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Abstract—Accurate cardinality estimates are essential for a
successful query optimization. This is not only true for relational
DBMSs but also for RDF stores. An RDF database consists of
a set of triples and, hence, can be seen as a relational database
with a single table with three attributes. This makes RDF rather
special in that queries typically contain many self joins.

We show that relational DBMSs are not well-prepared to
perform cardinality estimation in this context. Further, there
are hardly any special cardinality estimation methods for RDF
databases. To overcome this lack of appropriate cardinality
estimation methods, we introduce characteristic sets together
with new cardinality estimation methods based upon them. We
then show experimentally that the new methods are-in the RDF
context-highly superior to the estimation methods employed by
commercial DBMSs and by the open-source RDF store RDF-3X.

I. INTRODUCTION

The semantic web, its underlying data model RDF and its
query language SPARQL have received much attention during
the last years. In essence, RDF represents data as a set of
triples. Hence, an RDF base can be seen as a relational database
containing a single relation that has only three attributes. Even
the names of these attributes are fixed. They are subject,
predicate, object. Let us take a look at a SPARQL query:

select 7s 7t 7y
where { ?s <hasTitle> ?t.
?s <hasAuthor> “Jane Austen”.
?s <inYear> ?y }
This query asks for information about books written by Jane
Austen. Variables start with a question mark, the other terms are
constants. Usually, ignoring the select, queries are sketched
using triple patterns, which resembles a datalog query’s body
without predicates. This is possible since there is only one
predicate for RDF triples. For the above query, the triple pattern
is
(7s,hasTitle,?t), (?s,hasAuthor,Jane Austen),
(?s,inYear,?y)
Clearly, two self joins are necessary to evaluate this query.

Currently, specialized RDF stores are developed by com-
mercial companies and academics. As a traditional relational
database, any RDF store needs a query optimizer that produces
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an efficient execution plan for a given SPARQL query. The
statement that accurate cardinality estimates are vital for a
successful query optimization also remains valid for RDF/S-
PARQL. To see this, consider the following query, which asks
for people having books in English and Dutch:

(7p,hasBook,?b1), (?p,hasBook,?b2),

(?b1,hasLanguage,english), (?b2,hasLanguage,dutch).
Clearly, the wrong join order is terrible for a realistic number
of occurences.

Since the information on an entity (subject) is distributed
on several triples with different predicates (and objects) but
the same subject, star queries, as in the first example, are
quite common. Using triple patterns, they are characterized
by several triples with a common subject variable. The reader
should not confuse SPARQL star queries with star queries
in the relational context. There, a star query is one where
the query graph has a star shape, that is there is a single
relation, the center, from which join predicates to all other
relations exist, and no other join predicate is present. Indeed,
star queries in SPARQL exhibit a query graph that is a clique.
This is illustrated in Fig. 3.

In this paper, we propose a highly accurate cardinality
estimation method for RDF star joins based on a novel synopsis
called characteristic sets. We also show how this estimation
method helps in estimating the cardinality of general queries,
i.e., not only RDF star join queries, and how it can be integrated
into a query optimizer for SPARQL. We experimentally validate
the accuracy and compare it with the estimation accuracy of
three major commercial DBMSs and the open-source RDF
store RDF-3X.

The rest of the paper is organized as follows. Sec. II
discusses related work. Sec. III provides insights into the unique
challenges of cardinality estimation for RDF. Sec. V introduces
characteristic sets and the basic estimation procedure exploiting
characteristic sets for RDF star queries. Sec. VI shows how this
basic estimation procedure can be integrated with other methods
to cover all RDF queries and how the resulting general method
can be integrated into a plan generator. Sec. VII evalutes the
accuracy of our approach and others. It also provides some
numbers indicating that the achieved increase in accuracy really

ICDE Conference 2011



pays off in terms of query execution times. That is, better
estimates lead to better plans. Sec. VIII concludes the paper.

II. RELATED WORK

While cardinality estimation in general is a well-established
field [1], work in the context of RDF data hardly exists. Some
of the more general-purpose estimation techniques, like multi-
dimensional histograms or join histograms [1], would seem
useful but are hard to apply due to the heterogeneous and
string-oriented nature of RDF.

The RDF-3X system uses specialized histograms for RDF
data [2], which are much better suited for RDF than standard
synopses, but still have issues in the presence of correlated
predicates (see Section III). It also computes the most frequent
paths in the RDF graph, which captures some kind of
correlations, but this computation suffers from combinatorial
explosion and, thus, captures only a few cases. Most of the
other systems either ignore cardinality estimation or use very
simplistic models. The Jena ARQ optimizer [3] uses single
attribute synopsis for individual patterns and pre-computes the
number of co-occurrences of all pairs of predicates to estimate
join selectivities. However the formulas from [3] basically
assume independence between tuple attributes, which quickly
leads to severe underestimations. In principle the co-occurrence
information between predicates allows for capturing some kinds
of correlation between predicates, but the formulas from [3]
do not make proper use of this information. Using conditional
selectivities would improve the accuracy of the model, but we
found in experiments that even then the lack of correlation
between predicate and object leads to severe underestimations.

A more refined technique based upon graph summarization
was proposed in [4]. It computes the frequency of subgraphs up
to a given size and stores it as synopsis. If the synopsis is too
large, it prunes path length such that the cut part is distributed
as uniformly as possible (i.e., the error resulting from an
independence assumption is minimized). When estimating
cardinalities, it uses the known fragments and combines them
assuming conditional independence. While this is a quite
plausible idea, we found that does not work very well in
practice. We include more detailed results in Sec. VII, but the
main problem is combinatorial explosion. For real world data
sets, the number of subgraphs is simply too large, even for very
modest subgraph sizes. As the predicates are distributed in a
quite chaotic matter in real-world data sets, subgraph counts
of 10? and more are no exception. The pruning techniques
from [4] can shrink this to arbitrary sizes, but the estimation
accuracy suffers greatly. Another problem is that they offer no
meaningful way to handle bound object values. In theory, their
approach allows for adding node labels, which could capture
literal semantics, but they do not propose a way to come up
with labels. Picking labels is quite crucial, as too fine grained
labels would make the combinatorial explosion even worse,
while too course labels hurt estimation accuracy. We picked
the semantic class (i.e., rdf:type annotation) as label, which
matches the examples [4], but this requires schema information
which is not available in general. In our experiments we used

additional synopsis over object distributions to get reasonable
estimates for bound objects. While mining frequent subgraphs
work well for small, clean RDF graphs, we had difficulties
getting reasonable accurate estimations for real-world data
using the approach from [4].

III. THE CHALLENGE

Estimating the cardinality of queries over RDF data is very
challenging due to the nature of RDF data: First, the nearly
complete lack of explicit schema is a serious problem, as all
data more or less ”looks the same” (i.e., there is no natural
way to partition the data for estimation purposes). Second,
correlated predicates are not an exception but the rule. This
can already be seen for simple queries consisting of a single
triple pattern: Consider as illustrational example the triple
pattern (?a,<isCitizenOf>,<United_States>). On the Yago
data set [5] (that contains RDF data derived from the English
Wikipedia), we observe the following selectivities:

5€l(0 p=isCitizenOF) 1.06 % 10~ %
361(00=United_8tates) 6.41 % 10~4
5€l(0 p—isCitizenOfAO—United_States ) 4.86 % 1077
SEZ(UP:iSCilizenOf) * 561(00=United_States) 680 * 1078

Both the predicate P = isCitizenOf and O = United_States
are quite selective in themselves, but we see that the combined
predicate is far less selective than predicted by multiply-
ing both selectivities. This is caused by the fact that both
predicates are correlated because nearly half of the triples
with P = isCitizenOf are about US citizens. Note that this
correlation is induced not only by the data source itself (which
is somewhat US-centric), but by the very nature of the RDF
graph: A triple with an <isCitizenOf> predicate nearly always
contains a country as object, which implies a correlation
between predicate and object. As RDF graphs are used to model
semantics, this kind of correlations is extremely common.

For this reason, standard single-bucket histograms are nearly
useless for RDF queries. Virtually all queries that involve
more than one constant exhibit correlations, and using single-
bucket histograms with independence assumption would lead to
severe misestimations. Another severe reason why histograms
are inappropriate for RDF data is that histograms are typically
applied to numeric data, but RDF data mainly consists of
strings.

Thus, we introduce a novel technique for an accurate cardi-
nality estimation for RDF queries. Note that basic estimation
techniques for dependent joins are already implemented in the
RDF-3X system [2]. The next section briefly describes them.
All other techniques are new contributions.

IV. CARD. ESTIMATION IN RDF-3X

The original work on the RDF-3X system already noticed
these issues and tried to address them in the system [2]. For
individual triple patterns, the solution is surprisingly simple:
For performance reasons, RDF-3X stores not just the complete
triples but also the projections to one respectively two attributes,
together with the number of occurrences. This information can
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be used directly for cardinality estimation, one point query
into the index structures returns the cardinality of a specific
triple pattern.

This solves selectivity estimation of simple patterns, but not
for join queries. And SPARQL queries are very join-intensive,
10 patterns and more are not unusual. Again, RDF triples are
frequently very correlated. For example, the two patterns

(?b, <author>, ?a), (7b, <title>, 7t)

are strongly correlated; most objects that have an author will
have a title. But capturing correlations between joined triple
patterns is hard, simply because the number of combinations
is so huge. RDF-3X sidesteps this problem by pulling up
constants during selectivity estimation [2]:

Op (T) Np’z Ops (T) =

1 Ops (apl (T) sz T)
= Sel(apl (T) N, Ops (T)) - N

sel(op, (T) My, T')
sel(op,(...))

That is, a join between two triple patterns with selections is
interpreted as a join between one pattern with a selection and
one without a selection. The missing selection is then taken
care of after fixing the selectivity of this join. If we assume
independence, this is sufficient. As there are only nine possible
join predicates p2 in SPARQL, RDF-3X simple precomputes
all predicate/join combinations occurring in the data and stores
them in a compressed index structure.

This gives much better estimates than always assuming

independence, but it does not solve the fundamental problem.

For the two patterns shown above, for example, RDF-3X
would not (fully) realize that author implies a title.
More formally, the RDF-3X approach captures the correlation
between p; and ps (i.e., the dependent selectivity of ps), but
then assumes independence for ps. For just one join this seems
reasonable, but the error caused by this approach becomes very
noticeable for queries with multiple selection predicates (see
Section VII).

V. CHARACTERISTIC SETS
A. Plain Characteristic Sets

Standard histograms do not capture correlations between
join predicates at all, and even using dependent selectivities,
as shown in the previous section, only helps for the first
join. Therefore, we propose a radically different approach
for estimating the selectivity of joins in RDF graphs.

Many of the correlations we observe during selectivity
estimation stem from the fact that RDF uses multiple triples
to describe the same object. Consider the following sample
triples describing a book:

(01,title,The Tree and I), (o7,author,R. Pecker),
(01,author,D. Owl), (01,year,1996).

All four triples describe the same entity, and accordingly,
the individual triple patterns (derived by replacing o; with a
variable ?b) are strongly correlated. The year is somewhat an
exception here, but for the other three triples, searching just

for one triple pattern is nearly as selective as searching for
all of them. Obviously, this is true for most books. In general,
many entities can be uniquely identified by a true subset of
their emitting edges.

In most RDF data sets, these emitting edges exhibit a certain
structure. While RDF is used usually without a fixed schema,
some kind of latent soft schema in the data frequently occurs:
Books tend to have authors and titles, etc. While we
might not be able to clearly classify an entity as "book” (due
to the lack of schema information), we observe that we can
characterize an entity by its emitting edges. For each entity s
occurring in an RDF data set R, we define its characteristic
set as follows:

Sc(s) :={p|o: (s,p,0) € R}.

For many RDF data sets, entities that have the same
characteristic set tend to be semantically similar. This is not
surprising, as RDF encodes all semantics using edges. But
this enables us to predict selectivities based upon the involved
characteristic sets.

For a given RDF data set, we define the set of characteristic
sets as

SC(R) = {SC(S)ElpaO: (S,p,O) € R}

For real-world data sets, S¢ is surprisingly small. In theory
|Sc(R)| can be as large as |R|, but in practice it is much
smaller. We include a more thorough investigation of this in
Section VII, but, for example, the UniProt data set with protein
information [6] contains only 615 distinct characteristic sets,
even though the number of unique triples is 845,074,885.

It is interesting to note that the star-shaped edge structures
implied by a characteristic set not only occur in the data itself
but also in the queries. As each triple describes only a single
aspect of an entity, queries tend to contain multiple triple
patterns with identical subject variables. Now, the key idea of
using characteristic sets for selectivity estimation is to compute
(and count) the characteristic sets for the data and calculate
the characteristic set of the query. Subsequently, we find (and
count) those characteristic sets of the data that are supersets
of the characteristic set of the query.

Let us illustrate this with an example. Assume that R is the
set of data triples, Sc(R) the set of characteristic sets, and
count(S) = [{s|Sc(s) = S}|. Then, we can be compute the
result cardinality of a star-join query by looking up the number
of occurrences of the characteristic sets:

query: select distinct ?e
where { %¢ <author> ?a. ?e <title> ?b. }
cardinality: > gcrgisese(R)A{author titie}Csy COUNE(S)

Note that this cardinality computation is exact! Furthermore,
this kind of computation works for an arbitrary number of
joins, correlated or not, and requires only knowledge about
the characteristic sets and their frequency. Memory space is
typically no issue either. For example, the characteristic sets
for the 57 GB UniProt data set consume less than 64 KB.

986



This observation makes characteristic sets very attractive for
RDF star join cardinality computations. However, this simple
and exact computation is only possible due to the keyword
distinct: In the general case, we have to take into account
that the joins can produce duplicate bindings for ?e (due to
different bindings of ?a and ?b).

B. Occurrence Annotations

For the above-mentioned reason, we annotate each predicate
in a characteristic set with the number of occurrences of this
predicate in entities belonging to the characteristic set. This
will allow us to compute the multiplicities, i.e., to predict the
number of variable bindings per entity caused by a certain
join in a star join. Formally, the different annotations of a
characteristic set S = {p1,p2, ...} derived from a triple set R
can computed as follows:

distinct [{s|3p,0: (s,p,0) € RASc(s) =S}
count(py) | |{(s,p1,0)|(s,p1,0) € RASc(s) =S}
count(pz) | [{(s,p2,0)|(s,p2,0) € RA Sc(s) = S}|

Note that in the implementation we compute and annotate
the complete set S with only two group-by operators. Thus,
its calculation is not expensive.

These counts are very helpful for cardinality estimation.
Consider the query from above without the distinct clause,
and assume that all entities in the RDF data set belong to the
following hypothetical annotated characteristic set:

distinct || author | title | year
1000 2300 | 1010 | 1090

The first column tells us that with a distinct clause, we
get 1000 results. That is, there are 1000 unique entities s that
occur in triples of the form (s, author, 7x) and in triples of
the form (s, author, ?y) (and in year triples, of course, but
year does not occur in the query). The second column says
that there are 2300 author triples with entities from this
characteristic set, i.e., each entity has 2.3 author triples on
average. Accordingly, the third column says that each entity
has 1.01 title triples on average. We therefore predict that
without the distinct clause, the result cardinality is 1000 =
2.3 % 1.01 = 2323.

In contrast to the case with distinct, this computation
is no longer exact in general: we average over the whole
characteristic set and, therefore, introduce some error. However,
entities belonging to the same characteristic set tend to be very
similar in this respect. Thus, using the count for multiplicity

estimations leads to very accurate predictions (see Section VII).

C. Queries with Bounded Objects

So far, we have only considered star join queries with
unbound objects, that is, without restrictions on the object
attributes. In many queries, at least some of the objects will be
bound. In our running example, binding ?b to some concrete
title would be a typical restriction. When a star join contains a
triple pattern of the form (?s,p;,01), we can first estimate the

cardinality as if the object were unbound, and then multiply
with the selectivity of o;. Note that we have to use the
conditional selectivity:

sel(?o = 01A\Tp = p1)
sel(?p =p1)

We do not want to use the simple selectivity of sel(?o0 =
01), as this would ignore the correlation between predicate
and object. The RDF star join estimation itself already takes
the restriction to p; into account. Therefore, we have to use
the conditional selectivity of the object restriction given the
predicate restriction.

However, even using the conditional selectivities is some-
times not accurate enough. First, a given object value might
be more frequent within a certain characteristic set than within
in the whole data set due to correlations. Second, this still
assumes independence between object values, which in practice
is frequently not true. Consider, for example, the following
query patterns for our running example
(?b, title, The Tree and I), (?b, author,R. Pecker)

Assuming that the author has written only one book, we
would predict that each individual pattern has a selectivity of
ﬁ (assuming a thousand books in the data set), and that
the combined selectivity would therefore be 10~%. But this
is obviously not true in this case, as book title and author
are highly correlated. The problem, of course, is that we do
not know the degree of correlation. The two values might
be independent (in which case 10~ would be correct), there
might be a functional dependency (in which case the selectivity
is 1073), they might be anti-correlated (in which case the
selectivity can be arbitrarily low), or anything in between.

It seems impossible to pre-compute the degree of correlation
in full generality with reasonable effort. However, the subjects
that fall within the same characteristic set tend to be quite
similar, and in our experiments with real world data we noticed
that usually one predicate is extremely selective (similar to a
key), and then the other predicates (nearly) functionally follow
from the selective one. In our book domain, the book title is
nearly a key. It is not a perfect key, as there are books with
identical titles, but for most books the author name follows
from the title. Note that binding just the author would be very
selective, too! But once the title of a book is fixed, restricting the
authors has usually very little impact on the result cardinality.

When estimating the result cardinality of star joins with
multiple bound object values, we only take into account
the selectivity of the most selective value, and assume soft
functional dependencies for the other values. This means
that we ignore their selectivity, but only adjust the predicate
multiplicities accordingly (see Section V-D). This leads to a
slight over-estimation, but in practice, it is far more accurate
than assuming independence (see Section VII for experiments).

Note that one can improve the conditional selectivity
estimation of individual object predicates quite easily by storing
one additional value per predicate in the characteristic sets:
Instead of storing only the multiplicity, we also store the number

sel(To=o1|Tp=p1) =
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STARJOINCARDINALITY(S¢,Q = {(?s,p1,%01), .- -,
(78, P, 70n)})

So=1{p1,--.,rn}

card =0

for each S € Sc:Sp C S
m=1
o=1

fori=1ton
if 70; is bound to a value o;
o = min(o, sel(?0; = 0;|7p = p;))
else
S.count(p;)

m=mx ikl
S.dz§tzn/.ct
card = card + S.distinct * m x o

return card

Fig. 1. Cardinality Estimation for Star Joins

of distinct object values. This increases space consumption by
about 30%, but gives very useful bounds: For example, there
might be 1200 authors in total, but only 50 authors of crime
stories. A query involving crime stories should, therefore, base
the author selectivity on the smaller domain.

In general, given a characteristic set with d distinct subjects
containing (among others) a predicate p with a multiplicity p,,
and p, distinct object values, we can reasonably bound the
conditional selectivity as follows:

1
sel(?o=z|?p =p) € [—,1].
Pa

The lower bound assumes uniformity over the domain (which
is a reasonable assumption for cardinality estimation purposes),
and the upper bound assumes that all subjects qualify. Note
that it is not strictly necessary to know pg, as pg < pp,, and in
many cases pg =~ pn,. Therefore, one can just use p,, instead
of pg, which is available anyway. From a theoretical point of
view, using py is more desirable (as it leads to tighter bounds),
but in our experiments using p,,, worked nearly as well and we
thus approximate pg by p,,. The bounds are used to check the
plausibility of the conditional selectivity. The general estimation
is still useful to differentiate very frequent or very uncommon
values, but if the estimate is outside the bounds, we update
the estimate such that it stays within the bounds.

D. Using Characteristic Sets for Star Joins

Putting everything together, the complete algorithm for star
join cardinality estimation is shown in Figure 1. It gets a set of
annotated characteristic sets (S¢) and a star join, i.e., a set of
triple patterns with a common subject variable (@) as input and
estimates the result cardinality. It computes the characteristic
set of the query (Sg) and then finds all characteristic sets that
are supersets and computes their contribution to the result. For
unbound object values, it uses the predicate multiplicities, for
bounded object values it assumes that the number of subjects
is unchanged (i.e., there exists a functional dependency), but
then uses the most selective of these object bindings to adjust

the cardinality. As we will see in Section VII, this leads to
quite accurate cardinality estimations.

Stars centered around the same entity (i.e., triples with the
same subject) occur very frequently both in the data and in
queries. However, one can define characteristic sets analogously
for stars of incoming edges around a certain object (i.e., triples
with the same object). This is less useful in practice, as there
are not that many queries which contain a significant number
of object-object joins. As characteristic sets are relatively cheap
to compute and the space consumption is very low, we decided
for RDF-3X to derive and store them, too. It might be unlikely
that a user makes heavy use of object-object joins, but such
queries are valid SPARQL, and a database system should try
to handle all queries gracefully.

E. Handling Diverse Sets

For most data sets we examined, the number of distinct
characteristic sets was very low (< 10, 000). The only exception
we found is the Billion Triples data set from the Semantic
Web Challenge [7]. It consists of a union of many diverse data
sources, leading to 484,586 distinct characteristic sets, which
is somewhat unwieldy. The problem is not so much the space
consumption, which is still low compared to the size of the data
set, but the lookup during cardinality estimation. There, we
have to find all supersets of the characteristic set of the query,
which becomes noticeable as the number of characteristic sets
Srows.

For the Billion Triples data set, many of these characteristic
sets occur only once (i.e., there is only one entity with this
exact characteristic set) or a low number of times, which means
that these sets do not carry much information. Usually, they
are only unique due to one or two predicate combinations that
occur only in this set, the remaining predicates would fit into a
different characteristic set. We can therefore merge them into
other sets without losing much information.

When merging characteristic sets, we have two choices:

1) We can merge directly a characteristic set S; into a
superset Sy (S; C S3) by adding the counts.
2) We can split a characteristic set .S into two parts S7, Sy
that can then be merged individually.
We illustrate these two steps with an example. As-
sume we have four annotated characteristic sets, written as
{(predicate, count), ..., distinct}

Sy = {(author,120),100}

Sa = {(title, 230), 200}

S3 = {(author, 2300), (title, 1001), (year, 1000), 1000}
S4 = {(author, 30), (title, 20),20}

Now, we want to eliminate S4. The first alternative would
be to merge S3 into Sy, producing the new set S5 =
{(author, 2330), (title,1021), (year, 1000),1020}. This po-
tentially leads to an overestimation of results, as we now predict
too many entities for queries asking for {author, title, year}.
Or we could split Sy into {author} and {title}, and update
Sy into {(author,150,120)} and {(title, 250, 220)}. This has
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MERGECHARACTERISTICSETS(S¢,S)
S=1{98"€ScNSCS}
if S £
S'=1{9'|8" € SA|S'| = min({|9'||S" € S})}
merge S into argmaxg g S’ .distinct
else
S={98"CcSAIS" €Sc:8 CS"}
S1 = argmaxg,eg |S'[, 52 = S\ S1
if S1#0
MERGECHARACTERISTICSETS(S¢,51)
MERGECHARACTERISTICSETS(S¢,52)

Fig. 2. Merging Characteristic Sets

the advantage of being accurate for the individual predicates,
but potentially leads to underestimations for queries asking for
both predicates. Which of the two alternatives is better depends
on the data and the queries. We use both, but we have decided
to favor overestimations, as they usually introduce only a small
error and are often less dangerous for the resulting execution
plan.

After computing the characteristic sets for a data set, we
check if the number of characteristic sets is less than 10,000
(or some other value, but 10,000 is reasonably small). If yes,
we just keep all of them. If not, we keep the 10,000 most
frequent characteristic sets in S and merge the remaining sets
using the algorithm shown in Figure 2. We first try to merge
a set into an existing superset. If such a superset exists, we
can directly merge. When there are multiple choices, we prefer
the smallest superset. If this choice is ambiguous, we choose
the most frequent one, as this will cause the least error. If no
superset exists, we break the characteristic set into two parts:
the largest set that is a subset of a set in S¢, and the rest. Both
parts are then merged individually.

While we introduce an error due to these merges the overall
accuracy tends to be very good, even when only keeping 10,000
characteristic sets (see Section VII).

VI. EXPLOITING CHARACTERISTIC SETS

In Section V, we have introduced the novel technique of
characteristic sets and its usage for cardinality estimation.
Somewhat surprisingly, characteristic sets allow us to predict
the result cardinality of a large number of joins accurately, but
require some care for incremental cardinality computations.
We therefore sketch how characteristic sets can be used for
the incremental estimation process needed in bottom-up plan
construction.

Characteristic sets are holistic, in the sense that they predict
the cardinality of a large number of operators at once, while the
plan construction works on a per-operator basis. We therefore
obey the following principles while integrating our selectivity
estimation into the plan generator:

1) Compute result cardinalities only once per equivalent

plan and independently of how the plan was constructed.

2) Use the maximum amount of consistent correlation
information that is available.

3) Assume independence if no correlation information is
available.

The first principle means that we want to derive the same
result cardinality for every equivalent plan. And not just
because we happen to cache the cardinality estimate for the
first equivalent plan we encounter, but because cardinality
estimation is really independent of the plan structure. This
might seem obvious, as two equivalent plans produce the same
result, but most database systems build the cardinality estimates
incrementally while building plans. As a consequence, the
estimate for |[(A X B) X C| can be different from the estimate
for |A X (B X ()| in most commercial database systems
(depending on how histograms are combined). This is very
unfortunate, particularly since it causes a behavior that [8] calls
“fleeing to ignorance”. Cardinality estimates that do not consider
correlations tend to underestimate results (which implies lower
processing costs) and, thus, the optimizer will favor plans that
are based upon poor estimates. We avoid this by deriving the
query graph for each partial result, which is independent of
the concrete join order, and then deriving cardinalities based
upon the graph.

A query graph potentially contains a large number of joins,
and we have statistics about different parts of the graph.
The second principle says that we will first estimate that
part of the graph for which we have the largest consistent
information. Or, phrased differently, we try to make the most
of the best information we have. This means that we will
favor characteristic sets (which are known to be accurate and
to capture correlations) over general join statistics. The join
statistics are good for individual joins, but in most cases, a
characteristic set will be more accurate than a combination of
join statistics, simply because the characteristic set captures
correlations. And capturing as many correlations as possible is
essential for RDF queries.

Finally, as a last resort, we use the independence assumption.
This introduces errors, as usual, and there are still many
open issues left for future work. However, we use the
independence assumption relatively rarely, and “’late” in the
estimation process: As we favor using correlation information,
if available, large parts of the query are estimated without
using the independence assumption. The final result might
require assuming independence, but at this point most of the
cardinalities are fixed anyway, so the amount of damage that
can be inflicted by the independence assumption is limited.

A. Estimation Algorithm

During plan construction, we estimate the result cardinality of
partial plans by examining the query graph. Note that there are
two different kinds of query graphs for a given RDF query: First,
the join graph, and second, the RDF subgraph. Fig. 3 illustrates
this. The RDF query graph is the graph where variables form
nodes and the triple patterns form edges between the nodes
(Fig. 3, left side). It corresponds to a subgraph that the query
has to search for. In the join query graph, the triple patterns
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select ?a ?t where { ?b <author>?a. ?b <title>?t. ?b <year>"2009". ?b <publishedBy>?p. ?p <name>"ACM”. }

Ta < 7t
<, LAY
\”50(‘ \\‘\/
7b Pupy,
2 Isbeds*y
?

name ACM

RDF query graph

Fig. 3.

ESTIMATEJOINCARDINALITY(Q,T)

P = {p|p is a triple pattern occurring in 7'}
QT = Q restricted to nodes in P

return ESTIMATEQUERYCARDINALITY(Q7)

Fig. 4. Estimating the Result Cardinality of a Join Tree

form nodes and the join predicates form edges (Fig. 3, right
side). It corresponds to the join possibilities within the query.
The RDF query graph can be seen as the dual of the join
query graph, switching the roles of nodes and edges. However,
the RDF query graph is not as expressive: some (rarely used)
join conditions cannot be expressed in the RDF query graph.
Nonetheless, it is very convenient for cardinality reasoning.
We therefore operate on both graphs, omitting constraints from
the RDF query graph that cannot be expressed with it.

During query optimization, we use a Dynamic Programming
(DP) strategy to find the optimal join tree for a given SPARQL
query. When estimating the result cardinality of a partial plan
during plan construction, we first check if we already have
an equivalent plan in our DP table. If yes, we can re-use the
cardinality. If not, we ignore the join structure of the current
partial plan and reconstruct the query graph that corresponds to
the query fragment (Figure 4). This avoids inducing a bias via a
certain join order, as the result cardinality must be independent
of the structure of the join tree.

Given a join graph @ = (V, E), we can directly estimate
the result cardinality using the independence assumption:

card(Q) = [[ IRI T sel(p)-

ReV pER

Of course, we know that the independence assumption does
not hold in general. Therefore, we try to exploit as much
information about correlations as possible. The basic idea is
to cover the query graph with statistical synopses. We search
for synopses that can be used to estimate parts of the query,
and then mark the corresponding part in the query graph as
covered. As a consequence, we replace a number of factors in

the product formula above with the estimate from the synopses.

Note that it is not necessary to reconstruct the individual factors
during this process. For example, for two correlated joins it is
not possible to assign join selectivities without knowing the
join order. But as we are only interested in the result cardinality,

(?b, author, ?a)

(7b, title, 7t)

(7, year,2009) - (?b, publishedBy, ?p) — (?p, name, ACM)

traditional query graph

A SPARQL query and its query graphs

ESTIMATEQUERYCARDINALITY(Q)
QF = RDF query graph derived from Q
card =1
mark all nodes and edges in Q and Q% as uncovered
while uncovered Q% contains subject star joins
S=largest subject star join in the uncovered part of Q@
mark S as covered in Q* and Q
card = card*STARJOINCARDINALITY(S¢,S)
while uncovered Q% contains object star joins
S=largest object star join in the uncovered part of Q%
mark S as covered in Q and Q
card = card*STARJOINCARDINALITY(S9,S5)
card = card * HREuncoveredQ |R| * HNPEuncoveredQ SEZ(MP)
return card

Fig. 5. Estimating the Result Cardinality for a Given Query Graph

it is sufficient to replace groups of factors with estimates. If we
are unable to cover the whole graph, we assume independence
and multiply the remaining factors.

The resulting algorithm is shown in Figure 5. It examines
the join query graph Q) and constructs the induced RDF query
graph Q%. Both graphs are initially uncovered. It then searches
QT for the largest start join centered around a subject. We
know that we can estimate these cardinalities very accurately
using characteristic sets, so we prefer using characteristic sets,
if possible. If there are multiple star joins, we choose the
largest one, as it covers the most correlations. The estimated
result size of this star is then multiplied to the factors known
so far (initially 1), and the star is marked as covered both
in Q and Q. This avoids re-applying selectivities multiple
times. We repeat this until we find no more star joins. In
the next step, the algorithm searches for star joins centered
around objects. These estimates tend to be less accurate due
to higher heterogeneity, but they still cover correlations nicely.
If we find one, we proceed in the same way as for star joins
around subjects. Finally, we search for any edge or node that is
still uncovered, and multiply with their cardinality/selectivity,
assuming independence.

For the example in Figure 3, the algorithm will start
by choosing the star centered around b, estimate it using
characteristic sets, and mark the whole star as covered. This
will leave only the node (?p,name, ACM) and its join edge
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uncovered in the join graph. The RDF graph does not contain
any other uncovered star, so the algorithm checks the join graph
for uncovered parts and will find the node and the join edge.
Both are estimated using the basic join selectivity estimation,
and the complete cardinality is returned.

The whole process favors accurate estimates over inaccurate
parts and estimating large portions in one step to cover
correlations. As we will see in Section VII, this results in
very good estimates for result cardinalities.

VII. EVALUATION

To study the accuracy of our new estimation technique,
we implemented the characteristic sets estimation in the RDF
database system RDF-3X [2] and compared the new estimator
with the original RDF-3X estimator. In addition, we loaded the
same data sets using the integer triple representation described
in [2] into three major commercial database systems. As only
one of them (namely DB2) allows us to publish benchmark
results, we will anonymize all three and call them DB A, DB B,
and DB C. In addition, we included two approaches from the
RDF community, namely the approach by Stocker et al. [3], and
the subgraph mining approach by Maduko et al. [4]. We first
study the accuracy of the different approaches using single join
queries in different data sets, and then examine cardinality
estimations for more complex queries. These experiments
were carried out using two data sets. Sec. VII-D summarizes
experiments with other data sets. Sec. VII-E takes a look at
the impact of the improved cardinality on the generated plans.

As the experiments were conducted on different systems
and under different operating systems (due to the nature of
the commercial database systems), we do not give load times
for the various systems. The load times for RDF-3X for the
different data sets can be found in [2], [9]. The additional effort
for the characteristic set computation is negligible compared to
the full load, as it requires only a single linear scan over the
aggregated SP index of RDF-3X (which directly produces S¢
entries) plus an in-memory group-by into a few thousand groups
(to insert the individual S¢ into the S¢ set). All cardinality
estimates were obtained by using the various explain features
of the different database systems to get the estimates used
by the query optimizer. When a database system estimated
less than one tuple, we rounded this up to one, as all queries
produced non-empty results.

A. Accuracy Experiments
B. Single Join Queries

For the data sets Yago and LibraryThing [9], we generated
queries of the form (75, pl,701), (7.5, p2, 702), where all pos-
sible combinations of pl, p2 were considered. This resulted in
1751 queries for Yago and 19.062.990 queries for LibraryThing.
For each query and cardinality estimation method (system),
we calculated the g-error max(c/é, é/c) [10], where c is the
correct cardinality and ¢ the estimate. Thus, the g-error denotes
the factor by which the estimate differs from the true value.
We then calculate the percentage of all queries where the g-
error falls into a bucket ]b;, b;11], where the b; are taken from

TABLE I
CARDINALITY ESTIMATION ERRORS FOR LIBRARYTHING QUERIES

card error

(g.mean) median max avg
exact 26347
our 13730 0.77 11.34 1.86
RDEF-3X 83 180.56 | 395397.00 | 46506.80
Stocker 1 || 15863.00 | 6.45%10° | 994426.00
Maduko 3 || 20591.00 | 6.50%108 | 953590.00
DB A 1 || 15863.00 | 6.45%10° | 994426.00
DB B 71 1464.81 2.37%106 1.29%106
DB C 2 7826.75 | 2.37*106 1.61%106

TABLE 11

CARDINALITY ESTIMATION ERRORS FOR YAGO QUERIES

card error

(g.mean) median max avg
exact 1741
our 1244 0.17 12.60 1.83
RDF-3X 20 64.72 768.86 235.01
Stocker 1 1333.00 | 520293.00 | 83145.00
Maduko 75 29.00 3491.55 451.25
DB A 3 336.00 | 278266.00 | 31548.10
DB B 722 469.80 70539.20 | 40098.80
DB C 35 29.85 11547.00 | 41453.70

the values 2,5, 10,100, 1000, co. Additionally, we kept the
maximal occurring g-error. Tables III and IV show the results.
All commercial DBMSs, the approach by Stocker at al., as
well as RDF-3X tend to provide very bad estimates, which are
often (almost in half of the cases, depending on the system) a
factor of 100 and more off the true value. The subgraph mining
approach from Maduko et al. has a mixed result. For the Yago
data set the number of subgraphs is quite low, therefore it
effectively materializes the answers for all single join queries,
providing perfect cardinality estimations. For the LibraryThing
data set however the number of subgraphs with up to two (!)
edges is already 1,296,519,484, which cannot be materialized
anymore. Here, we used the pruning techniques from [4] to
reduce the storage consumption to 50,000 subgraphs with two
edges plus all subgraphs containing a single edge. This keeps
the space consumption at a reasonable 21.0 MB. However, the
estimates becomes less accurate: the error grows up to 17,471!
Contrarily, cardinality estimations based on characteristic sets
(CS) are very accurate for both data sets: the maximal g-error
is less than 3. Furthermore, in 99.9% of all cases the maximal
g-error produced is less than 2! The space consumption for
the characteristic sets was 0.5 MB for the Yago and 8.3 MB
for the LibraryThing data sets.

C. Complex Queries

The microbenchmark in the previous section studied all pos-
sible combinations and, therefore, shows the whole spectrum,
but it considers only very simple queries. To study cardinality
estimation for more complex queries, we manually constructed
queries with up to 6 joins and including additional object
constraints. The queries and the detailed results are included in
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TABLE III
SINGLE JOIN CARDINALITY ESTIMATION PRECISION FOR THE YAGO DATA SET

Yago
q-error DB A DB B DB C Stocker | Madoku | RDF-3X CS [
<2 16.6 234 25.6 0 1007 149 | 99.9
<5 12.2 16.0 16.4 0 0 20.7 0.1
<10 7.6 10.2 10.0 22 0 16.0 0
<100 40.6 21.4 21.7 1.1 0 38.5 0
< 1000 19.7 144 14.0 32 0 8.9 0
> 1000 3.3 14.6 12.2 93.5 0 0.9 0
max 314275 | 1731400 | 783276 | 3.8 x 1012 1117779527 | 2.97

T

all queries were precomputed for this approach

TABLE IV
SINGLE JOIN CARDINALITY ESTIMATION PRECISION FOR THE LIBRARYTHING DATA SET

LibraryThing
q-error DB A DB B DB C Stocker | Maduko | RDF-3X CS
<2 15.0 232 229 0 26.7 30.2 | 100
<5 10.5 27.3 27.8 0 40.6 30.9 0
<10 10.3 17.2 17.7 0 19.7 16.6 0
< 100 353 28.8 27.8 0.1 12.0 19.9 0
< 1000 20.7 3.1 33 0 0.8 2.2 0
> 1000 8.1 0.4 0.6 99.9 0.1 0.2 0
max 28367552 | 1416363 | 7140611 | 1.3 % 10™® 17471 | 2909310 | 1.01

the appendix, the estimation errors (p-error max(c/é,é/c) — 1
[10]) are summarized in Table I and II. Again, the characteristic
sets perform very well, with an average estimation error of
about 1.8 even for reasonably complex queries, while the
other approaches are multiple orders of magnitude worse. The
second column in the tables includes the geometric mean of
the estimated cardinalities themselves, and it can be seen that
the other approaches tend to vastly underestimate the result
cardinality.

D. Other Data Sets

Apart from the previously mentioned data sets, we also
studied the other data sets used in [2], [9], which are from
different domains. Due to space constraints, we can only
summarize the findings here.

The Barton data set of library data contains 8,285 distinct
characteristic sets and can be estimated very well using
characteristic sets. Somewhat surprisingly, the UniProt data
set [6] of protein information, which is 57GB in size and
contains 845,074,885 unique triples, contains only 615 distinct
characteristic sets. As a consequence, characteristic sets lead
to an accurate cardinality estimation even for this huge data
set using a very small synopsis. The reason for this small size
is probably the well-structured and very regular nature of the
UniProt data, i.e., the fact that UniProt basically has a schema.
This is the ideal case, and characteristic sets work very well
in such a setting.

The other extreme is the Billion Triples data set [7], which
contains 88GB of data and is a union of twelve different data
sources (including web crawls). Accordingly, the data is very
noisy, and contains a huge tail of predicate combinations that
occur only once. The number of distinct characteristic sets for

this data set is 484,586, which is beginning to become unwieldy.
The estimation precision is very good, but storing such a large
number of characteristic sets seems to be wasteful, in particular
since most of them just cover some corner cases. We therefore
used the merge strategy from Section V-E to reduce the number
of characteristic sets to 10,000. The microbenchmark precision
results (similar to Section VII-A, the 10K most frequent
predicate parts) are shown below:

<2 | <5 | <10 | <100 | <1000 | > 1000
full CS 99.2 | 04 0.1 0.3 0.0 0.0
merged CS | 91.7 | 1.7 0.9 1.3 0.2 4.1

Reducing the number of characteristic sets does effect the
accuracy, of course, but overall, the estimates are still very good.
More than 90% of the estimates are off by less than a factor of
two, even though we reduced the number of characteristic sets
by more than a factor of 40. A slight problem remains with
predicate combinations that vanish during the merge and for
which the characteristic sets, therefore, will predict an empty
result (which then tends to end up in the last error bucket).
In principle, we could notice this case (assuming that no user
will ask for an empty result) and could probably switch to a
more conservative cardinality estimate in the future.

E. Effect on Generated Plans

Even though the main focus of this paper is the cardinality
estimation itself, we were also interested in the effect of
estimation errors on the generated plans. We therefore took
the queries used in the previous section (shown in detail in
the appendix), and executed them both in the original RDF-3X
system and in an RDF-3X variant using our new estimation
method. We examined the generated plan and executed the
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queries on a Dell E6500 (Intel Core2 Duo T9600), measuring
the median of ten execution times.

For the Yago queries, the better estimates changed the
execution plan in two cases, namely query Q8 and Q9. Both new
plans were clearly better, with execution times of 8ms and 1ms
respectively, vs. 12ms and 2ms in the original RDF-3X system.
For the LibraryThing queries, four queries were changed,
namely Q4, Q6, Q9, and QI10. Again, the execution times
improved in all cases, from 41ms/3ms/2ms/1ms in the original
RDF-3X to 28ms/1ms/1ms/<1ms using our new estimator. The
absolute differences are not that large, as RDF-3X was very
fast to begin with, but the relative improvement is quite large.
It is interesting to note that the commercial database systems
frequently needed several minutes to execute the queries or
were even unable to execute queries in reasonable time, due
to large estimation errors and resulting bad plans.

VIII. CONCLUSION

We introduced a novel RDF synopsis called characteristic
sets and experimentally showed that cardinality estimations
based upon it are very precise. More specifically, the ex-
periments have shown that they greatly outperform both
commerical database systems and other specialized RDF
estimation techniques. This gained precision has certainly a
positive impact on the runtime of execution plans. Thus, query
execution is accelerated.
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APPENDIX

For completeness, we include the concrete queries used
in Section VII and the individual cardinality estimates of all
database systems in this section. In some cases a database
system predicted a cardinality of less than one, which makes
no sense for non-empty query results. When this happened we
rounded the estimates up to one.

A. LibraryThing

The individual cardinality estimates for the following queries
are shown in Table V.

Q1: select ?s ?t ?y where { ?s <hasTitle> ?t. ?s <
hasAuthor> “Jane Austen”. ?s <inYear> ?y }

Q2: select ?s ?t where { ?s <hasTitle> ?t. 7s <
hasAuthor> “Jane Austen”. ?s <inYear> <2003> }

Q3:

select ?s where { ?s <crime> ?b. ?s <romance> ?b2. ?s
<poetry> ?b3. ?s <hasFavoriteAuthor> ”Neil Gaiman” }
Q4: select ?s where { ?s <crime> ?b. ?s <politics> ?b2.
?s <romance> ?b3. ?s <poetry> 7b4. ?s <cookbook> ?
b3. ?s <ocean\ life> ?b6. ?s <new\ mexico> ?b7 }

Q5: select ?s ?tl ?t2 where { ?s <inYear> <1975>. 7s
<hasAuthor> ”T.S. Eliot”. ?s <hasTitle> ?tl. ?s <hasTitle
> M2}

Q6: select ?s where { ?s < thriller > ?b. ?s < politics > ?
b2. ?s <conspiracy> ?b3. ?s <hasFavoriteAuthor> ?a }
Q7: select ?s where { ?s < thriller > ?b. ?s < politics > ?
b2. ?7s <conspiracy> ?b3. ?s <hasFavoriteAuthor> “Robert
B. Parker” }

Q8: select ?s where { ?s < thriller > ?b. ?s < politics > ?
b2. ?s <conspiracy> ?b3. ?s <hasFavoriteAuthor> “Noam
Chomsky” }

Q9: select ?s where { ?s < politics > ?bl. ?s <society> ?
b2. ?7s <future> ?b3. ?s <democracy> ?b4. 7s <british> ?
bS. ?s <hasFavoriteAuthor> ”Aldous Huxley” }

Q10: select ?s where { ?s < politics > ?bl. ?s <society>
2. ?7s <future> ?b3. ?s <democracy> 7b4. ?s <british>
7b5. ?s <hasFavoriteAuthor> “Aldous Huxley”. 7s <
hasFavoriteAuthor> “George Orwell” }

B. Yago

The individual cardinality estimates for the following queries
are shown in Table VI.

Q1: select ?s ?1 7n ?t where { ?s <bornInLocation> ?1.
?s <isCalled> ™n. ?s <type> ?t. }

Q2: select ?s M ?t where { ?s <bornInLocation> <
Stockholm>. ?s <isCalled> n. ?s <type> 2t. }

Q3: select ?s ?c¢ M ?w where { ?s <producedInCountry>
2c. ?s <isCalled> M. ?s <hasWebsite> ?w }

Q4: select ?s M ?w where { ?s <producedInCountry> <
Spain>. ?s <isCalled> ™. ?s <hasWebsite> ?w }

Q5: select ?s ?1 n ?d ?t where { ?s <diedInLocation> ?
. ?s <isCalled> M. ?s <diedOnDate> 7d. ?s <type> 7t }
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Qe6:

select ?s ™n ?d ?t where { ?s <diedInLocation> <Paris>.

TABLE V
INDIVIDUAL CARDINALITY ESTIMATES FOR THE LIBRARYTHING QUERIES

query | true cardinality || our method | RDF-3X | Stocker | Maduko | DB A DBB | DBC
Ql 9,039 9,107 4,361 1 1,535 1 131,556 2
Q2 1,252 437 54 1 13 1 1,288 1
Q3 2,378,386 1,888,480 6 1 1 1 1 1
Q4 20,592 20,592 18,557 1 1 1 129 26
Q5 16 5 1 1 1 1 58 1
Q6 6,451,809 6,451,810 75,088 1 1 1| 2,543,650 28
Q7 11,136 4,872 10 1 1 1 1 1
Q8 2,772 3,269 10 1 1 1 1 1
Q9 302,096 122,331 9 1 1 1 1 1
Q10 302,096 24,466 9 1 1 1 1 1
TABLE VI
INDIVIDUAL CARDINALITY ESTIMATES FOR THE YAGO QUERIES
query | true cardinality our method | RDF-3X | Stocker | Maduko | DB A DB B DB C
Ql 520,294 480,018 26,223 1 | 484,432 158 435,929,000 | 24,967
Q2 1,334 1,102 58 1 4 214 1 1
Q3 19,042 18,839 445 1 26,330 1 10,161,000 | 43,289
Q4 266 113 3 1 1 1 1 1
Q5 278,267 248,081 410 1 | 225,378 1 | 19,629,000,000 8,773
Q6 11,548 4,893 15 1 3 1 1 1
Q7 408 30 1 1 1 1 1 1
Q8 264 263 1 1 180 1 440 325
Q9 30 103 1 1 1 1 1 1
Q10 7 8 1 1 1 1 1 1

?s <isCalled> ™. ?s <diedOnDate> ?d. ?s <type> ?t }
Q7: select ?s M 2d where { ?s <diedInLocation> <Paris

>. 7s <isCalled> ™n. ?s <diedOnDate> 7d. 7s <type> <

wordnet_person_100007846> }
Q8: select ?s ?1 2u ?c¢ ?m where { ?s <
hasOfficialLanguage> ?1. 7s <hasUTCOffset> ?u. 7s <
hasCapital> ?c. ?s <hasCurrency> ?m }

Q9: select ?s ?1 2¢c ?m where { ?s <hasOfficialLanguage
> ?1. ?s <hasUTCOffset> <1>. ?s <hasCapital> ?c. 7s <

hasCurrency> ?m }

Q10: select ?s ?c ?m where { ?s <hasOfficialLanguage>
<French_language>. 7s <hasUTCOffset> <1>. 7s <

hasCapital> ?c. ?s <hasCurrency> ?m }
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