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Abstract

In this paper, we study the different steps
of translation from XML to relational mod-
els, while maintaining semantic constraints.
Our work is based on the theory of regular
tree grammars, which provides a useful formal
framework for understanding various aspects
of XML schema languages. We first study
two normal form representations for regular
tree grammars. The first normal form repre-
sentation, called NF1, is used in the two sce-
narios: (a) Several document validation algo-
rithms use the NF1 representation as the first
step in the validation process for efficiency rea-
sons, and (b) NF1 representation can be used
to check whether a given schema satisfies the
structural constraints imposed by the schema
language. The second normal form represen-
tation, called NF2, forms the basis for conver-
sion of a set of type definitions in a schema
language L1 that supports union types (e.g.,
XML-Schema), to a schema language L2 that
does not support union types (e.g., SQL), and
is used as the first step in our XML to rela-
tional conversion algorithm.

1 Introduction

The theory of regular tree grammars [16, 6] provides
an excellent framework for understanding various as-
pects of XML schema1 languages [14], and have been
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1We differentiate two terms – XML schema(s) and XML-
Schema. The former is a general term for schema in XML model

actively used in many applications including XML doc-
ument processing (e.g., XQuery from W3C [4] and
XDuce [9]) and XML document validation algorithms
(e.g., RELAX, TREX, and RELAX-NG [5]). It is also
used for analyzing the expressive power and closure
properties of the different schema language propos-
als [14].

Our emphasis, in this paper, is on understanding
the data modeling aspects of XML schemas. XML
schema provides several unique data modeling fea-
tures, e.g., union types, that are not present in tra-
ditional database models such as the relational model,
and this makes this study challenging. Several prob-
lems have been studied regarding the data modeling
aspects of XML schemas. The foundations of the cur-
rent work are based on our earlier work [13]. Here
we describe how entities and relationships, which form
the basis of data modeling, can be represented us-
ing the features provided by XML, such as elements,
attributes, parent-child relationships, ID-IDREF at-
tributes, and using inclusion dependencies. We further
describe how the various definitions in a given XML
schema can be mapped to entities and relationships.
For example, a parent-child relationship from book to
author represented as book→ author∗ in XML can be
mapped to an ordered 1:many relationship, where for
every book, we have an ordered list of authors.

A related area that has generated a lot of interests
is mapping from relational to XML models [11, 12]. In
[12], we represent the relationships expressed using in-
clusion dependencies in the relational model as parent-
child relationships, as ID-IDREF attributes, and some-
times as inclusion dependencies in the XML model.
For example, if we have a relation book and a rela-
tion author, and author has a foreign key referencing
book, then we can represent it in XML as book →
author∗. In this paper, we focus on the reverse con-
version from XML to relational schemas. This is nec-
essary for storing XML documents using a relational
database, and has been widely studied [7, 15, 8, 2, 10].

while the latter refers in particular to the XML schema language
proposed by W3C [17].



Our approach is different from the existing approaches
in that we consider semantic constraints in the XML
model, and they are captured in our resulting rela-
tional schema. Further, our conversion is based on the
strong and clean mathematical foundations provided
by regular tree grammars.

In this paper, we first give a theoretical exposition
for XML schemas using regular tree grammar theory,
and provide two normal form representations – NF1
and NF2. The first step in several document valida-
tion algorithms based on tree automata [14] is to rep-
resent the given XML schema in NF1 to give better
performance. Also the NF1 representation is used for
checking the validity of a given schema against the con-
straints imposed by the schema language. For exam-
ple, it is used to check whether a given tree grammar
is a single type tree grammar [14].

An important application of NF2 presented in this
paper is in the conversion from XML to relational
models. However, the usefulness of NF2 is more gen-
eral – NF2 provides the theoretical basis for mapping
the type definitions in a language that supports union
types, such as XML schemas, to a language that does
not support union types, such as SQL.

After we describe the two normal form representa-
tions of regular tree grammars, we describe algorithms
to map an XML schema, starting from the NF2 rep-
resentation, to a relational schema. There are several
issues in this mapping that we study:

• Given that the relational schema cannot express
all the constraints in the XML schema, what is
the useful and meaningful subset of constraints
that should be mapped?. Answering this question
gives our schema simplification step, where the
complex content model is converted into a sim-
pler content model that can be represented in a
relational schema.

• Inlining [15] is a technique that is used for gen-
erating more meaningful as well as “efficient” re-
lational schemas. We describe the inlining algo-
rithm which can be used for any general regular
tree grammar.

• How do we handle collection types, recursion, and
IDREF and IDREFS attributes defined in XML
schema?

• How do we maintain semantic constraints such as
key constraints and inclusion dependencies?

1.1 Related Work

Regular tree grammars and automata have been used
by the authors in [14] to compare the expressive power
and closure properties of the different XML schema
language proposals. Furthermore, they are used for
several document validation algorithms as presented

in [14], and in several products such as the RELAX
NG [5] validator, and XDuce [9] validator. The NF1
representation presented in this paper provides a useful
addition to existing tools for document validation as
well as schema validation.

Several techniques have been provided in the past
for mapping an XML schema to a relational schema.
In [7], the authors apply data mining techniques on
semistructured data to find frequent patterns using
a combination of the data instance as well as the
query mix. The frequent patterns are stored in “opti-
mized” relational storage, and the remaining patterns
are stored in an overflow storage. This technique has
the drawback that it requires integration of the rela-
tional and the overflow systems. In [8], the authors
consider several mapping techniques, where an edge in
the document X e Y (i.e., Y is the value of the at-
tribute of X called e) is mapped as three columns, X,
e, Y . The drawback with this approach is the diffi-
culty in maintaining semantic constraints. For exam-
ple, suppose the value of the attribute e is a key for
X, then it is difficult to specify this key constraint in
the output relational schema.

The techniques presented in [15, 2] are closer to
our goals of maintaining semantic constraints. We
borrow some of our steps from them – our recursion
elimination step is borrowed from [15], and the iter-
ative improvement of the relational schema based on
data and query statistics is borrowed from [2]. How-
ever, there are significant differences between our ap-
proaches. Maintaining semantic constraints was not
the focus of both the above techniques, and hence they
cannot capture several semantic constraints.

The techniques provided in [10] try to capture the
semantic constraints in the relational schema. How-
ever they attempt to capture mainly cardinality con-
straints using equality generating dependencies, and
tuple generating dependencies. Our work focuses on
relationships and key constraints and maintains them
in the relational schema.

1.2 Roadmap

In Section 2, we first define regular tree grammars.
In Section 3, we define NF1 representation for a reg-
ular tree grammar, and describe how a regular tree
grammar can be converted to NF1. Also, we present
two applications of the NF1 representation. In Sec-
tion 4, we define NF2 representation for a regular tree
grammar, and describe how we can obtain an NF2 rep-
resentation for a given regular tree grammar. In Sec-
tion 5, we describe the different steps in mapping a
given XML schema to relational schema. Finally, con-
cluding remarks and future directions are discussed in
Section 6.



2 Regular Tree Grammar

The structural specification of an XML schema is a
regular tree grammar. We define a regular tree gram-
mar below, borrowed from [14].

Definition 1 (Regular Tree Grammar) A regu-
lar tree grammar (RTG) is a 4-tuple G = (N,T, S, P ),
where:

• N is a finite set of non-terminals,

• T is a finite set of terminals,

• S is a set of start symbols, where S is a subset of
N ,

• P is a finite set of production rules of the form
X → a RE, where X ∈ N , a ∈ T , and RE is
a regular expression over N ; X is the left-hand
side, a RE is the right-hand side, and RE is the
content model of this production rule. 2

Example 1. The grammar G1 = (N,T, S, P ) given
in Table 1 is a regular tree grammar. For instance,
Author1 → author(Son∗) is a production rule, whose
left-hand side, right-hand side and the content model
are Author1, author(Son∗), and (Son∗), respectively.

2

N = {Book,Author1, Author2, Pub,
Library,Museum, Son,Daughter}

T = {book, author, publisher,
library,museum, son, daughter}

S = {Book}
P : Book → book(Author1∗, Pub,

(Library +Museum))
Book → book(Author2∗, Pub, Library)

Author1 → author(Son∗)
Author2 → author(Daughter∗)

Pub → publisher(ε)
Library → library(ε)
Museum → museum(ε)

Son → son(ε)
Daughter → daughter(ε)

Table 1: An example regular tree grammar G1

A production rule X → a RE means that the non-
terminal X can generate a tree with a as the root, and
with children that “match” RE. In G1, Author1 gen-
erates a tree with author as the root, and children that
match Son∗. The set of trees that can be generated
from any start symbol forms the language generated
by the given regular tree grammar. For instance, a
tree generated by G1 is shown in Figure 1.

3 First Normal Form (NF1) for Regular
Tree Grammars

In this section, we introduce the NF1 representation
for regular tree grammars. NF1 representation requires

book

author publisher museum

son

Figure 1: An example tree that is generated by G1

that for every non-terminal, there must be at most one
rule that produces a tree with a particular terminal as
the root.

Definition 2 (NF1) A regular tree grammar is said
to be in NF1 if no two production rules have the same
non-terminal in the left-hand side and the same termi-
nal in the right hand side. 2

In other words, a regular tree grammar in NF1 does
not have two rules of the form X → a RE1, and X →
a RE2.

Example 2. The regular tree grammar G1 in Ex-
ample 1 is not in NF1. There are two rules,
Book → book(Author1∗, Pub, (Library + Museum)),
and Book → book(Author2∗, Pub, Library), which
have the same non-terminal in the left-hand side and
the same terminal in the right hand side. 2

Converting a given regular tree grammar to NF1 is
straightforward: for every two rules of the form X →
a RE1 and X → a RE2, replace the two rules by one
rule asX → a (RE1+RE2). This algorithm is outlined
in Table 2.

Convert a regular tree grammar G = (N,T, S, P ) to
NF1.

1. If there does not exist two rules in G of the
form X → a RE1, and X → a RE2, return G.

2. Else replace the two rules with one rule
X → a (RE1 +RE2), and go to step 1.

Table 2: RTG to NF1 algorithm.

Example 3. Converting G1 to NF1, we obtain the
regular tree grammar G3 in Table 3.

The NF1 representation of regular tree grammars
is used in at least two different XML application sce-
narios. One application scenario is in document vali-
dation, where a given document is verified whether it
is valid against a given XML schema. Different docu-
ment validation algorithms are discussed in [14], which
form the basis of several implementations. Many of
these algorithms convert a given regular tree gram-
mar into its NF1 representation as the first step for
efficiency reasons. For example, consider the docu-
ment validation algorithm based on non-deterministic
bottom-up tree automata [14]. First, the given regular



N = {Book,Author1, Author2, Pub,
Library,Museum, Son,Daughter}

T = {book, author, publisher,
library,museum, son, daughter}

S = {Book}
P : Book → book((Author1∗, Pub,

(Library +Museum)) +
(Author2∗, Pub, Library))

Author1 → author(Son∗)
Author2 → author(Daughter∗)

Pub → publisher(ε)
Library → library(ε)
Museum → museum(ε)

Son → son(ε)
Daughter → daughter(ε)

Table 3: G3 = NF1 representation for G1

tree grammar is converted to NF1. During validation
when a start tag is encountered, we identify those pro-
duction rules X → a RE, such that a is the terminal
of this tag. There may be multiple production rules
with a on the right hand side, but all these rules will
have different non-terminals as the grammar is in NF1.
When the corresponding end-tag is encountered, we
check if the non-terminals assigned to the children be-
long to the language generated by RE. If so, X is one
of the valid non-terminals for this element. Otherwise,
X is not a valid non-terminal for this element. The
advantage of the NF1 representation is that we need
to check the validity of the non-terminals assigned to
the children against fewer regular expressions, which
would yield better performance. For example, the chil-
dren of book have to be checked against two regular ex-
pressions in G1, as opposed to one regular expression
in G3.

Another application of NF1 is in schema validation,
where a given schema is verified whether it satisfies the
constraints imposed by the schema language. Differ-
ent schema language proposals impose different con-
straints on the possible set of XML schemas that are
valid with respect to that schema language. For ex-
ample, DTD forms local tree grammars, and XML-
Schema forms single type tree grammars [14]. Now
suppose given a schema, we have to check whether
it is valid with respect to that language. For exam-
ple, consider verifying whether G1 is a valid schema in
XML-Schema or not. So we have to check whether G1

is a single type tree grammar. Single type tree gram-
mars place the restriction that there should not ex-
ist two different non-terminals that are start symbols,
or that occur in the content model of the same non-
terminal that “compete” with each other[14]. Two
non-terminals are said to compete with each other if
they have production rules that generate trees with the
same terminal as the root. To check if G1 is a single
type tree grammar, we first convert G1 to its NF1 rep-
resentation, G3. Now we check whether there exists a
production rule, where the non-terminals in its content

model compete with each other. We find that non-
terminals Author1 and Author2 compete with each
other and occur in the same production rule. There-
fore G1 is not a valid schema if XML-Schema is used
as the schema language.

4 Second Normal Form (NF2) for Reg-
ular Tree Grammars

In this section, we define the NF2 representation for
regular tree grammars. NF2 forms the basis for con-
version of type definitions in a programming language
L1 that supports union types (e.g., XML-Schema), to a
programming language L2 that does not support union
types (e.g., SQL).

Definition 3 (NF2) A regular tree grammar is said
to be in NF2 if no production rule uses the union op-
erator (denoted by “+”) in its content model. 2

Example 4. The regular tree grammar G1 is not in
NF2. The content model (Author1∗, Pub, (Library +
Museum)) uses the union operator and occurs in a
production rule. 2

Any given regular tree grammar can be converted
to a regular tree grammar in NF2. The conversion
algorithm for this is more involved than for NF1, and
is given in Table 4. The algorithm uses a function
migrateUnion(RE). migrateUnion(RE) is a recursive
function which takes as input any regular expression
RE, and returns an equivalent regular expression RE′
of the form (RE1 +RE2 + . . .+REn), where no REi,
1 ≤ i ≤ n contains the union operator.

Example 5. Converting G1 to NF2, we obtain the
regular tree grammar G5 given in Table 5. 2

Mapping between XML and other models has be-
come very important in recent years, with several ap-
plications exporting their data to XML, and several
applications storing the XML data they obtain using
other data models. NF2 provides the basis for map-
ping union types provided by XML schemas to types
in the target model. It is useful when the target model
does not support union types, such as the relational
model. An overview of how this conversion works is
as follows: the type definitions as provided by NF2 are
mapped into type definitions in the target language.
For example, G1 that uses union types is converted
using NF2 to G5 which does not have union types.
In G5, there are three production rules with Book on
the left-hand side. In the target language, there is a
new type defined for each of these production rules,
and thus there will be three types defined correspond-
ing to Book, say Book1, Book2, Book3. The language
maintains additional book-keeping, this book-keeping
assists in the mapping of operations from the origi-
nal type definitions to the new ones. For example, a



Convert a regular tree grammar G = (N,T, S, P ) to
NF2.

1. If there does not exist any rules in G of the
form R : X → a RE, where RE has the union
operator, return G. Else go to Step 2.

2. Let migrateUnion(RE) = (RE1 +RE2 . . . REn).
3. Replace R with {X → a RE1, X → a RE2, . . .,

X → a REn}, and go to Step 1.

migrateUnion : RE =⇒ RE′, where RE′ =
(RE1 +RE2 + . . .+REn), and no REi, 1 ≤ i ≤ n
contains the “+” operator

1. If RE does not contain “+”, return RE.

2. If RE = (r)∗:
Let migrateUnion(r) = (r1 + r2 + . . .+ rn).
return (r∗1 , r

∗
2 , . . . , r

∗
n)∗.

3. If RE = (r1 + r2):
Let migrateUnion(r1) = (a1 + a2 + . . .+ am).
Let migrateUnion(r2) = (b1 + b2 + . . .+ bn).
return (a1 + a2 + . . .+ am + b1 + b2 + . . .+ bn).

4. If RE = (r1, r2):
Let migrateUnion(r1) = (a1 + a2 + . . .+ am).
Let migrateUnion(r2) = (b1 + b2 + . . .+ bn).
return ((a1, b1) + (a1, b2) + . . .+ (a1, bn)+

(a2, b1) + (a2, b2) + . . .+ (a2, bn) + . . .
(am, b1) + (am, b2) + . . .+ (am, bn)).

Table 4: RTG to NF2 algorithm.

query such as Book/Pub on the original XML schema
will be mapped to, say, (Book1/Pub ∪ Book2/Pub ∪
Book3/Pub) in the new schema.

5 Mapping an XML Schema to Rela-
tional Schema

In this section, we describe our algorithm to map a
given XML schema to a relational schema. Before we
proceed, let us define XSchema, a language indepen-
dent formalism to specify XML schemas. XSchema is
based on regular tree grammar theory that we studied
in the previous sections, and borrows from our defini-
tions in [12, 13]. To define XSchema, we first assume
the existence of a set Ê of element names, a set Â of at-
tribute names and a set τ̂ of atomic data types defined
in [1] (e.g., ID, IDREF, IDREFS, string, integer, date,
etc). When needed, an attribute name a ∈ Â or an
element name e ∈ Ê is qualified by the element names
using the path expression notation e1.e2 · · · en.a, or
e1.e2 · · · en.e where ei ∈ Ê, 1 ≤ i ≤ n). XSchema
extends regular tree grammars with the specification
of data types, attribute definitions, primary key con-
straints, and inclusion dependency constraints. Fur-
ther attributes of types IDREF and IDREFS identify
the target types referred to by the values.

N = {Book,Author1, Author2, Pub,
Library,Museum, Son,Daughter}

T = {book, author, publisher,
library,museum, son, daughter}

S = {Book}
P : Book → book(Author1∗, Pub, Library)

Book → book(Author1∗, Pub,Museum)
Book → book(Author2∗, Pub, Library)

Author1 → author(Son∗)
Author2 → author(Daughter∗)

Pub → publisher(ε)
Library → library(ε)
Museum → museum(ε)

Son → son(ε)
Daughter → daughter(ε)

Table 5: G5 = NF2 representation for G1

.

Definition 4 (XSchema) An XSchema is denoted by
6-tuple X = (E,A,M,P, r,Σ), where:

• E is a finite set of element names in Ê,

• A is a function from an element name e ∈ E to a
set of attribute names a ∈ Â,

• M is a function from an element name e ∈ E to
its element type definition: i.e., M(e) = α, where
α is a regular expression: α ::= ε | τ | α + α |
α, α | α∗ | α? | α+, where ε denotes the empty
element, τ ∈ τ̂ , “+” for the union, “,” for the
concatenation, “α∗” for the Kleene star, α? for
(α+ ε) and α+ for (α, α∗),

• P is a function from an attribute name a to its
attribute type definition: i.e., P (a) = β, where β
is a 4-tuple (τ, n, d, f), where τ ∈ τ̂ , n is either
“?” (nullable) or “¬?” (not nullable), d is a finite
set of valid domain values of a or ε if not known,
and f is a default value of a or ε if not known.
Further more, if τ is IDREF or IDREFS, then τ
also specifies the target type or types that the
attribute value should refer to using the symbol
“;”,

• r ⊆ E is a finite set of root elements,

• Σ is a finite set of integrity constraints for XML
model. The integrity constraints we consider are
primary key constraints and inclusion dependen-
cies. 2

Example 6. We shall use for this section the follow-
ing XSchema and XML document. This schema rep-
resents a conference, and is slightly modified from the
one in [10]. It serves as a good example for explain-
ing the various steps in mapping an XML schema to
a relational schema. The XSchema is given by X6 =
(E,A,M,P, r,Σ), where



E = {conf, title, date, editor,
paper, contact, author, person,

name, email, phone, cite}
A(conf) = {id}
M(conf) = (title, date, editor?, paper∗)

P (conf.id) = (ID,¬?, ε, ε)

M(title) = (string)

A(date) = {year,mon, day}
M(date) = ε

A(editor) = {eids}
M(editor) = (person∗)

P (eids) = (IDREFS ; (person∗), ?, ε, ε)

A(paper) = {id}
M(paper) = (title, contact?, author, cite?)

P (paper.id) = (ID,¬?, ε, ε)

A(contact) = {aid}
M(contact) = ε

P (aid) = (IDREF ; person,¬?, ε, ε)

M(author) = (person∗)

A(person) = {id}
M(person) = (name, (email + phone)?)

P (person.id) = (ID,¬?, ε, ε)

A(name) = {fn, ln}
M(name) = ε

P (fn) = (string, ?, ε, ε)

P (ln) = (string,¬?, ε, ε)

M(email) = (string)

M(phone) = (string)

A(cite) = {id, format}
M(cite) = (paper∗)

P (cite.id) = (ID,¬?, ε, ε)

P (format) = (string, ?, (ACM |IEEE), ε)

r = {conf, paper}

Σ = {title, date.year key→ conf, title
key→ paper,

name.ln
key→ person}

2

An XML document conforming to the above schema
is:

<conf id="er05">
<title>Int’l Conf on Conceptual Modeling</title>
<date>

<year>2005</year> <mon>Nov</mon> <day>25</day>
</date>
<editor eids="sheth bossy">

<person id="klavans">
<name fn="Judith" ln="Klavans"/>
<email>klavans@cs.columbia.edu</email>

</person>

</editor>
<paper id="p1">

<title>Indexing Model for Structured ...</title>
<contact aid="dao"/>
<author>

<person id="dao">
<name fn="Tuong" ln="Dao"/>

</person>
</author>

</paper>
<paper id="p2">

<title>Logical Information ...</title>
<contact aid="shah"/>
<author>

<person id="shah">
<name fn="Kshitij" ln="Shah"/>

</person>
<person id="sheth">

<name fn="Amit" ln="Sheth"/>
<email>amit@cs.uga.edu</email>

</person>
</author>
<cite id="c100" format="ACM">

<paper id="p3">
<title Making Sense of Scientific ...</title>
<author>

<person id="bossy">
<name fn="Marcia" ln="Bossy"</name>
<phone>391.4337</phone>

</person>
</author>

</paper>
</cite>

</paper>
</conf>
<paper id="p7">

<title>Constraints Preserving ...</title>
<contact aid="lee"/>
<author>

<person id="lee">
<name fn="Dongwon" ln="Lee"/>
<email>dongwon@cs.ucla.edu</email>

</person>
</author>
<cite id="c200" format="IEEE"/>

</paper>

There are several steps in mapping an XML schema
to a relational schema: (a) schema simplification,
where we obtain from a given XSchema, a simpler
XSchema, which will not have the constraints that can-
not be captured in the relational model (b) inlining of
elements and attributes, where we use simple “heuris-
tics” to determine what are the attributes of a relation
(c) mapping collection types, collection types can be
represented in XSchema using ∗ or +. For example,
in M(A) = (. . . , B∗, . . .), A defines collection type of
B. Collection types are considered as 1:many relation-
ships and are mapped as such, (d) mapping IDREF and
IDREFS attributes, IDREFS attributes are treated sim-
ilar to child elements, (e) capturing the order specified



in the XML model, and (f) enforcing constraints such
as key constraints and inclusion dependencies.

Without loss of generality, we will assume for the
rest of the section that the given XSchema is in NF2.
We shall represent the element type definitions in the
XSchema in NF2 as (r1 + r2 + . . . + rn), rather than
writing them out as multiple element type definitions.
(This is equivalent to performing NF2, and then per-
forming NF1 on the resulting schema.)

Example 7. When we represent X6 in NF2, the ele-
ment type definitions change as: M(conf) =

((title, data, paper∗) + (title, data, editor, paper∗))
M(paper) = ((title, author) + (title, contact, author)+

(title, author, cite) + (title, contact, author, cite))
M(person) = ((name) + (name, email) + (name, phone))

2

5.1 Schema Simplification

As mentioned before, the relational model cannot cap-
ture all the constraints specified in the XSchema. Our
schema simplification step is based on the following
principle: For a parent-child relationship or IDREFS
attribute, we capture only the cardinality of the child
with respect to the parent as can be expressed using
the two-tuple [minOccur,maxOccur]. We do not cap-
ture any other constraint that may be specified in the
XSchema.

For example, consider the element type definition
M(A) = (D, (B,C,B)∗). We do not capture: (a) the
order constraint that a C must be followed and pre-
ceded by a B, (b) that the number of Bs must be
twice the number of Cs, or (c) that the number of Bs
should be even. We simplify the above content model
as M ′(A) = (D,B∗, C∗). The simplification rules are
applied to the target types identified by IDREFS at-
tributes also.

Consider an element e, whose element type defini-
tion, after NF2 is given by M(e) = (r1 + r2 + . . .+ rn).
We apply the schema simplification rules given below
to every sub-expression ri. Remember that NF2 en-
sures that ri will contain only “,” and “*” operators.
We express the occurrence constraints using the nota-
tion [minOccur,maxOccur] for convenience. This rep-
resentation is equivalent to the occurrence constraints
specifiable using regular expressions.

Reg Exp Simplified Reg Exp

(r1, r2)[m,M ] (r1[m,M ], r2[m,M ])
(r1[m1,M1])[m2,M2] r1[m1 ∗m2,M1 ∗M2]
(r1[m1,M1], ..., r1[m2,M2]) r1[m1 +m2,M1 +M2]

Table 6: Schema Simplification Rules

The XSchema after NF2 for X6 is already simplified,
and the simplification rules described above do not
change the schema.

5.2 Inlining

Inlining is used to generate more “meaningful” and
efficient relational schemas. In inlining, we consider
attributes of descendants of an element as attributes
in the relation corresponding to that element. For ex-
ample, consider the element conf which has child date
which in turn has attributes year, month, and day in
X6. Now we can inline the attributes of date to conf
and obtain the relation conf(year,month, date).

Inlining for an element e is done recursively using
the function inline (currEl, currSet, attSet) described
in Table 7. inline returns a set of relations that should
be generated for an input element currEl. The func-
tion also takes as input currSet which denotes the
current set of relations we have, and attSet which is
used to maintain the list of attributes of e that should
be present in every relation generated for e.

To inline the element e, we call inline, where the
initialization is: currEl = e, currSet = φ, attSet = φ.

inline : currEl, currSet, attSet =⇒ ResultSet

1. Assign the set of attributes in A(currEl)
except IDREF and IDREFS attributes to attSet.
Let the element type definition of currEl be
given by M(currEl) = (r1 + r2 + . . .+ rk).
Set ResultSet = φ.

2. For each ri, we do the following.
2.1. Set currSet = attSet.
2.2. Let the elements which occur in ri

with occurrence constraint [1, 1] after
simplification be {e1, e2, . . . , en}.
For each ei, do the following.

2.2.1. If M(ei) ∈ τ̂ , then
currSet = currSet× ei.

2.2.2. Else currSet = currSet ×
inline (ei, φ, φ)

2.3. If currSet = φ, currSet = currEl.
2.4. ResultSet = ResultSet ∪ currSet.

3. return ResultSet.

Table 7: Inline Function

A ResultSet is returned by inline, and we de-
fine a relation corresponding to each term in the
ResultSet. Note that when a subexpression ri in
M(currEl) yields the empty set, we add the element
name (currEl) as a placeholder. This ensures that in-
lining results in two relations for the element conf in
X6 as shown below.

Example 8. Suppose we perform inlining on conf ,
paper, and person, we obtain the following rela-
tion definitions. Note that inline for M(editor) and
M(contact) actually produce the empty set, however
inline will return editor or contact as placeholders.

conf : conf1(id, title, year,mon, day),
conf2(id, title, year,mon, day, editor).

paper: paper1(id, title, author),
paper2(id, title, contact, author),



paper3(id, title, author, cite.id, format),
paper4(id, title, contact, author, cite.id, format)

person: person1(id, fn, ln),
person2(id, fn, ln, email),
person3(id, fn, ln, phone) 2

It is important to note that inlining could result
in a huge number of relations. For instance, consider
inlining an element a which has three choices, that is
M(a) = (a1+a2+a3). Let each of these choices in turn
have three more choices and so on, that is, M(a1) =
(a11 + a12 + a13). Let the height of this be n. The
number of relations for this element will be 3n. For
example, if the height is 2, then we get nine relations.
This could result in “inefficient” relational models. In
a later subsection, we will study different cases when
we place restrictions, so that we do not create so many
relations. Also, our inlining is used for non-recursive
elements. Recursive elements are handled in a later
subsection.

5.3 Mapping Collection Types

Relational model cannot specify collection types. An
element type definition such as M(book) = (author∗)
is captured in the relational model by defining sepa-
rate relations for book and author, and a foreign key
attribute for author referencing book. We use the same
technique, however with some modifications. The
modifications become necessary because we can have
two different type definitions which specify collection
type of the same sub-element. For example, consider
M(book) = (author∗), and M(article) = (author∗).
We will create two relations for author, one with a
foreign key referencing book and another with a for-
eign key referencing article. We may even have an
element type definition as M(book) = (author∗ +
(author∗, publisher)). When we do inlining for book,
we end up with two relations, say book1(book) and
book2(publisher). In this case again we create two re-
lations for author, one referencing book1 and the other
referencing book2. The algorithm for the conversion of
collection types is as follows.

Let an element A have multiple occurrences in ele-
ment type definitions, m1,m2, . . . ,mn, where for each
mi, A has multiple occurrences in sub-expressions for
which the tables created are mi1,mi2, . . . ,min. Now
a separate relation is created for A for each of these
tables in each rule. Further, the table created for A
corresponding to the table mij will define a foreign key
referencing mij .

Example 9. In X6, we have paper∗ in the element
type definition for conf and cite. paper may occur as
the root element also. Therefore, we have the follow-
ing table definitions for paper: paper1, paper2, paper3
and paper4 represent papers that occur at the root
of the document. In addition, we define papers that

occur as children of conferences by defining all possi-
ble combinations of {paper1, paper2, paper3, paper4}
with {conf1, conf2}. For example, three of the tables
that are defined are:

paper1conf1(id, title, author, conf.title, year),
paper1conf2(id, title, author, conf.title, year),
paper2conf1(id, title, contact, author, conf.title, year)

Here, paper and cite form a recursive relationship and
this is handled in a different subsection. Just like for
paper and conf , we define person which can occur as
children of editor or author. 2

5.4 Handling IDREF and IDREFS attributes

Let us first consider IDREF attributes. An IDREF at-
tribute specification will be of the form B → (@a ::
IDREF ; (E1 +E2 + . . . En)), where B ∈ E, and Ei’s
either belong to E, or can be ε. Let the tables defined
for any Ei be mi1,mi2, . . . ,mini . Let the set of tables
defined for B be b1, b2, . . . , bn. Our mapping replaces
the set of tables for B with the set which is the cross
product of {b1, b2, . . . , bn} with the set of mij ’s. Also
for each of the resulting tables, we will have a foreign
key referencing the ID attribute of mij .

Example 10. In X6, we have an IDREF attribute de-
fined for contact, which refers to person. The set
of tables defined for contact are {paper2, paper4}.
Also we have three tables defined for person as
{person1, person2, person3}. The result of our map-
ping is replacing paper2 and paper4 with the following
six tables.

paper2person1(id, title, person1, author)
paper2person2(id, title, person2, author)
paper2person3(id, title, person3, author)
paper4person1(id, title, person1, author,

cite.id, cite.format)
paper4person2(id, title, person2, author,

cite.id, cite.format)
paper4person3(id, title, person3, author,

cite.id, cite.format)

Here person1 column in each of the above tables is
a foreign key referencing the id attribute of relation
person1, person2 column references the id attribute
of relation person2 and so on. 2

IDREFS attributes are handled using the techniques
for handling IDREF attributes and collection types,
and techniques such as schema simplification and inlin-
ing. An IDREFS attribute specification is of the form
B → (@a :: IDREFS ; RE), where B ∈ E, and RE is
a regular expression over E. After schema simplifica-
tion, let RE be given by r = (r1 + r2 + . . . + rn).
Now we perform a modified inlining, which we call
IDREFSinline and is given in Table 8. IDREFSinline is



a non-recursive function, and we call it as IDREFSinline
(r).

IDREFSinline : RE =⇒ ResultSet

1. Let RE = (r1 + r2 + . . .+ rn). For each ri
in {r1, r2, . . . , rn}, do the following.

1.1. Let the elements which occur in ri
with occurrence constraint [1, 1] (after
simplification) be S = {e1, e2, . . . , en}.

1.2. If S = φ, ResultSet = ResultSet ∪
currEl.

1.3. Else ResultSet = ResultSet ∪
(e1, e2, . . . , en).

2. return ResultSet.

Table 8: Inline Function for IDREFS attributes

Let the tables for B currently defined be
{b1, b2, . . . , bn}. After we do IDREFSinline on an at-
tribute of B, the set of tables for B change as follows.
Suppose ResultSet returns {a1, a2, . . . , an}. Let ai be
(ei1, ei2, . . . , eini). Let the set of tables for eij be de-
noted by the set Tij . Now in ResultSet, we replace ai
with the set Ti1 × Ti2 × . . .× Tini . Now we replace
the set of tables for B with the cross product of the
sets {b1, b2, . . . , bn} and ResultSet. Also in each of
these tables, we define every column from ResultSet,
say tijk as a foreign key referencing the ID attribute of
the table tijk.

Now, consider an element say E that occurs as a
collection type in r, we define a new set of tables, one
for every possible combination of the tables of B and
the tables of E. Each table has a set of columns repre-
senting the table in B, say bi, which will be a foreign
key referencing the primary key of bi, and a column
representing the table of E, say ei, which will be a
foreign key referencing the ID attribute of ei.

Example 11. In X6, we have an IDREFS attribute
defined for editor as @eids :: IDREFS ; person∗. The
IDREFS attribute has a collection type, so we define a
set of new tables, one for every combination of {conf2}
and {person1, person2, person3} as follows.

eidsconf2person1(title, year, person1id)
eidsconf2person2(title, year, person2id)
eidsconf2person3(title, year, person3id) 2

5.5 Handling Recursion

Recursion can occur in XSchema in two ways: through
a cycle of elements with optional “?” occurrence, or
through a cycle of elements with “*” occurrence. For
example, A → (@a,A?) forms a recursion of the first
kind. We will handle this type of recursion using inlin-
ing. However simple inlining would result in infinitely
many number of relations - we will create separate re-
lations for recursion of depth 0, 1, 2, and so on. The
relations will be A1(@a), A2(@a,@a), A3(@a,@a,@a)
and so on. Therefore, instead, we will use foreign keys
- we will create relations of the form A(@a,ARef),

where ARef refers to the A element that occurs as
child of this element. For example consider the XML
document fragment

<A a=‘a1’>
<A a=‘a2’/>

</A>

When we translate this, we get the tuple, (a1, a2ref)
where a2ref refers to a2. However, simply creat-
ing foreign keys also results in infinitely many num-
ber of relations. We will create separate relations
for the A element which has no more children as
A1(@a), the A element that will have A1 as a child,
say A2(@a,A1Ref), the A element that has A2 as a
child, say A3(@a,A2Ref), and so on. The above hap-
pens because we try to create many relations trying
to enforce that we will not have null values in the re-
lations. The solution is to create only one relation
and allow null values for the columns. For example,
the above relation will be translated to A(@a,ARef)
where ARef is a foreign key referencing the relation
A, and it can have null values.

The second kind of recursion is handled in a similar
manner to how we handle collection types. For exam-
ple, consider A→ (@a,A∗). Our simple translation of
collection types will again produce infinitely many re-
lations – relations for As that do not have A as parents
A1(@a), As that have A1 as parent A2(@a,A1Ref),
As that have A2 as parent A3(@a,A2Ref) and so on.
This problem is solved again by enforcing one relation
for A, as A(@a,ARef), where ARef is a foreign key
referring to A and it can be null.

The general technique for handling recursion is sim-
ilar to the one mentioned in [15]. For every strongly
connected component, at least one of the elements
must be defined as a separate relation. We enforce
that such an element be mapped to exactly one rela-
tion. This is illustrated in Example 12. Further more,
in a strongly connected component, if there exists an
element which can be children of more than one ele-
ment in the strongly connected component, then we
define a separate relation for that element. This is
necessary as we will see in Example 13.

Example 12. There is a cycle in X6 – formed by
paper, and cite. This refers to the papers that are
cited in a given paper. A separate relation is to be
created for paper, which was already done. We en-
force that there be only one relation corresponding to
paper. Now we have to append all the attributes in the
different tables corresponding to paper into one table.
Doing this, we get one paper table as

paper(id, title, person1, person2, person3, cite.id,
format, conf1.title, conf1.year, conf2.title,
conf2.year,@paperRef).

Here person1, person2, person3 are nullable foreign
keys, representing the contact author for a paper,



cite.id, format are nullable and represent the cite in-
formation, and @paperRef is a nullable foreign key
that refers to a paper that cited this paper. 2

Example 13. Consider a simple 4 element schema,
defined as A → (@a,B), B → (@b, A?, C?), C →
(@c,D), D → (@d,A?, C?). This forms one strongly
connected component with two nodes A and C having
in-degree greater than one. Consider a sample docu-
ment represented for convenience as

a1 → b1 → a2 → b2 → a3 → b3 → c1 → d1 → c2 →
d2→ c3→ d3→ a4→ b4→ c4→ d4

Here x→ y means that y is a child of x. Also ai means
an element A, with the value of the attribute @a as
ai.

Suppose we define only one relation, as there is only
one strongly connected component. Let us try to de-
fine the relation for A. We will see that we can have
multiple C,D elements for one A, and this cannot be
captured in the relation for A. This happens because
there is a C,D loop, rather C has two parents, B and
D. In this case, we define another relation for C. The
two relations are given below.

A C
@a @b aR cR
a1 b1 a2 null
a2 b2 a3 null
a3 b3 null c1
a4 b4 null c4

@c @d aR cR
c1 d1 null c2
c2 d2 null c3
c3 d3 a4 null
c4 d4 null null

Table 9: Relations from translation of Example 13.
Here aR and cR are foreign keys referencing A and C
respectively.

5.6 Capturing Order Specified in the XML
model

It is necessary to maintain the order in which the el-
ements occur in the document, so that we can recon-
struct the document. Order can be captured in the
XML model by keeping an order attribute correspond-
ing to each element. The attribute which we maintain
will give the position of the node in the whole docu-
ment. However, capturing order is not the focus of this
paper. So we will ignore it for the rest of this paper.

5.7 Capturing Semantic Constraints

XML schemas specify relationships using parent-child
relationships, ID-IDREF/(S) attributes, and using in-
clusion dependencies. We have studied the mapping
of all these features except inclusion dependencies.
Inclusion dependencies are mapped as follows: Sup-
pose the XSchema defines an inclusion dependency
as: A(X) ⊆ B(Y ). Let the set of tables defined for
B be {b1, b2, . . . , bn}, and the set of tables for A be
{a1, a2, . . . , an}. We replace the set of tables forA with

the set formed by the cross product of {a1, a2, . . . , an}
and {b1, b2, . . . , bn}. For any resulting table, say ai.bj ,
the set of columns is the same as the set of columns
in ai. Further, we define the inclusion dependency
ai.bj(X) ⊆ bj(Y ).

Key constraints are translated as follows. There are
four kinds of tables that can be generated during our
translation.

• Table created corresponding to an element, the key
for the element does not depend on any attribute
of any of its ancestors:
Let the key for the element be denoted by K.
K may consist of attributes, elements that are
not collection types, elements that are collection
types, IDREF attributes, and IDREFS attributes.
First, we remove the elements that are collection
types and the collection type elements in IDREFS
attributes. Then, we replace every element with
its key. Let the resulting key be K ′. Correspond-
ing to every attribute in K ′, there will be a col-
umn defined for the table. The key for the table
is defined as this set of columns corresponding to
K ′.

• Table created corresponding to an element, the key
for the element depends on at least one attribute
of its ancestors.
This occurs for “relative keys” [3]. Relative keys
can be explained with this example, consider a
library schema with rules as library → (book∗),
book → (@title, author∗), author → (@name).
Let the key for book be (@title). We could define
the key for author as - for every book, the key
for author is (@name). Here, the key for author
can be considered as (@name, book). Now trans-
lation of the keys is just like in the previous step.
Therefore in the relational schema, we get the key
for book as (@title), and the key for author as
(@name, bookRef).

• Table created corresponding to collection type in
IDREFS attributes
Consider A → (@a,@bRefs :: IDREFS ;

(B∗)), B → (@b :: ID). For a collec-
tion type of an IDREFS attribute, a new ta-
ble is created. Therefore we create a new table
bRefsAB(ARef,BRef), here ARef is a foreign
key referencing the primary key of A, and BRef
is a foreign key referencing the ID attribute of B.
The key for this table will be the set of all columns
of this table.

• Table created corresponding to an element for
which there is no key defined.
In this case, a system-generated identifier is intro-
duced as the key for the table.



Example 14. In X6, for every table corresponding to
conf , the key is (title, year), for every table corre-
sponding to paper, the key is (title), and for every
table corresponding to person, the key is (ln). Fur-
thermore a set of tables are created corresponding to
the IDREFS attribute eids, and the key for this is
(title, year, person). 2

5.8 Decreasing the Number of Relations Gen-
erated

We have so far been generating multiple tables for an
element. Also to handle recursion, only one table is
created for an element in the recursion. Creating more
tables decreases the number of null values in the re-
sulting relation. However, often times the number of
relations generated could be too many. So it is useful
to restrict the number of relations produced for an ele-
ment, though this will increase the number of null val-
ues. One extreme is enforcing that we create at most
one table corresponding to an element. Or we can say
that for every element that has a foreign key defined on
it, we create only one table. We can also ask for user
input, or use data and query statistics and iteratively
improve the schema to give the “best” performance.
Now, we will convert the example XSchema, X6 and
the document to the relational model. We will assume
that for an element that has a foreign key defined on
it, we will create at most one table.

5.9 Example

When we convert X6 and the document using our map-
ping algorithm, we obtain the following set of relations.
We do not capture the order among elements in the
document. Also for an element that has a foreign key
defined on it, we will create at most one table. There-
fore we will have only one table for conf , paper and
person, as shown in Table 10. The constraints are:
title, year

key→ conf ; title
key→ paper;

ln
key→ person; title, year, ln

key→ eids;

eids.ln ⊆ person.ln;

eids.title, eids.year ⊆ conf.title, conf.year;
paper.aid ⊆ person.id;

paper.conf.title, paper.year ⊆ conf.title, conf.year;
paper.paperRef ⊆ paper.title;
person.conf.title, person.year ⊆

conf.title, conf.year;

person.paper.title ⊆ paper.title

5.10 Analysis of our algorithm

Our first set of experiments were to determine the
“goodness” of the relational schema we obtain. Our
example illustrated that our conversion algorithm pro-
duces good relational schemas. We then took the
TPC-H data and converted that to XML using the
CoT algorithm [12]. Now we ran our XML to rela-

tional conversion on this XML data. We obtained the
original relational data that we started off with.

We then analyzed the properties of our algorithm
closely, and proved that when we convert the XML
data resulting from CoT to relations using the tech-
niques described in this paper, we will obtain the orig-
inal relational schema that we started with. These
results are quite promising for a common application
scenario - person A wants to ship his data in a rela-
tional database to person B. A converts his data to
XML and then ships this XML data. B receives this
XML data, and converts it back to relations and stores
it in his relational database. Now if A uses CoT for his
relational to XML conversion, and if B uses the steps
described in this paper for XML to relational conver-
sion, then it is guaranteed that B will end up with
the same relations as A started off with, no additional
“handshake” between A and B is required.

6 Conclusion

In this paper, we presented a theoretical basis for dif-
ferent XML applications using regular tree grammars.
We defined the NF1 representation, which is useful in
document validation as well as schema validation. Our
NF2 representation forms the basis for mapping type
definitions in XML schemas to a language that does
not provide union types, such as SQL. Further, we
described the steps in mapping an XML schema to
a relational schema, while maintaining semantic con-
straints. Prelimiary studies indicate that our algo-
rithm generates “good” relational schema, and further
it complements our relational to XML conversion al-
gorithm, CoT.

There are still several issues to be studied with re-
spect to data modeling using XML schemas. One in-
teresting question is what restrictions can be imposed
on the XML schemas for data modeling. For exam-
ple, ability to specify recursive types is one of the ad-
vantages of the XML data model, but CoT generates
XML schemas that have no recursion. Also there are
several important questions regarding operations for
the XML model. What is a set of “good” operations
for the XML model? How do we map operations on
the XML model to the relational model? Answering
these questions will clarify the data modeling aspects
of XML schemas.
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