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ABSTRACT
In this paper we investigate the scalable processing of com-
plex SPARQL queries on very large RDF datasets. As un-
derlying platform we use Apache Hadoop, an open source
implementation of Google’s MapReduce for massively par-
allelized computations on a computer cluster. We intro-
duce PigSPARQL, a system which gives us the opportu-
nity to process complex SPARQL queries on a MapReduce
cluster. To this end, SPARQL queries are translated into
Pig Latin, a data analysis language developed by Yahoo!
Research. Pig Latin programs are executed by a series of
MapReduce jobs on a Hadoop cluster. We evaluate the pro-
cessing of SPARQL queries by means of PigSPARQL using
the SP2Bench, a SPARQL specific performance benchmark
and demonstrate that PigSPARQL enables a scalable exe-
cution of SPARQL queries based on Hadoop without any
additional programming efforts.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.2.4 [Database Management]: Systems—Query
processing ; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed applications, MapReduce

1. INTRODUCTION
The amount of available information in the world wide

web is increasing rapidly. Unfortunately, most of this in-
formation cannot be gathered and processed automatically
because its presentation is designed for the processing by hu-
mans. To enable the processing by machines, the Resource
Description Framework (RDF) [15] has been developed, a
standard for representing data in a machine-readable for-
mat. SPARQL [24] is the standard query language for RDF
recommended by the W3C.
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Because of the increasing size of RDF datasets up to sev-
eral billions of RDF statements, scalability of query pro-
cessing becomes an issue. In 2004 Google introduced their
so-called MapReduce paradigm [5] which allows parallel pro-
cessing of very large datasets distributed over a computer
cluster. Hadoop is the most popular open source implemen-
tation of MapReduce. However, developing on the MapRe-
duce level still is technically challenging and sophisticated.
Therefore, Yahoo! developed Pig Latin [20] for the analysis
of large datasets based on Hadoop that gives the user a sim-
ple level of abstraction by providing high-level primitives like
Filters and Joins. In 2010 the implementation of Pig Latin
for Hadoop, Pig, became an Apache top-level project.

In this paper we shall present PigSPARQL, a translation
framework from full SPARQL 1.0 to Pig Latin, which allows
a scalable processing of SPARQL queries on a MapReduce
cluster without any additional programming efforts. It has
been discussed extensively, whether a MapReduce cluster or
a parallel database system approach is more promising to
achieve efficiency and scalability (e.g. [14, 22]). From this
discussion we conclude that in scenarios, which can be char-
acterized by first extracting information from a huge data
set, second by transforming and loading the extracted data
into a different format, e.g. a relational database, such that
further application specific processing is possible, cluster-
based parallelism seems to outperform parallel databases.
For such ETL-based applications, which we believe are typ-
ical for information processing of web data, PigSPARQL
offers not only a declarative way of specifying the transfor-
mation part, but also a scalable implementation of the whole
ETL-process on a MapReduce cluster. The major contribu-
tions of this paper are as follows.

• We describe a translation of SPARQL into an equiva-
lent Pig Latin program that supports all SPARQL 1.0
operators. To the best of our knowledge, this is the
first comprehensive presentation of a full translation
from SPARQL to Pig Latin. In comparison to a direct
mapping into MapReduce, our approach is much eas-
ier to achieve and handle. In particular, our approach
is able to profit from all optimizations of Pig provided
by the developer community and is independent of any
changes to the Hadoop framework.

• We provide an implementation of our translation that
applies several optimization strategies that have been
confirmed to be effective.

• We evaluate PigSPARQL using a SPARQL specific
performance benchmark and demonstrate scalability of
the processing of SPARQL queries using PigSPARQL.



The rest of the paper is organized as follows: In Chap-
ter 2 we briefly introduce the necessary notions of RDF,
SPARQL, MapReduce and Pig Latin. In Chapter 3 we de-
scribe the translation from SPARQL to Pig Latin. In Chap-
ter 4 we present the results of the evaluation, Chapter 5 gives
an overview of related work and Chapter 6 summarizes our
work.

2. FRAMEWORK
Due to space limitations we can only give a short intro-

duction to RDF, SPARQL, MapReduce and Pig Latin.

2.1 RDF
RDF [15] is a standard format for modeling knowledge

about arbitrary resources, e.g. persons or documents. An
RDF dataset consists of a set of so-called RDF triples in the
form (subject, predicate, object) that can be interpreted as
”subject has property predicate with value object”. URIs
(Uniform Resource Identifier) are globally unique identifiers
used to represent resources in RDF (e.g. URLs are a subset
of URIs). For clarity of presentation, we use a simplified
RDF notation without URI prefixes in the following. It is
possible to represent an RDF dataset as directed, labeled
graph where every triple corresponds to an edge (predicate)
from the subject to the object. Figure 1 shows an RDF
graph consisting of ten RDF triples.

    
 

 
 
 

Abbildung 1: RDF-Dokument mit entsprechendem RDF-Graph 
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Figure 1: RDF graph

2.2 SPARQL
SPARQL is the W3C recommended query language for

RDF [24]. A formal definition of the SPARQL semantics
can also be found in [23]. A SPARQL query defines a graph
pattern P that is matched against an RDF graph G. This
is done by replacing the variables in P with elements of
G such that the resulting graph is contained in G (pattern
matching). The basis of all graph patterns are the so-called
Triple Patterns. A Triple Pattern is an RDF triple where
subject, predicate and object can be variables (?var), e.g.
(?s, p, ?o). A set of Triple Patterns concatenated by AND
(.) is called a Basic Graph Pattern (BGP). A SPARQL
graph pattern can be defined recursively as follows:

• A BGP is a graph pattern.

• If P , P ′ are graph pattern, then {P}.{P ′}, {P}UNION
{P ′} and {P} OPTIONAL {P ′} are also graph pat-
tern.

• If P is a graph pattern and R is a filter condition, then
P FILTER (R) is also a graph pattern.

• If P is a graph pattern, u an URI and ?v a variable,
then GRAPH u {P} and GRAPH ?v {P} are also
graph pattern.

FILTER can be used to restrict the values of variables and
OPTIONAL allows to add additional information to the re-
sult of a query. If the desired information does not exist,
the optional variables remain unbound in the query result.
UNION can be used to define two alternative graph pat-
terns where the query results must match at least one of the
patterns. A SPARQL query can also address several RDF
graphs by using the GRAPH operator. The following ex-
ample shows a simple SPARQL query that gives all persons
who know ’Peter’ and are at least 18 years old together with
their mailboxes, if they exist. Executed on the RDF graph
of Figure 1 the query would give two results for ’John’ and
’Bob’ where only ’Bob’ has a known email address.

Example SPARQL Query
SELECT *

WHERE {

{ ?person knows Peter . ?person age ?age }

OPTIONAL { ?person mbox ?mb }

FILTER (?age >= 18)

}

2.3 MapReduce
The MapReduce programming model was originally in-

troduced by Google in 2004 [5] and enables scalable, fault
tolerant and massively parallel computations using a cluster
of machines. The basis of Google’s MapReduce is the dis-
tributed file system GFS [8] where large files are split into
equal sized blocks, spread across the cluster and fault toler-
ance is achieved by replication. The workflow of a MapRe-
duce program is a sequence of MapReduce jobs each consist-
ing of a Map and a Reduce phase separated by a so-called
Shuffle & Sort phase. A user has to implement the map
and reduce functions which are automatically executed in
parallel on a portion of the data. The Mappers invoke the
map function for every record of their input dataset repre-
sented as a key-value pair. The map function outputs a list
of new intermediate key-value pairs which are then sorted
according to their key and distributed to the Reducers such
that all values with the same key are sent to the same Re-
ducer. The reduce function is invoked for every distinct key
together with a list of all according values and outputs a list
of values which can be used as input for the next MapRe-
duce job. The signatures of the map and reduce functions
are therefore as follows.

map: (inKey, inValue) -> list(outKey, tmpValue)

reduce: (outKey, list(tmpValue)) -> list(outValue)

2.4 Pig Latin
Pig Latin [20] is a language for the analysis of very large

datasets developed by Yahoo! Research. It is based on the
well-known Apache Hadoop Framework, an open source im-
plementation of Google’s MapReduce. The implementation
of Pig Latin for Hadoop, Pig, is an Apache top-level project
that automatically translates a Pig Latin program into a
series of MapReduce jobs.

Data model.
Pig Latin has a fully nested data model which allows more

flexibility than the flat tables required by the first normal
form in relational databases. The data model of Pig Latin
provides four different types:



• Atom: An atom contains a simple atomic value like a
string or number, e.g. ’Sarah’ or 24.

• Tuple: A tuple is a sequence of fields of any type.
Every field can have a name (alias) that can be used
to reference the field, e.g. (’John’, ’Doe’) with alias
(firstname, lastname).

• Bag: A bag is a collection of tuples with possible du-
plicates. The schemas of the tuples do not have to
match, i.e. the number and types of fields can differ.

(’Bob’, ’Sarah’)
(’Peter’, (’likes’, ’football’))

ff
• Map: A map is a collection of data items where each

item can be looked up by an associated key.24 ’name’→ ’John’

’knows’→


(’Sarah’)
(’Bob’)

ff 35

Operators.
A Pig Latin program consists of a sequence of instructions

where each instruction performs a single data transforma-
tion. We shortly introduce those Pig Latin operators that
we used for our translation. The interested reader can find
a more detailed description of Pig Latin in [2].

LOAD deserializes the input data and maps it to the data
model of Pig Latin. The user can implement an User Defined
Function (UDF) that defines how to map an input tuple to
a Pig Latin tuple as shown in the following example. The
result of LOAD is a bag of tuples. For example,
people = LOAD ’input’ USING myLoad() AS (name,age);

FOREACH can be used to apply some processing on every
tuple of a bag. It can also be used for projection or adding
new fields to a tuple. For example,
A = FOREACH people GENERATE name,

age>=18? ’adult’:’minor’ AS type;

FILTER allows to remove unwanted tuples of a bag, e.g.
B = FILTER people BY age >= 18;

[OUTER] JOIN performs an equi or outer join between
bags. It can also be applied to more than two bags at once
(multi join). For example,
C = JOIN A BY name [LEFT OUTER], B BY name;

UNION can be used to combine two or more bags. Unlike
relational databases, the schemas of the tuples do not have
to match although this is not recommended in general since
the schema information, especially the alias names of the
fields, is lost in such cases. For example,
D = UNION B,C;

SPLIT partitions a bag into two or more bags that do not
have to be distinct or complete, i.e. tuples can end up in
more than one partition or no partition at all, e.g.
SPLIT people INTO E IF age<18, F IF age>=21;

3. TRANSLATION
For translating SPARQL to Pig Latin we follow a stan-

dard approach which centers on an algebraic representation
of SPARQL expressions (cf. Figure 2). First, a SPARQL
query is parsed to generate an abstract syntax tree which is
then translated into a SPARQL algebra tree as described by

the W3C documentation [24]. For the syntax and algebra
tree generation we used the well-known ARQ1 engine of the
Jena framework. Before translating the resulting algebra ex-
pressions into Pig Latin, certain optimizations are applied
which will be explained later.

 

Parser 

Algebra Compiler 

Algebra Optimizer 

Pig Latin Translator 

Syntax Tree 

Algebra Tree 

Algebra Tree 

SPARQL Query 

MapReduce Jobs 

Pig 
Pig Latin Program 

Figure 2: Modular Translation Process

The semantics of a SPARQL query is defined on the al-
gebra level and an expression of the SPARQL algebra can
be represented as a tree that is evaluated bottom-up. Ta-
ble 1 shows the operators of the SPARQL algebra and the
corresponding syntax expressions.

Table 1: SPARQL Algebra & Syntax
Algebra Syntax

BGP Set of Triple patterns concatened via .
Join Concatenation of two groups {· · · }.{· · · }

Filter FILTER
LeftJoin OPTIONAL
Union UNION
Graph GRAPH

3.1 RDF data mapping
In order to process RDF datasets with Pig Latin, we

first have to define how to represent an RDF triple in Pig
Latin. An RDF triple is a tuple with three fields that can
consist of URIs (Uniform Resource Identifier), RDF liter-
als or blank nodes. Since URIs are strings in a special for-
mat, we represent them as atoms in angle brackets (<URI>).
Simple and typed RDF literals can also be represented as
atoms by using a compound value for literals with a lan-
guage or datatype tag ("literal"@lang,"literal"^^type).
If needed in arithmetic expressions, numeric literals (e.g. lit-
erals of type xsd:integer) are parsed into the appropriate
numeric datatype of Pig Latin at runtime. The RDF syn-
tax does not define an internal structure of blank nodes, they
just have to be distinguishable from URIs and literals. Thus,
we can also represent them as atoms with a leading under-
score (_:nodeID). Hence, an RDF triple can be represented
as a tuple with three fields of atomic type (chararray) with
schema (s:chararray, p:chararray, o:chararray).

1http://jena.sourceforge.net/ARQ



3.2 Algebra translation
For each operator of the SPARQL algebra we give a trans-

lation into a sequence of Pig Latin commands illustrated by
a representative example (P1-P6). First, we introduce the
needed terminology analogous to [24]: Let V be the infinite
set of query variables and T the set of valid RDF terms
(URIs, RDF literals, blank nodes).

Definition 1. A solution mapping µ is a partial function
µ : V → T . We call µ(?v) the variable binding of µ for
?v. The domain of µ, dom(µ), is the subset of V where µ
is defined. The result of a SPARQL query is a multiset of
solution mappings Ω.

Definition 2. Two solution mappings µ1, µ2 are compati-
ble if, for every variable ?v ∈ dom(µ1) ∩ dom(µ2), it holds
that µ1(?v) = µ2(?v). It follows that µ1 ∪ µ2 is also a solu-
tion mapping and solution mappings with disjoint domains
are always compatible.

Basic Graph Pattern (BGP). BGPs are the basis of all
SPARQL queries as it is the only operator that is evaluated
directly on the underlying RDF data. The result of a BGP
is a multiset of solution mappings that serves as input for
other operators. Solution Mappings can be represented in
Pig Latin as a (flat) bag where each tuple is a single solution
mapping and the fields of a tuple correspond to the variable
bindings of that tuple. This bag can be seen as a table where
the rows are the solution mappings and the columns are the
corresponding variable bindings.

The corresponding Pig Latin program for P1 consists of
a LOAD (1), followed by several FILTER/FOREACH (2)
and several JOIN/FOREACH (3) statements.

P1. Persons who know ’Bob’ with age and mailbox.
SP BGP(?a knows Bob . ?a age ?b . ?a mbox ?c)

PL A = LOAD ’rdf’ USING rdf() AS (s,p,o); (1)

t1= FILTER A BY p==’knows’ AND o==’Bob’;(2)

t1= FOREACH t1 GENERATE s AS a;

t2= FILTER A BY p==’age’;

t2= FOREACH t2 GENERATE s AS a, o AS b;

t3= FILTER A BY p==’mbox’;

t3= FOREACH t3 GENERATE s AS a, o AS c;

j1= JOIN t1 BY a, t2 BY a; (3)

j1= FOREACH j1 GENERATE t1::a AS a, b;

j2= JOIN j1 BY a, t3 BY a;

P1= FOREACH j2 GENERATE j1::a AS a, b, c;

(1) We implemented a loader UDF for RDF data that maps
RDF triples to the data model of Pig Latin as described in
section 3.1.
(2) For every Triple Pattern we need a FILTER to select
those RDF triples of the input that match the pattern.
FOREACH is used to remove unnecessary columns (columns
that do not correspond to a variable binding) and update the
schema information with the names of the variables.
(3) The results of the Triple Patterns are successively joined
to compute the final result. If a BGP consists of n Triple
Patterns we need n − 1 JOINs in general. The predicate
of the join is given by the shared variables of both sides,
i.e. the join combines the compatible solution mappings. If
there are no shared variables we have to compute the cross
product.

Filter. A Filter removes those solution mappings from a
multiset of solution mappings that do not satisfy the filter
expression. A Filter can be directly expressed as FILTER in
Pig Latin (cf. P2). To support the SPARQL built-in func-
tions one could implemented them as UDF in Pig Latin.

P2. Filter P1 for persons with age between 30 and 40.
SP Filter(?b >= 30 && ?b <= 40, P1)

PL P2 = FILTER P1 BY (b >= 30 AND b <= 40);

Join. The Join merges the compatible mappings of two
multisets of solution mappings. A Join can be expressed as
a JOIN in Pig Latin on the shared variables (cf. P3, assum-
ing the results of the BGPs are stored in BGP1 and BGP2).
Again, FOREACH is used to remove unnecessary columns
and update the schema information as illustrated in the fol-
lowing.

P3. Persons who know somebody with the same age.
SP Join(BGP(?a knows ?b),

BGP(?a age ?c . ?b age ?c))

PL j1 = JOIN BGP1 BY (a,b), BGP2 BY (a,b);

P3 = FOREACH j1 GENERATE

BGP1::a AS a, BGP1::b AS b, c;

LeftJoin. The LeftJoin operator adds additional informa-
tion to the result, if it exists. This additional information
can be restricted by a filter expression. In Pig Latin we
can first use a FILTER to restrict the values of the addi-
tional information before performing an OUTER JOIN on
the shared variables as illustrated in the following.

P4. Persons with mailbox and optional age (if >=18).
SP LeftJoin(BGP(?a mbox ?b),

BGP(?a age ?c), ?c>=18)

PL f1= FILTER BGP2 BY c >= 18;

lj= JOIN BGP1 BY a LEFT OUTER, BGP2 BY a;

P4= FOREACH lj GENERATE BGP1::a AS a, b, c;

Union. The Union operator combines two multisets of so-
lution mappings (Ω1,Ω2) to a single multiset without any
further changes, i.e. it unifies the results of two graph
patterns. The problem of Union is that for two mappings
µ1 ∈ Ω1 and µ2 ∈ Ω2 it can be that dom(µ1) 6= dom(µ2) as
it is the case for P5 where ?b is not defined in the second
BGP. To have a common schema in Pig Latin we add a new
column to the result of the second BGP and use null values
to indicate that the variable binding for ?b is not defined.

P5. Persons who know ’Bob’ and have a mailbox or
persons who know ’John’.

SP Union(BGP(?a knows Bob . ?a mbox ?b),

BGP(?a knows John))

PL BGP2 = FOREACH BGP2 GENERATE a, null as b;

P5 = UNION BGP1, BGP2;

Graph. A SPARQL query dataset is a collection of RDF
graphs with one default graph and zero or more additional
named graphs. In general, a graph pattern is applied to the
default graph. The Graph operator can be used to apply a
pattern to one or all of the named graphs. A named graph
is referenced by an unique URI and for each graph that is
used in the query we need a pair (URI, graph) that specifies



where to find the corresponding RDF graph. If a variable is
used in the Graph operator instead of a specific graph URI,
the pattern must be applied to all named graphs.

As we want to execute SPARQL queries on large RDF
graphs in a MapReduce cluster, all graphs must be stored
in the distributed file system. Applying a pattern to one of
the named graphs with Pig Latin simply means loading the
corresponding data.

P6. Persons in graph graphURI who know somebody.
SP Graph(graphURI, BGP(?a knows ?b))

PL graph1 = LOAD ’pathToGraphURI’

USING rdfLoad() AS (s,p,o);

t1 = FILTER graph1 BY p == ’knows’;

P6 = FOREACH t1 GENERATE s AS a, o AS b;

Joins and Null values. As we use flat bags to represent
solution mappings in Pig Latin and all tuples of a bag have
the same schema we use null values to indicate that a vari-
able is unbound in a solution mapping. This typically occurs
when using OPTIONAL to add additional information to a
solution mapping. The result of OPTIONAL is a set of so-
lution mappings (i.e. a bag in Pig Latin) where the optional
variables can be unbound for some solution mappings (i.e.
some tuples of the bag contain null values). However, this is
problematic if the further processing of the query requires a
join over these possibly unbound variables. In SPARQL an
unbound variable is compatible to any other binding of that
variable but since Pig Latin follows the relational algebra, a
JOIN in Pig Latin is null rejecting.

Assume we have two bags of solution mappings R,S with
schemas (A,B) and (B,C) where R can contain null values
for variable B as illustrated in the following example.

R
A B
a1 b1
a2 null

1SPARQL

S
B C
b1 c1
b2 c2

=

A B C
a1 b1 c1
a2 b1 c1
a2 b2 c2

The second tuple of R is compatible to any tuple of S
since variable B is unbound. In Pig Latin we would only get
one tuple as join result since the second tuple of R will not
match with any tuple of S. To get the same result in Pig
Latin we split R into two bags (with and without null val-
ues) and process them separately, i.e. we perform a normal
join for all tuples without null values and a cross product
for the tuples with null values.

PL SPLIT R INTO R1 IF B is not null,

R2 IF B is null;

j1 = JOIN R1 BY B, S BY B;

j1 = FOREACH j1 GENERATE A, R1::B AS B, C;

j2 = CROSS R2, S;

j2 = FOREACH j2 GENERATE A, S::B AS B, C;

J = UNION j1, j2;

The complexity increases with the number of join vari-
ables that can be unbound, e.g. for two possibly unbound
join variables we already have to split the bag into four bags
(one for every possible combination). Our translator rec-
ognizes if a join contains possibly unbound variables and
performs the necessary changes to the translation automat-
ically. Fortunately, this situation does not occur in most
SPARQL queries. In fact, if a SPARQL query is well de-

signed according to [23], there are no joins over unbound
variables at all.

3.3 Optimizations
The optimization of SPARQL queries is a subject of cur-

rent research [11, 28, 29]. As we will demonstrate in the
evaluation, optimizing the SPARQL query execution based
on Pig Latin means reducing the I/O required to transfer
data between Mappers and Reducers as well as the data
that is read or stored in the distributed file system.

1. SPARQL algebra. We investigated some well-
known optimization strategies for the SPARQL alge-
bra to reduce the amount of intemediate results, espe-
cially the early execution of Filters and the rearrange-
ment of Triple Patterns by selectivity [29]. We used
a fixed scheme without statistical information on the
RDF dataset (called variable counting) where Triple
Patterns with one variable are considered to be more
selective than Triple Patterns with two variables and
bounded subjects are considered to be more selective
than bounded predicates or objects.

2. Translation. The early projection of redundant
data (”project early and often”, e.g. duplicate columns
after joins or bounded values that should not occur in
the result) as well as the application of multi joins to
reduce the number of joins in Pig Latin has proven to
be very effective. We can use a multi join if several
consecutive joins refer to the same variables. Assume
we have three tables (bags) to join (A,B,C) by the
common variable ?v. Instead of using two joins we can
use a single multi join.
JOIN A BY v, B BY v, C BY v;

3. Data model. In a typical SPARQL query the pred-
icate of a Triple Pattern is mostly bounded, i.e. vari-
ables are typically used in the subject and object posi-
tion. Therefore, a vertical partitioning [1] of the RDF
data by predicates reduces the amount of RDF triples
that must be loaded for query execution. This vertical
partitioning can be done once in advance using a sin-
gle MapReduce job and does not cost more disk space.
All RDF triples with the same predicate are stored in
the same folder and every predicate has its own folder.
For further improvements this storage scheme could
be extended as the partitioning turned out to be very
effective in our evaluation.

3.4 Example

 

 

 
Abbildung 11: SPARQL Algebra-Baum 
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Figure 3: SPARQL algebra tree



Figure 3 shows the algebra tree after optimization (push-
ing Filter execution before LeftJoin) for the SPARQL query
of section 2.2. The tree is traversed bottom-up and trans-
lated into the following sequence of Pig Latin commands,
assuming a vertical partitioning of the RDF data.

PL knows = LOAD ’rdf/knows’ (1)

USING rdf() AS (s,o);

age = LOAD ’rdf/age’ USING rdf() AS (s,o);

f1 = FILTER knows BY o == ’Peter’;

t1 = FOREACH f1 GENERATE s AS person;

t2 = FOREACH age GENERATE

s AS person,o AS age;

j1 = JOIN t1 BY person, t2 BY person;

BGP1= FOREACH j1 GENERATE

t1::person AS person, t2::age AS age;

F = FILTER BGP1 BY age >= 18; (2)

mbox= LOAD ’rdf/mbox’ USING rdf() AS (s,o);(3)

BGP2= FOREACH mbox GENERATE

s AS person,o AS mb;

lj = JOIN F BY person LEFT OUTER, (4)

BGP2 BY person;

LJ = FOREACH lj GENERATE F::person AS person,

F::age AS age, BGP2::mb AS mb;

STORE LJ INTO ’output’ USING resultWriter();

4. EVALUATION
We evaluated our implementation on 10 Dell PowerEdge

R200 servers connected via a gigabit network. Each server
was equipped with a Dual Core 3.16 GHz processor, 4 GB
RAM, 1 TB hard disk and Hadoop 0.20.2 as well as Pig
0.5.0 installed. Due to the replication of the distributed file
system (HDFS), the actual available payload was 2.5 TB.

We investigated the execution times, the amount of data
read from HDFS (HDFS Bytes Read), the amount of data
written to HDFS (HDFS Bytes Written) and the amount of
data that was transferred from Mappers to Reducers (Re-
duce Shuffle Bytes). We used the SP2Bench [27], a SPARQL
specific performance benchmark, which is in our opinion
more suited for the evaluation of SPARQL engines than
the general LUBM Benchmark [9] which does not consider
SPARQL specific operators like OPTIONAL. The SP2Bench
data generator was used to produce RDF datasets of up to
1.6 Billion triples based on the DBLP library [13].

4.1 Example Queries
In the following we present the evaluation of three repre-

sentative SP2Bench queries.

Q3a. Select all articles with property swrc:pages.
SELECT ?article

WHERE {

?article rdf:type bench:Article .

?article ?property ?value

FILTER (?property = swrc:pages)

}

Q3a. The execution of this query requires only one join but
generates a huge amount of intermediate results since the
second triple pattern matches all RDF triples. However, we
can observe that the output does not contain the filter vari-
able ?property hence the query can be optimized on algebra

level by a filter substitution where the variable is replaced
by its value. This optimization reduces the execution time
of this query by 70% (a) due to a significant reduction of the
Reduce Shuffle Bytes (b). A positive side effect of this op-
timization is the elimination of the unbounded predicate in
the second triple pattern. Thus, using a vertical partitioned
dataset, only the two predicates rdf:type and swrc:pages

must be considered which results in a significant reduction
of data read from HDFS (Q3a opt+part). The appliance of
the filter optimization and the vertical partitioning reduces
the execution time of this query by 97%.

Q2. Extract all inproceedings with the given properties
and optional abstract, sorted by the year of publication.
SELECT *

WHERE {

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?author .

?inproc bench:booktitle ?booktitle .

?inproc dc:title ?title .

?inproc dcterms:partOf ?proc .

?inproc rdfs:seeAlso ?ee .

?inproc swrc:pages ?page .

?inproc foaf:homepage ?url .

?inproc dcterms:issued ?yr

OPTIONAL { ?inproc bench:abstract ?abstract }

} ORDER BY ?yr

Q2. The left side of the OPTIONAL contains a BGP with
nine triple patterns that requires (without any optimization)
eight joins. In addition, the results should be emitted in a
sorted order. Since all eight joins apply to the same variable
?inproc they can be implemented by a single multi join (Q2
opt). As a result, the number of MapReduce jobs that are
necessary for executing Q2 is reduced from twelve to five.
The query also benefits from the vertical partitioning (Q2
opt+part) as all predicates are bounded which leads to an
overall query execution time reduction of nearly 90% (c).

Q6. Return, for each year, all publications
of persons that have not published in years before.
SELECT ?yr ?name ?doc

WHERE {

?class rdfs:subClassOf foaf:Document .

?doc rdf:type ?class .

?doc dcterms:issued ?yr .

?doc dc:creator ?author .

?author foaf:name ?name

OPTIONAL {

?class2 rdfs:subClassOf foaf:Document .

?doc2 rdf:type ?class2 .

?doc2 dcterms:issued ?yr2 .

?doc2 dc:creator ?author2

FILTER (?author=?author2 && ?yr2 < ?yr)

} FILTER (!bound(?author2))

}

Q6. This query implements a (closed world) negation
by the combination of OPTIONAL and a FILTER for un-
bounded values. Here, no optimization on the algebra level
was possible. As a consequence, the computation of the OP-
TIONAL produces many intermediate results. In fact, 75%
of the aggregated I/O values (diagram (f) of Fig. 4) arise
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Figure 4: SP2Bench queries Q3a, Q2 and Q6

in a single MapReduce job (computation of OPTIONAL),
making the query especially challenging. Only when using a
vertical partitioned dataset, the capacity of our cluster was
sufficient for executing Q6 with 1600 million triples. With-
out vertical partitioning, there was not enough local and
distributed disk space. To overcome such situation we could
make use of the horizontal scalability of MapReduce and
simply add more machines to the cluster without any other
changes becoming necessary. Note that in Diagram (f) of
Fig. 4 we refer to 800 million RDF triples to be able to com-
pare executions with and without vertical partitioning and
1600 million triples for comparison with the other queries.

4.2 Results
As an immediate observation our experiments confirm a

nearly linear scalability of the query processing time with
respect to the size of the data, a well-known feature of the
MapReduce paradigm. This underlines that PigSPARQL in-
deed is an effective application of the MapReduce paradigm
for SPARQL. Our evaluations in particular demonstrate how
dramatically PigSPARQL’s optimization reduces the amount
of data to be handled and the corresponding query process-
ing time. A comparison of PigSPARQL with other technolo-
gies, e.g. parallel database approaches and single machine
based approaches with respect to efficiency and scalability is
a topic of future research. However, we would like to stress
that we could observe linear scalability also for query Q6
which might be highly problematic when not executed on a
MapReduce cluster. This claim is justified by the observa-
tion that in Q6 we first have to compute all publications with
respect to all authors before we can find out those authors
which have not published in the years before. Therefore,
we expect that the sheer amount of intermediate results to
be stored and processed will be responsible for a non-linear
scalability of competing technologies.

5. RELATED WORK
In [17] a translation from SPARQL to Pig Latin was al-

ready mentioned. However, the authors provide no further
information or technical details about it. To the best of our
knowledge, we present the first detailed and comprehensive
translation from SPARQL to Pig Latin that also considers
efficient optimizations on different levels and is evaluated
with a SPARQL performance benchmark that also contains
queries with the SPARQL specific OPTIONAL operator.

The authors in [12] also consider the execution of SPARQL
queries based on Hadoop. In contrast to our approach a
query is directly mapped into a sequence of MapReduce
jobs. They also provide evaluation results for the SP2Bench
queries Q1, Q2 and Q3a on a Hadoop cluster of ten nodes
similar to our cluster. A comparison of the results confirms
that both approaches have a similar performance whereby
our implementation is more than 40% faster for Q3a. This
demonstrates that our approach based on mapping SPARQL
to Pig Latin achieves an execution of SPARQL queries that
keeps up with a direct mapping to MapReduce with respect
to efficiency if not being more efficient. A direct mapping
approach is also proposed in [18]. In contrast to these ap-
proaches, our translation supports all SPARQL 1.0 opera-
tors and also benefits from further developments of Pig [7]
and Hadoop. As we map to Pig Latin, we can expect a
greater independence from possible changes inside the un-
derlying MapReduce layer in comparison to a direct map-
ping.

The execution of SPARQL queries in general plays an im-
portant role for the Semantic Web. Sesame [3], Jena [16] and
RDF-3X [19] are well-known examples for the execution of
SPARQL queries on single machines. Due to the growing
amount of available semantic data the evaluation of very
large RDF datasets becomes a stronger focus of scientific
research. SPIDER [4] uses HBase for storing RDF datasets
in Hadoop as flat tables and supports also basic SPARQL
queries but the authors do not give detailed information on
the supported operators. [25] use UDFs to reduce I/O costs
in analytical queries over RDF graphs with Pig Latin. They
showed that UDFs can reduce the I/O costs in certain sit-
uations which makes this idea also interesting for further
improvements of our approach.

Instead of a general MapReduce cluster some RDF stores
are built on top of a specialized computer cluster. Virtuoso
Cluster Edition [6] and Clustered TDB [21] are cluster ex-
tensions of the well-known Virtuoso and Jena RDF stores.
4store [10] is a ready-to-use RDF store which divides the
cluster in storage and processing nodes. Nevertheless, the
usage of a specialized cluster has the disadvantage that it
requires a dedicated infrastructure whereas our approach is
based on a general cluster that can be used for different
purposes. As our translation does not require any changes
to the MapReduce framework or installation, an existing
MapReduce cluster can be used out of the box.



6. CONCLUSION
In this paper we proposed PigSPARQL, a new approach

for the scalable execution of SPARQL queries geared to-
wards applications which are based on information extrac-
tion from very large RDF datasets. For this purpose, we
designed and implemented a translation from SPARQL to
Pig Latin. The resulting Pig Latin program is translated
into a sequence of MapReduce jobs and executed in parallel
on a Hadoop cluster. Our evaluation with a SPARQL spe-
cific benchmark confirmed that PigSPARQL is well-suited
for the scalable execution of SPARQL queries on large RDF
datasets with Hadoop. This is also demonstrated by the
used dataset size of up to 1.6 billion RDF triples that al-
ready exceeds the capabilities of many single machine sys-
tems [27]. Taking into account that our Hadoop cluster still
is rather small (e.g. Yahoo! maintains Hadoop clusters of
several thousand machines) and the relatively early devel-
opment stage of Pig (the evaluation was performed with Pig
0.5.0) we expect a great future potential of our approach.
The proposed translation offers an easy and efficient way to
take advantage of the performance and scalability of Hadoop
for the distributed and parallelized execution of SPARQL
queries on large RDF datasets. As topic for the next future,
we plan to compare our MapReduce based system to state-
of-the-art single machine SPARQL engines to investigate the
advantages and drawbacks of both approaches.
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