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ABSTRACT 
An XML publish/subscribe system needs to match many XPath 
queries (subscriptions) over published XML documents. The 
performance and scalability of the matching algorithm is essential 
for the system when the number of XPath subscriptions is large. 
Earlier solutions to this problem usually built large finite state 
automata for all the XPath subscriptions in memory. The 
scalability of this approach is limited by the amount of available 
physical memory. In this paper, we propose an implementation 
that uses a relational database as the matching engine.  The heavy 
lifting part of evaluating a large number of subscriptions is done 
inside a relational database using indices and joins. We described 
several different implementation strategies and presented a 
performance evaluation. The system shows very good 
performance and scalability in our experiments, handling millions 
of subscriptions with moderate amount of physical memory.  

1. INTRODUCTION AND 
REQUIREMENTS 
A publish/subscribe (pub/sub) system receives messages from 
publishers and notifies subscribers if the messages match the 
subscriptions. The earliest publish/subscribe systems are topic-
based. In these systems, subscribers subscribe to a certain topic 
(or group, subject etc.) and all messages published on that topic 
are delivered to the subscribers. More recent pub/sub systems 
support the content-based paradigm. For a content-based pub/sub 
system, each subscriber can register a rule in the system. When a 
publisher publishes a message to the system, the system matches 
the message with all the registered rules and delivers the message 
to the corresponding subscribers. Generally speaking, a content-
based pub/sub system is more flexible and more powerful than a 
topic-based pub/sub system. 

Content-based pub/sub technology has been widely used in 
message-oriented middleware systems. Example applications of 
content-based pub/sub systems include real estate applications, 
financial information exchange, online auctions, content-based 
document routing, and data replication (match data changes with 
replication rules). All major database vendors and middleware 
system vendors offer pub/sub technology as a standard feature of 

their business software suits. For example, IBM, Oracle and 
Microsoft all offer pub/sub applications. Pub/sub in Java Message 
Service (JMS) [16] is included as part of J2EE [17] and supported 
by many companies.  

All of these systems use SQL or a SQL-like language to express 
subscription rules, and the message is either a relational tuple or a 
dictionary data structure with name value pair entries. As XML 
becomes widely adopted as the standard data exchange format, 
there is an increasing demand for XML-based pub/sub systems. 
An XML-based pub/sub system should meet the following 
requirements. The system should have many publishers and the 
published XML messages can have very flexible document 
structures. Subscription rules should be expressed by a powerful 
language based on XPath [20] or XQuery [21] and support joins 
of the messages with existing reference data. Subscribers may also 
want to specify acceptable delay of notifications as a quality of 
service (QoS) requirement. A pub/sub system for large business 
applications must be able to maintain a high throughput of 
messages with millions of subscriptions.  

The main technical challenge of implementing a content-based 
pub/sub system is to efficiently match a published message with 
many subscriptions. The existing pub/sub approaches can be 
classified into two major categories depending on the matching 
strategy. The first strategy treats subscriptions as data that is 
stored in the database system. When a message is published, the 
matching of the message with the subscriptions is translated into a 
join query of the database system. With proper indices built over 
the subscription data, the join query can be very efficient.  The 
major advantage of this approach is that the scalability is no 
longer limited by main memory. Also, subscriptions that query 
reference data stored in the database can be evaluated using the 
same database engine.  The second strategy treats subscriptions as 
filters. The subscribers are notified when a message passes 
through the filters. The usual implementation for this strategy is a 
decision tree or a finite state automaton (FSA). Common 
computations between filters can often be shared. This strategy 
can be quite efficient if the decision tree or the FSA fits in 
memory. However, the scalability is limited by the amount of 
available physical memory. 

Our approach is to use a relational database system to build an 
XML-based pub/sub system. Such an XML-based pub/sub system 
proposes many new technical challenges. The XML data has a 
tree structure and XPath can query both values, and tree structures 
of the XML documents. Previous implementations of the 
database-based matching strategy are not applicable because they 
lack the ability to evaluate XPath against the XML messages. We 
solve this problem by breaking subscriptions into two parts, an 
atomic value predicate matching part and an XML tree structure 
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matching part. The matching of subscriptions with published 
XML messages is turned into a join query that evaluates both the 
value predicate part and the tree structure matching part.   

The rest of the paper is organized as follows. Section 2 reviews 
related work. Section 3 describes the implementation of our 
system. The cost analysis and several optimizations are introduced 
in Section 4. Experimental results are given in Section 5. We 
conclude in Section 6. 

2. RELATED WORK 
The earliest topic (or subject) based publish/subscribe systems 
have been studied extensively and there are mature and scalable 
implementations, for example, [3][11][13]. More recent 
publish/subscribe systems use a more flexible, and more powerful, 
content-based paradigm.  

Some content-based pub/sub systems treat subscriptions as data 
and the matching of published messages and subscriptions is 
evaluated by a join query. Early implementations of this strategy 
are in the context of group query optimization or continuous 
query systems. [14] studies how to optimize a group of similar 
queries that share common computations. TriggerMan [10] uses 
signatures to group similar queries together in order to provide a 
scalable trigger mechanism. NiagaraCQ [5] also uses signatures to 
group similar continuous queries. NiagaraCQ uses a table of 
constants extracted from the queries along with a join to evaluate 
a group of queries simultaneously.  Recently, commercial 
database vendors started to use their relational database engine to 
implement publish/subscribe system [15][19][22]. The scalability 
of database-based solutions is not limited by the amount of 
physical memory. However, most of these systems only handle 
tuple-like messages and the rules are expressed in SQL. Some of 
the systems can handle XML messages, but the system either uses 
a wrapper to extract tuple data from XML messages [15] or uses a 
simple language for the rules [5]. 

Other systems treat the subscriptions as filters on the messages. 
For example, [2] constructs an in-memory decision tree for the 
subscriptions. For each message, the system walks down the 
decision tree to a leaf node and the subscribers registered at the 
leaf node are notified. Several XML-based pub/sub research 
projects that use this “ filter”  strategy employ a finite state 
automaton for all the XPath subscriptions in the main memory. A 
SAX Parser is invoked to parse the published XML messages then 
the SAX events are streamed through the finite state automata to 
match the XPath expressions in subscriptions. [1] is the first paper 
that studies the problem of matching an XML  document against 
many XPath expressions. [1] proposes using an in-memory FSA 
algorithm as the solution and later [7] introduces state sharing in 
the FSA construction. [4] builds an index on sub-strings of path 
expressions that only contain parent-child relationship, and 
introduces sharing of computations between the common sub-
strings. [8][12] use FSA to evaluate XPath expressions over a 
stream of XML data. [9] proposes building state “ lazily”  as the 
solution to tame the exponential explosion of the number of 
states. In [9], the states of the FSA are treated as a “cache” for 
matching XPath expressions and the states can be constructed in 
memory only when they are actually used. This approach is less 
attractive for a long running system because as more data is 
processed, sooner or later most states will be constructed in 
memory. The main disadvantage of a main-memory based 

approach is that the number of subscriptions in the system is 
limited by the amount of available physical memory. Also, 
building a finite state automaton for all subscriptions makes it 
difficult to add or to delete a subscription, especially when the 
system is running. 

To the best of our knowledge, this paper is the first research that 
attacks the problems of [1] and [9] using a relational database. By 
using a database, our solution is not limited by the amount of 
available physical memory; therefore can handle orders of 
magnitude more subscriptions. The focus of our work is also 
slightly different from that of [9]. We assume that our system is 
long running. Therefore a lazy building approach is not 
applicable. Also, online insertions/deletions of subscriptions must 
be handled efficiently for a long running system.  

3. XML PUBLISH/SUBSCRIBE USING A 
RELATIONAL DATABASE 
3.1 XML messages and XPath subscriptions 
In our system, a subscription sub is a pair (id, xpath) where sub.id 
is unique across all subscriptions. Sub.xpath can be expressed by 
the grammar in Figure 3.1 which implements a subset of XPath 
[20]. The XPath subset implemented in the paper is usually called 
a “branching path expression” . 

 
            Figure 3.1 Grammar for the XPath subset  

considered in the paper 

 

 
Figure 3.2 shows a graph representation of an XPath example 
with four branches. Each node in the graph is an XML tag in the 
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Subscription: id = 5 

XPath: /a//b[//c/d/text()=”v1”  AND /p//q/text()=”v2” ]   
            /x[@y=”v3” ]//z/text() = “v4”  

Figure 3.2 Example subscription and its graph 
representation 

ConjPath    ::= QPath | OPath AND ConjPath 

QPath         ::= Path Op Const  

Path            ::= Step | Path Step 
                       | Path [ ConjPath ] 

Step            ::= Axis tag | Axis * | Axis @ attr  
                       | Axis text() 

Axis            ::= / | // 

Op               ::= < | <= | = | > | >= | != 



XPath and each edge shows the axis (slash or double slash) of 
each step. We assign a number to each branching point of the 
XPath. In this example, node b and x are assigned branching point 
number bp#1 and bp#2 respectively. 

The subset of XPath implemented by the grammar in Figure 3.1 
does not include the Boolean OR expression. An XPath with 
Boolean OR expression must first be rewritten to a disjunctive 
normal form and each disjunction is submitted as a separate 
subscription. The constants of the predicate are taken from a 
fixed, ordered domain. Our implementation provides support for 
both string and numerical values.  

A publication is an XML message xmsg(id, data) where xmsg.id 
is unique across all published messages and xmsg.data is a valid 
XML document. The matching algorithm matches each published 
XML message with all the subscriptions in the system and outputs 
notifications in the form of (xmsg.id, sub.id). 

For simplicity, the subscription language in Figure 3.1 does not 
allow access to the reference data in the database. In practice, we 
can join an XML message m with the reference data to produce a 
“enriched” message m’ , which is used to match against the XPath 
in the subscription.  

3.2 Relational representation of the XPath 
subscriptions 
When a subscription is added to the system, the XPath 
subscription is rewritten as a conjunction of predicates. Each 
predicate contains one branch in the graph presentation of the 
XPath. The path of the tag and axis leading to the leaf of the 
branch is called a linear path. Each linear path is annotated with 
branching point numbers in order to retain the branching 
information of the XPath expression along the linear path. A 
predicate that checks all the branching points in each linear path 
of the XPath match is also added to the conjunction. The 
predicate that checks the matching of branching points is referred 
to as BrPred later in the paper. For example, the XPath is Figure 
3.2 can be rewritten as a conjunction of four branch predicates 
and the BrPred predicate, as shown in Figure 3.3.  

 

Figure 3.3 Rewrite XPath to conjunction of branches 

Each branch in the rewritten form of the XPath expression 
contains three types of information: the linear path without 
branch, the atomic value predicate, and the branching 
information.  For example, the first predicate in Figure 3.3 has a 
linear path /a//b//c/d/text(), an atomic value predicate =“ v1”  and 
has the branching point number 1 at the second step (the b node) 
along the linear path. These three types of information are stored 
in tables in the relational database. Figure 3.4 shows the schema 
of the tables and how the example subscription is stored.  

Each linear path is stored as a tuple in the Query_Linear_Path 
table. The whole linear path in text format is stored in the 
LinearPath column and is used as the primary key of the table. 
The system also generates a unique id for the linear path. We 
break each linear path into three pieces at the first and the last 
double slash so that only the middle part may contain additional 
double slashes. The three pieces are stored in the prefix, middle, 
and postfix columns, respectively. The prefix, postfix and middle 
columns are used to match tag paths in published XML messages 
against the linear paths. The order of the steps in the postfix 
column is reversed for efficient index access during the match. 
The details of the path matching algorithm are deferred to Section 
3.4.  

 

The atomic value predicates of the conjunction are re-ordered so 
that the more selective predicates are pulled up to the front. 
Currently we pull the equal predicates in front of the non-equal 
ones. Each value predicate in the XPath, (linearpath_id, op, 
value) is stored in corresponding columns of the Query_Predicate 
table.  Predicates in the same subscription are chained using 
chain_id and pre_id of the Query_Predicate table, starting with 
the pre_id of the first predicate set to 0. In our example, starting 
with pre_id equals 0, predicate (linear path with id 100, =, “ v1” ) 
evaluated to true leads to chain_id 501. Pre_id 501 plus (linear 
path with id 101,=, “ v2” ) evaluated to true leads to chain_id 502 

Query_Linear_Path table 

LinearPath Id Prefix Postfix Middle 

/a//b//c/d/text() 100 /a text()/d/c  b 

/a//b/p//q/text() 101 /a text()/q b/p 

/a//b/x/@y 102 /a @y/x/b null 

/a//b/x//z/text() 103 /a text()/z b/x 

Query_Predicate table 

pre_id LinearPath_Id Op Value Chain_id final 

0 100 = “v1”  501 F 

501 101 = “v2”  502 F 

502 102 = “v3”  503 F 

503 103 = “v4”  5 T 

LinearPath_BrInfo table 
LinearPath Linear 

Path_Id 
BrInfo BrInfo 

_id 
/a//b//c/d/text() 100 “bp#1=2” 50 

/a//b/p//q/text() 101 “bp#1=2” 51 

/a//b/x/@y 102 “bp#1=2&bp#2=3” 52 

/a//b/x//z/text() 103 “bp#1=2&bp#2=3” 53 

Query_BranchPoint table 

Sub_id BranchPoint_Info 

5 “50&51&52&53” 

Figure 3.4 Tables for storing subscription 

/a//b{ bp#1} //c/d/text() = “v1”  AND 

/a//b{ bp#1} /p//q/text() = “v2”  AND 

/a//b{ bp#1} /x{ bp#2} /@y = “v3”  AND 

/a//b{ bp#1} /x{ bp#2} //z/text() = “v4”  AND 

BrPred (i.e. bp#1 appeared above matches the same element in 
the published XML messages, similarly for bp#2.) 



and so on. A true value in the final column of the 
Query_Predicate table indicates that there are no more entries in 
the chain and that the subscription is true subject to the evaluation 
of the BrPred predicate. The subscription id of the subscription is 
stored in the chain_id column of the final predicate. 

The branching information of each linear path is packed as a 
binary varchar and stored in the BrInfo column of the 
BranchPoint_Info table. For example, the third tuple in the 
BranchPoint_Info table has the BPInfo column set to 
“ bp#1=2&bp#2=3”  and LinearPath column set to“ /a//b/x/@y” , 
which indicates that branching point number 1 is at the second 
step (the b node) and branching point number 2 is at the third step 
(the x node) of the linear path. The id of the LinearPath, which is 
generated in the Query_Linear_Path table, is also included in the 
table for fast index lookup. For each (linearpath, brinfo) pair, the 
system generates a unique id and store the id in the 
LinearPath_Brinfo table. The BranchPoint_Info table is used to 
check the BrPred predicates for the subscriptions. We will discuss 
the algorithm for checking BrPred in Section 3.5. 

The branching information of a subscription is stored separately in 
the Query_BranchPoint table.  Table LinearPath_BrInfo maps the 
branching information of each branch of the XPath subscription 
to a BrInfo_id. The BrInfo_id of all the branches of the XPath 
expression is packed into a binary varchar and stored in the 
BranchPoint_Info column of the Query_Branchpoint table. In our 
example, “ 50&51&52&53”  identifies four tuples in 
LinearPath_BrInfo table that represent the branching information 
of the four branches of the example subscription, whose 
subscription id is 5. 

Deleting a subscription online is as easy as deleting all the 
chained predicates in the predicate table, starting from the last 
predicate of the conjunction, whose chain_id is actually the 
subscription id and for which the value of the final column is true. 
The tuple in the Query_BranchPoint table also needs to be 
deleted. The entries in the Query_Linear_Path table and the 
BranchPoint_Info table that are related to the subscription, 
however, cannot be deleted unless the linear paths or branching 
point information are no longer used by any other subscriptions. 
This is not a problem because the two tables are much smaller 
than the Query_Predicate table and some obsolete tuples in these 
two tables will not significantly degrade the performance of the 
system. Periodical garbage collection can be performed using a 
simple SQL delete statement. 

3.3 Publishing XML messages 
We use the example XML message in Figure 3.5 to demonstrate 
how the system handles published XML messages. The XML 
document is parsed by a SAX parser and a node id is assigned for 
each element, attribute or text data during parsing. The assigned 
id is shown in the brackets in Figure 3.5.    

 

Figure 3.5 Example publication 

For each text() value or attribute value in the published XML 
document, the SAX parser generates a triple (tagpath, idpath, 
value), where the tagpath and idpath are the tag names and 
assigned node ids along the path from the document root to the 
value.  We use the single slash to separate tags in the tagpath to 
match the notation of the linear path of the XPath. One should 
note that a tagpath cannot contain any double slashes. The XML 
element nesting (tree structure) information is encoded in the 
idpath of the triple. Figure 3.6 shows the result of parsing XML 
data in Figure 3.5.  

 

The system maintains a Tagpath_Map table that maps each 
TagPath to a TagPath_id. The table acts as a cache of all the tag 
paths that the system has encountered. During SAX parsing, if the 
system sees a tag path that is not in the table yet, it inserts the tag 
path into the table and automatically generates a unique id. We 
also reverse the tag names of each tag path and store the reversed 
TagPath in the Inv_Tagpath column of the table. Both the 
TagPath and the Inv_Tagpath columns are used to match linear 
paths in the subscriptions. The details of the path matching 
algorithm are deferred to Section 3.4. The SAX parsing results of 
the XML message are stored in a global temporary table of the 
relational database in order to save logging overhead and reduce 
the cost of moving data into the database. Figure 3.7 shows the 
Tagpath_Map table and the temporary table containing parsing 
result of the example XML message. 

TagPath IdPath Value 

/a/b/c/d/text() 1.2.3.4.5 “v1”  

/a/b/p/p2/q/text() 1.2.6.7.8.9 “v2”  

/a/b/x/@y 1.2.10.11 “v3”  

/a/b/x/z/text() 1.2.10.12.13 “v4”  

/a/b/x/z/text() 1.2.10.14.15 “v5”  

/a/b/b/x/@y 1.16.17.18.19 “v4”  

Figure 3.6 SAX parsing result 

Message: id = 12 

XML: <a (1)><b (2)> 
                <c (3)><d (4)>v1 (5)</d></c> 
 <p (6)><p2 (7)><q (8)>v2 (9)</q></p2></p> 
 <x (10) @y=”v3”  (11)> 

        <z (12)>v4 (13)</z> 
        <z (14)>v5 (15)</z> 
</x> 

          </b> 
          <b (16)><b (17)><x (18) @y=”v4”  (19)/></b></b> 
</a> 



 

Next the linear paths of the subscriptions must be matched with 
the tag paths in the messages. The matching linear path and tag 
path are stored in the PathMatch table, which is shown in Figure 

3.8. How to compute and maintain the PathMatch table is 
described in detail later in Section 3.4. Each tuple in the table 
indicates a match of a tag path with a linear path. For example, 
tuple (312, 101) means that the tag path with id 312 matches the 
linear path with id 101, that is, tag path /a/b/p/p2/q/text() matches 
linear path /a/b/p//q/text(). 

With the PathMatch table, we can run a recursive SQL query to 
match published XML messages with subscriptions. We do not 
show the SQL statement here because the SQL statement is rather 
long and complex. Figure 3.9 shows a graphical representation of 
the recursive query plan. Matching tag paths with query linear 
paths and match atomic values in XML message with value 
predicates are encoded as join predicates. Value predicates from 
the same subscription are chained by the chain_id column with 
the pre_id column of the Query_Predicate table. Each iteration of 
the recursion evaluates one more value predicate of a subscription 

  PathMatch table  

TagPath_Id LinearPath_Id 

311 100 

312 101 

313 102 

314 103 

315 102 

Figure 3.8 The PathMatch table 

TagPath_Map table 

TagPath Inv_Tagpath TagPath_Id 

/a/b/c/d/text() text()/d/c/b/a 311 

/a/b/p/p2/q/text() text()/p2/p/b/a 312 

/a/b/x/@y @y/x/b/a 313 

/a/b/x/z/text() text()/z/x/b/a 314 

/a/b/b/x/@y @y/x/b/b/a 315 

Temporary SAX_Parse_Result table 

Event_id Tagpath_Id IdPath Value 

12 311 1.2.3.4.5 “v1”  

12 312 1.2.6.7.8.9 “v2”  

12 313 1.2.10.11 “v3”  

12 314 1.2.10.12.13 “v4”  

12 314 1.2.10.14.15 “v5”  

12 315 1.16.17.18.19 “v4”  

Figure 3.7 SAX parsing result as stored in the database 

Op1: scan 

SAX_Parse_Result 
table 

Op2: scan 

PathMatch table 

Op3: Join 

Op1.Tagpath_Id = 
Op2.Tagpath_id 

Op4: Index NL Join 

Op5: Index Scan 

Query_Predicate Table using 

(pre-id=0, Op2.LinearPath_id, Op1.value) 

Op6: scan 

SAX_Parse_Result table 

Op8: scan 

PathMatch table 

Op9: Join 

Op6.Tagpath_Id = 
Op8.Tagpath_id 

Op7: Join 

Left.event_id = 
Op6.event_id 

Op10: Index Scan 

Query_Predicate Table using 

(pre-id=Op7.chain-id, Op8.LinearPath_id, Op6.value) 

Op11: Index NL Join 

Op12:  Check BrPred 

Recursive Query 
Processing 

Figure 3.9 Query plan for matching messages with subscriptions 

Final Flag = F 
Final Flag = T 



until the evaluation reaches a predicate whose final flag is set to 
true. The TagPath_Id and the Idpath from the temporary 
SAX_Parse_Result table is gathered during the recursive 
processing and packed into a binary varchar. This binary varchar 
is used as the input to a UDF to evaluate the BrPred predicate. 
The implementation of the UDF is discussed in detail in Section 
3.5. The SQL query can be run either in a per-message mode or in 
a batch mode to save query invocation cost. The temporary 
SAX_Parse_Result table is cleared between the query invocations 
(declared as “on commit delete rows” in the SQL definition 
statement of the temporary table).  

As discussed in Section 3.2, the equal predicates of a subscription 
are pulled above the non-equal ones. In practice, the SQL 
statement is written as two stages. Each stage has a recursive plan 
similar to that in Figure 3.9. In the first stage, only equal 
predicates are evaluated. The results from the first stage are 
further processed by the second stage which evaluates the non-
equal predicates. This two-stage processing has better 
performance and in Section 4, we will show that two-stage 
processing has desirable properties when common computations 
from different subscriptions can be shared. 

Using the join plan of Figure 3.9 to evaluate XPath subscriptions 
may produce duplicates of the notifications due to the tree 
structure of the XML messages. If the semantic of the pub/sub 
system requires unique notification per matched message 
subscription pair, we can add a distinct operator on top of the plan 
in Figure 3.9. 

3.4 Computing and maintaining the 
PathMatch table 
This section describes how to compute and maintain the 
PathMatch table used in the recursive query plan of Section 3.3.  

First, let us consider the situation that a new query linear path is 
added to the system. The system adds the query linear path into 
the Query_Linear_Path table and generates a unique id for it. The 
linear path is broken into three pieces at the first and last double 
slash so that only the middle part may contain additional double 
slashes. Then, the system uses the index on the TagPath column 
and the index on the Inv_Tagpath column of the Tagpath_Map 
table to look for tuples in the Tagpath_Map table that match both 
the prefix and the postfix of the linear path. Notice that the order 
of tags in the postfix column of the Query_Linear_Path table is 
reversed. The postfix matching is turned into a character string 
prefix matching so that an index can be used.  It is still necessary 
to check that the tag paths found by the index lookup really match 
the middle part of the linear paths. This checking is done by a 
regular expression matching algorithm using a state machine. 
Once a match is found, it is entered into the PathMatch table. 

The process is symmetric when the system encounters a new tag 
path. The system uses the tag path and the reversed tag path (as 
stored in the Inv_Tagpath column of the Tagpath_Map table) to 
do index lookups to find records in the Query_Linear_Path table 
with matching prefix and postfix columns. Then a regular 
expression matching on the middle part is performed. The 
matched results are also stored in the PathMatch table. 

We can consider the PathMatch table as a cache for matched tag 
paths and query linear paths. Usually, the number of different 

query linear paths is much smaller than the number of 
subscriptions. However, the cost of adding a new tag path is still 
high. Fortunately the tag paths are also shared among the 
published XML messages. Caching the matched results of tag 
paths with linear paths is especially attractive when the publishers 
use one or more XML schemas (or DTDs) for XML messages. 
When a limited number of schemas for the messages are used, the 
tag paths are highly repetitive and most of the tag paths will be 
cached (except for the very first few messages). 

Tuples in the Query_Linear_Path table and the Tagpath_Map 
table can be deleted. Deleting a subscription may result in the 
deletion of linear paths. It may also be desirable to clean entries in 
Tagpath_Map table, for example, schema changes may guarantee 
that some tag paths will never appear in the future messages. 
Deletions to the Query_Linear_Path table and Tagpath_Map 
table trigger the deletions to the PathMatch table. 

3.5 Checking the BrPred predicate 
The recursive query processing of the plan in Figure 3.9 evaluates 
all the atomic value predicates of the subscriptions. The XML tree 
structure matching part of the subscription is expressed by the 
BrPred predicate, which checks all the branching points in the 
XPath matches. In this section, we describe how to check the 
branching predicate BrPred for each subscription. First, we 
introduce the TagPath_BrInfo table and describe how this table is 
computed and maintained. 

3.5.1 The TagPath_BrInfo table 
For each linear path predicate of a subscription, the 
LinearPath_BrInfo table records the branching point positions in 
the linear path. In order to find the XML node id of the branching 
point, we need to translate the branching point positions in the 
linear path to the branching point positions of the tag path. The 
translation results are stored in the TagPath_BrInfo table. The 
TagPath_BrInfo table can be considered as a materialized view 
defined by the SQL in Figure 3.10, where bp_pos_udf is a UDF 
that returns a binary string. 

 

Figure 3.10 Definition of TagPath_Brinfo table 

 

The content of the TagPath_BrInfo table with our example 
subscription and example message from the previous sections are 

TagPath_BrInfo table 

TagPath_Id BrInfo_Id BP_Position 

311 50 “ { bp#1} , { 2} ”  

312 51 “ { bp#1} , { 2} ”  

313 52 “ { bp#1,bp#2} ,{ 2,3} ”  

314 53 “ { bp#1,bp#2} ,{ 2,3} ”  

315 52 “ { bp#1,bp#2} ,{ 2,4} ,{ 3,4} ”  

Figure 3.11 The TagPath_BrInfo table 

SELECT tp.Tagpath_id, lbr.Brinfo_Id,  
                bp_pos_udf(tp.Tagpath, lbr.BrInfo)  
FROM Tagpath_Map tp, LinearPath_BrInfo lbr, PathMatch pm 
WHERE tp.Tagpath_id = pm.Tagpath_id AND 
 lbr.LinearPath_id = pm.LinearPath_id 



shown in Figure 3.11. We will explain the meaning of the binary 
string stored in the BP_Position column. The implementation of 
bp_pos_udf is straightforward once the meaning of the binary 
string is clear.  

The BrInfo_Id column of the TagPath_BrInfo table is a foreign 
key that refers to the Brinfo_Id column of the LinearPath_BrInfo 
table. Each binary string stored in the BP_Position column of the 
TagPath_BrInfo table is a sequence of comma separated arrays. 
The first array in the sequence contains the branching point 
numbers that occur in the branching information identified by the 
BrInfo_Id column. The rest of the arrays in the sequence, which 
are called the position arrays, represent branching point positions 
in the tag paths that is identified by the TagPath_Id column. For 
example, the third tuple (313, 52, “ {bp#1,bp#2},{2,3}” ) of the 
TagPath_Brinfo table indicates the followings: 

1. TagPath with id 312, that is, /a/b/x/@y, matches the 
linear path associated with Brinfo 52, that is, /a//b/x/@y. 

2. BrInfo with id 52 has two branch points, bp#1 and 
bp#2, as indicated by the first array in the sequence. 

3. The position array {2,3} indicates that bp#1 of BrInfo 
52 is the second node of the tag path 312, that is, the b 
node of /a/b/x/@y, and bp#2 is the third node, that is, 
the x node of /a/b/x/@y. 

It is worth pointing out that there may be several position arrays 
in a BP_Postion string due to the double slashes in a linear path. 
Tuple (315, 52, “ {bp#1,bp#2},{2,4},{3,4}” ) is such an example. 
In this case, branch point bp#1 is the b node in the linear path 
/a//b/x/@y. This branching point may evaluate to either the first b 
node or the second b node in the tag path /a/b/b/x/@y. 

Like the PathMatch table, the TagPath_BrInfo table is maintained 
incrementally. The updates to the PathMatch table or the 
LinearPath_BrInfo table are propagated to the TagPath_BrInfo 
table immediately. Our implementation of the bp_pos_udf UDF is 
simplistic by using brutal force to enumerate all possible position 
arrays. The inputs to the UDF are usually very short strings 
because the depth of an XML document and the length of a linear 
path usually are small; therefore a simple algorithm actually 
performs very well. Also, the updates to the TagPath_BrInfo table 
happen only when a new subscription is added or a new tag path 
is encountered. The update is not in the recursive query that 
evaluates the matching of messages with subscriptions. Therefore, 
it is not performance critical. Deletions to the PathMatch table or 
the LinearPath_Brinfo table are also cascaded to the 
TagPath_BrInfo table by triggers. 

3.5.2 Evaluating the BrPred predicate 
The output of the recursive query processing of the plan in Figure 
3.9 must be further checked against the BrPred predicate (Op12 
in Figure 3.9). During iterations of the recursion, the TagPath_Id, 
IdPath from the SAX_Parse_Result table are packed into a binary 
varchar. All the binary varchars from the iterations are 
concatenated to form the input to a UDF brpred_udf, which 
returns a Boolean value indicating whether all the branching 
points in a subscription match. The input to Op12 in Figure 3.9 
using our example will contain two tuples, which are shown in 
Figure 3.12. 

 
The brpred_udf first uses the subscription id to find the 
BranchPoint_Info from the Query_BranchPoint table. In our 
example, the subscription with id 5 has a BranchPoint_Info of 
value “ 50&51&52&53” . Both the BranchPoint_Info and the 
binary varchar from the recursive query processing are unpacked 
into array of triples (Tagpath_Id, Brinfo_Id, idpath). Next, the 
first two entries, (Tagpath_Id , Brinfo_id) pairs in the triple are 
converted to the BP_Position string using the TagPath_BrInfo 
table from Figure 3.11. The conversion results are shown in 
Figure 3.13. 

 
Remember that the BP_Positon string “ { bp#1} ,{ 2} ”  simply 
means branching point number 1 is at the second level of the 
associated IdPath starting from the XML document root. 
Therefore, we can transform each (BP_Postion, idpath) pair into a 
relation that has the branching point numbers as column names 
and XML node ids as tuples in the relation.  Figure 3.14 shows 
the result of converting (BP_Position, idpath) into relations for 
the first tuple from the table in Figure 3.13.  

The conversion for the second tuple in Figure 3.13 is similar 
except for the pair (“ {bp#1,bp#2}{2,4}{3,4}” , ” 1.16.17.18.19” ), 
there are two tuples (16,18) and (17, 18) in the result relation. 

Now we can match the branching points from different linear 
paths by doing a natural join (equal join on columns with same 
column name) of the converted relations. If the result of the 
natural join is not empty, the branching points from each of the 
different linear paths match. Therefore, the BrPred predicate is 
true. Otherwise, the BrPred predicate is false. In our example, the 

Event_
Id 

Sub_
Id 

(BP_Position, idpath) 

12 5 (“ { bp#1} ,{ 2} ” , ”1.2.3.4.5”), 

(“ { bp#1} ,{ 2} ” , ”1.2.6.7.8.9”), 

(“ { bp#1,bp#2} { 2,3} ” ,”1.2.10.11”), 

(“ { bp#1,bp#2} { 2,3} ” ,”1.2.10.12.13”) 

12 5 (“ { bp#1} ,{ 2} ” , ”1.2.3.4.5”), 

(“ { bp#1} ,{ 2} ” , ”1.2.6.7.8.9”), 

(“ { bp#1,bp#2} { 2,4} { 3,4} ” , 

                                    ”1.16.17.18.19”), 

(“ { bp#1,bp#2} { 2,3} ” ,”1.2.10.12.13”) 

Figure 3.13 Convert TagPath_Id, BrInfo_Id to 
BP_Position using TagPath_BrInfo table 

Event_Id Sub_Id (TagPath_id, idpath) 

12 5 (311,”1.2.3.4.5”), 

(312,”1.2.6.7.8.9”), 

(313,”1.2.10.11”), 

(314,”1.2.10.12.13”) 

12 5 (311,”1.2.3.4.5”), 

(312,”1.2.6.7.8.9”), 

(315,”1.16.17.18.19”), 

(314,”1.2.10.12.13”) 

 Figure 3.12 Input to Op12 (BrPred_udf) 



natural join result for the first tuple in Figure 3.13 contains a tuple 
(2, 10) and the natural join result for the second tuple is empty. 

 
Even though the branching point matching algorithm described 
here has a strong connection with relational algebra, the 
conversion results of the (BP_Position, idpath) pairs are not 
stored in tables and the natural join is not performed by the 
database engine. We implement the algorithm in brpred_udf using 
C for efficiency and convenience reasons.   

4. OPTIMIZATIONS 
In this section, we will describe a simple cost metric for the 
recursive processing in Figure 3.9 and introduce several 
optimization techniques.  

4.1 A cost metric for the recursive plan 
The Op5 and Op10 from the recursive query plan in Figure 3.9 
use an index on the (pre-id, LinearPath_id, Op, value) columns of 
the Query_Predicate table. Since the index lookups dominate the 
cost of the query plan, the cost of the plan is measured by the 
number of index accesses and the number of tuples retrieved by 
the lookup.  

Table 4.1 shows the parameters used in the cost metric. For 
simplicity, we do not distinguish the cost of the index lookups in 
the equal or non-equal stage of the two stage processing. Also, we 
let the selectivity s in Table 4.1 be the average selectivity of the 
two stages.  

Ci The cost of one index access to the Query_Predicate table 

Ct The cost of retrieve one tuple from the Query_Predicate 
table 

N The number of subscriptions 

b The average number of branches per subscription  

m The average number of atomic values in an XML message 

p The average number of matching query linear paths per 
tag path 

s Selectivity of a linear path with an XML atomic value 

Ri Number of tuples retrieved in iteration i 

Costi The cost of the i-th iteration in the recursive plan 

Table 4.1 Parameters in the cost metric 

In the first iteration, an index probe is performed for each atomic 
value. There are exactly N linear paths with pre-id equals 0. 
Therefore, this iteration retrieves R1 = spmN tuples.  

 Cost1 = pmCi + R1 Ct = mpCi + smpNCt 

On average a subscription has b linear paths which implies the 
probability that the final flag of a tuple in the Query_Predicate 
table is false is (b-1)/b. Tuples with final flag set to true do not 
enter the second iteration, therefore, in the second iteration, the 
number of index access is R1 *  (b-1)/b *  p*  m. Starting from the 
second iteration, the chain-id from the previous iteration is used 
to chain with the pre-id of the second iteration. We have  

R2 = spm(b-1)/b R1 

 Cost2 = pmR1(b-1)/bCi + R2 Ct 

Similarly, we have 

 Rn = spm(b-1)/bRn-1 

 Costn = pmRn-1 (b-1)/bCi + Rn-1Ct 

The total cost of the plan is  

Total_Cost = �i=0,1,… max iterations Costi  

   = pmCi 

 + N spm/(1-spm(b-1)/b) (pm (b-1)/b Ci + Ct) 

From the formula, we see the total cost scales linearly with respect 
to the number of subscription N. In the following subsections, we 
introduce several optimization techniques. 

4.2 Sharing common predicates in the 
recursive plan 
The relational representation of the subscriptions described in 
Section 3.2 does not exploit sharing of computations between 
linear path predicates from different subscriptions. Two linear 
path predicates from different subscriptions are stored in the 
Query_Predicate table separately even if they have exactly the 
same linear path, Boolean operator, and value. We implemented a 
simple sharing optimization for linear path predicates whose final 
flags are false. Before a linear path predicate with false final flag 
is added to the Query_Predicate table, we check if there already is 
a non-final predicate in the table with same pre-id, 
linear_path_id, Boolean op, and value. A predicate is added to 
the Query_Predicate table only when a match cannot be found. 
The strategy we used here is simple and does not consider any 
global optimization strategies. Sharing common predicates 
between subscriptions raises many interesting optimization 
problems. For example, the order of the linear path predicates 
decides whether a predicate can be shared between predicates. If a 
predicate is very common, it may be desirable to pull this 
predicate to front to maximize sharing even though the predicate 
is not very selective. We refer to [6][18] for studies of the cost 
models and global optimization strategies in similar situations.  

The simple sharing optimization strategy used is especially 
attractive in the first stage (equal stage) of the two stage recursive 
processing. Each index probe in the first stage will produce at 
most one tuple with a false final flag. Therefore, the number of 
index probes at first stage is bounded by mnumber of max iterations 

regardless of the number of subscriptions N.  This number can be 
much smaller than that of the non-sharing case for small or 
medium size XML messages. 

The simple sharing strategy is less effective in the second (non 
equal) stage of the two stage processing. Assume that many 
subscriptions have similar non-final predicates of the form 

bp#1 bp#2 
2 10 
 

bp#1 bp#2 
2 10 
 

bp#1 
2 
 bp#1 
2 
 

(“ { bp#1} ,{ 2} ” , ”1.2.3.4.5”) 

(“ { bp#1} ,{ 2} ” , ”1.2.6.7.8.9”) 

(“ { bp#1,bp#2} ,{ 2,3} ” , ”1.2.10,11”) 

(“ { bp#1,bp#2} ,{ 2,3} ” , ”1.2.10,12.13”) 

Figure 3.14 Converting (BP_Position, idpath) 
to relations 



“ /a/text() > xi AND Pi” , where xi is a constant value and Pi is the 
conjunction of the remaining non-equal predicates in this 
subscription. These similar predicates are not shared because the 
value xi is different and the index lookup on the Query_Predicate 
table in each iteration of the recursive plan may produce many 
output tuples. We propose a strategy that partitions the xi values in 
these predicate in to n buckets, [b0, b1), [b1, b2), … [bn-1, bn). 
Then the subscription can be rewritten to “ /a/text() > bk AND Pi 
AND /a/text() > xi”  if xi fall in bucket [bk, bk+1). Subscriptions 
that fall into the same bucket can share the first iteration and the 
number of output tuples from the first iteration is significantly 
reduced. Notice that even though each subscription has one more 
predicate, in the worst situation that all the remaining predicates 
Pi evaluate to true, the overhead is only n additional index 
lookups where n is the number of the buckets. The total number of 
index accesses to the Query_Predicate table will be reduced if the 
remaining predicates Pi are selective.  Our experience suggests 
that the number of buckets n should be a small value, for example, 
around 20.  

4.3 Unrolling the predicate table 
Another way to reduce the number of index lookups to the 
Query_Predicate table is to unroll the recursive processing and 
store k linear path predicates in one row of the unrolled table. For 
example, if k=4, that is, we unroll four levels of recursion, the 
Query_Predicate table in Figure 3.4 can be stored as one tuple in 
the Predicate_Unroll table in Figure 4.1  

 
For subscriptions with fewer than k linear predicates, the 
remaining columns in the unrolled table are filled with dummy 
values that always evaluate to true. For subscriptions with more 
than k linear predicates, the final flags in the unrolled table are set 
to false and the evaluation of the remaining linear path predicates 
uses the recursive processing technique.  

Depending on statistics such as the size of unrolled table and the 
size of published message, the database may choose a query plan 
that does a self cross product of the XML Sax_Parse_Result table 

before performing the index lookup on the unrolled table. For 
example, Figure 4.2 shows a plan that does the self cross product 
once.  

 
Next we will estimate of the execution cost of the unrolled plan. 
Suppose we unroll the evaluation k levels and the database 
chooses to do a self cross product once. The record size of the 
unrolled table is approximately k times as large as the record size 
of the original Query_Predicate table therefore we assume the 
cost of retrieving one record from the unrolled table is kCt. The 
number of index lookups to the unrolled table is p2m2. The tuples 
retrieved from the index lookups on unrolled table are used to 
probe the Sax_Parse_Result table to evaluate other predicates. We 
denote the cost of evaluate the predicates after the second level is 
Cr, which is usually much smaller than Ci because the 
Sax_Parse_Result table is small enough to fit in memory. For the 
subscriptions with more than k predicates, the plan reverts to 
recursive processing and more accesses to the large 
Query_Predicat table are required. We denote this cost as Cx. In 
practice, Cx is small for a reasonable k (5 or 6) because:  

1. The number of complex subscriptions with many 
predicates is usually small. 

2. The size of the Query_Predicate table is much smaller 
than before because most predicates are stored in the 
unrolled table. 

Op1: scan 

SAX_Parse_Result 
table 

Op3: Index NL Join 

Op2: Index scan 

PathMatch table 

Op9: Index Scan 
Unroll Table 

Op8: Index NL Join 

Figure 4.2 Query plan after unrolling 

Op11: Index scan 

SAX_Parse_Result 
table 

Op4: scan 

SAX_Parse_Result 
table 

Op5: Index scan 

PathMatch table 

Op6: Index NL Join 

Op7: Cross Product 

Op10: Index NL Join 

Op13: Index scan 

SAX_Parse_Result 
table 

Op12: Index NL Join 

Op14: Index NL Join 

Op16: Index NL Join 

Op13: Index scan 

PathMatch table 

Op15: Index scan 

PathMatch table 

Query_Predicate table 

pre-id Linear-Path Op Value Chain-id final 

0 100 = “v1”  501 F 

501 101 = “v2”  502 F 

502 102 = “v3”  503 F 

503 103 = “v4”  5 T 
 

Predicate_Unroll table 

SubId Path1 Op1 Value1 Path2 Op2 Vaule2 

5 100 = “v1”  101 = “v2”  
Predicate_Unroll table continued 

Path3 Op3 Value3 Path4 Op4 Value4 Final 

102 = “v3”  103 = “v4”  T 

Figure 4.1 Unroll the Query_Predicate table 



3. The k most selective predicates have been pulled up to 
the front. 

The cost of the unrolled plan is  

 Total_Cost = p2m2Ci + s2p2m2N(kCt + Cr) + Cx 

The cost formula shows that the main advantage of unrolling the 
Query_Predicate table is that the number of index lookups to the 
unrolled table is not related to the total number of subscriptions. 
Also, the database optimizer now can choose how many self cross 
products to use before doing the index lookups on the unrolled 
table. Furthermore, the plan is not recursive and a non-recursive 
plan is usually more efficient and more scalable. The main 
disadvantage is that the opportunity of sharing computation across 
subscriptions is lost. Given that the most expensive operation is 
the index lookup on the query predicate table or unrolled table, 
unrolling is worthwhile in most situations unless the linear path 
predicates are very selective and there are lots of common 
predicates across different subscriptions.   

5. EXPERIMENTAL RESULTS 
We evaluate the performance and scalability of our system using 
two sets of experiments. The first set uses a synthetic XML 
dataset with a simple flat structure. This workload is 
representative for publishers that publish relational tuples in XML 
format. The second set of experiments uses a real XML dataset of 
a semi-structured nature.  We always enable sharing common 
linear path predicates between subscriptions for the recursive plan 
because the analysis in Section 4 shows sharing common 
predicate is always desirable.  

5.1 Experiment 1: Simple Flat XML Dataset 
A synthetic stock information dataset is used in the first set of 
experiments. Each XML message contains information, such as 
symbol, price, of one stock. The linear paths in the subscriptions 
are also simple (without double slash or wild char). Figure 5.1 
shows an example of an XML message and a subscription. 

 

Figure 5.1 Example XML stock data and subscription 

We run the experiments on a 1.4 GHz Pentium IV with 512 M of 
memory running Windows XP. The relational database we used is 
DB2 V 8.1. Table 5.1 shows the running time of matching 10,000 
messages with one million subscriptions. Each subscription has 
one equal predicate on stock symbol and four non-equal 
predicates on other attributes giving a total of 5 million 
predicates.  The analysis in Section 4 shows that for the recursive 
plan, the selectivity of the linear path is important to determine 
the number of index lookups for the next iteration of the recursive 

processing. Several experiments were conducted using 
subscriptions with different selectivities. The performance results 
are shown in Table 5.1. The running times reported here include 
the time to parse the XML data and to insert the parse results into 
the temporary table.   

Number of 
Notifications 

Unroll Share Share- 
Bucket  

1,000 56 107 26.3 

10,000 61 154 44.6 

100,000 70 504 195 

1,000,000 161 2369 1210 

Table 5.1 Execution time in seconds for one million 
subscriptions (5 million linear path predicates) 

Because this XML dataset has a very simple structure and there 
are only 7 distinct tag paths in the subscriptions, the cost of 
computing the PathMatch table is ignorable. Parsing and 
populating the XML data into DB2 temporary tables takes about 
24 seconds, which is included in the result reported in Table 5.1. 

For the unroll algorithm, the number of index probes to the 
subscription table does not depend on the selectivity (number of 
match results) of the subscriptions. The total running time, 
however, increases as the total number of match results increases 
because more time is needed to check the remaining linear path 
predicates for the tuples retrieved by the index-nested loop join. 
Checking the remaining linear path predicates is preformed 
against the SAX_Parse_Result table which is small and resident in 
memory. The running time slightly increases when the total 
number of notifications grows to 100,000 and the running time 
only doubles when total notifications grow another magnitude to 
one million. 

The recursive plans are much more sensitive to changes in the 
selectivity of the subscriptions. As more tuples are retrieved in 
each iteration, the number of index lookups on the 
Query_Predicate table increases. The rapid increase of the 
running time of the recursive plans reflects the increase in the 
number of I/Os performed on the Query_Predicate table and its 
index. 

Comparing the last two columns of Table 5.1, we can see that 
bucket optimization can be very effective when there are several 
non-equal predicates in the subscriptions. The bucket 
optimization is very effective at reducing the number of index 
lookups on the Query_Predicate table. With the bucket 
optimization, the recursive plan actually can out-perform the 
unroll plan when the selectivity is high (i.e. when the total number 
of notification is small).  This is because the tuple size of the 
Query_Predicate table is smaller than that of the unrolled table. 
When the numbers of index lookups to the tables are similar, the 
cost of retrieving tuples for the unrolled plan is higher. 

Table 5.2 shows how the different implementations scale with 
number of subscriptions with fixed selectivity.  The total number 
of messages is 10,000 and there are 100,000 matched results for 
the test with 1 million subscriptions. 

 

Message: id 100 
<?xml?><stock> 
   <symbol>YHOO</symbol><price>70.2</price> 
   <open>50</open><change>20.2</change> 
   <low>47.2</low><high>74.5</high> 
   <volume>10000</volume> 
</stock> 
 
Subscription id: 345 
/stock/symbol/text() = “YHOO” AND  
/stock/price/text() > 50 AND /stock/open/text() < 38 AND 
/stock/high/text() > 80 AND /stock/volume/text() > 20000  
 



Number of 
Subscriptions 

Unroll Share Share-
Bucket 

100,000 52 101 75 

200,000 55 221 119 

1,000,000 70 504 195 

Table 5.2 Execution time for different number of subscriptions 

All the algorithms showed good scalability with respect to the 
number of subscriptions. As the number of subscriptions grows by 
an order of magnitude (from 100,000 to 1 million), the execution 
time of the unroll algorithm is only slightly increased.  The 
execution time of the recursive algorithms also exhibit sub-linear 
behavior.  The reason is that all the implementations use indices 
to find subscriptions that are related to the published messages, 
instead of evaluating all the subscriptions. 

5.2 Experiment 2: The NASA Dataset 
The second set of experiments use the NASA dataset. The NASA 
data set has a recursive DTD and the nesting structure is much 
more complex than the synthetic Stock dataset.  

We used the XPath query generator from [7] to randomly generate 
branching XPath subscriptions. Following the practice in [9], the 
atomic value in each linear path predicate is set to a value that 
appears in some XML document of the dataset. There are two to 
ten linear path predicates in each subscription with an average of 
7 linear paths per subscription. 80 percent of the linear path 
predicates are equal predicates. The experiments are conducted on 
a 2.4GHz Pentium with 512 M of memory. The software we use is 
DB2 8.1 on Redhat Linux (kernel version 2.4.20). 

Our experiments varied the number of subscriptions. Table 5.3 
shows the number of subscriptions and linear path predicates for 
each experiment. Compared to the work in [9], which solves the 
matching problem with in memory finite state automata, our 
experiments contain two order of magnitude as many as linear 
path predicates using only half the amount of physical memory. 

 

 Scale 1 Scale 5 Scale 10 Scale 15 Scale 20 

Number of 
subscriptions 
(millions) 

 

0.13 

 

0.7 

 

1.4 

 

2.1 

 

2.7 

Number of 
Linear Path 
Predicates 
(millions) 

 

1 

 

5 

 

10 

 

15 

 

20 

 

Table 5.3 Number of subscriptions and linear path predicates 

The NASA dataset we used in the experiments has 2433 files with 
a total of 23 MB XML data. There are total 357 thousands atomic 
values in the dataset, but there are only 73 distinct tag paths 
leading to these atomic values. These statistics support our 
assumption that for XML dataset with a DTD, the number of 
distinct tag paths is small. If the TagPath_Map table and the 
PathMatch table are considered as caches for tag paths, the hit 
ratio is very high except for the very first few XML messages. 
Unlike the first set of experiments, the number of distinct linear 
paths in this set of experiments is large.  Table 5.4 shows the 

number of distinct linear paths and the time used to compute the 
PathMatch table for this set of experiments.  

 Scale 1 Scale 5 Scale 10 Scale 15 Scale 20 

Number of 
Distinct 
Linear Paths 

 

6,565 

 

21,637 

 

32,159 

 

38,026 

 

42,271 

Time for 
computing 
PathMatch   

 

7 sec 

 

20 sec 

 

29 sec 

 

35 sec 

 

37 sec 

Table 5.4 Number of distinct of linear paths and time for 
computing PathMatch table 

Figure 5.2 shows the execution time of using the NASA dataset. 
Because the number of non-equal predicates is small, the bucket 
optimization does not change the result of the recursive plan. 
Only results of share without bucket optimization and the results 
of the unroll plan are shown for this set of experiments.  All 
experiments started with an empty PathMatch table. Parsing the 
XML files and inserting the parsing results into DB2 temporary 
tables cost about 55 seconds for each run. Both time spent in 
parsing XML data and computing the PathMatch table are 
included in the reported number. 
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Figure 5.2 Execution time for the NASA dataset 

Unrolling the Query_Predicate table also demonstrates better 
scalability for this set of experiments. The DB2 buffer pool is set 
to 256MB, which cannot hold the working set of the 
Query_Predicate table and its index when more than 10 millions 
of linear path predicates have been installed into the system. The 
running time of the unrolled plan degrades more gracefully than 
the recursive plan when the number of subscriptions is very large 
due to the difference in the number of index lookups on the 
Query_Predicate table.  

6. SUMMARY AND FUTURE WORK 
The main technical challenge of implementing an XML 
publish/subscribe system is to build an efficient, scalable engine 
to match published XML messages with millions of XPath 
expressions. In this paper, we designed and implemented such an 
engine using a relational database. The matching algorithm in our 
system exploits the commonalities shared between subscriptions 
as well as between XML messages in the following respect: 



1. The common linear paths of the XPath subscriptions 
and the common tag paths in XML messages are stored 
in tables of the relational database.  

2. The linear paths and the tag paths are matched against 
each other and the matching result are stored in the 
PathMatch table. The computation of the matching only 
happens when the system encounters a new linear path 
or tag path. 

3. The predicates on atomic values are stored in tables, and 
we use the relational join operator to evaluate the 
predicates against the values in XML messages. The 
evaluation is efficient by using indices on the predicate 
tables. 

4. The branching structure of the XPath subscription is 
also store in tables.  The branching structure is checked 
against XML messages using a UDF after the linear 
path predicates are evaluated. 

We analyzed the performance of our implementations and 
proposed several optimization techniques. Our experiments 
showed that by unrolling the predicate table, we can achieve high 
performance and scalability on both simple flat XML datasets and 
complex semi-structured XML datasets. Compared to earlier 
XML publish/subscribe systems, using a relational database 
provides better scalability because the system is no longer limited 
by the amount of physical memory. 

In terms of future work, there can be many extensions to our 
current implementation. For example, our current subset of XPath 
does not support joins within a single XML document. We plan to 
investigate this problem in the future. 
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