the Web, we also have to pay attention to relationships between web-accessible
knowledge bases. Such relationships arise when knowledge bases store seman-
tically similar data that overlaps. For example, a source storing extracted in-
formation from Wikipedia (DBpedia [10]) and a source providing geographical
information about places (GeoNames4) might both provide information about
the same city, e.g., Berlin.

Such relationships are often expressed explicitly in the form of RDF
links, i.e., subject and object URIs refer to different namespaces and there-
fore establish a semantic connection between entities contained in differ-
ent knowledge bases. Consider again the above mentioned sources (DB-
pedia and GeoNames) [15], both provide information about the same en-
tity (e.g. Berlin) but use different identifiers. Thus, the following RDF
triple links the respective URIs and expresses that both sources refer to
the same entity: (<http://dbpedia.org/resource/Berlin>, <owl:sameAs>,
http://sws.geonames.org/2950159/)

The exploitation of these relationships and links offers users the possibility to
obtain a wide variety of query answers that could not be computed considering

4 http://www.geonames.org/ontology/



a single knowledge base but require the combination of knowledge provided by
multiple sources. Computing such query answers requires sophisticated reasoning
and query optimization techniques that also take the distribution into account.
An important issue in this context that needs to be considered is the interface
that is available to access a knowledge base [63]; some sources provide SPARQL
endpoints that can answer SPARQL queries, whereas other sources offer RDF
dumps – an RDF dump corresponds to a large RDF document containing the
RDF graph representing a source’s complete dataset.

The Linking Open Data initiative5 is trying to enforce the process of estab-
lishing links between web-accessible RDF data sources – resulting in Linked Open
Data [15], a detailed introduction to Linked Data is provided in [11]. The Linked
Open Data cloud resembles the structure of the World Wide Web (web pages
connected via hyperlinks) and relies on the so-called Linked Data principles [14]:

– Use URIs as names for things.
– Use HTTP URIs so that people can look up those names.
– When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).
– Include links to other URIs, so that they can discover more things.

For a user there are several ways to access knowledge bases and exploit links
between them. A basic solution is browsing [38,57,148]: the user begins with one
data source and progressively traverses the Web by following RDF links to other
sources. Browsers allow users to navigate through the sources and are therefore
well-suited for non-experts. However, for complex information needs, formulating
queries in a structured query language and executing them on the RDF sources
is much more efficient. Thus, in the remainder of this section we will discuss
the main approaches for distributed query processing on RDF data sources – a
topic, which has also been considered in recent surveys [51,63]. We begin with an
overview of search engines in Section 2.1 and proceed with approaches adhering
to the principles of data warehouses (Section 2.2) and federated systems (Sec-
tion 2.3). We proceed with approaches that discover new sources during query
processing (Section 2.4) and end with approaches applying the P2P principle
(Section 2.5).

2.1 Search engines

Before discussing how traditional approaches known from distributed database
systems can be applied in the RDF and Linked Data context, let us discuss an
alternative to find linked data on the Web: search engines.

The main idea is to crawl RDF data from the Web and create a centralized
index based on the crawled data. The original data is not stored permanently
but dropped once the index is created. Since the data provided by the original
sources changes, indexes need to be recreated from time to time. In order to

5 http://esw.w3.org/SweolG/TaskForces/CommunityProjects/LinkingOpenData



answer a user query, all that needs to be done is to perform a lookup operation
on the index and to determine the set of relevant sources. In most cases user
queries consist of keywords that the search engine tries to find matching data
for. The so found results and relevant sources are output to the user with some
additional information about the results.

The literature proposes several central index search engines, some of them are
discussed in the following. We can distinguish local-copy approaches [26, 34, 58]
that collect local copies of the crawled data and index-only approaches [37,108]
that only hold local indexes for the data found on the Web. Another distinguish-
ing characteristic is what search engines find: RDF documents [37,108] or RDF
objects/entities [26,34,58].

Swoogle. One of the most popular search engines for the Semantic Web was
Swoogle [37]. It was designed as a system to automatically discover Semantic Web
documents, index their metadata, and answer queries about them. Using this
engine, users can find ontologies, documents, terms, and other data published
on the Web.

Swoogle uses an SQL database to store metadata about the documents,
i.e., information about encoding, language, statistics, ontology annotations, re-
lationships among documents (e.g., one ontology imports another one), etc. A
crawler-based approach is used to discover RDF documents, metadata is ex-
tracted, and relationships between documents are computed. Swoogle uses two
kinds of crawlers: a Google crawler using the Google web service to find relevant
Semantic Web documents and a crawler based on Jena2 [157], which identifies
Semantic Web content in a document, analyzes the content, and discovers new
documents through semantic relations.

Discovered documents are indexed by an information retrieval system, which
can use either character N-Gram or URIrefs as keywords to find relevant docu-
ments and to compute the similarity among a set of documents. Swoogle com-
putes ranks for documents in a similar way as the PageRank [109] algorithm
used by Google.

Thus, a user can formulate a query using keywords and Swoogle will report
back a list of documents matching those keywords in a ranked order. Optionally,
a user might also define content-based constraints to a general SQL query on
the underlying database, e.g., the type of the document, the number of defined
classes, language, encoding, etc.

Semantic Web Search Engine (SWSE). In contrast to other search engines
(document-centric), which given a keyword look for relevant sources and doc-
uments, SWSE [58] is entity-centric, i.e., given a keyword it looks for relevant
entities.

SWSE uses a hybrid approach towards data integration: first, it uses
YARS2 [60] as an internal RDF store to manage the crawled data (data ware-
housing) and second, it applies virtual integration using wrappers for external
sources. In order to increase linkage between data from different sources, SWSE



applies entity consolidation. The goal is to identify URIs that actually refer to
the same real-world entity by finding matches analyzing values of inverse func-
tional properties. In addition, existing RDF entities are linked to Web documents
(e.g., HTML) using an inverted index over the text of documents and specific
properties such as foaf:name to identify entities.

YARS2 uses three different index types to index the data: (i) a keyword index
using Apache Lucene6 as an inverted index – this index maps terms occurring
in an RDF object of a triple to the subject, (ii) quad7 indexes in six different
orderings of triple components – distributed over a set of machines according to a
hash function, and (iii) join indexes to speed up queries containing combinations
of values or paths in the graph.

In the first step of searching, the user defines a keyword query. The result of
the search is a list of all entities matching the keyword together with a summary
description for the entities. The results are ranked by an algorithm similar to
PageRank combining ranks from the RDF graph with ranks from the data source
graph [65]. To refine the search and filter results, the user can specify a specific
type/class, e.g., person, document, etc. By choosing a specific result entity, the
user can obtain additional information. These additional pieces of information
might originate from different sources. Users can then continue their exploration
by following semantic links that might also lead to documents related to the
queried entity.

WATSON. WATSON [34] is a tool and an infrastructure that automatically
collects, analyzes, and indexes ontologies and semantic data available online in
order to provide efficient access to this knowledge for Semantic Web users and
applications.

The first step, of course, is crawling. WATSON tries to discover locations
of semantic documents and collects them when found. The crawling process ex-
ploits well-known search engines and libraries, such as Swoogle and Google. The
retrieved ontologies are inspected for links to other ontologies, e.g., exploiting
owl:import, rdfs:seeAlso, dereferenceable URIs, etc.

Afterwards, the semantic content is validated, indexed, and metadata is gen-
erated. WATSON collects metadata such as the language, information about
contained entities (classes, properties, literals), etc. By exploiting semantic re-
lations (e.g. owl:import), implicit links between ontologies can be computed in
order to detect and remove duplicate information and so that storing redundant
information and presenting duplicated results to the user can be avoided.

WATSON supports queries based on keywords similar to Swoogle to retrieve
and access semantic content including a particular search phrase (multiple key-
words are supported). Keywords are matched against the local names, labels,
comments and/or literals occurring in ontologies. WATSON returns URIs of
matching entities, which can serve as an entry point for iterative search and
exploration.

6 http://lucene.apache.org/java/docs/fileformats.html
7 A quad is a triple extended by a fourth value indicating the origin.



Sindice. Sindice [108] crawls RDF documents (files and SPARQL endpoints)
from the Semantic Web and uses three indexes for resource URIs, Inverse Func-
tional Properties (IFPs)8, and keywords. Consequently, the user interface allows
users to search for documents based on keywords, URIs, or IFPs. To process the
query, the query only needs to be passed to the relevant index, results need to
be gathered, and the output (HTML page) needs to be created.

The indexes correspond to inverted indexes of occurrences in documents.
Thus, the URI index has one entry for each URI. The entry contains a list
of document URLs that mention the corresponding URI. The structure of the
keyword index is the same, the only difference is that it does not consider URIs
but tokens (extracted from literals in the documents), the IFP index uses the
uniquely identifying pair (property, value).

When looking for the URI of a specific entity (e.g. Berlin), Sindice provides
the user with several documents that mention the searched URI. For each result
some further information is given (human description, date of last update) to
enable users to choose the best suitable source. The results are ranked in order
of relevance, which is determined based on the TF/IDF relevance metric [43] in
information retrieval, i.e., sources that share rare terms (URIs, IFPs, keywords)
are preferred. In addition, the ranking prefers sources whose URLs a similar to
queried URIs, i.e., containing the same hostnames.

Falcons. In contrast to other search engines, Falcons [26] is a keyword-based
search engine that focuses on finding linked objects instead of RDF documents
or ontologies. In this sense, it is similar to SWSE.

Just like other systems, Falcons crawls RDF documents, parses them using
Jena9, and follows URIs discovered in the documents for further crawling. To
store the RDF triples, Falcons creates quadruples and uses a quadruple store
(MySQL).

To provide detailed information about objects, the system constructs a
virtual document containing literals associated with the object, e.g., human-
readable names and descriptions (rdfs:label, rdfs:comment).

Falcons creates an inverted index based on the terms in the virtual documents
and uses this index later on for keyword-based search. A second inverted index
is built based on the objects’ classes – it is used to perform filtering based
on the objects’ classes/types. For a query containing both, keywords and class
restrictions, Falcons computes the intersection between the result sets returned
by both indexes.

Thus, given a keyword query, Falcons uses the index to find virtual documents
(and therefore objects) containing the keywords. Falcons supports class-based
(typing) query refinement by employing class-inclusion reasoning, which is the
main difference to SWSE, which does not allow such refinements and reasoning.

8 http://www.w3.org/TR/owl-ref/#InverseFunctionalProperty-def: If a property
is declared to be inverse-functional, then the object of a property statement uniquely
determines the subject (some individual).

9 http://jena.sourceforge.net



The so-found result objects are ranked by considering both their relevance to
the query (similarity between the virtual documents and the keyword query)
and their popularity (a measure based on the number of documents referring to
the object).

Each presented result object is accompanied with a snippet that shows asso-
ciated literals and linked objects matched with the query. – also shows detailed
RDF descriptions loaded from the quadruple store.

More systems. There are many more search engines such as OntoSearch2 [111],
which stores a copy of an ontology in a tractable description logic and supports
SPARQL as a query language to find, for instance, all the instances of a given
class or the relations occurring between two instances. Several other systems aim
at providing efficient access to ontologies and semantic data available online. For
example, OntoKhoj [112] is an ontology portal that crawls, classifies, ranks, and
searches ontologies. For ranking they use an algorithm similar to PageRank.
Oyster [110] is different in the sense that it focuses on ontology sharing: users
register ontologies and their metadata, which can afterwards accessed over a
peer-to-peer network of local registries. Finally let us mention OntoSelect [19] is
an ontology library that focuses on providing natural language based access to
ontologies.

2.2 Data warehousing

So far, we have discussed several techniques to search for documents and entities
using search engines. However, the problem of answering queries based on data
provided by multiple sources has been known in the database community since
the 80s. Thus, from a database point of view the scenario we face with distributed
RDF processing is similar to data integration.

Figure 6 shows a categorization of data integration systems from a classical
database point of view. The same categorization can be applied to the problem
of processing Linked Data because, despite some differences, similar problems
have to be solved and similar techniques have already been applied by different
systems for Linked Data processing.

The first and most important characteristic that distinguishes data integra-
tion systems is whether they copy the data into a central database, or storage
system respectively, or leave the data at the sources and only work with sta-
tistical information about the sources, e.g., indexes. Approaches falling into the
former category are generally referred to as materialized data integration systems
with data warehouses as a typical implementation. Approaches of the second cat-
egory are referred to as virtual data integration systems as they only virtually
integrate the data without making copies.

The process of integrating data into a data warehouse is referred to as the
ETL process (Extract-Transform-Load). First, the data is extracted from the
sources, then it is transformed, and finally loaded into the data warehouse. This
workflow can also be applied in the Semantic Web context.



Extract. As many knowledge bases are available as dumps for download, it is
possible to download a collection of interesting linked datasets and import them
into a data warehouse. This warehouse resembles a centralized RDF storage
system that can be queried and optimized using the techniques discussed in
Section 1. If a data source is not available for download, the data can be crawled
by looking up URIs or accessing a SPARQL endpoint. As the data originates
from different sources, the system should keep track of provenance, e.g., by using
named graphs [22] or quads.

Transform. Data warehouses in the database world usually provide the data in
an aggregated format, e.g., in a data warehouse storing information about sales
we do not keep detailed information about all transactions (as provided by the
sources) but, for instance, the volume of sales per day (computing aggregated
values based on the data provided by the sources). For linked data, this roughly
corresponds to running additional analyses on the crawled data for duplicate
detection/removal or entity consolidation as applied, for instance, by WATSON
and SWSE.

Load. Finally, the transformed data is loaded into the data warehouse. In depen-
dence on aspects such as the update frequency of the sources and the size of the
imported datasets, it might be difficult to keep the data warehouse up-to-date.
In any case the data needs to be reloaded or recrawled so that the data ware-
house can be updated accordingly. It is up to the user, or the user application
respectively, to decide if and to what extent out-of-date data is acceptable or
not.

Reconsidering the search engines we have already discussed above, we see that
some of these approaches actually fall into this category: the search engines using
a central repository to store a local copy of the RDF data they crawled from the
web, e.g., SWSE [58], WATSON [34], and Falcons [26].

In summary, the data warehouse approach has some advantages and dis-
advantes. The biggest advantage, of course, is that all information is available
locally, which allows for efficient query processing, optimization, and therefore
low query response times. On the other hand, there is no guarantee that the
data loaded into the data warehouse is up-to-date and we have to update it
from time to time. From the perspective of a single user or application, the data
warehouse contains a lot of data that is not queried and unnecessarily increases
storage space consumption. So, the data warehouse solution is only suitable if
we have a sufficiently high number of queries and diverse applications.

2.3 Federated systems

As mentioned above, database literature proposes two main classes of data in-
tegration approaches (Figure 6): materialized and virtual data integration. In
contrast to materialized data integration approaches, virtual data integration
systems do not work with copies of the original data but only virtually integrate



Fig. 6. Classification of data integration approaches

the data. If we are only interested in answering unstructured queries based on
keywords, the search engine approach, as a variant of virtual integration sys-
tems, is an appropriate solution. We have already discussed several examples
of Semantic Web search engines in Section 2.1. Some of them are pure search
engines that only work with indexes and output pointers to relevant data at the
sources, whereas other Semantic Web search engines rather correspond to data
warehouses.

When we are interested in answering structured queries on the most recent
version of the data, we need to consider approaches that integrate sources in
a way that preserves the sources’ autonomy but at the same time allow for
evaluating queries based on the data of multiple sources: we distinguish between
mediator-based systems and federated systems.

Mediator-based systems. Classic mediator-based systems provide a service that
integrates data from a selection of independent sources. In such a scenario,
sources are often unaware that they are participating in an integration system.
A mediator provides a common interface to the user that is used to formulate
queries. Based on the global catalog (statistics about the data available at the
sources), the mediator takes care of rewriting and optimizing the query, i.e., the
mediator determines which sources are relevant with respect to the given query
and creates subqueries for the relevant sources. In case the sources manage their
local data using data models or query languages different from what the medi-
ator uses, so-called wrappers rewrite the subqueries in a way that makes them
“understandable” for the sources, e.g., SQL to XQuery. Wrappers also take care
of transforming the data that the sources produce as answers to the query into
the mediator’s model. In practice, the task of the mediator/wrapper architecture
is to overcome heterogeneity on several levels: data model, query language, etc.



Federated systems. The second variant of virtual integration systems from a
database point of view is federated systems. A federation is a consolidation of
multiple sources providing a common interface and therefore very similar to the
mediator-based approach. The main difference to mediator-based systems is that
sources are aware that they are part of the federation because they actively have
to support the data model and the query language that the federation agreed
upon. In addition, sources might of course support other query languages.

However, from a user’s point-of-view there is no difference between both archi-
tectures as both provide transparent access to the data. Likewise, in general the
Semantic Web community does not distinguish between these two architectures
either so that both approaches are referred to as federated systems, virtual in-
tegration, and/or federated query processing [51, 54, 63]. Thus, in the following
we adopt the notion of a federation from the Semantic Web community and
do not distinguish between federated and mediated architectures nor between
federators and mediators.

There are some peculiarities unique to the web of linked data that we need
to deal with in a distributed setup. Some sources, for instance, do not provide
a query interface that a federated architecture could be built upon, i.e., some
sources only provide information to dereferenceable HTTP URIs, some sources
are only available as dumps, and some sources provide access via SPARQL end-
points.

For the first two cases, we can crawl the data and load it into a central
repository (data warehouse) or multiple repositories that can be combined in a
federation – comparable to using wrappers for different data sources. If the data
is already available via SPARQL endpoints, we only need to register them in
the federation and their data can be accessed by the federation to answer future
queries. In addition, if we adopt SPARQL as the common protocol and global
query language, then no wrappers are necessary for SPARQL endpoints because
they already support the global query language and data format.

Another interesting difference between classic federated database systems
and federated RDF systems is that for systems using the relational data model,
answering a query involves only a few joins between different datasets defined on
attributes of the relations. For RDF data, this is more complicated because the
triple format requires much more (self) joins. Moreover, some aspects of RDF,
e.g., explicit links (owl:sameAs), are also aspects that need to be considered
during query optimization and execution.

Query processing in distributed database systems roughly adheres to the steps
highlighted in Figure 7: query parsing, query transformation, data localization,
global query optimization, local query optimization, local query execution, and
post-processing. In the following we discuss each of these steps in detail; we
first describe each step with respect to classic distributed databases and then
compare it to distributed RDF systems.



Fig. 7. Steps of distributed query processing

Query parsing. After the query has been formulated by the user, it has to be
parsed, i.e., the query formulated in a declarative query language is represented
using an internal format that facilitates optimization. For example, a query for-
mulated in SQL is transformed into an algebra operator tree.

Likewise, SPARQL queries can be parsed into directed query graphs: SQGM
(SPARQL Query Graph Model) [62]. In any case, after parsing we have a graph
consisting of operators that need to be evaluated in order to answer the query
– a connection between operators indicates the data flow, i.e., the exchange of
intermediate results, between them.

Query transformation. In this step, simple and straightforward optimizations
are applied to the initial query that do not require any sophisticated consider-
ations but mostly rely on heuristics and straightforward checks. One aspect is
to perform a semantic analysis, e.g., to check whether relations and attributes
referred to in the query do actually exist in the schema. The schema informa-
tion necessary for this step are stored in the global catalog. In addition, query
predicates are transformed into a canonical format (normalization) to facilitate
further optimization, e.g., to identify contradicting query predicates that would
result in empty result sets. Moreover, simple algebraic rewriting is applied using
heuristics to eliminate bad query plans, e.g., replacing crossproducts followed
by selections with join operators, redundant predicates are removed, expressions
are simplified, unnesting of subqueries and views, etc.

Similar transformations can be done for SPARQL queries. For example, we
can check for contradictions of conditions in the query that would lead to an
empty result set. We can also apply some basic optimizations such as remov-
ing redundant predicates and simplifying expressions. In addition, we can also
check if the predicates referenced in the query do actually exist, i.e., if there



is any source providing corresponding triples. However, this is only useful for
distributed RDF systems that do not traverse links to discover new sources dur-
ing query processing. As discussed below, the information necessary to perform
these checks are part of the global catalog.

Data localization. In the classic data localization step, the optimizer replaces
references to global relations with references to the sources’ fragment relations
that contribute to the global relation. The optimizer simply needs to access the
global catalog and make use of reconstruction expressions: algebraic expressions
that, when executed, reconstruct the global relations by combining the sources’
fragments in an appropriate manner. In consideration of predicates and joins
contained in the query, a subset of fragments and therefore sources can be elim-
inated from the query because the data they provide cannot contribute to the
query result.

In case of Linked Data and systems for distributed RDF processing, this step
entails the identification of sources relevant to a given query. Whereas we have
reconstruction expressions for relational databases, it is more complicated for
RDF data because there are no strict rules and or restrictions on which source
uses which vocabulary. Thus, what an appropriate optimizer for distributed RDF
systems needs to do in this step is to go through the list of basic graph patterns
contained in the query and identify relevant sources. The information necessary
to perform this task are contained in the global catalg, which we will discuss in
detail below.

Global query optimization. In principle, the goal of this step is to find an efficient
query execution plan. In classic distributed systems, the optimizer can optimize
for total query execution time or for response time. The former is a measure for
the total research consumption in the network, i.e., it sums up the duration of
all operations necessary to answer the query over all nodes altogether. Response
time takes parallel execution into account and measures the time until the results
are presented to the user. Optimizing response time can exploit all different
flavors of parallelization only when the mediator has some “control” over the
sources, i.e., considering direct interaction, communication, and data exchange
between any two nodes for optimization.

In federated RDF systems, however, sources are still more autonomous so
that some of the options available to classic optimizers cannot be considered,
e.g., we cannot decide on a query plan that requires one source to send an
intermediate result directly to another source that uses the received data to
compute a local join. Thus, techniques commonly referred to as data, query, or
hybrid shipping [76] are not applicable in the RDF context. Likewise, the option
of pipelining10 results between operators executed at different sources is hardly
applicable.

10 Result items (tuples) are propagated through a hierarchy of operators (e.g., joins)
so that when a tuple is output by an operator on a lower level, it immediately serves
as input to the upper operator – before all input tuples have been processed by the
lower operator.



In general, however, it is efficient in terms of load at the mediator and com-
munication costs when joins can directly be executed at the sources. The problem
is that with the restrictions mentioned above joins in distributed RDF systems
can only be executed in a completely decentralized fashion at a source s1 if there
is no additional data at any other source s2 that could produce additional re-
sults when joined with part of the data provided by s1. Thus, even though s2
can process the join locally it has to return, in addition to the join result, all
data that could be joined with other sources’ data. Hence, in most cases joins
have to be computed in a centralized fashion by the mediator [51, 139]. In that
case, the optimizer applies techniques for local query optimization as discussed
in Section 1.

Another option to process joins efficiently is to use a semijoin [76] algorithm
to compute a join between an intermediate result at the mediator and a data
source [51]. The mediator needs to compute a projection on the join variables
and extract all variable bindings present in the intermediate result. For all these
variable bindings, the mediator needs to query the remote data source with re-
spect to the join definition and retrieve the result, which consists of all triples
matching the join condition. So, the mediator retrieves all relevant data to per-
form the join locally. Unfortunately, SPARQL does not support the inclusion of
variable bindings in a query so that the only alternative is to include variable
bindings as filter expressions in a query, which for a large number of bindings
might blow up the size of the query message. The alternative of sending sepa-
rate messages for each binding [115] results in a high number of messages and
therefore increases network load and query execution costs.

A heuristic to minimize query execution costs is to minimize the size of in-
termediate results. Hence, optimizers for federated RDF systems also try to find
a plan that minimizes the size of intermediate results. Theresfore, the optimizer
considers additional statistics about selectivities and cardinalities provided by
the global catalog (see below).

Another standard technique for every optimizers is to apply heuristics to re-
order query operators in a way that intermediate results are small, i.e., pushing
highly selective operators downwards in the query graph so that they are exe-
cuted first. Considering RDF data, this means to push down value constraints
– ideally into subqueries executed at the sources to reduce the amount of ex-
changed data.

Another important and related issue for standard optimizers is join order op-
timization. The goal is to find the order of joins that minimizes execution costs.
This process heavily relies on statistics (global catalog) to estimate the size of
intermediate results. Obviously, it is beneficial to execute joins first that pro-
duce small outputs so that all other joins can be computed more efficiently. For
optimization in distributed RDF systems, join order optimization corresponds
to determining the order of evaluating basic graph patterns. To estimate the
size of intermediate results, the optimizer needs detailed statistics that allow for
cardinality estimation. Histograms are very common for relational distributed
systems and can also be useful in the context of federated RDF systems. A



simple heuristic that can be applied without detailed statistics is variable count-
ing [136], which estimates the selectivity of basic graph patterns in dependence
on the type and number of unbound components.

In consideration of all these different possibilities for query optimization, the
optimizer has to explore and evaluate a potentially high number of alternative
query plans that all compute the same result. For exploration, a common tech-
nique is the application of dynamic programming for plan enumeration, which
enables an exhaustive search of all query plans. In order to decide on the ben-
efit of each plan, the optimizer has to determine its costs using an appropriate
cost model [51, 105, 139]. For this purpose, the optimizer again needs statistics
about the data, selectivity, cardinality estimations about intermediate results.
In addition, it is worthwhile to consider network latencies as well.

The current standard for distributed RDF optimizers is to optimize a query
and to determine a query plan for each query individually at runtime. This
can be improved by adopting more techniques from classic distributed database
systems that pre-optimize (partial) execution plans for frequently issued queries
or subqueries contained in many queries, e.g., two-step-plans [76].

As a high number of sources provide potentially relevant data for a given
query, approximation by reducing the number of queried sources is an appro-
priate technique to reduce the overall execution costs. This can be achieved by
ranking sources based on triple and join pattern cardinality estimations and
prune all but the top-ranked sources from consideration [59].

Global catalog and indexes. As we have seen above, the global catalog plays
an important role for query optimization. It might contain information about
specific sources such as vocabulary, supported predicates, network latencies, etc.
In addition, for the distributed setup and especially for cardinality estimation,
the catalog has to contain statistics about the data, e.g., in the form of indexes.
In constrast to indexes that are applied in the context of centralized systems
(complete indexes), these indexes cannot provide the same level of details because
of the amount of data from all sources altogether. Therefore indexes and statistics
about the data suitable for distributed optimization have to abstract the data in
a way that allows for index size compression. The goal is to find a suitable trade-
off between the level of detail and memory space consumption – the general rule
is the more detailed an index is, the more accurate are cardinality estimations
but the higher is the memory consumption.

A widely used approach for indexing is schema-level indexing, i.e., predicate
URIs and the types of instances. Whereas types and predicates that occur only
rarely represent good discriminators to detect relevant sources for a given query,
frequently used types and predicates that almost every source provides are only
of little use for optimization, e.g., rdfs:label. The disadvantage is that this
index cannot be used for basic graph patterns with variables in the predicate
position. An alternative to indexing predicates and types detached from the
structure of the overall RDF graph is indexing paths of predicates [139]. More-
over, when considering the RDF data of a source as a graph, it might also be
useful to index frequent subgraphs [51,89,146].



Another kind of indexes are inverted URI indexes. They index the data on
instance level by indexing all URIs occuring in a data source. This kind of index
allows the query processor to identify all sources which contain a given URI and
thus potentially contribute bindings for a triple pattern containing that URI.

There are also indexes indexing data on both instance-level and schema-
level [59]. They make use of data structures known from classic relational
database: histograms. As these data structures have originally been developed
to summarize informtion about numerical data, hash functions are applied to
all elements of a triple so that triples are transformed into numerical space.
One-dimensional histograms index each component (subject, predicate, object)
in separate. But when considering each of these three dimensions in separate,
the optimizer looses a great potential for optimization because the combination
of instances is much more selective and therefore more useful for query opti-
mization. Thus, multidimensional histograms are applied, i.e., three-dimensional
histograms. An alternative to histograms, other structures that efficiently sum-
marize multidimensional data can be applied, e.g., QTrees [59].

Local query optimization and execution. When the global optimizer has decided
for a specific query execution plan, subqueries are extracted and sent to the
sources for local execution. They apply the same optimization techniques as for
local queries, so that the received query is treated like a query issued directly
at the source. Consequently, it is optimized and executed using the techniques
discussed in Section 1.

Post-processing In this last step the partial results received from the sources are
combined into the final result. For simple distributed queries, the post-processing
might simply consist of a union operation. For more complex queries, however,
post-processing is much more complex and costly because all operations that
could not be executed at the sources have to be processed by the mediator after
retrieving the data from the sources. As discussed above, this is particularly true
for joins for which multiple sources provide relevant data. In addition, it might
be necessary to remove duplicates in the result set, which represents the very
last operation for post-processing.

To conclude the section about federated systems and federated RDF processing,
we discuss some systems that have been proposed in this context.

SemWIQ. The Semantic Web Integrator and Query Engine [79], SemWIQ
in short, uses an architecture based on the mediator/wrapper approach, i.e.,
wrappers are used to enable the participation of sources using other data models,
e.g. relational databases. All registered data sources must either be connected
by a SPARQL-capable wrapper or support the SPARQL protocol directly.

Queries are formulated in SPARQL, the parser computes a canonical query
plan, which is optimized by the federator/mediator. The optimization process
only considers very basic statistics, such as a list of classes and the number of



instances a data source provides for each class as well as a list of predicates
and their occurrences. For query optimization, the federator analyzes the query
and scans the catalog for relevant registered data sources. The resulting plan
is executed by sending subqueries to the sources (via wrappers or SPARQL
endpoints).

The system requires that every data item has an asserted type, i.e., for a
query it requires type information for each subject variable in order to be able
to retrieve instances. As a consequence, there are some restrictions with respect
to query formulation, e.g., all subjects must be variables and for each subject
variable its type must be explicitly or implicitly defined. The optimizer then
uses this information to look for registered data sources providing instances of
the queried types. More sophisticated optimization techniques, such as the push-
down of joins, have been proposed as future work.

DARQ. DARQ [115] (Distributed ARQ) is a federated system of SPARQL end-
points that allows distributed query processing on the set of registered endpoints.
It also adopts a mediator-based approach and assumes that sources that do not
support SPARQL themselves are connected to the federation using wrappers.

Data sources are described using service descriptions (represented in RDF).
These descriptions contain capabilities, i.e., constraints expressed with regular
SPARQL filter expressions. These constraints can express, for instance, that
a data source only stores data about specific types of resources. For sources
with limitations of access patterns, e.g., allowing lookups on personal data only
when the user can specify the name of the person of interest. DARQ supports
this by defining patterns in the service descriptions that must be included in
the query. To provide the query optimizer with statistics, service descriptions
contain the total number provided by a data source and optionally information
for each capability, e.g., the number of triples with a specific predicate and the
selectivities (bound subject/object) of a triple pattern with a specific predicate.

Queries are formulated in SPARQL, parsed, and handed to the query plan-
ning and optimization components. DARQ uses a cost-based query optimization
technique relying on the statistical information provided as service descriptions
and capabilities.

A SPARQL query contains one or more filtered basic graph patterns (triple
patterns). DARQ performs query planning for each basic graph pattern in sep-
arate. By comparing the triple patterns of the query against the capabilities
of the service descriptions, the system can detect a set of relevant sources for
each pattern. As this matching procedure is based on predicates, DARQ only
supports queries with bound predicates.

After having determined the relevant sources, subqueries are created, one for
each basic graph pattern and data source matching. Thus, the system might
create multiple subqueries that are to be sent to the same data source. In that
case, the subqueries can be combined into one message.

Based on these subqueries the query optimizer considers limitations on access
patterns and tries to find a feasible and efficient query execution plan. For logical



query optimization, heuristics are used that try to simplify the query and reduce
intermediate result sizes, e.g., push value constraints into subqueries, which cor-
responds to pushing down selections in classic query optimization. In order to
decide for a specific implementation to process joins (nested loop join or bind
join), the optimizer estimates the result size of joins based on the statistics given
in the service descriptions. The optimizer chooses the implementation with the
least estimated transfer costs (computed based on the result estimates).

In the end, subqueries are executed at the sources and remaining operations
are executed by the federator.

Hermes. Hermes [147] is a system based on a federated architecture that has
a slightly different focus than other systems discussed so far. Queries are not
formulated using SPARQL. Instead, the user enters a keyword query and Hermes
tries to translate the keyword query into a structured query (SPARQL). The
query is decomposed into subqueries, which are executed at the sources.

In order to achieve this, a number of indexes are created: a keyword index
(indexing terms extracted from the labels of data graph elements), a structure
index (information about schema graphs, i.e., relations between classes derived
from the connections given in the data graph), and a mapping index (infor-
mation about mappings on data- and schema-level, pairwise mappings between
elements).

After having received the input keywords, relevant sources are determined
using the keyword index. The retrieved keyword elements are combined with
schema graphs received from the structure index to find substructures that con-
nect all keyword elements. A ranking function is used to rank the computed
query graphs so that the user can choose some of them for execution.

The selected query is decomposed into subqueries, each of which is answered
by a different data source. Optimization uses the same techniques as DARQ [115].
Before sending the subqueries to the sources, they are mapped to the query for-
mat supported by the receiving data source. After execution, the results received
from the sources are combined.

Other systems. Virtuoso [41], a native quad store, provides the option to
consider remote sources for query execution. The system dereferences URIs and
holds the retrieved data in a cache for future queries.

Dartgrid [25] is a system for SPARQL queries over multiple relational
databases. One of the main components is the semantic registration service which
maintains mappings from the schemas of registered data sources to the internal
ontology. An query interface based on forms and ontologies helps users to con-
struct semantic queries formulated in SPARQL. Queries are translated using the
mapping information into SQL queries that can be executed on the sources.

The networked graphs approach [126] allows users to reuse and integrate RDF
content from other sources. It allows users to define RDF graphs by extensionally
listing content and by using views on other graphs. These views can be used
to include parts of other graphs. Networked graphs are designed for distributed



settings and are exchangeable between sources. However, the paper focuses more
on semantics and reasoning than on aspects of query execution.

[139] presents an approach for querying distributed RDF data sources and in-
troduces index structures, a cost model, and an algorithm for query answering.
The approach supports distributed SeRQL path queries over multiple Sesame
RDF repositories using a special index structure to determine the relevant
sources for a query.

2.4 Discovering new sources during query processing

In contrast to the classic understanding of federated databases, processing Linked
Data arises additional challenges that we have not discussed in detail above, e.g.,
by dereferencing URIs and considering the returned document as a new virtual
“data source” not all sources are known in advance and available for indexing.
Furthermore, approaches that index a static set of sources, i.e., all approaches
we have discussed so far, have to recreate their indexes from time to time in
order to reflect recent updates to the sources, which means that some of the
information provided by the index might be out-of-date.

Pure. Some strategies for query processing over Linked Data rely on the prin-
ciple of following links between sources [61]. An advantage in comparison to
federated architectures is that sources that are not accessible via SPARQL end-
points can be considered. Another advantage is that users can retain complete
control over the data they provide.

The query is executed without a previous query planning or optimization
step. First, the system retrieves data from the sources mentioned in the query.
The data is partially evaluated on the retrieved data so that relevant source
URIs and links can be identified. The system uses these URIs to retrieve more
data. It iteratively evaluates and discovers further data until all sources found
to be relevant have been processed.

The peculiarity of this approach is the intertwining of the two phases: query
evaluation and link traversal. Previous work [17,94] kept these two phases in sep-
arate by first retrieving the data and then evaluating the query on the retrieved
data.

Hybrid. It is also possible to combine federated query processing with active
discovery of unknown but potentially relevant sources [78]. The main assump-
tion is that knowledge about some sources is available for query planning and
optimization. During query execution, sources are retrieved, new sources are it-
eratively discovered, the query plan is reoptimized and partially executed until
all relevant sources have been processed.

2.5 Systems based on the P2P paradigm

As we have seen, distributed processing of RDF data can be realized by adopting
the federated database system architecture and developing efficient solutions for



problems that come along with the characteristics of Linked Data. But there is
another important class of distributed systems that Linked Data processing can
also benefit from: peer-to-peer (P2P) systems.

P2P systems are networks of autonomous peers that are connected through
logical links, which express that a pair of peers “know” each other, i.e., they can
exchange messages and data and are referred to as neighbors. A pair of peers
without a link do not know each other and can therefore only contact each other
if they find a path of links via intermediate peers that connects them.

In general, sources/peers in a P2P network have a higher degree of autonomy
in comparison to sources in distributed database systems. In pure P2P networks
there is no central component, i.e., no federator or mediator, that could be used
for query planning and optimization. Instead, the behavior of the whole system
is the consequence of local interactions between peers.

Whereas sources in the context of distributed databases are considered to
be rather stable and available, P2P systems assume a higher degree of dynamic
behavior, i.e., they assume that peers might join and leave the network at any
time. Even though a peer leaves the network, the system should still be able to
answer queries – even though the data provided by the peer that left the network
is (momentarily) unavailable. Moreover, each peer in the network might issue
queries and participate in answering queries. There are different classes of P2P
systems: centralized P2P, pure P2P, hybrid P2P, structured P2P.

Centralized P2P systems. For centralized P2P systems, like Napster11, there is
a central component providing a centralized index that is used to locate relevant
data to a given query. So, a user query issued at a peer is sent to the central
component, which uses the index to find peers providing the queried data. This
information is sent back to the querying peer, which then directly communicates
with other peers to access the queried data.

Pure/unstructured P2P systems. As the centralized server represents a bottle-
neck and a single point of failure, pure P2P system strictly avoid peers with
special roles. Instead, all peers are considered equal and query processing is re-
alized by flooding, i.e., a peer with a local user query forwards the query to all
its neighbors, they proceed the same so that the query finally reaches all the
peers in the network. The answers to the query are routed back to the query
initiator, which can then directly communicate with peers providing relevant
data. In analogy to structured P2P systems, which we will discuss below, pure
P2P systems are often referred to as unstructured P2P systems.

Hybrid P2P systems. The problem with flooding is that query processing con-
sumes much bandwidth and weak/slow peers represent the bottleneck. So, hybrid
P2P systems use super-peers to counteract this problem. Super-peers are strong
peers that form an unstructured P2P network. Weaker peers are connected to a
super-peer as leaf nodes and form a centralized P2P system.

11 http://www.napster.com



Structured P2P systems. All the P2P system discussed so far assume that the
data shared in the network remains at the peers that “own” them. However, in
structured P2P systems, a global rule is used to redistribute the data among
peers in the system. In most cases a hash function is used for this purpose so
that each peer is responsible for a specific hash range and therefore for all the
data with hash values in that range. Peers are arranged in a logical overlay
structure, e.g., a logical ring [137], that is used to organize the peer in way that
alleviates efficient lookup. For query processing peers use the globally known
rule according to which the data has been distributed in the first place, e.g.,
peers compute hash values for the queried data and use the overlay network to
locate peers responsible for overlapping hash ranges.

After having introduced the basic types of P2P systems, let us now discuss some
approaches that apply these concepts to the Semantic Web and RDF data.

Edutella. An early approach that combined the two paradigms RDF and P2P
is Edutella [98]. Edutella assumes that all resources maintained in the network
can be described with metadata in RDF format. All functionality in the Edutella
network is mediated through RDF statements and queries on them.

Peers participating in an Edutella network might use different schemas so
that Gnutella applies the mediator-wrapper approach based on a common data
model and a common query exchange format to overcome heterogeneity. A peer
that wants to participate in the network, registers at a so-called mediator peer.
Peers register the metadata schemas they support and in this way indicate which
queries they can answer. Queries are sent through the Edutella network to the
subset of peers that have registered with the corresponding schema. The resulting
RDF statements are sent back to the requesting peer. To broaden the search
space, mediators provide a service that translates queries over one schema into
queries over another schema.

Because of the mediators that mediate between clusters of peers support-
ing different schemas, the overall architecture can be considered a hybrid P2P
system.

GridVine. GridVine [5] uses P-Grid [4] to organize peers in a structured P2P
overlay network, which is used for communication and interaction between peers.
Data is indexed and stored in the standard way of structured P2P systems, i.e.,
each peer maintains a local database at the semantic layer to store the triples
whose keys are contained in the key range the peer is responsible for. GridVine
also supports sharing schemas by associating schemas with unique keys and
storing them in the overlay network.

GridVine supports queries based on basic graph patterns and exploits pair-
wise mappings (OWL statements relating similar classes and properties) between
different schemas to overcome schema heterogeneity and evaluate queries against
schemas they were originally not formulated against. Mappings are also stored
in the network.



In order to locate peers providing relevant data for a given query, or a basic
graph pattern respectively, each triple is indexed and stored three times – once
for each component of the triple.

RDFPeers. RDFPeers [20] is similar to GridVine but uses a different semantic
overlay network for storing, indexing, and querying RDF data. To efficiently
answer multi-attribute and range queries, RDFPeers relies on a multi-attribute
addressable network (MAAN) [21], which extends Chord [137] – structured P2P.

Each triple is stored three times applying hash functions to subject, predi-
cate, and object. The system’s query processing capabilities are very similar to
the ones of GridVine. It supports triple pattern queries, disjunctive and range
queries, and conjunctive multi-predicate queries using RDQL.

QC and SBV. Another approach for evaluating conjunctive queries of triple
patterns over RDF data using structured overlay networks is proposed in [83].
It uses Chord [137] and also stores each triple three times (subject, predicate,
object).

This approach proposes two algorithms for query processing: query chain
(QC) and spread by value (SBV). The main idea of the query chain algorithm is
that intermediate results flow through the nodes of the chain. First, responsible
nodes are determined for each triple pattern contained in the query – exploiting
constants contained in the patterns and using the overlay structure to identify
relevant peers. The found responsible peers form a chain and exchange messages
to answer the query.

The spread by value algorithm constructs multiple chains for each query that
can be processed in parallel. Query processing starts at a node responsible for
the first query pattern, which uses values of matching triples to forward the
query to nodes providing data for these values.

Other approaches. YARS2 [60] uses the P2P paradigm (structured P2P) in
a different way than the approaches discussed so far. As mentioned above in
Section 2.1, it comes in combination with the search engine SWSE. YARS2
does not distribute the data in the structured overlay network but an index
structure. More specifically, YARS2 uses indexes in six different orderings of
triple components and distributes this index according to a hash function.

KAONp2p [55] also suggests a P2P-like architecture for query answering
over distributed ontologies. Queries are evaluated against resources, which are
integrated using a virtual ontology that logically imports all relevant ontologies
distributed over the network.

3 Scalable Reasoning with Uncertain RDF Data

As we have seen in the previous chapter, state-of-the-art SPARQL engines for
RDF data (see, e.g., [3, 99]) primarily focus on conjunctive queries on top of a



relational encoding of RDF [1] data. They often employ a so-called “triple-store”
technique by indexing or slicing the data according to various permutations of
the basic subject-predicate-object (SPO) pattern. These engines generally follow
a deterministic data and query processing model and do not have a notion of
uncertain reasoning or probabilistic inference.

In this chapter, we aim to devise possible directions for scalable reason-
ing with uncertain RDF knowledge bases, following ideas from probabilistic
databases, logic programming, and recent imperative programming platforms
for inference in probabilistic graphical models. We focus on RDF as our basic
data model and SPARQL as the default query language for RDF. Consequently,
the forms of uncertain reasoning we consider here focus on SQL-style queries in
probabilistic databases, Datalog-style reasoning using Horn clauses as rules, as
well as some probabilistic extensions to logic programming.

By default, an RDF graph itself is schemaless. RDFS [1] thus introduces
basic facilities for imposing schema information in terms of a class hierarchy.
Intuitively, entities that belong to the same instance of a class, i.e., entities of
the same RDF type, share common properties. In RDFS, instances of classes,
class memberships and class properties are transitively inherited to resources
in subclasses via the type, subClassOf and subPropertyOf relations, respectively.
More generally, rule-based reasoning using Datalog-style Horn clauses subsumes
type, subclassOf and subPropertyOf inferences in RDF/S and also captures some
of the constraints expressible in OWL [7] (e.g., the transitive or functional prop-
erties of predicates). Transitivity, for example, can very easily be expressed via
first-order predicate logic (specifically with rules in the form of Horn clauses),
which require a from of logical reasoning in order to check consistency or to com-
pute entailment. Considering relations as logical predicates and facts as literals,
we thus also briefly investigate the relationship to logic programming and its
probabilistic extensions in this chapter.

As a (more popular) counterpart to probabilistic logic programming, prob-
abilistic databases [32] investigate query processing techniques for structured
(SQL) queries over relational data with fixed schemata. While the general idea
of including probabilistic models into databases is not new and leads back to
more than 30 years of research (see, e.g., [24]), in particular recent works in
this context have provided us with a rich body of literature and have led to the
development of a plethora of systems, which all aim at the scalable management
of uncertain relational data. Ultimately, these approaches however need to face
the very same scalability and complexity issues as any approach dealing with
inference in probabilistic graphical models.

As this part of the lecture focuses on database-style infrastructures for the
management of uncertain RDF data, we do not go into details on probabilistic
extensions to OWL and its variants based on description logics (OWL-DL). For
probabilistic description logics [87] (PDL), we refer the reader to [138], which
provides a very good overview of PDL and related approaches, which has found
wide-spread acceptance in the semantic web community. PDL generalizes the
description logic SHOIN (D) and can thus express, for example, functional rules.



Reasoners such as PRONTO12 can be used to decide consistency or to compute
entailment with probabilistic bounds.

3.1 Probabilistic Databases

Approaches for managing uncertainty in the context of probabilistic databases [8,
13,30,31,132] focus on relational data with fixed schemata, and they often employ
strong independence assumptions among data objects (the “base tuples”). SQL
is used as the default query language for running queries, defining views, or
triggering updates to the data.

Most probabilistic databases adopt the possible worlds [6] model as basis
for their data model and for defining the semantics of queries. Intuitively, ev-
ery tuple in a probabilistic database corresponds to a binary random variable
which may exist in the database with some probability. A probabilistic database
thus encodes a large number of possible instances of deterministic databases,
where each deterministic instance contains a different combination (i.e., possi-
ble world) of tuples. Each such possible world has a probability between 0 and
1. The probabilities of all worlds form a distribution and sum up to 1. The
marginal probability of a tuple can be obtained by summing up the probabilities
of all worlds which contain that tuple, which leaves confidence computations in
probabilistic databases #P-complete [30, 120] in the general case. The seman-
tics of queries is then formally defined by running the query against each of
these instances individually, and by encoding the results obtained from each of
the individual instances back into the probabilistic database. While often the
actual data computation can be carried out directly along with the SQL opera-
tors, different inference techniques for confidence computations may have to be
implemented as separate function calls (e.g., as stored procedures [96]).

In addition to this basic uncertainty model, the ULDB [13] data model (for
“Uncertainty and Lineage Database”) provides a lineage-based representation
formalism for probabilistic data, which has been shown to be closed and complete
for any combination of SQL-style relational operators and across arbitrary levels
of materialized views. Here, the lineage (aka. “history” in [132] or “repair-key”
operator in [8]) of a derived tuple (or an entire view) is captured as a Boolean
formula which recursively unrolls the logical dependencies from the derived tuple
back to the base tuples. The lineage of a derived tuple may never be cyclic, but it
may impose a DAG structure over the derivation of a tuple. Thus, being a form
of a directed (but acyclic) graphical model, probabilistic inference in ULDBs
remains #P-complete for general SQL queries.

On the other hand, considering restricted classes of SQL queries and corre-
sponding query plans, where exact confidence computations remain tractable,
has led to a notion of “safe plans” in [30]. Intuitively, an entire query plan is
safe, if all query operators take only independent subgoals as their input, which
guarantees a hierarchical derivation structure (i.e., tree-shaped lineage) of all
tuples involved in a query result. Following this idea on a more fine-grained
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(i.e., on a per-tuple rather than a per-plan) level, [129] considers a class of
so-called “read-once” functions, where the Boolean lineage formula can be fac-
torized (in polynomial time) into a form, where every variable appears at most
once. Moreover, efficient top-k query processing [116, 134] and unified ranking
approaches [81] have investigated different semantics of ranking queries over
uncertain data. Recently, the modeling of correlated tuples [127] with the ex-
plicit usage of probabilistic graphical models such as Bayesian Nets [18,151] and
Markov Random Fields [128] has found increasing attention also in the database
community. In [70], the authors define a class of Markov networks, where query
evaluation with soft constraints can be done in polynomial time, while the case
with hard constraints is considered separately in [31]. Also in the context of
these graphical models, lineage remains the key for a closed representation for-
malism [71].

While most probabilistic database systems provide extensions to the DDL
(data definition language) part of the SQL standard to define dependencies at
the schema level, only fairly few works explicitly tackle the DML (data manip-
ulation language) part of SQL, including data modifications such as updates
or deletes [66, 125]. Most probabilistic database approaches focus on SELECT-
PROJECT-JOIN (SPJ) query patterns, where query processing bears a number
of interesting analogies to inference in probabilistic graphical models.

MystiQ. The MystiQ system [16,30,117] developed at the University of Wash-
ington provides support for a wide range of SQL queries over uncertain and
inconsistent data sources. On the DML part, MystiQ introduces the notion of
an approximate match operator between a query attribute and a data attribute,
which can be evaluated by data-type-specific built-in functions. On the DDL
part, MystiQ supports so-called predicate functions, which define how probabil-
ities should be generated for an approximate match on such an attribute. More-
over, in the spirit of functional dependencies in deterministic databases, MystiQ
allows for the specification of global constraints among attributes at the schema
level. Unlike classic functional dependencies, these constraints can be specified
to be either strict (e.g., a person may have only exactly one date-of-birth) or soft
(e.g., most people have different names). A violation of a constraint mutually
affects the confidences of all tuples involved in the conflict. In further works, the
authors present an efficient top-k algorithm (coined “multi-simulations”) for a
class of SELECT DISTINCT queries which exhibit a DNF structure as lineage.
Multi-simulation works by running multiple Monte Carlo simulations [73] in par-
allel until the lower confidence bounds of the top-k answers to the query have
sufficiently converged, in order to distinguish them from the upper confidence
bounds of the non-top-k answers.

Trio. Based on the ULDB data model, the Trio [96] system developed at Stan-
ford University provides an integrated approach for the management of data,
uncertainty, and lineage. Trio is implemented on top of a conventional database
system (PostgreSQL) and employs an SQL-based rewriting layer for the Trio



query language (TriQL) into a series of relational queries and calls to stored
procedures. As core of its data model, Trio adopts the notion of X-tuples [123]
for mutually exclusive tuple alternatives, Boolean lineage formulas, maybe an-
notations (which indicate the possible absence of the tuple in the uncertain
database), and confidence values that may be attached to each tuple alterna-
tive. In Trio (and ULDBs), lineage enables for the complete decoupling of data
and confidence computations, which may yield significant efficiency benefits for
query processing. Later extensions to Trio have investigated in more detail how
to exploit lineage for probabilistic confidence computations [124] and data up-
dates [125].

MayBMS. The MayBMS [8,66] system initially developed at Saarland Univer-
sity and then at the Cornell database group is designed as a completely native
extension to PostgreSQL. Based on the encoding scheme of conditional tables (C-
tables) [67,123], the current MayBMS system employs a compact form of schema
decompositions (coined “U-relations”), which results in a succinct encoding of
an uncertain relation with independent attributes. Another focal point of the
MayBMS project includes the investigation of foundations for query languages
in probabilistic databases in analogy to relational algebra and SQL [75]. Ongo-
ing research issues in MayBMS include query optimization, an update language,
concurrency control and recovery, and the design of generic APIs for uncertain
data. MayBMS is the basis for the SPROUT system discussed in Section 4.

Orion. Inspired by large-scale sensor nets, the Orion [131,132] system developed
at Purdue University also investigates continuous probability density functions
(PDFs) in combination with SQL-style relational query processing techniques.
Originally inspired by the application of sensor networks, the current Orion
2.0 prototype has built-in support for a number of continuous (e.g., Gaussian,
Uniform) and discrete (e.g., Binomial, Poisson) distributions, which are treated
symbolically at query processing time. If the resulting distribution of an SQL-
style operation cannot be represented by a standard distribution anymore, Orion
switches to an approximate distribution using histograms and sampling. Further
features of Orion include the handling of correlations among attributes, which
are captured as explicit joint distributions among the correlated attributes, and
the handling of missing (i.e., incomplete) data, which is implemented by allowing
for partial PDFs whose confidence distributions may sum up to less than 1. Using
a form of query history, the Orion data model is closed under common relational
operations and consistent with the possible-worlds semantics.

PrDB. One of the most active current probabilistic database projects is the
PrDB [128] system developed at the University of Maryland. Unlike other prob-
abilistic database approaches, PrDB employs undirected probabilistic graphical
models, specifically Markov Random Fields, as basis for handling correlated base
tuples. The graphical model is stored directly in the underlying database system



in the form of factor tables, which capture correlations among tuples and serve
as input for the probabilistic inference algorithms. Due to the generality of this
data model, PrDB incorporates a large variety and optimizations for both ex-
act and approximate inference, including variable elimination [36], the reuse of
shared factors, and Gibbs sampling [47] in the general case. In addition, bisim-
ulation [72] is shown to significantly speed up inference for DAG-shaped queries
in this context. Also here, lineage, in the form of Boolean formulas that capture
the logical dependencies of derived data objects (tuples) back to the base tuples,
is the key for a closed and complete representation model. Moreover, the efficient
processing of lineage for probabilistic inference under this data model has been
studied in [71].

3.2 Logic Programming & Rule-based Reasoning

The semantic web has led to the development of a plethora of rule-based and
description-logic-based reasoning engines, including reasoners like Sesame, Jena,
IRIS, Bossam, Prova, and many more13. Besides classical logic programming
frameworks based on Prolog and Datalog, these engines specifically focus on
different ontological reasoning concepts based on the RDF/S standards and the
DL (based on description logic), RL (supporting first-order Horn rules) and EL
(supporting rules with restricted existential quantifiers) fragments of OWL.

Besides the different grounding techniques and varying expressiveness of the
ontological concepts these reasoners support, an important semantic distinction
can be made in the way these engines handle negation. Negation-as-failure [28] is
the most common semantics for handling negation in rule antecedents (bodies),
which is also the default semantics used in most Prolog and Datalog engines.
Intuitively, a negated literal in the body of the rule is grounded if no proof
for the literal can be derived from the knowledge base. As a form of closed-
world assumption this semantics can lead to non-monotonic inferences when new
information (i.e., facts or rules) are entered into the knowledge base, such that
the negation of the literal no longer holds. To tackle this issue, the well-founded
negation and stable-model semantics have been proposed to handle negation in
rule antecedents. We refer the reader to [45, 102, 143] for details. However, care
is advisable when reasoning with recursive rules; already plain Datalog without
negation has been shown to be EXPTIME-complete for non-linear, recursive
programs (i.e., for predicates with more than one argument and rules with more
than one recursive predicate in their antecedents) and still PSPACE-complete
for linear, recursive programs, respectively [142].

To evaluate the performance of these engines, a number of benchmarks have
been defined, out of which the most prominent ones are probably [145] for
RDF/S, as well as the Lehigh University Benchmark (LUBM) [52] and the more
recent OpenRuleBench [82] initiative. In the following subsections, we provide
a brief overview of the top-performing engines evaluated in OpenRuleBench:
OntoBroker, XSB, Yap, and DLV.

13
See http://www.w3.org/2007/OWL/wiki/Implementations for a current overview.



OntoBroker14 is designed as a Java-based, object-oriented database system. It
has been originally developed at the AIFB Karlsruhe and meanwhile turned into
a commercial product. It follows a bottom-up, deductive grounding technique
and supports Magic-Sets-based rule rewriting [12], as well as a cost-based query
optimizer (similar to a relational database system)—a feature that many other
rule engines lack. OntoBroker supports the well-founded negation.

XSB15 is an open-source Prolog engine implemented in native C. In addition
to a top-down processing of Prolog or function-free Datalog programs, it can
also be used in a deductive (i.e., bottom-up) database fashion, using advanced
grounding techniques based on tabling (aka. “memoing”) [153]. Through tabling,
XSB is able to terminate even for cases when many Prolog engines (based on
top-down SLD resolution [77]) run into cycles. Unlike most Prolog engines, XSB
supports the well-founded negation and (via a plug-in) also the stable-model
semantics.

Yap16 is a highly optimized Prolog engine developed at the Center for Research
in Advanced Computing Systems and the University of Porto. Like XSB it sup-
ports advanced grounding techniques based on tabling, but (unlike XSB) it can
also create indices for faster data access on-the-fly, when it determines that a
particular index may speed up the access to a large amount of data. It how-
ever supports only negation-as-failure, but not the well-founded negation nor
the stable-model semantics.

DLV17 is a bottom-up rule system implemented in C++. It is unique in that
it allows for a form of disjunctive Datalog programming with disjunctive rule
consequents (heads). Moreover, it is the only system along theses lines which
supports the stable-model semantics. As additional feature, DLV has built-in
support for propositional reasoning over the grounded model using Max-SAT
solving and similar techniques. As most of these engines, it is a pure query
engine, i.e., it does not support incremental updates to the knowledge base.

3.3 Combining First-order Logic and Probabilistic Inference

In the following, we assume a knowledge base to consist of a finite set of first-
order logical formulas and a finite set of (potentially typed) entities. We focus
only on reasoning techniques which work by grounding (i.e., by instantiating) the
first-order rules, and which again result in a finite set of propositional formulas.
This class of rules conforms to a subset of first-order logic that is generally
referred to as the Bernays-Schönfinkel-Ramsey class, which is decidable and can
be evaluated by grounding the first-order formulas. In some settings, we might
want to distinguish between soft rules, which may be violated and thus typically
have a confidence weight associated with them, and hard constraints, which may
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16
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not be violated. A wide variety of grounding techniques exist, each leading to a
different reasoning semantics and potentially different answers to queries. What
all grounding techniques have in common is that they bind the variables in the
rules with the entities contained in the knowledge base in order to obtain a
(grounded) set of propositional formulas. In the following, we will consider the
actual grounding procedure mostly as a black-box function.

We formally call a knowledge base inconsistent if the conjunction of all propo-
sitional statements that can be derived from it (e.g., via grounding the rules)
evaluates to false. Moreover, we call a knowledge base unsatisfiable if there exists
no truth assignment to variables such that the hard constraints are satisfied.

Propositional Reasoning. Classic (deterministic) approaches to handling in-
consistencies in a set of propositional formulas are based on the Boolean satisfi-
ability problem, generally known as SAT. Although the general SAT problem is
NP-complete, many real-world problems have actually been shown to be “easy”
to solve even for thousands of Boolean variables and many tens of thousands of
constraints. Moreover, in recent years the field of SAT solving has made great
progress in developing strategies, which allow for tackling also non-trivial in-
stances of the SAT problem very efficiently. Introducing soft rules, on the other
hand, leads to a weighted form of the satisfiability problem, generally known as
the maximum satisfiability problem (Max-SAT). Here the goal is to find a truth
assignment to variables which maximizes the aggregated weights (typically the
sum) of the formulas which are satisfied by this assignment. Finding the optimum
solution in Max-SAT solving however is also NP-complete. More specifically, the
maximum satisfiability problem over Horn clauses (coined Max-Horn-SAT) has
been studied in detail in [69]. In [48], the authors provide a 3/4 approxima-
tion algorithm for the weighted Max-SAT problem over Boolean formulas in
conjunctive normal form (CNF). None of these classic (deterministic) Max-SAT
solvers however considers a distinction between soft and hard constraints. Thus,
recently a family of stochastic Max-SAT solvers has been introduced with Walk-
SAT [154] and MaxWalkSAT [74], which apply different strategies in order to
explore multiple possible worlds to more accurately approximate the optimum
solution. A counterpart to Max-SAT solving from a probabilistic perspective is
Maximum-a-Posteriori estimation (or “MAP-inference”) [133], which selects the
most likely mode, i.e., the most likely assignments to variables, according to
their posteriori distribution. Recently, for example in the context of informa-
tion extraction, grounding a set of first-order formulas and post-processing the
propositional formulas by a Max-SAT solver has been applied successfully in the
SOFIE [141] and PROSPERA [97] projects, in order to automatically populate
the YAGO [140] knowledge base18.

Markov Logic Networks. Statistical relational learning (SRL) [46] has been
gaining an increasing momentum in the machine learning, database, and se-
mantic web communities, with Markov Logic Networks [118] probably being the

18
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most generic approach for combining first-order logic and probabilistic graph-
ical models into a unified representation and reasoning framework. Intuitively,
Markov Logic works by grounding a set of first-order logical rules against a
knowledge base, and by sampling states (“worlds”) over a Markov network that
represents the grounded (i.e., propositional) formulas. Inference in probabilistic
graphical models in general is #P-complete. Therefore, Markov Chain Monte
Carlo (MCMC) [47, 114, 133] denotes a family of efficient sampling algorithms
for probabilistic inference in these graphical models, with Gibbs sampling [47]
being one of the most widely used sampling technique, which is also employed
in Markov Logic.

Markov Logic however does not easily scale to very large knowledge bases.
Grounding a first-order Markov network works by binding all entities (constants)
to variables in first-order predicates that match the type signature of the pred-
icate. For binary predicates, this results in grounded networks which are often
nearly quadratic in the number of entities in the knowledge base. Scaling Markov
Logic to large knowledge bases with millions of entities (and hundreds of millions
of facts) thus remains all but straightforward. Recently, the Tuffy [103] engine
(see Section 4) has been addressing the issue of scaling up Markov Logic by
coupling Alchemy19 with a relational back-end, and by replacing the grounding
procedure of Alchemy with a more efficient bottom-up grounding technique.

MAP-Inference. More recently, stochastic ways of addressing inference over a
combination of deterministic (hard) and probabilistic (soft) dependencies has
been addressed also in the context of Markov Logic. Maximum-a-Posteriori
(MAP) inference [133] (based on the stochastic weighted Max-SAT solver
MaxWalkSAT [74]) and MC-SAT [114] (based on slice sampling [33]) are
two approximation algorithms for propositional and probabilistic inference in
Markov Logic, respectively. Using a log-linear model for generating the factors
of grounded formulas, MAP-inference can be shown to directly correspond to an
execution of MaxWalkSAT over a Markov Logic network [119].

MC-SAT. Hard constraints may introduce isolated regions of states which can-
not easily be overcome by a Gibbs sampler (i.e, by just flipping one variable at
a time). MC-SAT [113] thus introduces auxiliary variables which provide the
sampler with the ability a “jump” into another (otherwise disconnected) region
with some probability. Experimentally, MC-SAT has been shown to outperform
Gibbs sampling and simulated tempering by a significant margin, particularly
when deterministic dependencies are present. However, allowing arbitrary con-
straints as hard rules may lead to the formulation of unsatisfiable constraints,
which either renders the knowledge base inconsistent (if there is no solution at
all) or empty (if the only solution is to set all facts to false). Satisfiability checks,
which includes checking whether a derived fact is false in all the possible worlds
and thus has a probability of exactly 0, cannot be approximated and thus remain
an NP-hard problem.

19
http://alchemy.cs.washington.edu/



Constrained Conditional Models. Another framework which combines
(first-order) logical constraints and probabilistic inference is given by Con-
strained Conditional Models [88] (CCMs). Intuitively, constraints between input
variables (observations) and output variables (labels) are encoded into linear
weight vectors, which can be solved by Integer Linear Programming. Working
with CCMs involves both learning weights for the model and efficient inference.
CCMs allow for encoding Markov Random Fields, Hidden Markov Models and
Conditional Random Fields [121]. They found strong applications in natural
language processing, including tasks like co-reference resolution, semantic role
labeling, and information extraction.

Probabilistic Datalog. Early probabilistic extensions to Datalog have been
studied already in [44] and have later been refined to a number OWL con-
cepts [104]. Although this approach already introduced a notion of lineage
(coined “intensional query semantics”), the probabilistic computations are re-
stricted to a class of rules which is guaranteed to provide independent subgoals
(similar to the notion of safe plans or read-once functions in [30, 129]), where
confidence computations can be propagated “upwards” the lineage tree using
the inclusion-exclusion principle (aka. “sieve formula”).

3.4 Programming Platforms for Probabilistic Inference

The “declarative-imperative” [64], a term coined in the context of the Berke-
ley Orders of Magnitude (BOOM) project20, brings two seemingly contracting
paradigms in data management to the point: how can we combine the power
of an imperative programming language with the convenience of a declarative
query language? In the following, we briefly highlight two imperative program-
ming platforms for probabilistic inference: FACTORIE and Infer.NET.

FACTORIE21 is a toolkit for deployable probabilistic modeling developed by
the machine learning group at the University of Massachusetts Amherst [93]. It
is based on the idea of using an imperative programming language (Scala) to
define templates which generate factors between random variables, an approach
coined imperatively defined factor graphs. Intuitively, when instantiated these
templates form a factor graph, where all factors that have been instantiated
from the same template also share the same parameters that were used to define
the template. For inference, FACTORIE provides a variety of techniques based
on MCMC, including Gibbs sampling. FACTORIE has been successfully applied
to various inference tasks in natural language processing and information inte-
gration. Recently, FACTORIE has also been coupled with a relational back-end
and thus potentially scales to probabilistic database settings with billions of
variables [156].

20
http://boom.cs.berkeley.edu/

21
http://code.google.com/p/factorie/



Infer.NET22 provided by Microsoft Research in Cambridge provides a rich pro-
gramming language for modeling Bayesian inference tasks in graphical models
and comes with an out-of-the-box selection of inference algorithms. It provides a
built-in API for defining random variables (binary/multivariate-discrete or con-
tinuous), factors, message-passing operators, and other algebraic operators. It
has been used in many machine-learning settings, with tasks involving classi-
fication or clustering, and in a wide variety of domains, including information
retrieval, bio-informatics, epidemiology, vision, and many others.

3.5 Distributed Probabilistic Inference

Distribution bears the highest potential to scale-up rule-based reasoning and
probabilistic inference, but still is fairly unexplored in the context of uncertain
reasoning and probabilistic data management. Although distribution of course
cannot tackle the asymptotical runtime issues inherently involved in these algo-
rithms, it bears two key advantages:

• Storing a large data or knowledge base with billions of uncertain data ob-
jects in a distributed environment immediately allows for an increased main-
memory locality of the data, which is a key for both efficient rule-based rea-
soning and probabilistic inference, with a majority of fine-grained, random-
access-style data accesses.

• Running queries over a cluster of machines bears great potential for high-
performance parallel computations, but clearly also poses major algorithmic
challenges in terms of synchronizing these computations and the preservation
of approximation guarantees (e.g., convergence guarantees for the MCMC-
based sampling techniques).

MCDB. The MCDB [68, 159] project at IBM Almaden focuses on support-
ing Monte Carlo techniques for complex data analysis tasks directly within a
database system. MCDB is one of the few database approaches to probabilistic
data management that has specifically been adapted to Hadoop23, a massively
parallel, Map-Reduce-like [35] computing environment. MCDB focuses on ana-
lytical tasks over a broad range of user-defined stochastic models, e.g., risk anal-
ysis with complex analytical queries including grouping and aggregations [53].
Another, recent, application domain of MCDB is declarative information extrac-
tion [95].

Message Passing & Distributed Inference. Its iterative nature makes
the Map-Reduce paradigm not well suitable for inference tasks, which inher-
ently involve many fine-grained updates between states of objects that may
be distributed across a compute cluster. For probabilistic inference, two main

22
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

23
http://hadoop.apache.org/



paradigms for distribution co-exist: the shared memory and the distributed mem-
ory model. In the shared-memory model, every processor has access to all the
memory in the cluster; while for the distributed memory model, every processor
only has a limited amount of local memory, and each processor can pass “mes-
sages” to other processors in the cluster. An alternative to the classic Message
Passing Interface24 (MPI) is the Internet Communications Engine25 (ICE). Both
are shipped as C++ libraries.

With the ResidualSplash [49] algorithm, the authors present a parallel belief
propagation algorithm under the shard memory model, which is shown to achieve
optimal runtime compared to a theoretical lower bound for parallel inference on
chain graphical models. In their later DBRSplash [50] algorithm, the authors
drop the shared memory model and consider parallel inference techniques in
generic probabilistic graphical models, which are captured as distributed factor
graphs. In this setting, a factor graph is distributed into a number of (disjoint
or slightly overlapping) partitions, such that the number of partitions matches
the number of processors available in the compute cluster. The objective of the
partitioning function is to minimize the communication cost among nodes while
ensuring load balance. Since computing an optimal partitioning under these
constraints is NP-hard, an efficient (linear-time) approximation algorithm is de-
vised as basis for the data partitioning. As for inference, a belief propagation
algorithm is employed, with a local priority queue for incoming update messages
at each processor. DBRSplash even reports a super-linear performance scale-up
compared to a centralized setting. Moreover, GraphLab26 [86] is a framework
for deploying parallel (provably correct) machine learning algorithms. Unlike
MapReduce, it focuses on more asynchronous communication protocols with dif-
ferent levels of sequential-consistency guarantees. In the full consistency model,
during the execution of a function f(v) on a vertex v, no other function is allowed
to read or write data to any node in the scope (neighborhood) S(v). In the edge
consistency model, no other function is allowed to read or write data to an edge
associated with v, while a function f(v) is executed. Finally, in the weakest form
of consistency model, the vertex consistency model, no other function is allowed
to read or write data to the vertex v itself, while a function f(v) is executed.

4 New trends: BayesStore, SPROUT, Tuffy, URDF

SQL-style query processing over uncertain relational data or, respectively,
rule-based reasoning with uncertain RDF data is an emerging topic in the
database, knowledge management and semantic web communities. Recent trends
along these lines include moving away from strict relational data, lifting infer-
ence to higher-order constraints, and scaling-up inference for graphical models
which combine first-order logic and probabilistic graphical models (in partic-
ular Markov Logic). Extracting structured data from the Web is an excellent

24
http://www.mcs.anl.gov/research/projects/mpich2/

25
http://www.zeroc.com/ice.html

26
http://www.graphlab.ml.cmu.edu/



showcase—and likely one of the biggest challenges—for the scalable management
of uncertain data we have seen so far. In the following, we thus briefly highlight
a few projects, each of which devises exciting directions that could help making
the management of uncertain RDF data scalable to billions of triples.

BayesStore. Based on a native extension to the PostgreSQL database system,
the BayesStore [151] project at Berkeley aims to bridge the gap between statis-
tical models induced by the data and the uncertainty model supported by the
probabilistic database. BayesStore supports statistical models, evidence data,
and inference algorithms directly as first-class citizens inside a database manage-
ment system (DBMS). It combines a probabilistic database system (PDBMS) for
relational data with a declarative first-order extension to Bayesian Nets, which
allows for capturing complex correlation patterns in the PDBMS in a compact
way. Using a combination of propositional and first-order factors, BayesStore
supports probabilistic inference for all common database operations, including
selection, projection, and joins. Recent extensions to BayesStore include the
investigation of probabilistic-declarative information extraction techniques by
using Conditional Random Fields (CRFs) for extraction and by implementing
the Viterbi algorithm for efficient inference in the CRF directly via SQL [150].

SPROUT. Using the MayBMS probabilistic database system (see Section 3.1)
as basis, the SPROUT (for “Scalable PROcessing on Uncertain Tables”) [106]
project at Oxford University aims at the scalable processing of queries over
uncertain data. A particular focus of the project lies on tractable classes of
queries for which exact probabilistic inference can be done in polynomial time.
Similarly to the notion of safe plans [30], a probabilistic query is tractable if it
has a hierarchical structure and (in the case of SPROUT) can be decomposed
into a binary decision diagram in polynomial time. [107], on the other hand,
investigates the decision diagrams for approximate inference for queries where
exact probabilistic inference is intractable.

Tuffy. Based on the observation that Markov Logic does not easily scale to
real-world datasets with millions of data objects, the Tuffy [103] at the Univer-
sity of Wisconsin-Madison investigates pushing Markov Logic Networks (MLNs)
directly into a relational database system (RDBMS). In contrast to the open-
world grounding strategy followed by the MLN implementation Alchemy, the
authors pursue a more efficient bottom-up, closed-world grounding strategy of
first-order rules through iterative SQL statements, which is fully supported by
the DBMS optimizer. Focusing on MAP-inference, Tuffy provides a partitioning
strategy for the search (inference) phase by splitting the grounded network into
a number of independent components, which allows for parallel inference and
an exponentially faster search compared to running the search on the global
problem. For a given classification benchmark, Tuffy (consuming only 15MB of
RAM) was reported to produce much better result quality within minutes than
Alchemy (using 2.8GB of RAM) even after days of running.



URDF. In probabilistic databases, SQL is employed as means for formulating
queries and for defining views. While SQL queries and schema-level constraints
generally yield “hard” Boolean constraints among tuples, they lack the notion
of “soft” dependencies among data items. The URDF [144] project developed
at the Max Planck Institute for Informatics specifically focuses on weighted
Horn clauses as soft rules and mutual-exclusion constraints as hard rules. Unlike
Markov Logic, URDF follows a Datalog-style, deductive grounding strategy for
soft rules in the form of Horn clauses, which typically results in a much smaller
grounded network size than for Markov Logic. While URDF originally employed
a Max-SAT solver, which had been tailored to a specific class of mutual-exclusion
hard rules, URDF currently also employs probabilistic models based on deductive
grounding and lineage. Moreover, URDF explores several directions for manag-
ing large amounts of web-extracted RDF data in a declarative way, including
temporal reasoning extensions [39, 152], as well as inductively learning soft in-
ference rules automatically from a given knowledge base. As exact inference for
this class of queries is intractable, URDF investigates various approximation
techniques based on MCMC (Gibbs sampling) for approximate inference.
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