
Implementing A Scalable XML Publish/Subscribe System
Using Relational Database Systems

ABSTRACT
An XML publish/subscribe system needs to match many XPath
queries (subscriptions) over published XML documents. The
performance and scalability of the matching algorithm is essential
for the system when the number of XPath subscriptions is large.
Earlier solutions to this problem usually built large finite state
automata for all the XPath subscriptions in memory. The
scalability of this approach is limited by the amount of available
physical memory. In this paper, we propose an implementation
that uses a relational database as the matching engine. The heavy
lifting part of evaluating a large number of subscriptions is done
inside a relational database using indices and joins. We described
several different implementation strategies and presented a
performance evaluation. The system shows very good
performance and scalability in our experiments, handling millions
of subscriptions with moderate amount of physical memory.

1. INTRODUCTION AND
REQUIREMENTS
A publish/subscribe (pub/sub) system receives messages from
publishers and notifies subscribers if the messages match the
subscriptions. The earliest publish/subscribe systems are topic-
based. In these systems, subscribers subscribe to a certain topic
(or group, subject etc.) and all messages published on that topic
are delivered to the subscribers. More recent pub/sub systems
support the content-based paradigm. For a content-based pub/sub
system, each subscriber can register a rule in the system. When a
publisher publishes a message to the system, the system matches
the message with all the registered rules and delivers the message
to the corresponding subscribers. Generally speaking, a content-
based pub/sub system is more flexible and more powerful than a
topic-based pub/sub system.

Content-based pub/sub technology has been widely used in
message-oriented middleware systems. Example applications of
content-based pub/sub systems include real estate applications,
financial information exchange, online auctions, content-based
document routing, and data replication (match data changes with
replication rules). All major database vendors and middleware
system vendors offer pub/sub technology as a standard feature of

their business software suits. For example, IBM, Oracle and
Microsoft all offer pub/sub applications. Pub/sub in Java Message
Service (JMS) [16] is included as part of J2EE [17] and supported
by many companies.

All of these systems use SQL or a SQL-like language to express
subscription rules, and the message is either a relational tuple or a
dictionary data structure with name value pair entries. As XML
becomes widely adopted as the standard data exchange format,
there is an increasing demand for XML-based pub/sub systems.
An XML-based pub/sub system should meet the following
requirements. The system should have many publishers and the
published XML messages can have very flexible document
structures. Subscription rules should be expressed by a powerful
language based on XPath [20] or XQuery [21] and support joins
of the messages with existing reference data. Subscribers may also
want to specify acceptable delay of notifications as a quality of
service (QoS) requirement. A pub/sub system for large business
applications must be able to maintain a high throughput of
messages with millions of subscriptions.

The main technical challenge of implementing a content-based
pub/sub system is to efficiently match a published message with
many subscriptions. The existing pub/sub approaches can be
classified into two major categories depending on the matching
strategy. The first strategy treats subscriptions as data that is
stored in the database system. When a message is published, the
matching of the message with the subscriptions is translated into a
join query of the database system. With proper indices built over
the subscription data, the join query can be very efficient. The
major advantage of this approach is that the scalability is no
longer limited by main memory. Also, subscriptions that query
reference data stored in the database can be evaluated using the
same database engine. The second strategy treats subscriptions as
filters. The subscribers are notified when a message passes
through the filters. The usual implementation for this strategy is a
decision tree or a finite state automaton (FSA). Common
computations between filters can often be shared. This strategy
can be quite efficient if the decision tree or the FSA fits in
memory. However, the scalability is limited by the amount of
available physical memory.

Our approach is to use a relational database system to build an
XML-based pub/sub system. Such an XML-based pub/sub system
proposes many new technical challenges. The XML data has a
tree structure and XPath can query both values, and tree structures
of the XML documents. Previous implementations of the
database-based matching strategy are not applicable because they
lack the ability to evaluate XPath against the XML messages. We
solve this problem by breaking subscriptions into two parts, an
atomic value predicate matching part and an XML tree structure

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

Feng Tian
Department of Computer Science
University of Wisconsin, Madison

Madison, WI, 53706
ftian@cs.wisc.edu

Berthold Reinwald Hamid Pirahesh Tobias Mayr Jussi Myllymaki

IBM Almaden Research Center

650 Harry Road, San Jose, CA, 95120

{ reinwald, pirahesh, tmayr, jussi} @almaden.ibm.com

matching part. The matching of subscriptions with published
XML messages is turned into a join query that evaluates both the
value predicate part and the tree structure matching part.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 describes the implementation of our
system. The cost analysis and several optimizations are introduced
in Section 4. Experimental results are given in Section 5. We
conclude in Section 6.

2. RELATED WORK
The earliest topic (or subject) based publish/subscribe systems
have been studied extensively and there are mature and scalable
implementations, for example, [3][11][13]. More recent
publish/subscribe systems use a more flexible, and more powerful,
content-based paradigm.

Some content-based pub/sub systems treat subscriptions as data
and the matching of published messages and subscriptions is
evaluated by a join query. Early implementations of this strategy
are in the context of group query optimization or continuous
query systems. [14] studies how to optimize a group of similar
queries that share common computations. TriggerMan [10] uses
signatures to group similar queries together in order to provide a
scalable trigger mechanism. NiagaraCQ [5] also uses signatures to
group similar continuous queries. NiagaraCQ uses a table of
constants extracted from the queries along with a join to evaluate
a group of queries simultaneously. Recently, commercial
database vendors started to use their relational database engine to
implement publish/subscribe system [15][19][22]. The scalability
of database-based solutions is not limited by the amount of
physical memory. However, most of these systems only handle
tuple-like messages and the rules are expressed in SQL. Some of
the systems can handle XML messages, but the system either uses
a wrapper to extract tuple data from XML messages [15] or uses a
simple language for the rules [5].

Other systems treat the subscriptions as filters on the messages.
For example, [2] constructs an in-memory decision tree for the
subscriptions. For each message, the system walks down the
decision tree to a leaf node and the subscribers registered at the
leaf node are notified. Several XML-based pub/sub research
projects that use this “ filter” strategy employ a finite state
automaton for all the XPath subscriptions in the main memory. A
SAX Parser is invoked to parse the published XML messages then
the SAX events are streamed through the finite state automata to
match the XPath expressions in subscriptions. [1] is the first paper
that studies the problem of matching an XML document against
many XPath expressions. [1] proposes using an in-memory FSA
algorithm as the solution and later [7] introduces state sharing in
the FSA construction. [4] builds an index on sub-strings of path
expressions that only contain parent-child relationship, and
introduces sharing of computations between the common sub-
strings. [8][12] use FSA to evaluate XPath expressions over a
stream of XML data. [9] proposes building state “ lazily” as the
solution to tame the exponential explosion of the number of
states. In [9], the states of the FSA are treated as a “cache” for
matching XPath expressions and the states can be constructed in
memory only when they are actually used. This approach is less
attractive for a long running system because as more data is
processed, sooner or later most states will be constructed in
memory. The main disadvantage of a main-memory based

approach is that the number of subscriptions in the system is
limited by the amount of available physical memory. Also,
building a finite state automaton for all subscriptions makes it
difficult to add or to delete a subscription, especially when the
system is running.

To the best of our knowledge, this paper is the first research that
attacks the problems of [1] and [9] using a relational database. By
using a database, our solution is not limited by the amount of
available physical memory; therefore can handle orders of
magnitude more subscriptions. The focus of our work is also
slightly different from that of [9]. We assume that our system is
long running. Therefore a lazy building approach is not
applicable. Also, online insertions/deletions of subscriptions must
be handled efficiently for a long running system.

3. XML PUBLISH/SUBSCRIBE USING A
RELATIONAL DATABASE
3.1 XML messages and XPath subscriptions
In our system, a subscription sub is a pair (id, xpath) where sub.id
is unique across all subscriptions. Sub.xpath can be expressed by
the grammar in Figure 3.1 which implements a subset of XPath
[20]. The XPath subset implemented in the paper is usually called
a “branching path expression” .

 Figure 3.1 Grammar for the XPath subset

considered in the paper

Figure 3.2 shows a graph representation of an XPath example
with four branches. Each node in the graph is an XML tag in the

//

/
//

/

=“v1” =“v2” =“v3” =“v4”

root

a

b

c

d

p

q

x

@y z

// /

/

//

/

bp#1

bp#2

Subscription: id = 5

XPath: /a//b[//c/d/text()=”v1” AND /p//q/text()=”v2”]
 /x[@y=”v3”]//z/text() = “v4”

Figure 3.2 Example subscription and its graph
representation

ConjPath ::= QPath | OPath AND ConjPath

QPath ::= Path Op Const

Path ::= Step | Path Step
 | Path [ConjPath]

Step ::= Axis tag | Axis * | Axis @ attr
 | Axis text()

Axis ::= / | //

Op ::= < | <= | = | > | >= | !=

XPath and each edge shows the axis (slash or double slash) of
each step. We assign a number to each branching point of the
XPath. In this example, node b and x are assigned branching point
number bp#1 and bp#2 respectively.

The subset of XPath implemented by the grammar in Figure 3.1
does not include the Boolean OR expression. An XPath with
Boolean OR expression must first be rewritten to a disjunctive
normal form and each disjunction is submitted as a separate
subscription. The constants of the predicate are taken from a
fixed, ordered domain. Our implementation provides support for
both string and numerical values.

A publication is an XML message xmsg(id, data) where xmsg.id
is unique across all published messages and xmsg.data is a valid
XML document. The matching algorithm matches each published
XML message with all the subscriptions in the system and outputs
notifications in the form of (xmsg.id, sub.id).

For simplicity, the subscription language in Figure 3.1 does not
allow access to the reference data in the database. In practice, we
can join an XML message m with the reference data to produce a
“enriched” message m’ , which is used to match against the XPath
in the subscription.

3.2 Relational representation of the XPath
subscriptions
When a subscription is added to the system, the XPath
subscription is rewritten as a conjunction of predicates. Each
predicate contains one branch in the graph presentation of the
XPath. The path of the tag and axis leading to the leaf of the
branch is called a linear path. Each linear path is annotated with
branching point numbers in order to retain the branching
information of the XPath expression along the linear path. A
predicate that checks all the branching points in each linear path
of the XPath match is also added to the conjunction. The
predicate that checks the matching of branching points is referred
to as BrPred later in the paper. For example, the XPath is Figure
3.2 can be rewritten as a conjunction of four branch predicates
and the BrPred predicate, as shown in Figure 3.3.

Figure 3.3 Rewrite XPath to conjunction of branches

Each branch in the rewritten form of the XPath expression
contains three types of information: the linear path without
branch, the atomic value predicate, and the branching
information. For example, the first predicate in Figure 3.3 has a
linear path /a//b//c/d/text(), an atomic value predicate =“ v1” and
has the branching point number 1 at the second step (the b node)
along the linear path. These three types of information are stored
in tables in the relational database. Figure 3.4 shows the schema
of the tables and how the example subscription is stored.

Each linear path is stored as a tuple in the Query_Linear_Path
table. The whole linear path in text format is stored in the
LinearPath column and is used as the primary key of the table.
The system also generates a unique id for the linear path. We
break each linear path into three pieces at the first and the last
double slash so that only the middle part may contain additional
double slashes. The three pieces are stored in the prefix, middle,
and postfix columns, respectively. The prefix, postfix and middle
columns are used to match tag paths in published XML messages
against the linear paths. The order of the steps in the postfix
column is reversed for efficient index access during the match.
The details of the path matching algorithm are deferred to Section
3.4.

The atomic value predicates of the conjunction are re-ordered so
that the more selective predicates are pulled up to the front.
Currently we pull the equal predicates in front of the non-equal
ones. Each value predicate in the XPath, (linearpath_id, op,
value) is stored in corresponding columns of the Query_Predicate
table. Predicates in the same subscription are chained using
chain_id and pre_id of the Query_Predicate table, starting with
the pre_id of the first predicate set to 0. In our example, starting
with pre_id equals 0, predicate (linear path with id 100, =, “ v1”)
evaluated to true leads to chain_id 501. Pre_id 501 plus (linear
path with id 101,=, “ v2”) evaluated to true leads to chain_id 502

Query_Linear_Path table

LinearPath Id Prefix Postfix Middle

/a//b//c/d/text() 100 /a text()/d/c b

/a//b/p//q/text() 101 /a text()/q b/p

/a//b/x/@y 102 /a @y/x/b null

/a//b/x//z/text() 103 /a text()/z b/x

Query_Predicate table

pre_id LinearPath_Id Op Value Chain_id final

0 100 = “v1” 501 F

501 101 = “v2” 502 F

502 102 = “v3” 503 F

503 103 = “v4” 5 T

LinearPath_BrInfo table
LinearPath Linear

Path_Id
BrInfo BrInfo

_id
/a//b//c/d/text() 100 “bp#1=2” 50

/a//b/p//q/text() 101 “bp#1=2” 51

/a//b/x/@y 102 “bp#1=2&bp#2=3” 52

/a//b/x//z/text() 103 “bp#1=2&bp#2=3” 53

Query_BranchPoint table

Sub_id BranchPoint_Info

5 “50&51&52&53”

Figure 3.4 Tables for storing subscription

/a//b{ bp#1} //c/d/text() = “v1” AND

/a//b{ bp#1} /p//q/text() = “v2” AND

/a//b{ bp#1} /x{ bp#2} /@y = “v3” AND

/a//b{ bp#1} /x{ bp#2} //z/text() = “v4” AND

BrPred (i.e. bp#1 appeared above matches the same element in
the published XML messages, similarly for bp#2.)

and so on. A true value in the final column of the
Query_Predicate table indicates that there are no more entries in
the chain and that the subscription is true subject to the evaluation
of the BrPred predicate. The subscription id of the subscription is
stored in the chain_id column of the final predicate.

The branching information of each linear path is packed as a
binary varchar and stored in the BrInfo column of the
BranchPoint_Info table. For example, the third tuple in the
BranchPoint_Info table has the BPInfo column set to
“ bp#1=2&bp#2=3” and LinearPath column set to“ /a//b/x/@y” ,
which indicates that branching point number 1 is at the second
step (the b node) and branching point number 2 is at the third step
(the x node) of the linear path. The id of the LinearPath, which is
generated in the Query_Linear_Path table, is also included in the
table for fast index lookup. For each (linearpath, brinfo) pair, the
system generates a unique id and store the id in the
LinearPath_Brinfo table. The BranchPoint_Info table is used to
check the BrPred predicates for the subscriptions. We will discuss
the algorithm for checking BrPred in Section 3.5.

The branching information of a subscription is stored separately in
the Query_BranchPoint table. Table LinearPath_BrInfo maps the
branching information of each branch of the XPath subscription
to a BrInfo_id. The BrInfo_id of all the branches of the XPath
expression is packed into a binary varchar and stored in the
BranchPoint_Info column of the Query_Branchpoint table. In our
example, “ 50&51&52&53” identifies four tuples in
LinearPath_BrInfo table that represent the branching information
of the four branches of the example subscription, whose
subscription id is 5.

Deleting a subscription online is as easy as deleting all the
chained predicates in the predicate table, starting from the last
predicate of the conjunction, whose chain_id is actually the
subscription id and for which the value of the final column is true.
The tuple in the Query_BranchPoint table also needs to be
deleted. The entries in the Query_Linear_Path table and the
BranchPoint_Info table that are related to the subscription,
however, cannot be deleted unless the linear paths or branching
point information are no longer used by any other subscriptions.
This is not a problem because the two tables are much smaller
than the Query_Predicate table and some obsolete tuples in these
two tables will not significantly degrade the performance of the
system. Periodical garbage collection can be performed using a
simple SQL delete statement.

3.3 Publishing XML messages
We use the example XML message in Figure 3.5 to demonstrate
how the system handles published XML messages. The XML
document is parsed by a SAX parser and a node id is assigned for
each element, attribute or text data during parsing. The assigned
id is shown in the brackets in Figure 3.5.

Figure 3.5 Example publication

For each text() value or attribute value in the published XML
document, the SAX parser generates a triple (tagpath, idpath,
value), where the tagpath and idpath are the tag names and
assigned node ids along the path from the document root to the
value. We use the single slash to separate tags in the tagpath to
match the notation of the linear path of the XPath. One should
note that a tagpath cannot contain any double slashes. The XML
element nesting (tree structure) information is encoded in the
idpath of the triple. Figure 3.6 shows the result of parsing XML
data in Figure 3.5.

The system maintains a Tagpath_Map table that maps each
TagPath to a TagPath_id. The table acts as a cache of all the tag
paths that the system has encountered. During SAX parsing, if the
system sees a tag path that is not in the table yet, it inserts the tag
path into the table and automatically generates a unique id. We
also reverse the tag names of each tag path and store the reversed
TagPath in the Inv_Tagpath column of the table. Both the
TagPath and the Inv_Tagpath columns are used to match linear
paths in the subscriptions. The details of the path matching
algorithm are deferred to Section 3.4. The SAX parsing results of
the XML message are stored in a global temporary table of the
relational database in order to save logging overhead and reduce
the cost of moving data into the database. Figure 3.7 shows the
Tagpath_Map table and the temporary table containing parsing
result of the example XML message.

TagPath IdPath Value

/a/b/c/d/text() 1.2.3.4.5 “v1”

/a/b/p/p2/q/text() 1.2.6.7.8.9 “v2”

/a/b/x/@y 1.2.10.11 “v3”

/a/b/x/z/text() 1.2.10.12.13 “v4”

/a/b/x/z/text() 1.2.10.14.15 “v5”

/a/b/b/x/@y 1.16.17.18.19 “v4”

Figure 3.6 SAX parsing result

Message: id = 12

XML: <a (1)><b (2)>
 <c (3)><d (4)>v1 (5)</d></c>
 <p (6)><p2 (7)><q (8)>v2 (9)</q></p2></p>
 <x (10) @y=”v3” (11)>

 <z (12)>v4 (13)</z>
 <z (14)>v5 (15)</z>
</x>

 <b (16)><b (17)><x (18) @y=”v4” (19)/>

Next the linear paths of the subscriptions must be matched with
the tag paths in the messages. The matching linear path and tag
path are stored in the PathMatch table, which is shown in Figure

3.8. How to compute and maintain the PathMatch table is
described in detail later in Section 3.4. Each tuple in the table
indicates a match of a tag path with a linear path. For example,
tuple (312, 101) means that the tag path with id 312 matches the
linear path with id 101, that is, tag path /a/b/p/p2/q/text() matches
linear path /a/b/p//q/text().

With the PathMatch table, we can run a recursive SQL query to
match published XML messages with subscriptions. We do not
show the SQL statement here because the SQL statement is rather
long and complex. Figure 3.9 shows a graphical representation of
the recursive query plan. Matching tag paths with query linear
paths and match atomic values in XML message with value
predicates are encoded as join predicates. Value predicates from
the same subscription are chained by the chain_id column with
the pre_id column of the Query_Predicate table. Each iteration of
the recursion evaluates one more value predicate of a subscription

 PathMatch table

TagPath_Id LinearPath_Id

311 100

312 101

313 102

314 103

315 102

Figure 3.8 The PathMatch table

TagPath_Map table

TagPath Inv_Tagpath TagPath_Id

/a/b/c/d/text() text()/d/c/b/a 311

/a/b/p/p2/q/text() text()/p2/p/b/a 312

/a/b/x/@y @y/x/b/a 313

/a/b/x/z/text() text()/z/x/b/a 314

/a/b/b/x/@y @y/x/b/b/a 315

Temporary SAX_Parse_Result table

Event_id Tagpath_Id IdPath Value

12 311 1.2.3.4.5 “v1”

12 312 1.2.6.7.8.9 “v2”

12 313 1.2.10.11 “v3”

12 314 1.2.10.12.13 “v4”

12 314 1.2.10.14.15 “v5”

12 315 1.16.17.18.19 “v4”

Figure 3.7 SAX parsing result as stored in the database

Op1: scan

SAX_Parse_Result
table

Op2: scan

PathMatch table

Op3: Join

Op1.Tagpath_Id =
Op2.Tagpath_id

Op4: Index NL Join

Op5: Index Scan

Query_Predicate Table using

(pre-id=0, Op2.LinearPath_id, Op1.value)

Op6: scan

SAX_Parse_Result table

Op8: scan

PathMatch table

Op9: Join

Op6.Tagpath_Id =
Op8.Tagpath_id

Op7: Join

Left.event_id =
Op6.event_id

Op10: Index Scan

Query_Predicate Table using

(pre-id=Op7.chain-id, Op8.LinearPath_id, Op6.value)

Op11: Index NL Join

Op12: Check BrPred

Recursive Query
Processing

Figure 3.9 Query plan for matching messages with subscriptions

Final Flag = F
Final Flag = T

until the evaluation reaches a predicate whose final flag is set to
true. The TagPath_Id and the Idpath from the temporary
SAX_Parse_Result table is gathered during the recursive
processing and packed into a binary varchar. This binary varchar
is used as the input to a UDF to evaluate the BrPred predicate.
The implementation of the UDF is discussed in detail in Section
3.5. The SQL query can be run either in a per-message mode or in
a batch mode to save query invocation cost. The temporary
SAX_Parse_Result table is cleared between the query invocations
(declared as “on commit delete rows” in the SQL definition
statement of the temporary table).

As discussed in Section 3.2, the equal predicates of a subscription
are pulled above the non-equal ones. In practice, the SQL
statement is written as two stages. Each stage has a recursive plan
similar to that in Figure 3.9. In the first stage, only equal
predicates are evaluated. The results from the first stage are
further processed by the second stage which evaluates the non-
equal predicates. This two-stage processing has better
performance and in Section 4, we will show that two-stage
processing has desirable properties when common computations
from different subscriptions can be shared.

Using the join plan of Figure 3.9 to evaluate XPath subscriptions
may produce duplicates of the notifications due to the tree
structure of the XML messages. If the semantic of the pub/sub
system requires unique notification per matched message
subscription pair, we can add a distinct operator on top of the plan
in Figure 3.9.

3.4 Computing and maintaining the
PathMatch table
This section describes how to compute and maintain the
PathMatch table used in the recursive query plan of Section 3.3.

First, let us consider the situation that a new query linear path is
added to the system. The system adds the query linear path into
the Query_Linear_Path table and generates a unique id for it. The
linear path is broken into three pieces at the first and last double
slash so that only the middle part may contain additional double
slashes. Then, the system uses the index on the TagPath column
and the index on the Inv_Tagpath column of the Tagpath_Map
table to look for tuples in the Tagpath_Map table that match both
the prefix and the postfix of the linear path. Notice that the order
of tags in the postfix column of the Query_Linear_Path table is
reversed. The postfix matching is turned into a character string
prefix matching so that an index can be used. It is still necessary
to check that the tag paths found by the index lookup really match
the middle part of the linear paths. This checking is done by a
regular expression matching algorithm using a state machine.
Once a match is found, it is entered into the PathMatch table.

The process is symmetric when the system encounters a new tag
path. The system uses the tag path and the reversed tag path (as
stored in the Inv_Tagpath column of the Tagpath_Map table) to
do index lookups to find records in the Query_Linear_Path table
with matching prefix and postfix columns. Then a regular
expression matching on the middle part is performed. The
matched results are also stored in the PathMatch table.

We can consider the PathMatch table as a cache for matched tag
paths and query linear paths. Usually, the number of different

query linear paths is much smaller than the number of
subscriptions. However, the cost of adding a new tag path is still
high. Fortunately the tag paths are also shared among the
published XML messages. Caching the matched results of tag
paths with linear paths is especially attractive when the publishers
use one or more XML schemas (or DTDs) for XML messages.
When a limited number of schemas for the messages are used, the
tag paths are highly repetitive and most of the tag paths will be
cached (except for the very first few messages).

Tuples in the Query_Linear_Path table and the Tagpath_Map
table can be deleted. Deleting a subscription may result in the
deletion of linear paths. It may also be desirable to clean entries in
Tagpath_Map table, for example, schema changes may guarantee
that some tag paths will never appear in the future messages.
Deletions to the Query_Linear_Path table and Tagpath_Map
table trigger the deletions to the PathMatch table.

3.5 Checking the BrPred predicate
The recursive query processing of the plan in Figure 3.9 evaluates
all the atomic value predicates of the subscriptions. The XML tree
structure matching part of the subscription is expressed by the
BrPred predicate, which checks all the branching points in the
XPath matches. In this section, we describe how to check the
branching predicate BrPred for each subscription. First, we
introduce the TagPath_BrInfo table and describe how this table is
computed and maintained.

3.5.1 The TagPath_BrInfo table
For each linear path predicate of a subscription, the
LinearPath_BrInfo table records the branching point positions in
the linear path. In order to find the XML node id of the branching
point, we need to translate the branching point positions in the
linear path to the branching point positions of the tag path. The
translation results are stored in the TagPath_BrInfo table. The
TagPath_BrInfo table can be considered as a materialized view
defined by the SQL in Figure 3.10, where bp_pos_udf is a UDF
that returns a binary string.

Figure 3.10 Definition of TagPath_Brinfo table

The content of the TagPath_BrInfo table with our example
subscription and example message from the previous sections are

TagPath_BrInfo table

TagPath_Id BrInfo_Id BP_Position

311 50 “ { bp#1} , { 2} ”

312 51 “ { bp#1} , { 2} ”

313 52 “ { bp#1,bp#2} ,{ 2,3} ”

314 53 “ { bp#1,bp#2} ,{ 2,3} ”

315 52 “ { bp#1,bp#2} ,{ 2,4} ,{ 3,4} ”

Figure 3.11 The TagPath_BrInfo table

SELECT tp.Tagpath_id, lbr.Brinfo_Id,
 bp_pos_udf(tp.Tagpath, lbr.BrInfo)
FROM Tagpath_Map tp, LinearPath_BrInfo lbr, PathMatch pm
WHERE tp.Tagpath_id = pm.Tagpath_id AND
 lbr.LinearPath_id = pm.LinearPath_id

shown in Figure 3.11. We will explain the meaning of the binary
string stored in the BP_Position column. The implementation of
bp_pos_udf is straightforward once the meaning of the binary
string is clear.

The BrInfo_Id column of the TagPath_BrInfo table is a foreign
key that refers to the Brinfo_Id column of the LinearPath_BrInfo
table. Each binary string stored in the BP_Position column of the
TagPath_BrInfo table is a sequence of comma separated arrays.
The first array in the sequence contains the branching point
numbers that occur in the branching information identified by the
BrInfo_Id column. The rest of the arrays in the sequence, which
are called the position arrays, represent branching point positions
in the tag paths that is identified by the TagPath_Id column. For
example, the third tuple (313, 52, “ {bp#1,bp#2},{2,3}”) of the
TagPath_Brinfo table indicates the followings:

1. TagPath with id 312, that is, /a/b/x/@y, matches the
linear path associated with Brinfo 52, that is, /a//b/x/@y.

2. BrInfo with id 52 has two branch points, bp#1 and
bp#2, as indicated by the first array in the sequence.

3. The position array {2,3} indicates that bp#1 of BrInfo
52 is the second node of the tag path 312, that is, the b
node of /a/b/x/@y, and bp#2 is the third node, that is,
the x node of /a/b/x/@y.

It is worth pointing out that there may be several position arrays
in a BP_Postion string due to the double slashes in a linear path.
Tuple (315, 52, “ {bp#1,bp#2},{2,4},{3,4}”) is such an example.
In this case, branch point bp#1 is the b node in the linear path
/a//b/x/@y. This branching point may evaluate to either the first b
node or the second b node in the tag path /a/b/b/x/@y.

Like the PathMatch table, the TagPath_BrInfo table is maintained
incrementally. The updates to the PathMatch table or the
LinearPath_BrInfo table are propagated to the TagPath_BrInfo
table immediately. Our implementation of the bp_pos_udf UDF is
simplistic by using brutal force to enumerate all possible position
arrays. The inputs to the UDF are usually very short strings
because the depth of an XML document and the length of a linear
path usually are small; therefore a simple algorithm actually
performs very well. Also, the updates to the TagPath_BrInfo table
happen only when a new subscription is added or a new tag path
is encountered. The update is not in the recursive query that
evaluates the matching of messages with subscriptions. Therefore,
it is not performance critical. Deletions to the PathMatch table or
the LinearPath_Brinfo table are also cascaded to the
TagPath_BrInfo table by triggers.

3.5.2 Evaluating the BrPred predicate
The output of the recursive query processing of the plan in Figure
3.9 must be further checked against the BrPred predicate (Op12
in Figure 3.9). During iterations of the recursion, the TagPath_Id,
IdPath from the SAX_Parse_Result table are packed into a binary
varchar. All the binary varchars from the iterations are
concatenated to form the input to a UDF brpred_udf, which
returns a Boolean value indicating whether all the branching
points in a subscription match. The input to Op12 in Figure 3.9
using our example will contain two tuples, which are shown in
Figure 3.12.

The brpred_udf first uses the subscription id to find the
BranchPoint_Info from the Query_BranchPoint table. In our
example, the subscription with id 5 has a BranchPoint_Info of
value “ 50&51&52&53” . Both the BranchPoint_Info and the
binary varchar from the recursive query processing are unpacked
into array of triples (Tagpath_Id, Brinfo_Id, idpath). Next, the
first two entries, (Tagpath_Id , Brinfo_id) pairs in the triple are
converted to the BP_Position string using the TagPath_BrInfo
table from Figure 3.11. The conversion results are shown in
Figure 3.13.

Remember that the BP_Positon string “ { bp#1} ,{ 2} ” simply
means branching point number 1 is at the second level of the
associated IdPath starting from the XML document root.
Therefore, we can transform each (BP_Postion, idpath) pair into a
relation that has the branching point numbers as column names
and XML node ids as tuples in the relation. Figure 3.14 shows
the result of converting (BP_Position, idpath) into relations for
the first tuple from the table in Figure 3.13.

The conversion for the second tuple in Figure 3.13 is similar
except for the pair (“ {bp#1,bp#2}{2,4}{3,4}” , ” 1.16.17.18.19”),
there are two tuples (16,18) and (17, 18) in the result relation.

Now we can match the branching points from different linear
paths by doing a natural join (equal join on columns with same
column name) of the converted relations. If the result of the
natural join is not empty, the branching points from each of the
different linear paths match. Therefore, the BrPred predicate is
true. Otherwise, the BrPred predicate is false. In our example, the

Event_
Id

Sub_
Id

(BP_Position, idpath)

12 5 (“ { bp#1} ,{ 2} ” , ”1.2.3.4.5”),

(“ { bp#1} ,{ 2} ” , ”1.2.6.7.8.9”),

(“ { bp#1,bp#2} { 2,3} ” ,”1.2.10.11”),

(“ { bp#1,bp#2} { 2,3} ” ,”1.2.10.12.13”)

12 5 (“ { bp#1} ,{ 2} ” , ”1.2.3.4.5”),

(“ { bp#1} ,{ 2} ” , ”1.2.6.7.8.9”),

(“ { bp#1,bp#2} { 2,4} { 3,4} ” ,

 ”1.16.17.18.19”),

(“ { bp#1,bp#2} { 2,3} ” ,”1.2.10.12.13”)

Figure 3.13 Convert TagPath_Id, BrInfo_Id to
BP_Position using TagPath_BrInfo table

Event_Id Sub_Id (TagPath_id, idpath)

12 5 (311,”1.2.3.4.5”),

(312,”1.2.6.7.8.9”),

(313,”1.2.10.11”),

(314,”1.2.10.12.13”)

12 5 (311,”1.2.3.4.5”),

(312,”1.2.6.7.8.9”),

(315,”1.16.17.18.19”),

(314,”1.2.10.12.13”)

 Figure 3.12 Input to Op12 (BrPred_udf)

natural join result for the first tuple in Figure 3.13 contains a tuple
(2, 10) and the natural join result for the second tuple is empty.

Even though the branching point matching algorithm described
here has a strong connection with relational algebra, the
conversion results of the (BP_Position, idpath) pairs are not
stored in tables and the natural join is not performed by the
database engine. We implement the algorithm in brpred_udf using
C for efficiency and convenience reasons.

4. OPTIMIZATIONS
In this section, we will describe a simple cost metric for the
recursive processing in Figure 3.9 and introduce several
optimization techniques.

4.1 A cost metric for the recursive plan
The Op5 and Op10 from the recursive query plan in Figure 3.9
use an index on the (pre-id, LinearPath_id, Op, value) columns of
the Query_Predicate table. Since the index lookups dominate the
cost of the query plan, the cost of the plan is measured by the
number of index accesses and the number of tuples retrieved by
the lookup.

Table 4.1 shows the parameters used in the cost metric. For
simplicity, we do not distinguish the cost of the index lookups in
the equal or non-equal stage of the two stage processing. Also, we
let the selectivity s in Table 4.1 be the average selectivity of the
two stages.

Ci The cost of one index access to the Query_Predicate table

Ct The cost of retrieve one tuple from the Query_Predicate
table

N The number of subscriptions

b The average number of branches per subscription

m The average number of atomic values in an XML message

p The average number of matching query linear paths per
tag path

s Selectivity of a linear path with an XML atomic value

Ri Number of tuples retrieved in iteration i

Costi The cost of the i-th iteration in the recursive plan

Table 4.1 Parameters in the cost metric

In the first iteration, an index probe is performed for each atomic
value. There are exactly N linear paths with pre-id equals 0.
Therefore, this iteration retrieves R1 = spmN tuples.

 Cost1 = pmCi + R1 Ct = mpCi + smpNCt

On average a subscription has b linear paths which implies the
probability that the final flag of a tuple in the Query_Predicate
table is false is (b-1)/b. Tuples with final flag set to true do not
enter the second iteration, therefore, in the second iteration, the
number of index access is R1 * (b-1)/b * p* m. Starting from the
second iteration, the chain-id from the previous iteration is used
to chain with the pre-id of the second iteration. We have

R2 = spm(b-1)/b R1

 Cost2 = pmR1(b-1)/bCi + R2 Ct

Similarly, we have

 Rn = spm(b-1)/bRn-1

 Costn = pmRn-1 (b-1)/bCi + Rn-1Ct

The total cost of the plan is

Total_Cost = �i=0,1,… max iterations Costi

 = pmCi

 + N spm/(1-spm(b-1)/b) (pm (b-1)/b Ci + Ct)

From the formula, we see the total cost scales linearly with respect
to the number of subscription N. In the following subsections, we
introduce several optimization techniques.

4.2 Sharing common predicates in the
recursive plan
The relational representation of the subscriptions described in
Section 3.2 does not exploit sharing of computations between
linear path predicates from different subscriptions. Two linear
path predicates from different subscriptions are stored in the
Query_Predicate table separately even if they have exactly the
same linear path, Boolean operator, and value. We implemented a
simple sharing optimization for linear path predicates whose final
flags are false. Before a linear path predicate with false final flag
is added to the Query_Predicate table, we check if there already is
a non-final predicate in the table with same pre-id,
linear_path_id, Boolean op, and value. A predicate is added to
the Query_Predicate table only when a match cannot be found.
The strategy we used here is simple and does not consider any
global optimization strategies. Sharing common predicates
between subscriptions raises many interesting optimization
problems. For example, the order of the linear path predicates
decides whether a predicate can be shared between predicates. If a
predicate is very common, it may be desirable to pull this
predicate to front to maximize sharing even though the predicate
is not very selective. We refer to [6][18] for studies of the cost
models and global optimization strategies in similar situations.

The simple sharing optimization strategy used is especially
attractive in the first stage (equal stage) of the two stage recursive
processing. Each index probe in the first stage will produce at
most one tuple with a false final flag. Therefore, the number of
index probes at first stage is bounded by mnumber of max iterations

regardless of the number of subscriptions N. This number can be
much smaller than that of the non-sharing case for small or
medium size XML messages.

The simple sharing strategy is less effective in the second (non
equal) stage of the two stage processing. Assume that many
subscriptions have similar non-final predicates of the form

bp#1 bp#2
2 10

bp#1 bp#2
2 10

bp#1
2
 bp#1
2

(“ { bp#1} ,{ 2} ” , ”1.2.3.4.5”)

(“ { bp#1} ,{ 2} ” , ”1.2.6.7.8.9”)

(“ { bp#1,bp#2} ,{ 2,3} ” , ”1.2.10,11”)

(“ { bp#1,bp#2} ,{ 2,3} ” , ”1.2.10,12.13”)

Figure 3.14 Converting (BP_Position, idpath)
to relations

“ /a/text() > xi AND Pi” , where xi is a constant value and Pi is the
conjunction of the remaining non-equal predicates in this
subscription. These similar predicates are not shared because the
value xi is different and the index lookup on the Query_Predicate
table in each iteration of the recursive plan may produce many
output tuples. We propose a strategy that partitions the xi values in
these predicate in to n buckets, [b0, b1), [b1, b2), … [bn-1, bn).
Then the subscription can be rewritten to “ /a/text() > bk AND Pi
AND /a/text() > xi” if xi fall in bucket [bk, bk+1). Subscriptions
that fall into the same bucket can share the first iteration and the
number of output tuples from the first iteration is significantly
reduced. Notice that even though each subscription has one more
predicate, in the worst situation that all the remaining predicates
Pi evaluate to true, the overhead is only n additional index
lookups where n is the number of the buckets. The total number of
index accesses to the Query_Predicate table will be reduced if the
remaining predicates Pi are selective. Our experience suggests
that the number of buckets n should be a small value, for example,
around 20.

4.3 Unrolling the predicate table
Another way to reduce the number of index lookups to the
Query_Predicate table is to unroll the recursive processing and
store k linear path predicates in one row of the unrolled table. For
example, if k=4, that is, we unroll four levels of recursion, the
Query_Predicate table in Figure 3.4 can be stored as one tuple in
the Predicate_Unroll table in Figure 4.1

For subscriptions with fewer than k linear predicates, the
remaining columns in the unrolled table are filled with dummy
values that always evaluate to true. For subscriptions with more
than k linear predicates, the final flags in the unrolled table are set
to false and the evaluation of the remaining linear path predicates
uses the recursive processing technique.

Depending on statistics such as the size of unrolled table and the
size of published message, the database may choose a query plan
that does a self cross product of the XML Sax_Parse_Result table

before performing the index lookup on the unrolled table. For
example, Figure 4.2 shows a plan that does the self cross product
once.

Next we will estimate of the execution cost of the unrolled plan.
Suppose we unroll the evaluation k levels and the database
chooses to do a self cross product once. The record size of the
unrolled table is approximately k times as large as the record size
of the original Query_Predicate table therefore we assume the
cost of retrieving one record from the unrolled table is kCt. The
number of index lookups to the unrolled table is p2m2. The tuples
retrieved from the index lookups on unrolled table are used to
probe the Sax_Parse_Result table to evaluate other predicates. We
denote the cost of evaluate the predicates after the second level is
Cr, which is usually much smaller than Ci because the
Sax_Parse_Result table is small enough to fit in memory. For the
subscriptions with more than k predicates, the plan reverts to
recursive processing and more accesses to the large
Query_Predicat table are required. We denote this cost as Cx. In
practice, Cx is small for a reasonable k (5 or 6) because:

1. The number of complex subscriptions with many
predicates is usually small.

2. The size of the Query_Predicate table is much smaller
than before because most predicates are stored in the
unrolled table.

Op1: scan

SAX_Parse_Result
table

Op3: Index NL Join

Op2: Index scan

PathMatch table

Op9: Index Scan
Unroll Table

Op8: Index NL Join

Figure 4.2 Query plan after unrolling

Op11: Index scan

SAX_Parse_Result
table

Op4: scan

SAX_Parse_Result
table

Op5: Index scan

PathMatch table

Op6: Index NL Join

Op7: Cross Product

Op10: Index NL Join

Op13: Index scan

SAX_Parse_Result
table

Op12: Index NL Join

Op14: Index NL Join

Op16: Index NL Join

Op13: Index scan

PathMatch table

Op15: Index scan

PathMatch table

Query_Predicate table

pre-id Linear-Path Op Value Chain-id final

0 100 = “v1” 501 F

501 101 = “v2” 502 F

502 102 = “v3” 503 F

503 103 = “v4” 5 T

Predicate_Unroll table

SubId Path1 Op1 Value1 Path2 Op2 Vaule2

5 100 = “v1” 101 = “v2”
Predicate_Unroll table continued

Path3 Op3 Value3 Path4 Op4 Value4 Final

102 = “v3” 103 = “v4” T

Figure 4.1 Unroll the Query_Predicate table

3. The k most selective predicates have been pulled up to
the front.

The cost of the unrolled plan is

 Total_Cost = p2m2Ci + s2p2m2N(kCt + Cr) + Cx

The cost formula shows that the main advantage of unrolling the
Query_Predicate table is that the number of index lookups to the
unrolled table is not related to the total number of subscriptions.
Also, the database optimizer now can choose how many self cross
products to use before doing the index lookups on the unrolled
table. Furthermore, the plan is not recursive and a non-recursive
plan is usually more efficient and more scalable. The main
disadvantage is that the opportunity of sharing computation across
subscriptions is lost. Given that the most expensive operation is
the index lookup on the query predicate table or unrolled table,
unrolling is worthwhile in most situations unless the linear path
predicates are very selective and there are lots of common
predicates across different subscriptions.

5. EXPERIMENTAL RESULTS
We evaluate the performance and scalability of our system using
two sets of experiments. The first set uses a synthetic XML
dataset with a simple flat structure. This workload is
representative for publishers that publish relational tuples in XML
format. The second set of experiments uses a real XML dataset of
a semi-structured nature. We always enable sharing common
linear path predicates between subscriptions for the recursive plan
because the analysis in Section 4 shows sharing common
predicate is always desirable.

5.1 Experiment 1: Simple Flat XML Dataset
A synthetic stock information dataset is used in the first set of
experiments. Each XML message contains information, such as
symbol, price, of one stock. The linear paths in the subscriptions
are also simple (without double slash or wild char). Figure 5.1
shows an example of an XML message and a subscription.

Figure 5.1 Example XML stock data and subscription

We run the experiments on a 1.4 GHz Pentium IV with 512 M of
memory running Windows XP. The relational database we used is
DB2 V 8.1. Table 5.1 shows the running time of matching 10,000
messages with one million subscriptions. Each subscription has
one equal predicate on stock symbol and four non-equal
predicates on other attributes giving a total of 5 million
predicates. The analysis in Section 4 shows that for the recursive
plan, the selectivity of the linear path is important to determine
the number of index lookups for the next iteration of the recursive

processing. Several experiments were conducted using
subscriptions with different selectivities. The performance results
are shown in Table 5.1. The running times reported here include
the time to parse the XML data and to insert the parse results into
the temporary table.

Number of
Notifications

Unroll Share Share-
Bucket

1,000 56 107 26.3

10,000 61 154 44.6

100,000 70 504 195

1,000,000 161 2369 1210

Table 5.1 Execution time in seconds for one million
subscriptions (5 million linear path predicates)

Because this XML dataset has a very simple structure and there
are only 7 distinct tag paths in the subscriptions, the cost of
computing the PathMatch table is ignorable. Parsing and
populating the XML data into DB2 temporary tables takes about
24 seconds, which is included in the result reported in Table 5.1.

For the unroll algorithm, the number of index probes to the
subscription table does not depend on the selectivity (number of
match results) of the subscriptions. The total running time,
however, increases as the total number of match results increases
because more time is needed to check the remaining linear path
predicates for the tuples retrieved by the index-nested loop join.
Checking the remaining linear path predicates is preformed
against the SAX_Parse_Result table which is small and resident in
memory. The running time slightly increases when the total
number of notifications grows to 100,000 and the running time
only doubles when total notifications grow another magnitude to
one million.

The recursive plans are much more sensitive to changes in the
selectivity of the subscriptions. As more tuples are retrieved in
each iteration, the number of index lookups on the
Query_Predicate table increases. The rapid increase of the
running time of the recursive plans reflects the increase in the
number of I/Os performed on the Query_Predicate table and its
index.

Comparing the last two columns of Table 5.1, we can see that
bucket optimization can be very effective when there are several
non-equal predicates in the subscriptions. The bucket
optimization is very effective at reducing the number of index
lookups on the Query_Predicate table. With the bucket
optimization, the recursive plan actually can out-perform the
unroll plan when the selectivity is high (i.e. when the total number
of notification is small). This is because the tuple size of the
Query_Predicate table is smaller than that of the unrolled table.
When the numbers of index lookups to the tables are similar, the
cost of retrieving tuples for the unrolled plan is higher.

Table 5.2 shows how the different implementations scale with
number of subscriptions with fixed selectivity. The total number
of messages is 10,000 and there are 100,000 matched results for
the test with 1 million subscriptions.

Message: id 100
<?xml?><stock>
 <symbol>YHOO</symbol><price>70.2</price>
 <open>50</open><change>20.2</change>
 <low>47.2</low><high>74.5</high>
 <volume>10000</volume>
</stock>

Subscription id: 345
/stock/symbol/text() = “YHOO” AND
/stock/price/text() > 50 AND /stock/open/text() < 38 AND
/stock/high/text() > 80 AND /stock/volume/text() > 20000

Number of
Subscriptions

Unroll Share Share-
Bucket

100,000 52 101 75

200,000 55 221 119

1,000,000 70 504 195

Table 5.2 Execution time for different number of subscriptions

All the algorithms showed good scalability with respect to the
number of subscriptions. As the number of subscriptions grows by
an order of magnitude (from 100,000 to 1 million), the execution
time of the unroll algorithm is only slightly increased. The
execution time of the recursive algorithms also exhibit sub-linear
behavior. The reason is that all the implementations use indices
to find subscriptions that are related to the published messages,
instead of evaluating all the subscriptions.

5.2 Experiment 2: The NASA Dataset
The second set of experiments use the NASA dataset. The NASA
data set has a recursive DTD and the nesting structure is much
more complex than the synthetic Stock dataset.

We used the XPath query generator from [7] to randomly generate
branching XPath subscriptions. Following the practice in [9], the
atomic value in each linear path predicate is set to a value that
appears in some XML document of the dataset. There are two to
ten linear path predicates in each subscription with an average of
7 linear paths per subscription. 80 percent of the linear path
predicates are equal predicates. The experiments are conducted on
a 2.4GHz Pentium with 512 M of memory. The software we use is
DB2 8.1 on Redhat Linux (kernel version 2.4.20).

Our experiments varied the number of subscriptions. Table 5.3
shows the number of subscriptions and linear path predicates for
each experiment. Compared to the work in [9], which solves the
matching problem with in memory finite state automata, our
experiments contain two order of magnitude as many as linear
path predicates using only half the amount of physical memory.

 Scale 1 Scale 5 Scale 10 Scale 15 Scale 20

Number of
subscriptions
(millions)

0.13

0.7

1.4

2.1

2.7

Number of
Linear Path
Predicates
(millions)

1

5

10

15

20

Table 5.3 Number of subscriptions and linear path predicates

The NASA dataset we used in the experiments has 2433 files with
a total of 23 MB XML data. There are total 357 thousands atomic
values in the dataset, but there are only 73 distinct tag paths
leading to these atomic values. These statistics support our
assumption that for XML dataset with a DTD, the number of
distinct tag paths is small. If the TagPath_Map table and the
PathMatch table are considered as caches for tag paths, the hit
ratio is very high except for the very first few XML messages.
Unlike the first set of experiments, the number of distinct linear
paths in this set of experiments is large. Table 5.4 shows the

number of distinct linear paths and the time used to compute the
PathMatch table for this set of experiments.

 Scale 1 Scale 5 Scale 10 Scale 15 Scale 20

Number of
Distinct
Linear Paths

6,565

21,637

32,159

38,026

42,271

Time for
computing
PathMatch

7 sec

20 sec

29 sec

35 sec

37 sec

Table 5.4 Number of distinct of linear paths and time for
computing PathMatch table

Figure 5.2 shows the execution time of using the NASA dataset.
Because the number of non-equal predicates is small, the bucket
optimization does not change the result of the recursive plan.
Only results of share without bucket optimization and the results
of the unroll plan are shown for this set of experiments. All
experiments started with an empty PathMatch table. Parsing the
XML files and inserting the parsing results into DB2 temporary
tables cost about 55 seconds for each run. Both time spent in
parsing XML data and computing the PathMatch table are
included in the reported number.

0

200

400

600

800

0 5 10 15 20

Number of Linear Path Predicates (Millions)

S
ec

o
nd

s

Share

Unroll

Figure 5.2 Execution time for the NASA dataset

Unrolling the Query_Predicate table also demonstrates better
scalability for this set of experiments. The DB2 buffer pool is set
to 256MB, which cannot hold the working set of the
Query_Predicate table and its index when more than 10 millions
of linear path predicates have been installed into the system. The
running time of the unrolled plan degrades more gracefully than
the recursive plan when the number of subscriptions is very large
due to the difference in the number of index lookups on the
Query_Predicate table.

6. SUMMARY AND FUTURE WORK
The main technical challenge of implementing an XML
publish/subscribe system is to build an efficient, scalable engine
to match published XML messages with millions of XPath
expressions. In this paper, we designed and implemented such an
engine using a relational database. The matching algorithm in our
system exploits the commonalities shared between subscriptions
as well as between XML messages in the following respect:

1. The common linear paths of the XPath subscriptions
and the common tag paths in XML messages are stored
in tables of the relational database.

2. The linear paths and the tag paths are matched against
each other and the matching result are stored in the
PathMatch table. The computation of the matching only
happens when the system encounters a new linear path
or tag path.

3. The predicates on atomic values are stored in tables, and
we use the relational join operator to evaluate the
predicates against the values in XML messages. The
evaluation is efficient by using indices on the predicate
tables.

4. The branching structure of the XPath subscription is
also store in tables. The branching structure is checked
against XML messages using a UDF after the linear
path predicates are evaluated.

We analyzed the performance of our implementations and
proposed several optimization techniques. Our experiments
showed that by unrolling the predicate table, we can achieve high
performance and scalability on both simple flat XML datasets and
complex semi-structured XML datasets. Compared to earlier
XML publish/subscribe systems, using a relational database
provides better scalability because the system is no longer limited
by the amount of physical memory.

In terms of future work, there can be many extensions to our
current implementation. For example, our current subset of XPath
does not support joins within a single XML document. We plan to
investigate this problem in the future.

7. ACKNOWLEDGEMENTS
The authors would like to thank Marc Schunk for designing the
test case for the simple flat XML data. David J. DeWitt carefully
reviewed a draft of the paper and gave many valuable feedbacks.

8. REFERENCES
[1] M. Altinel, M. J. Franklin. Efficient Filtering of XML

Documents for Selective Dissemination of Information. In
Proceedings of VLDB 2000, 53-64.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, et al. Matching
Events in a Content-based Subscription System. In
Proceedings of PODC, 1999.

[3] K. P. Birman. The process group approach to reliable
distributed computing. Communications of ACM, 36(12):
36-53, 1993.

[4] C. Chan, P. Felber, M. Garofalakis, R. Rastogi. Efficient
filtering of XML documents with XPath expressions. In
Proceedings of ICDE 2002.

[5] J. Chen, D. J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases, In
Proceedings of SIGMOD 2000, 379-390.

[6] J. Chen, D. J. DeWitt, J. F. Naughton. Design and Evaluation
of Alternative Selection Placement Strategies in Optimizing
Continuous Queries. In Proceedings of ICDE 2002, 345-356.

[7] Y. Diao, P. Fischer, M. J. Franklin, R. To. Yfilter: Efficient
and scalable filtering of XML documents. In Proceedings of
ICDE, 2002.

[8] T. J. Green, G. Miklau, M. Onizuka, D. Suciu. Processing
XML Streams with deterministic automata. IN Proceedings
of ICDT, 2003.

[9] A. Gupta, D. Suciu. Stream Processing of XPath Queries
with Predicates. In Proceedings of SIGMOD 2003, 419-430.

[10] E. N. Hanson, C. Carnes, L. Huang, et al. Scalable Trigger
Processing. In proceedings of ICDE 1999, 266-275.

[11] B. Oki, M. Pfleugl, A. Siegal, et al. The information bus: An
Architecture for extensible distributed systems. Operating
Systems Review, 27(5)58-68, 1993.

[12] F. Peng, S. S. Chawathe. XPath Queries on Streaming Data.
In Proceeding of SIGMOD, 2003.

[13] D. Powell. Group Communications. Communications of the
ACM, 39(4):50-97, 1996.

[14] T. K. Sellis. Multiple Query Optimization. TODS 13(1): 23-
52 (1988)

[15] P. Seshadri, Building Notification Services with Microsoft
SQL Server. In Proceedings of SIGMOD 2003

[16] Sun Microsystem Inc. Java Message Service (JMS)
specification. http://java.sun.com/products/jms

[17] Sun Microsystem Inc. Java 2 Enterprise Edition (J2EE)
specification. http://java.sun.com/j2ee/1.4/docs/

[18] Y. W. Wang, E. N. Hanson. A Performance Comparison of
the Rete and TREAT Algorithms for Testing Database Rule
Conditions, In Proceedings of ICDE, 1992.

[19] A. Yalamanchi, J. Srinivasan, D. Gawlick. Managing
Expressions as Data in Relational Database Systems. In
Proceedings of CIDR 2003.

[20] XML Path Language (XPath) 1.0.
http://www.w3.org/TR/xpath

[21] XQuery 1.0: An XML Query Language.
http://www.w3.org/XML/XQuery

[22] H. Zeller. Non-Stop SQL/MX Publish/Subscribe:
Continuous Data Streams in Transaction Processing. In
Proceedings of SIGMOD 2003.

