Keyword-based and Top-K Querying

Prabhakar Dixit
IMSE
Efficient Execution of Top-K SPARQL queries
Outline

Introduction
• Top k-queries
• Need for optimization

Approach
• A rank-aware SPARQL algebra
• A rank aware execution model
• Planning strategies
Top k-queries

A query that returns

• A limited number of results "k"
• Ordered by a scoring function that combines several criteria
Rankings

The Times Higher Education Asia University Rankings 2013 are based on the same criteria as the THE World University Rankings, powered by Thomson Reuters. We judge world class universities across all of their core missions - teaching, research, knowledge transfer and international outlook.

The top universities rankings employ 13 carefully calibrated performance indicators to provide the most comprehensive and balanced comparisons available, which are trusted by students, academics, university leaders, industry and governments.
Rankings

100 BEST COMPANIES TO WORK FOR

2012

<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>Job growth</th>
<th>U.S. employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Google</td>
<td>33%</td>
<td>18,500</td>
</tr>
<tr>
<td>2</td>
<td>Boston Consulting Group</td>
<td>10%</td>
<td>1,958</td>
</tr>
<tr>
<td>3</td>
<td>SAS Institute</td>
<td>8%</td>
<td>6,046</td>
</tr>
<tr>
<td>4</td>
<td>Wegmans Food Markets</td>
<td>5%</td>
<td>41,717</td>
</tr>
<tr>
<td>5</td>
<td>Edward Jones</td>
<td>1%</td>
<td>36,937</td>
</tr>
<tr>
<td>6</td>
<td>NetApp</td>
<td>30%</td>
<td>6,887</td>
</tr>
<tr>
<td>7</td>
<td>Camden Property Trust</td>
<td>-2%</td>
<td>1,678</td>
</tr>
</tbody>
</table>

[Diagram of gestalt, integration, human touch, variety, all-inclusiveness, originality]
Mercer Quality of Living Survey

The Mercer Quality of Living Survey ranks 221 cities from Vienna to Baghdad on quality of life.[1]

In 2010, Vienna won the title as the highest ranked city, followed by Zurich (2), Geneva (3), jointly Vancouver (4) and Auckland (4), and Düsseldorf (5). Vienna was again the highest ranked city in 2011, followed by Zurich (2), Auckland (3), Munich (4) and jointly Düsseldorf (5) and Vancouver (5). The quality of living survey is conducted to help governments and major companies place employees on international assignments.

The survey also identifies those cities with the highest personal safety ranking based upon internal stability, crime, effectiveness of law enforcement and relationships with other countries. In this case, Luxembourg is top, followed by Bern, Helsinki and Zurich, all equally placed at number 2.

Scoring

The cities — 221 in total — were evaluated on 39 factors including political, economic, environmental, personal safety, health, education, transportation and other public service factors. Cities were compared to New York City which was given a base score of 100.
Need for Optimization

An intuitive example

Top 3 largest countries (by both area and population)
The standard way: Materialize then sort

Fetch 3 best results

Sort all the 242 join combinations

Compute all the 242 join combinations

Countries by area

Countries by population
How to make it efficient

Exploit the **available sorted access** (by area and population)

Order *incrementally* the combinations using *partial orders*

Countries by area

Countries by population
The (split and interleave) scheme

• The intuition of the previous example is formalized with the split and interleave scheme from RDBMS
 a. Split the evaluation of the scoring function into a single criteria
 b. Interleave them with other operators
 c. Use partial orders to construct *incrementally* the final order

• Standard assumptions
 a. Monotone scoring function

• Optimized for the case of fast sorted access of each criterion
Top-k queries in SPARQL 1.1

- The top 10 offers ordered by the product ratings and the offer price:

```
SELECT ?product ?offer  
(norm1(?avgRat1) + norm2(?avgRat2) + norm3(?price)  
AS ?score)  
WHERE {  
  ?product hasAvgRat1 ?avgRat1 .  
  ?product hasAvgRat2 ?avgRat2 .  
  ?product hasName ?name .  
  ?product hasOffers ?offer .  
  ?offer hasPrice ?price  
}  
ORDER BY DESC (?score)  
LIMIT 10
```

- Tens of seconds on 5M triples (scope for improvement to milliseconds)
Split & interleave in SPARQL -
Related work

• A possible solution
 o Rewrite SPARQL into SQL
 o Use existing optimized RDBMS

• Disadvantages
 o Works if data is already in RDBMS
Challenges for native SPARQL split and interleave solutions

<table>
<thead>
<tr>
<th>Differences with SQL and RDBMS</th>
<th>Proposed solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different algebra</td>
<td>STEP 1: New algebra (algebraic operators and algebraic equivalences)</td>
</tr>
<tr>
<td>Different cost of data access in native RDF triplestores (sorted access is slow)</td>
<td>STEP 2: New algorithms for physical operators, possibly using less sorted access</td>
</tr>
<tr>
<td>Additional optimization dimensions</td>
<td>STEP 3: New planning strategies</td>
</tr>
</tbody>
</table>
The SPARQL Rank algebraic operators

New operator rank ρ

\[\text{Rank: } \rho, \text{ with a ranking predicate } p \]
\[\mu \in \rho_p(\Omega_P) \iff \mu \in \Omega_P \]
\[\mu_1 <_{\rho_p(\Omega_P)} \mu_2 \iff \overline{F}_{P \cup \{p\}}[\mu_1] < \overline{F}_{P \cup \{p\}}[\mu_2] \]

\[\text{Selection: } \sigma, \text{ with a boolean condition } c \]
\[\mu \in \sigma_c(\Omega_P) \iff \mu \in \Omega_P \text{ and } \mu \text{ satisfies } c \]
\[\mu_1 <_{\sigma_c(\Omega_P)} \mu_2 \iff \mu_1 <_{\Omega_P} \mu_2, \text{ i.e. } \overline{F}_P[\mu_1] < \overline{F}_P[\mu_2] \]

\[\text{Union: } \bigcup \]
\[\mu \in \Omega_{P_1} \cup \Omega_{P_2} \iff \mu \in \Omega_{P_1} \text{ or } \mu \in \Omega_{P_2} \]
\[\mu_1 <_{\Omega_{P_1} \cup \Omega_{P_2}} \mu_2 \iff \overline{F}_{P_1 \cup P_2}[\mu_1] < \overline{F}_{P_1 \cup P_2}[\mu_2] \]

\[\text{Join: } \Join \]
\[\mu \in \Omega_{P_1} \Join \Omega_{P_2} \iff \mu = \mu_1 \cup \mu_2, \text{ such that } \]
\[\mu_1 \in \Omega_{P_1}, \mu_2 \in \Omega_{P_2} \text{ and } \mu_1, \mu_2 \text{ are compatible mappings} \]
\[\mu_1 <_{\Omega_{P_1} \Join \Omega_{P_2}} \mu_2 \iff \overline{F}_{P_1 \cup P_2}[\mu_1] < \overline{F}_{P_1 \cup P_2}[\mu_2] \]

\[\text{Difference: } \]
\[\mu \in \Omega_{P_1} - \Omega_{P_2} \iff \mu \in \Omega_{P_1} \text{ and } \]
\[\text{for all } \mu' \in \Omega_{P_2}, \mu \text{ and } \mu' \text{ are not compatible} \]
\[\mu_1 <_{\Omega_{P_1} - \Omega_{P_2}} \mu_2 \iff \mu_1 <_{\Omega_{P_1}} \mu_2, \text{ i.e. } \overline{F}_{P_1}[\mu_1] < \overline{F}_{P_1}[\mu_2] \]

\[\text{Left Join: } \Join \]
\[\mu \in \Omega_{P_1} \Join \Omega_{P_2} \iff \mu \in (\Omega_{P_1} \Join \Omega_{P_2}) \cup (\Omega_{P_1} - \Omega_{P_2}) \]
\[\mu_1 <_{\Omega_{P_1} \Join \Omega_{P_2}} \mu_2 \iff \overline{F}_{P_1 \cup P_2}[\mu_1] < \overline{F}_{P_1 \cup P_2}[\mu_2] \]
The Rank operator

Rank: \(\rho \), with a ranking predicate \(p \)

- \(\mu \in \rho_p(\Omega_P) \) iff \(\mu \in \Omega_P \)
- \(\mu_1 <_{\rho_p(\Omega_P)} \mu_2 \) iff \(\mathcal{F}_{P \cup \{p\}}[\mu_1] < \mathcal{F}_{P \cup \{p\}}[\mu_2] \)

<table>
<thead>
<tr>
<th>(?x)</th>
<th>(?y)</th>
<th>(?p1)</th>
<th>(?p2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_1)</td>
<td>1</td>
<td>8</td>
<td>0.8</td>
</tr>
<tr>
<td>(\mu_2)</td>
<td>3</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>(\mu_3)</td>
<td>3</td>
<td>4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\(\rho_p(\Omega) \)

\(\Omega \)
The SPARQL Rank algebraic operators

Rank: \(\rho \), with a ranking predicate \(p \)
- \(\mu \in \rho_p(\Omega_P) \) iff \(\mu \in \Omega_P \)
- \(\mu_1 <_{\rho_p(\Omega_P)} \mu_2 \) iff \(\overline{F}_{P \cup \{p\}}[\mu_1] < \overline{F}_{P \cup \{p\}}[\mu_2] \)

Selection: \(\sigma \), with a boolean condition \(c \)
- \(\mu \in \sigma_c(\Omega_P) \) iff \(\mu \in \Omega_P \) and \(\mu \) satisfies \(c \)
- \(\mu_1 <_{\sigma_c(\Omega_P)} \mu_2 \) iff \(\mu_1 <_{\Omega_P} \mu_2 \), i.e. \(\overline{F}_P[\mu_1] < \overline{F}_P[\mu_2] \)

Union: \(\cup \)
- \(\mu \in \Omega_{P_1} \cup \Omega_{P_2} \) iff \(\mu \in \Omega_{P_1} \) or \(\mu \in \Omega_{P_2} \)
- \(\mu_1 <_{\Omega_{P_1} \cup \Omega_{P_2}} \mu_2 \) iff \(\overline{F}_{P_1 \cup P_2}[\mu_1] < \overline{F}_{P_1 \cup P_2}[\mu_2] \)

Join: \(\bowtie \)
- \(\mu \in \Omega_{P_1} \bowtie \Omega_{P_2} \) iff \(\mu = \mu_1 \cup \mu_2 \), such that
 - \(\mu_1 \in \Omega_{P_1}, \mu_2 \in \Omega_{P_2} \), and \(\mu_1, \mu_2 \) are compatible mappings
- \(\mu_1 <_{\Omega_{P_1} \bowtie \Omega_{P_2}} \mu_2 \) iff \(\overline{F}_{P_1 \cup P_2}[\mu_1] < \overline{F}_{P_1 \cup P_2}[\mu_2] \)

Difference:
- \(\mu \in \Omega_{P_1} - \Omega_{P_2} \) iff \(\mu \in \Omega_{P_1} \) and
 - for all \(\mu' \in \Omega_{P_2} \), \(\mu \) and \(\mu' \) are not compatible
- \(\mu_1 <_{\Omega_{P_1} - \Omega_{P_2}} \mu_2 \) iff \(\mu_1 <_{\Omega_{P_1}} \mu_2 \), i.e. \(\overline{F}_{P_1}[\mu_1] < \overline{F}_{P_1}[\mu_2] \)

Left Join: \(\bowtie \)
- \(\mu \in \Omega_{P_1} \bowtie \Omega_{P_2} \) iff \(\mu \in (\Omega_{P_1} \bowtie \Omega_{P_2}) \cup (\Omega_{P_1} - \Omega_{P_2}) \)
- \(\mu_1 <_{\Omega_{P_1} \bowtie \Omega_{P_2}} \mu_2 \) iff \(\overline{F}_{P_1 \cup P_2}[\mu_1] < \overline{F}_{P_1 \cup P_2}[\mu_2] \)
The Join Operator

Join: $\n\n\bullet \mu \in \Omega_{P_1} \times \Omega'_{P_2}$ iff $\mu = \mu_1 \cup \mu_2$, such that $\mu_1 \in \Omega_{P_1}$, $\mu_2 \in \Omega'_{P_2}$ and μ_1, μ_2 are compatible mappings.

$\bullet \mu_1 \prec_{\Omega_{P_1} \times \Omega'_{P_2}} \mu_2 \iff \overrightarrow{\mathcal{F}_{P_1 \cup P_2}}[\mu_1] < \overrightarrow{\mathcal{F}_{P_1 \cup P_2}}[\mu_2]$
SPARQL Rank algebraic equivalences

Proposition 1: Splitting law for ρ
- $\Omega_{\{p_1, p_2, \ldots, p_n\}} = \rho_{p_1}(\rho_{p_2}(\ldots(\rho_{p_n}(\Omega))\ldots))$

Proposition 2: Commutative law for binary operators
- $\Omega_{P_1} \Theta \Omega'_{P_2} \equiv \Omega'_{P_2} \Theta \Omega_{P_1}, \forall \Theta \in \{\cup, \times\}$

Proposition 3: Associative law
- $(\Omega_{P_1} \Theta \Omega'_{P_2}) \Theta \Omega''_{P_3} \equiv \Omega_{P_1} \Theta(\Omega'_{P_2} \Theta \Omega''_{P_3}), \forall \Theta \in \{\cup, \times\}$

Proposition 4: Commutative laws for ρ
- $\rho_{p_1}(\rho_{p_2}(\Omega_{P})) \equiv \rho_{p_2}(\rho_{p_1}(\Omega_{P}))$
- $\sigma_{c}(\rho_{p}(\Omega_{P})) \equiv \rho_{p}(\sigma_{c}(\Omega_{P}))$

Proposition 5: Distributive law
- $(\Omega_{P_1} \times (\Omega'_{P_2} \cup \Omega''_{P_3})) \equiv (\Omega_{P_1} \times \Omega'_{P_2}) \cup (\Omega_{P_1} \times \Omega''_{P_3})$

Proposition 6: Pushing ρ over binary operators
- $\rho_{p}(\Omega_{P_1} \times \Omega'_{P_2})$
 - $\equiv \rho_{p}(\Omega_{P_1}) \times \Omega'_{P_2}, \text{ if } \Omega' \text{ has variables in } p$
 - $\equiv \rho_{p}(\Omega_{P_1}) \times \rho_{p}(\Omega'_{P_2}), \text{ if both } \Omega \text{ and } \Omega' \text{ have}$
- $\rho_{p}(\Omega_{P_1} \times \Omega'_{P_2}) \equiv \rho_{p}(\Omega_{P_1}) \times \Omega'_{P_2} \equiv \rho_{p}(\Omega_{P_1}) \times \rho_{p}(\Omega'_{P_2})$
- $\rho_{p}(\Omega_{P_1} \cup \Omega'_{P_2}) \equiv \rho_{p}(\Omega_{P_1}) \cup \Omega'_{P_2} \equiv \rho_{p}(\Omega_{P_1}) \cup \rho_{p}(\Omega'_{P_2})$
- $\rho_{p}(\Omega_{P_1} - \Omega'_{P_2}) \equiv \rho_{p}(\Omega_{P_1}) - \Omega'_{P_2} \equiv \rho_{p}(\Omega_{P_1}) - \rho_{p}(\Omega'_{P_2})$
SPARQL Rank algebraic equivalences

Proposition 1: Splitting law for ρ

$\Omega\{p_1, p_2, \ldots, p_n\} = \rho_{p_1}(\rho_{p_2}(...(\rho_{p_n}(\Omega))...))$

- Allows the splitting of monolithic scoring function into several rank operators
Proposition 1: Splitting law for ρ
- \(\Omega_{p_1, p_2, \ldots, p_n} = \rho_{p_1}(\rho_{p_2}(\ldots(\rho_{p_n}(\Omega)\ldots))) \)

Proposition 2: Commutative law for binary operators
- \(\Omega_{P_1} \Theta \Omega'_{P_2} \equiv \Omega'_{P_2} \Theta \Omega_{P_1}, \forall \Theta \in \{\cup, \times\} \)

Proposition 3: Associative law
- \((\Omega_{P_1} \Theta \Omega'_{P_2}) \Theta \Omega''_{P_3} \equiv \Omega_{P_1} \Theta(\Omega'_{P_2} \Theta \Omega''_{P_3}), \forall \Theta \in \{\cup, \times\} \)

Proposition 4: Commutative laws for ρ
- \(\rho_{p_1}(\rho_{p_2}(\Omega_P)) \equiv \rho_{p_2}(\rho_{p_1}(\Omega_P)) \)
- \(\sigma_c(\rho_p(\Omega_P)) \equiv \rho_p(\sigma_c(\Omega_P)) \)

Proposition 5: Distributive law
- \((\Omega_{P_1} \times (\Omega'_{P_2} \cup \Omega''_{P_3})) \equiv (\Omega_{P_1} \times \Omega'_{P_2}) \cup (\Omega_{P_1} \times \Omega''_{P_3}) \)

Proposition 6: Pushing ρ over binary operators
- \(\rho_p(\Omega_{P_1} \times \Omega'_{P_2}) \equiv \rho_p(\Omega_{P_1}) \times \Omega'_{P_2} \), if \(\Omega' \) has variables in \(p \)
- \(\rho_p(\Omega_{P_1} \times \rho_p(\Omega'_{P_2}), \text{if both } \Omega \text{ and } \Omega' \text{ have} \)
- \(\rho_p(\Omega_{P_1} \times \Omega'_{P_2}) \equiv \rho_p(\Omega_{P_1}) \times \rho_p(\Omega'_{P_2}) \)
- \(\rho_p(\Omega_{P_1} \cup \Omega'_{P_2}) \equiv \rho_p(\Omega_{P_1}) \cup \rho_p(\Omega'_{P_2}) \)
- \(\rho_p(\Omega_{P_1} \cup \Omega'_{P_2}) \equiv \rho_p(\Omega_{P_1}) \cup \rho_p(\Omega'_{P_2}) \)
- \(\rho_p(\Omega_{P_1} - \Omega'_{P_2}) \equiv \rho_p(\Omega_{P_1}) - \rho_p(\Omega'_{P_2}) \)
SPARQL Rank algebraic equivalences

Proposition 6: Pushing ρ over binary operators

- $\rho_p(\Omega_{P_1} \Join \Omega'_{P_2})$
 $\equiv \rho_p(\Omega_{P_1}) \Join \Omega'_{P_2}$, if Ω' has variables in p
 $\equiv \rho_p(\Omega_{P_1}) \Join \rho_p(\Omega'_{P_2})$, if both Ω and Ω' have
- $\rho_p(\Omega_{P_1} \Join \Omega'_{P_2}) \equiv \rho_p(\Omega_{P_1}) \Join \Omega'_{P_2} \equiv \rho_p(\Omega_{P_1}) \Join \rho_p(\Omega'_{P_2})$
- $\rho_p(\Omega_{P_1} \cup \Omega'_{P_2}) \equiv \rho_p(\Omega_{P_1}) \cup \Omega'_{P_2} \equiv \rho_p(\Omega_{P_1}) \cup \rho_p(\Omega'_{P_2})$
- $\rho_p(\Omega_{P_1} - \Omega'_{P_2}) \equiv \rho_p(\Omega_{P_1}) - \Omega'_{P_2} \equiv \rho_p(\Omega_{P_1}) - \rho_p(\Omega'_{P_2})$

- Allows to order incrementally the results by pushing the rank operator inside the query tree.
Step 2: Physical operators (top-k algorithms)

- Rank operator
 - If there is a sorted access index available on the ranking criterion, it is used. Otherwise other rank aggregation algorithms are used.

- Join operator
 - If the right operator does not influence the ranking then streaming index join is used. Otherwise a rank-join algorithm is used

- Other operators are straightforward.
 - Eg. the standard FILTER conserves the ordering of its input
Rank join algorithms

- Different algorithms based on available access in the inputs:
 - Hash Rank-Join
 - e.g. HRJN [Ilyas2004]
 - Random Access Rank-Join
 - e.g. RA-HRJN [Ilyas2004]
 - RankSequence (e.g., RSEQ)
 - Minimum sorted access
 - Leverages random access
Rank join algorithms

- **Hash Rank-Join**
 - e.g. HRJN [Ilyas2004]

- **Random Access Rank-Join**
 - e.g. RA-HRJN [Ilyas2004]

- **RankSequence** (e.g., RSEQ)
 - Minimum sorted access
 - Leverages random access
Step 3: Planning strategies

• Using the algebraic equivalences, several algebraic trees can be constructed
• The planner can use them to implement several planning strategies
1. Rank of BGPs (ROB)

• Split the monolithic scoring function into several incremental rank operators (rho)
2. Interleaved (INTER)

- Separate the pattern into two groups
 - Triple patterns that influence ranking
 - Triple patterns that don't influence ranking

\[
\pi \ \text{?
product, ?offer, ?score}
\]

\[
\text{SLICE} [0,10]
\]

\[
\text{ORDER} \ [?\text{score}]
\]

\[
\text{EXTEND} \ [?\text{score} = \text{norm}_1(?\text{avgRat1}) + \text{norm}_2(?\text{avgRat2}) + \text{norm}_3(?\text{price})]
\]

\[
\{\text{?product hasAvgRat1 ?avgRat1, } \newline \text{?product hasAvgRat2 ?avgRat2, } \newline \text{?product hasName ?name, } \newline \text{?product hasOffer ?offer, } \newline \text{?offer hasPrice ?price.}\}
\]

Materialize-then-sort

\[
\rho \ \text{norm}_1(?\text{avgRat1})
\]

\[
\rho \ \text{norm}_2(?\text{avgRat2})
\]

\[
\rho \ \text{norm}_3(?\text{price})
\]

\[
\{\text{?product hasName ?name}\}
\]

Interleaved
3. Rank Join (RJ)

• Split into one triple pattern for each criterion
• Most appropriate join algorithm based on available access

\[\pi \text{ ?product, ?offer, ?score} \]
\[\text{SLICE } [0, 10] \]
\[\text{ORDER } [?\text{score}] \]
\[\text{EXTEND } \{ ?\text{score} = \text{norm1}(?\text{avgRat1}) + \text{norm2}(?\text{avgRat2}) + \text{norm2}(?\text{price}) \} \]
\[\{ ?\text{product hasAvgRat1 } ?\text{avgRat1} . \]
\[\{ ?\text{product hasAvgRat2 } ?\text{avgRat2} . \]
\[\{ ?\text{product hasName } ?\text{name} . \]
\[\{ ?\text{product hasOffer } ?\text{offer} . \]
\[\{ ?\text{offer hasPrice } ?\text{price} . \}
\]

Materialize-then-sort

\[\pi \text{ ?product, ?offer, ?score} \]
\[\text{SLICE } [0, 10] \]
\[\text{RankJoin } \]
\[\{ ?\text{product hasName } ?\text{name} \} \]
\[\{ ?\text{product hasAvgRat1 } ?\text{avgRat1} \}
\]
Experimental Evaluation

• Prototype implementation
 o ARQ-Rank (Extends Jena ARQ 2.8.9)

• Extended version of Berlin SPARQL Benchmark
 o Added routing capabilities
 o Added top-k queries

• Jena TDB 0.8.11 as storage
Experiment 1: Comparing planning strategies

- Example query, 5M triples dataset
- Worst case scenario: no sorted access indexes (slow sorted access)

![Graph showing performance comparison for different strategies.](image)
Experiment 1: Comparing planning strategies

- Example query, 5M triples dataset
- Standard scenario: sorted access indexes (fast sorted access)
Experiment 2: Small Benchmark (8 queries)
Conclusions

• A system that speeds up the execution of top-k queries in SPARQL by orders of magnitude:
 o STEP 1: A rank-aware SPARQL algebra (SPARQL-Rank algebra)
 o STEP 2: A rank-join algorithm (RSEQ)
 o STEP 3: Three planning strategies (ROB, INTER, RJ)

• ARQ-Rank, a rank aware extension of Jena ARQ
Top-k Exploration of Query Candidates for Efficient Keyword Search on Graph-Shaped (RDF) Data
Motivation

• Semantic search
 • Access to semantically described documents
 • Support for expressive / precise information need

• How to capture the user’s information need?
 • *Expressive queries* with difficult syntax (SQL, SPARQL) vs. limited but *intuitive queries* (Keywords)
Motivation

• **Expressive power** is crucial!
• Support the user in specifying information needs in an **intuitive way** is also crucial!

Goal: Interpreting Complex Information Needs by Translating Keywords to Expressive Formal Queries
Related work

- Translation of **NL questions**
 - Can the user specify a precise question when the information need is vague?

- **Relaxed-structure query models**
 - Require some knowledge about the query syntax and the structure of the underlying data

- In keyword search, the **user does not need to know about the query syntax and data schema**
 - Crucial for environment like the Web where most data sources to be queried are unknown to the user
Related work

• In most approaches, the exact mapping between keywords and labels of data elements is performed to obtain keyword elements.

• Algorithms for finding answer trees are backward search and to guarantee that computed answers have best scores, book keeping the information is required, which is costly. Hence most of the algorithms compute answers in an approximate way.

• proposed to reach early termination after obtaining the top-\(k\) results, instead of searching the data graph for all results.
Keyword Search – An Overview

• Mapping of keywords to ”labels” of data elements
 o Instead of presenting the top-k answers, which might belong to different queries, user is provided with top-k queries to retrieve all answers.
 o Keywords might also be mapped to edges.

• Data Graph exploration
 o Search for substructures (query graph) connecting keyword elements
 o Query graph vs. answer trees
 o Exploration of query graphs operates on summary of data graph only
Keyword Search – An Overview

• Top-k computation
 o Search guided by a **scoring function** to output only the top-k results
 o **Guaranteed top-k** vs. approximate top-k.

• Mapping query graph to conjunctive query
• Processing the conjunctive query using standard query engine
Keyword Search – An Overview

- Basic idea summarized
 - Map keywords to data elements (keyword elements), search for substructures on the data graph that connect the keyword elements, and output the top-k substructures computed on the basis of a scoring function.
 - Instead of presenting the top-k answers, which might actually belong to many distinct queries, the user select one of the top-k queries to retrieve all its answers.
 - Keywords do not necessarily correspond to answers exclusively, they might also be mapped to edges.
Scenario – Interpreting Information Needs

User Information Need

RDF Data Graph

Query Specification

Query Translation

Query Processing

SELECT ?x , ? y , ? z WHERE {
? x type Publication . ? x year 2006 .
? x author ?y . ? y name ’P . Cimiano’ . ? y worksAt ? z . ? z name ’AIFB’}
Keyword Search – The Workflow

- **Offline**: Summarization, Scoring, Term Expansion
- **Online**: Query Computation, Query Processing
Query Computation

• In order to compute queries, the keywords are firstly mapped to elements of the data graph.
• From these keyword elements, the graph is then explored to find a connecting element—a particular type of graph element that is connected to all keyword elements.
• The paths between the connecting element and a keyword element are combined to construct a matching subgraph. For each subgraph, a conjunctive query is derived.
• vertices are mapped to variables or terms, and edges are mapped to predicates. The process continues until the top-k queries have been computed.
Preprocessing

• In order to perform these steps in an efficient way, the data graph is preprocessed to obtain a keyword index that is used for the keyword-to-element mapping. Labels of data elements are indexed. Additionally, semantically related labels extracted from Wordnet are also incorporated in a process called term expansion.

• For graph exploration, a graph index is constructed, which is basically a summary of the original RDF graph containing structural (schema) elements only.
Preprocessing

- At the time of query processing, graph index is augmented with keyword elements obtained from the keyword-to-element mapping. The augmented index contains sufficient information to derive the structure as well as the predicates and terms of the query.

- In order to fetch the top-\(k\) queries, graph elements are also augmented with scores. While scores associated with structure elements can be computed off-line, scores of keyword elements are specific to the query and thus, can only be processed at query computation time.
Scoring

• Computed queries can result in many queries. Scoring functions assess the relevance of the computed queries.

• Path length - computed offline
 o Based on the assumption that the information need of the user can be modelled in terms of entities which are closely related. Thus, a shorter path between two entities (keyword element) is preferred.

• Popularity Score - computed offline
 o Several cost functions aim to capture the "popularity" of an element of the summary graph, measured by the relative number of data elements it actually represents.

• Keyword matching score are computed online
Graph Summarization

- A *rdf data graph* G is a tuple $(V; L; E)$ where
 - V is a finite set of vertices. V is conceived as the disjoint union $VE \cup VC \cup VV$ with
 - E-vertices VE (representing entities),
 - C-vertices VC (classes),
 - V-vertices VV (data values).
 - L is a finite set of edge labels,
 - E is a finite set of edges of the form $e(v_1,v_2)$ with $v_1, v_2 \in V$ and $e \in L$.
Graph Summarization

- Goal: preserve sufficient information to compute elements and structure of the query, while **reducing the exploration space**
- Summary graph captures **relations between entity classes**, thus preserving structural information of the original data graph.

Example RDF Graph

Summary Graph
Graph Summarization

- The graph index is used for the exploration of substructures that connect keyword elements. (In most of the current approaches, this graph index is simply the entire data graph, thus, exploration might be very expensive when the data graph is large)
- Objective is to derive the query structure from the edges and the query terms from the vertices of the computed subgraphs.
Graph Summarization

- URIs denoting E-vertices are verbose and thus, are unlikely to be used as keywords. Thus, if structural information can be preserved, this type of vertices can be omitted when building the graph index.
 - To achieve this, summary graph is used, which intuitively, captures only relations between classes of entities:
 - This summary graph can be seen as a RDF schema; however it might contain of relations that have not been specified in the RDF schema
 - It is similar to the dataguide concept; which is used for semi-structured data where there is no schema available or schema is incomplete
Keyword Mapping & Graph Augmentation

- Summary graph captures information for exploration of query structure
- Online augmentation with elements & scores obtained from keyword mapping
- Augmented graph contains further information for exploration of query elements
Keyword Mapping & Graph Augmentation

• Till now, A-edges and V-vertices have not been considered in the construction of the summary graph.
• They are relevant for query computation only when they are keyword elements themselves. In order to keep the search space minimal, the summary graph is augmented only with the A-edges and V-vertices that are obtained from the keyword-to-element mapping:
• The augmented summary graph contains both the structural information computed during preprocessing (rendered gray) and the query specific elements added at query computation time (shown in white).
 o For each of the keyword elements, the score as computed off-line is combined with the matching score obtained from the keyword-to-element mapping.
Top-k Graph exploration

- The graph exploration starts from the three keyword matching vertices, resulting in different paths.
- Among them, the following three paths meet at the connecting element nc,
 - $p1(AIFB; \ldots; nc)$,
 - $p2(Philipp Cimiano; \ldots; nc)$
 - $p3(2006; year; nc)$
- These three paths are merged to obtain a matching subgraph
General idea of exploration

The exploration starts with a set of keyword elements. For this, exploration cursors with an “empty path history” are created for the keyword elements and placed into queues:

- During exploration, the “cheapest” cursor created so far is selected for further expansion.
- Every cursor expansion constitutes an exploration step, where new cursors are created for the neighbors of the element just visited by the current cursor.
- At every step of the exploration, top-k is invoked to check whether the element just visited is a connecting element, i.e. it connects every keyword elements (there is at least one path between this element and every keyword element).
- With information stored in this connecting element, a matching subgraph (query graph) is constructed by merging the paths between the connection element and the keyword elements.
- During top-k, it is also checked whether it is safe to terminate the process.
Top-k Graph exploration

- Proposed to reach early termination after obtaining the top-k results, instead of searching the data graph for all results. The basic idea originates from the Threshold Algorithm (TA).
- Top-k algorithm finds the top-k subgraphs with best scores
- The score of the graph is computed from the individual scores of these paths
- Iteratively, graphs found during the exploration are added to the candidate list
- This process continues until the lower bound score (highest cost) of this candidate list (the score of the k-ranked object) is found to be higher (lower) than the upper bound score (lowest cost) of all remaining objects.
- The upper bound for the remaining objects is derived from the cursors waiting in the queues
Mapping Query Graph to Conjunctive Query

- Conjunctive query obtained by exhaustive application of **mapping rules**
 - Every value vertex $v_{\text{vertex}} \rightarrow$ a term
 - Every class vertex $c_{\text{vertex}} \rightarrow$ a distinct variable
 - Every A-edge $e(c_{\text{vertex}}, v_{\text{vertex}}) \rightarrow$ a query predicate $e[\text{var}(c_{\text{vertex}}), \text{term}(v_{\text{vertex}})]$
 - Every R-edge $e(c_{\text{vertex}1}, c_{\text{vertex}2}) \rightarrow$ a query predicate $e[\text{var}(c_{\text{vertex}1}), \text{var}(c_{\text{vertex}2})]$
- Treat all query variables as distinguished
- Specific mechanisms can be provided for the user to **choose distinguished variables**
- Query chosen by the user finally translated to query formalism supported by the query engine (SPARQL) for retrieving query answers
Evaluation – Effectiveness

• 12 users provide 30 keyword queries on DBLP, along with the NL description of the information need
• Reciprocal Rank = 1/r, where r is the rank of the correct query
• A query is correct if it matches the information need
• Information need can be interpreted in most cases, in particular when path length, matching score as well as popularity of graph elements are incorporated into scoring function
Evaluation – Usability of Query Interpretation

• Standard approaches return top-k results
• This approach based on interpretation of keywords as queries, i.e. **compute top-k queries** instead of top-k answer trees
• Queries are then transformed to simple natural language and **presented to user**
• 90% of users prefer to obtain question first, since it **facilitates understanding of results**
• All user prefers to do refinement on the structured query, rather than on the keywords, since the **structured query can be manipulated in a more precise and predictable way**
Evaluation – Efficiency

• Comparison with bidirectional search [V. Kacholia et al.] and search based on graph indexing (1000 BFS, 1000 METIS, 300 BFS, 300 METIS in [H. He et al.])
• Measure time for query computation + time for processing several queries until finding 10 answers
• Outperforms bidirectional search by at least one order of magnitude
• Performs fairly well when compared to indexing based approaches

Fig. 5. Query Performance on DBLP Data.
Conclusions and Future Work

• Conclusions
 • A new approach for keyword search on graph-structured data, RDF in particular
 • Novel algorithms for the top-k exploration of subgraphs to compute queries as an additional intermediate step
 • Query computing is performed on an aggregated graph while query processing can leverage optimization capability of the database

• Future Work
 • Indexing connectivity and scores for further speed up
 • Consider special query operations (e.g. filters) as keywords
Thank you!
Definitions

Mapping μ ... an intermediate SPARQL solution, equivalent to a SQL tuple

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1</td>
<td>1</td>
<td>8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>μ_2</td>
<td>3</td>
<td>3</td>
<td>0.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

set of mappings

Maximal possible score

Given a scoring function $F(p_1, \ldots, p_n)$ and a set of predicates $P = \{p_1, \ldots, p_j \}$ the maximal possible score for a mapping μ is defined as:

$$F_P(p_1, \ldots, p_n)[\mu] = F \left(\begin{array}{l}
 p_i = p_i[\mu] \quad \text{if} \quad p_i \in P \\
 p_i = 1 \quad \text{otherwise}
\end{array} \right) \quad \forall i$$
Definitions

Ranking principle

Given two mappings \(\mu_1 \) and \(\mu_2 \) with \(\overline{F}_P [\mu_1] > \overline{F}_P [\mu_2] \), if we process \(\mu_2 \) we need to process also \(\mu_1 \).

Ranked set of mappings

Given a set of predicates \(P \), a ranked set of mappings \(\Omega_P \) is a set of mappings \(\Omega \) augmented with the following properties:

- **Score**: for each mapping \(\mu \), the maximal possible score \(\overline{F}_P [\mu] \)
- **Order**: the order relation \(<_{\Omega_P} \) is defined on \(\Omega_P \) based on the scores of the single mappings
The RESQ algorithm

Algorithm 1 The RSEQ getNext method

S: sorted access input
R: random access input
R_{top}: maximal possible value for R

loop
 if Q is not empty then
 $topScore \leftarrow Q.topScore()$
 if $topScore \geq$ Threshold then
 return $Q.topMapping()$
 end if
 end if
 $\mu_S \leftarrow S.getNext()$
 probe R with μ_S
 for each retrieved join combination
 insert the join combination in Q;
 end for
 Threshold $\leftarrow f(\mu_S, R_{top})$
end loop