An Efficient XML Node Identification and Indexing Scheme

Jan-Marco Bremer and Michael Gertz

Department of Computer Science
University of California, Davis
One Shields Ave., Davis, CA 95616, U.S.A.

{bremer|gertzy@cs.ucdavis.edu

Jan. 27 2003

ABSTRACT

Path and tree pattern queries build the core of almost all
XML query languages. Current index structures that sup-
port an efficient evaluation of such queries, however, often
have several deficiencies in that they (a) are limited in their
support of query patterns, (b) ignore data values and readily
available structural summary information about the XML
data source, (c) require expensive joins for every edge in the
query tree, or (d) are very space inefficient.

Due to the nature of XML-represented data, the structural
components of an XML data source are usually limited in
depth and occurring path patterns. Based on this observa-
tion, we propose a novel approach to the indexing of XML
data in which XML node identifiers effectively encode com-
plete rooted data paths as they occur in the data source. In
combination with an extended DataGuide, we utilize these
identifiers in two indexes on data values and path informa-
tion. These indexes provide for a fast and direct discovery
of path and tree patterns. The size of the indexes is only
about 40% of that in comparable approaches, as we will show
in our experiments. At this size, our path index already in-
cludes a direct mapping from logical path identifiers to their
physical counter parts, an important aspect often neglected
in existing approaches to XML indexing.

1. INTRODUCTION

Path and tree pattern matching plays a crucial role in a large
number of XML query languages, most notably the XQuery
standard [4] and its core language XPath [7]. A tree pattern
query [3] is a tree whose structure, representing parent-child
and ancestor-descendant relationships between nodes, is to
be matched against an XML data source. Node predicates
in form of specific node labels or text strings (terms) to be
found under a certain node further constrain matches. One
distinguished node, called output or selection node, in the
tree marks the result. Figure 1 illustrates an example of a
path pattern query and a tree pattern query. The tree pat-
tern asks for the city within an address that appears some-

where under an employee whose manager’s name is ” Smith.”
Single lines represent parent-child and double lines ancestor-
descendant relationships. The selection node is encircled.

Emp‘l‘oyee ?I&
Address Address Manager

Name

Path Pattern Tree Pattern ‘

"Smith"

Figure 1: Path and tree pattern queries

Earlier works on index structures use a combination of path
summaries, joins between lists of nodes, tree traversal, and
value indexes ranging over certain node labels to support a
wide range of XML queries, including path and tree pattern
queries, e.g., [19, 34, 33] for native XML storage systems,
and [12, 10, 29] on top of relational database systems. Var-
ious special-purpose index structures, e.g., [20, 9], support
only certain path queries efficiently. Recent approaches to
path and tree pattern matching, commonly known as struc-
tural or containment joins, focus on composing the pattern
tree node by node through pairwise matching of ancestor
and descendant or parent and child nodes within lists of
nodes [31, 17, 2, 6, 5]. Naturally, node identification plays
a crucial role in these as well as most other XML indexing
approaches.

As placeholder for the actual data, node identifiers (node
ids) used in index structures have to be measured in terms
of (a) how much information useful for query processing they
directly provide, (b) how well they integrate with node ids
used in other index structures within the same system, (c)
how efficiently they can be translated into physical data ad-
dresses, and (d) how much storage space they require when
stored in an index. Current indexing proposals mainly focus
on the first aspect. However, aspect (b) is very important
as none of the proposed indexing scheme supports all kinds

of XML queries. Using different node id schemes within one
system means a very expensive translation step for every
index transition. Except for systems that directly utilize
physical identifiers in their indexes, aspect (c) is almost al-
ways ignored in current approaches. Astonishingly, storage
efficiency typically plays only a very minor role in current
indexing approaches.

The node id scheme most commonly used for structural joins
results in an index size that can exceed the size of the XML
source [31], yet offers no more than allowing to determine
ancestor-descendant and parent-child relationships. Theo-
retical properties, e.g., the restricted length for degenerated
XML sources, of this and similar identification schemes [1,
14, 8] are not necessarily relevant in practice since data and
in particular structural components are often fairly regular.
Moreover, one focus in the cited work is to minimize the
length of each single identifier. In an index structure, how-
ever, the effective storage of suitably groups of ids may be
much more important.

In this paper, we present index structures based on a new
kind of node id scheme. Our indexing approach builds on the
insights gained in earlier approaches with a strong focus on
storage space efficiency. We utilize an extended DataGuide
[13] as path summary structure, and structural joins to as-
semble query patterns from path patterns. In our approach
nodes ids efficiently encode full rooted paths in a data source
and are therefore called path ids (PIDs). Due to the directly
encoded path information, PIDs are extremely effective in
that matching path patterns does not require any joins.

The basic idea is as follows. In the DataGuide, a number is
assigned to each node. These node numbers uniquely iden-
tify rooted label paths and build one part of every PID.
The only missing information to identify a node in the data
source is which particular children along the path are ad-
dressed. However, this information is only required for labels
on the path that have more than one related child node any-
where in the data source. Consider an instance of the path

1 out of 3

1 out of 2 always exactly
employees...

addresses... 1city
|

L ! .
Company —» Employee — Address —— City
<root> 17 nnd | 13

! ! !
2 bits 1 bit No bits

~ -
~ -

Node#13+ 10 1 =(13,'101) = (13,5)
PID of 3rd employee’s 2nd address’ city field

Figure 2: Foundations of the PID scheme

pattern from Fig. 1, /Company/Employee[3]/Address[2]/City[1],

denoting the city field of the second address of a company’s
third employee. Assume there are just three employees, each

with a maximum of two addresses in the data source, and
each address has exactly one city element. Then, only three
bits besides the node number are required to encode the
above path in the data source as PID, as shown in Figure
2. The number of bits is constant for each node in the
DataGuide.

Within two structurally similar index structures covering
node and term containment, we group PIDs according to
node numbers. Through this, we achieve a small index size
and an instantaneous access to the results of path pattern
queries. Furthermore, for tree pattern queries, PIDs reduce
the check for structural relationships between source nodes
to an in-memory comparison of DataGuide node numbers
and a simple prefix match of bit strings. Some additional
effort is needed to process tree pattern queries. However,
the number of required joins related to edges in the query
tree pattern is greatly reduced to just one join per branch
in the pattern tree. Moreover, joining lists of PIDs can be
skipped based on the node number-encoded path informa-
tion. A further advantage is the suitability of PIDs for non-
containment indexes, e.g., indexes supporting '<’. The ear-
lier logical node id schemes are of no use for such predicates.
For example, when used in a B-tree, PIDs allow to answer
a query involving a ’<’ and a path condition n one step.

The size of the indexes presented in this paper is small
enough to replace an uncompressed XML source by a fully
indexed, compressed, and yet queryable [28] source while
still saving space. In particular pattern queries without
term conditions require an index size of only 2% of the XML
source or less.

In summary, the major contributions of this work are

e a new XML node identification scheme that encodes
complete data paths in combination with a DataGuide
as structural summary,

o storage-efficient index structures for term and node
containment, allowing to directly answer path pattern
queries and to efficiently process tree pattern queries,

e a detailed experimental comparison of the storage ef-
ficiency of our approach and the class of earlier struc-
tural join-based approaches.

Outline. In Section 2, we discuss related work. Section 3
describes in detail our node identification scheme and the
two index structures founded on it. Section 4 illustrates the
simplicity of processing path pattern queries using our ap-
proach and outlines the processing of tree pattern queries.
In Section 5, we present a range of experiments regarding
size and other properties of PIDs and our indexes in compar-
ison to the earlier node identification and indexing schemes
for structural joins. We conclude the paper in Section 6.

2. RELATED WORK

The Lore systems represents early work on storing and query-
ing semi-structured and XML data [19, 18]. It uses a com-
bination of techniques for query processing. In particular,
Lore relies on a DataGuide [21, 13] as a structural sum-
mary used to discover path and tree patterns. We uti-
lize a DataGuide, but avoid tree traversal since this be-
comes inefficient when executed over secondary memory [27].
Furthermore, as in related recent approaches, we assume
tree-structured data instead of graph data. Other special-
purpose XML index structures, e.g., [20, 9], efficiently sup-
port only certain types of path queries and disregard data
values. The goal of our approach is to support a wide range
of pattern queries that may involve values in a storage effi-
cient way.

Several existing indexing approaches utilize logical node iden-
tifiers to assemble path and tree patters from sets of nodes
satisfying a certain predicate, like a node label, or term con-
tainment [17, 31, 2, 6, 5]. Theses schemes are commonly
known as structural join approaches. As in our approach,
they typically utilize an inverted file structure [30] to main-
tain lists of nodes related to a certain term or node label.

Basic structural join approaches are presented in [17, 31].
[31] in particular shows the space and time inefficiency of
storing the XML indexes as relations in an RDBMS. The
required space far exceeds that of the indexed XML source.
The algorithms to join lists for reconstructing structural re-
lationships are subsequently improved in [2, 6, 5] with a
common disregard to index sizes. We show that even with-
out considering their recent significant index extensions our
approach takes only about 40% of their storage space.

All of the structural join approaches so far rely on a varia-
tion of the so-called interval node id scheme as analyzed in
[1, 14]. The basic idea of the interval scheme can be thought
of as assigning all leaf nodes in a tree a sequential number
in document order, i.e., a pre-left order. Then, the identi-
fier of a non-leaf node is the smallest interval that contains
all of the node’s descendants’ node numbers, and ancestor-
descendant relationships are reduced to interval contain-
ment. Storing the depth of every node in addition to the
interval allows to determine parent-child relationships.

The Path Identifiers (PIDs) we present in this paper provide
the same functionality. Thus, they could be utilized to im-
prove existing structural join approaches as PIDs addition-
ally contain path information. However, the direct, node id-
encoded path information and the storage of PIDs grouped
by common label paths furthermore eliminate the need for
comparing nodes based on multiple predicates (multi-pre-
dicate merge join [31]), or maintaining a stack of nodes

when joining node lists [2]. Moreover, PIDs encode an order
among child nodes with the same label, which is needed to
process position-based queries like /company[2]/employee[4],
which are not supported when relying on interval ids.

A path-based indexing scheme similar in principle to ours is
presented in [23]. However, the encoding of paths is not as
dense as in our approach and unsuitable for quickly deriving
structural relationships. [17] applies a variation of the in-
terval node id scheme that supports limited insertions. Our
scheme can easily be extended in the same way. [8] consid-
ers node id schemes for limited updates, a case we have not
studied in detail for our scheme yet.

In the context of object database systems, [11] shows that
the fastest way to obtain physical ids form logical ids is
to incorporate information for a direct mapping into logi-
cal ids. PIDs do not contain such information. However,
our path index structure allows to obtain the addresses of
physical ids on the fly. This efficient mapping of PIDs to
physical id references without limiting the kind of physi-
cal ids makes our indexing scheme also suitable for various
native XML storage systems like Natix [16], for indexing
XML-represented relational data [25], or XML data stored
in a relational databases [12, 10, 29].

Main memory tree pattern matching like [26, 15] is not ap-
plicable to very large XML documents. However, it can
guide our pattern matching within the DataGuide, and is
thus complementary to our work.

3. NODE IDENTIFICATION AND
XML INDEXING

In this section we present the core of our node identification
and XML indexing approach. We provide some background
in Section 3.1 and then discuss in detail our node identifi-
cation scheme in Section 3.2. The indexing approach based
on this scheme is described in Section 3.3

3.1 Extended DataGuide

In our approach, we assume a single XML source S, i.e.,
a node-labeled tree with nodes taken from a set V, edges
from a set E, and labels taken from a set L of strings. We
assume a partial document order among child nodes, that
is, only child nodes with the same label are comparable.
Furthermore, text values are taken from a set T of text
strings and can be attached to any node, not just leaf nodes.
The following definitions introduce the fundamental notions
used in the remainder of the paper.

Definition 1. (XML Source)
An XML source S is a tree (V,root,label, children,text)
with root node root and label being a mapping from nodes

in V to node labels in L. children is a mapping from nodes
to a partially ordered sequence of child nodes, and induces
the set E of edges. text is a mapping from nodes to text
strings from 7.

Definition 2. (Label Path)

Let m1,m2 € V be two nodes in an XML source §. The
unique label path from ni to n2, denoted as lpath(ni,n2),
is the label path (l1,l2,...,lk), where l1 = label(ni) and
I, = label(nz) and the labels in between correspond to the
sequence of labels on the path in § connecting the two nodes.
If there is no such connecting path, then Ipath(ni,n2) =€
(the empty path). The rooted label path of a node n € V,
Ipath(n), is the label path from the root node to n.

While the above two definitions are quite common, the next
two definitions play an important role in our node identifi-
cation and indexing scheme.

Definition 3. (Node Position and Arity)
Let n1,n2 be two nodes in an XML source S. If na is a
child node of ni, i.e., na € children(ni), then position(ns)
is the position of node ny in children(ni) with respect only
to nodes that have the same label label(n2). The arity of
node na, arity(n2), is the total number of nodes with label
label(nsz) in ny’s list of children.

Definition 4. (Data Path)
The data path from a node n; to a node n in a source S,
dpath(ni,nk), is a pair (m;, mp) where m; is the label path
Ipath(ni,nk) and mp is the sequence of positions of nodes
along the path from n1 to ng in S. That is, if (n1, n2, ..., nk),
n; € V, is the path from ni to ng in S then the sequence of
positions is (position(ni), position(nz2), ..., position(ng)).

If n1 is the root node, then position(ni) := 1. The rooted
data path of ng, dpath(ng), is the data path dpath(root, ng).

We omit formal definitions of obvious concepts such as par-
ent, ancestor, and descendant node. The upper part of Fig-
ure 3 illustrates some of the definitions. It shows an XML
source and a rooted path to a para leaf node. The lower part
of the figure will be discussed later in this section.

The rooted label path of the shaded path is (db, article, text,
para) or, in an alternative representation, db.article.text.para.
The corresponding rooted data path as an instance of the
given label path is (db.article.text.para, (1,1,1,3)) or just db.1.
article.1.text.1.para.3 as the path consists of the first db, ar-
ticle, and text nodes, and the third para node.

title

para
para

db o=

article o-»... art|c|§

techrep. o-»

. title text t

title O-~._ ext
e B 4 7 13

texto ‘ o

ao paal

Figure 3: XML source and its extended DataGuide

A core concept of our approach, as indicated in the intro-
duction, is the usage of a structural summary of the XML
source. We assume that with an XML source S a DataGuide
[21, 13], denoted D, is associated. D contains exactly one
data path for every distinct label path in S. As XML sources
are based on trees, so is our DataGuide. In our approach,
the standard DataGuide is extended as follows.

Definition 5. (Extended DataGuide)
An FEztended DataGuide (XDG) D for an XML source S is
a DataGuide in which a node number, obtained by a pre-
left order run through D, is assigned to each node. Two
functions are associated with the nodes V in D:

e anc: VxV — {0,1}. For two nodes ni, n1, anc(ni, n2)
:= 1 if and only if n; is an ancestor of ns in D or
niy = na.

e The function nodes : L — V™ assigns to a node label
[€ L the sequence of all nodes in D labeled I.

Since a node in S has exactly one label path, it is also mean-
ingful to talk about the ancestor of pairs of label paths
anc(lpath(a), lpath(b)) of two nodes a,b. Furthermore, as
nodes in D have unique node numbers, we can talk about
nodes and node numbers in D interchangeably. Figure 3
shows an XML source and its derived XDG, including node
numbers in pre-left order and parts of the nodes function.

In the following, we introduce our logical node identifica-
tion scheme utilizing the concept of an XDG. We discuss
the steps our approach takes in order to come up with in-
dex structures based on these identifiers and describe these
structures in detail. The main idea of our approach is to
derive and use

1. efficiently encoded rooted data paths as logical identi-
fiers for XML source nodes, and

2. index structures that map terms and rooted label paths
to clustered and ordered lists of node identifiers.

3.2 Node Identification

Identifiers (ids) for nodes in an XML source serve the same
purpose as tuple ids in relational or object ids in object-
oriented database systems [11]. An id scheme has to be
measured in terms of how effectively it supports

e processing and optimization of a wide variety of queries,

e space efficient storage in main and secondary memory,
including any required encoding and decoding efforts,

e translation into other id schemes that are used within
different functional components of the query processor,

e translation into physical ids, i.e., physical data loca-
tions.

Typically, the effectiveness of an id scheme for one such task
affects its usefulness for the other tasks. To support query
processing, a purely logical node id that encodes as much in-
formation about logical relationships a node has with other
nodes (e.g., based on value or structural properties) is most
desirable. However, the amount of information that can be
encoded without overly straining storage efficiency is lim-
ited. Furthermore, if ids are purely logical, mapping them
to physical ids can become very inefficient [11]. Purely phys-
ical ids on the other hand are suboptimal if the content of
referenced objects changes and thus object locations may
change, requiring an indirection. Ids that contain informa-
tion about the location where the physical id can be found
are preferable [11]. An id scheme that extends on this to
furthermore include logical information for efficient query
processing would be ideal.

Moreover, the heterogeneity among XML node id and in-
dexing schemes that support rather limited types of queries
(e-g-, [9, 2]) necessitates multiple inter-scheme mappings in
order to apply the schemes in a single system. Such map-
pings, however, result in high, hidden costs in terms of stor-
age space and query processing. Therefore, a homogenous
logical node id scheme is preferable.

For the storage space required, it is a trivial fact that in order
to address and thus identify every node in an XML source
of n nodes, at least log(n) bits are required. It is the goal of
every node id scheme to stay within a reasonable neighbor-
hood of this value [1, 14]. However, the size of log(n) builds
on the assumption to have fized-length ids, which provide
direct access and usually easy main memory representation.

As long as such a representation exists, encoding groups of
ids with some commonalities within particular parts of an
index can yield smaller average sizes.

Our node identification scheme combines most advantages
of all the above criteria. Even though it has a variable node
id size, the access within indexes is always to groups of ids
that have the same length. Furthermore, our scheme has a
suitable main memory representation and provides for fast
decoding. The mapping to physical ids is almost direct. In
the following, we describe our node identification scheme in
detail. In Section 4, we provide details of how different types
of queries are supported by our approach.

3.2.1 Path Identifiers

The proposed node id scheme is based on the observation
that a rooted label path (1) can effectively be represented
by just a pointer into an XDG, and (2) already encodes
parts of the rooted data path. Consider the rooted data
path db.1.article.1.text.1.para.3 shown in Figure 4 and illus-
trated earlier in Figure 3. If it is known that the path un-

QO db
77777777777 1

techrep. Q article
OBits ____/ l

QO text

para para

Data Guide| =~ T
para Node# S

Figure 4: Foundations of PID bit encoding

der consideration leads to a db.article.text.para node, db is
the root node, and throughout the XML source an article
always has at most one text child node, there is no need
to include the position numbers for the db and text nodes.
Thus, this rooted data path can unambiguously be repre-
sented as (db.article.text.para, (1,3)) or, by using the XDG
node number, as (5, (1,3)). It is important to note that the
information about which labels in an instance of a label path
require a position number is derived from the XML source
and is easily kept with the XDG. We call this kind of node
ids path identifier.

Definition 6. (Path Identifier)
The Path Identifier (PID) of a node n in an XML source &
is a pair (m,p). m is the node number of the rooted label
path of n, Ipath(n), in the XDG associated with S. p is the
sequence of position numbers of the nodes with arity greater
than one on the path from the root of S to n.

PIDs encode important properties of ancestor-descendant
relationships among nodes that occur in an XML source.
The properties are summarized in Proposition 1. In the
proposition, “2” denotes node containment, also known as
ancestor-descendant relationship. “D;” stands for direct
node containment or parent-child relationship. Furthermore,
for a sequences s = (8;);cn<k, Prefiz(s) denotes the set of
all contiguous subsequences that start with s1, i.e., prefiz(s)

= {(81), (31, 82), ey (81, 82y... ,Sk_1),5}.

PROPOSITION 1. (PID Properties)
Let a and b be two nodes in an XML source S, and (ni, N1)
and (n2, N2) the PIDs of a and b, respectively. That is, n1
and ny are their node numbers in the XDG associated with
S, and N1 = (p11,p12,-.-,P1r) and Na = (p21,D22,- .., P2s)
are their position numbers as introduced in Definition 6.
Then the following holds:

a2b < anc(ni,n2)=1 A Ni € prefiz(N2) (1)
aDab & ng € children(ni) A Ni € prefiz(N2) (2)

PROOF. (1) Follows directly from the facts that anc(ni, n2)
is equivalent to Ipath(a) € prefiz(Ilpath(b)), and the prefix
property of sequences of PID position numbers implies the
prefix property in the related rooted data path since only po-
sitions for nodes with arity 1 are omitted. (2) Analogously
to (1) O

Notice that (2) = (1) in the proposition. Furthermore, no-
tice that for checking (direct) containment of two nodes a
and b, if the condition anc(ni,n2) =1 is not satisfied, then
there is no need to consider individual rooted data paths of
these nodes. This is an important property we will exploit
for efficiently processing queries using our PID scheme.

3.2.2 Encoding PIDs

For encoding a PID (n, (pi,p2,...,pr)), we observe that
each position number p; can be encoded using only [log, (k)]
bits where k is the maximum arity of nodes with the rooted
label path related to node number n. Consider the example
in Figure 4. db.article-related position numbers require just
one bit. db.article.title and db.article.text position numbers
require no additional bits, assuming the second article node
does not have more than a single title and text child node.
Assuming there are at most four db.article.text.para nodes
in the second article, only two further bits are required to

encode their position numbers.

In an encoding for PIDs, only necessary and sufficient posi-
tion numbers are appended to a single bit string, in which
position numbers closer to the root node become the most
significant bits. Based on such an encoding scheme, the pre-
fix check in Proposition 1 can be reduced to a prefix check
between bit strings. Assuming an implementation of the

XDG’s anc and children functions that allow for a lookup
in constant time, (direct) node containment then can be
checked in O(1).

As an example of encoded PIDs, consider the first article
node and the third para node in Figure 3, which is a descen-
dant of the article node. Their encoded PIDs are (2,' 0') and
(5, 010") respectively, where ’0’ and '010’ are bit strings. Ac-
cording to Proposition 1(1), the ancestor relationship holds
since 2 D 5 (based on node numbers in the XDG), and the
bit string ’0’ is a prefix of ’010’.

The following proposition states another important prop-
erty, which allows for a space efficient representation of PIDs
in an index, as we will show in Section 3.3.

PROPOSITION 2. (Encoded PID Properties)

Assume n instances of a rooted label path w in an XML
source S. Also assume position bit strings for PIDs related
to ™ have k bits, meaning that they can be interpreted as
(k-bit) integer numbers. Then, the sequence of position bit
strings of instances of w in S in document order is a strictly
monotonic sequence (a;);en<n, ond aiy1 = a; + 1 for some
i < n (and for most or even all i < n in some cases).

For example, the para nodes in Figure 4 have the position
bit strings '000’, ’001’, and '010’ of three bits length, follow-
ing the XML source node order. Assume the second article
in the example has two para child nodes. These would then
have position bits 100" and '101’. Interpreted as integers,
this gives the sequence (0,1,2,3,4,5). Assuming a third ar-
ticle with some more para nodes, the article-related position
numbers would have to grow from one to two bits, resulting
in a sequence of ’0000’, 0001, ..., ’0101’, ’1000’, ’1001, ...,
or (0,1,2,3,4,5,8,9,...). This is obviously a strictly mono-
tonic sequence of natural numbers with some gaps. The
important observation that we will confirm in our experi-
ments in Section 5 is that in real data there are frequently
only a few of such gaps This fact can be exploited for the
efficient storage of lists of PID positions related to a certain
node number (Section 3.3).

PRrROOF. (Proposition 2)
Monotonicity follows from the way position numbers are in-
crementally assigned to nodes in document order, and the
fact that position numbers of nodes closer to the root ap-
pear first in the position bit string. In order for at least
two directly consecutive numbers in the sequence (a;) to ex-
ist, consider the least significant group of bits related to the
node with arity larger than 0 closest to the leaf part of =.
The group must have at least one bit (otherwise it wouldn’t
exist). One bit, however, is only required if the node has an
arity greater than one, leading to two consecutive a;’s. [

Term#

term1 [—~{ 1'e]2]

41.‘5;.‘9;."“ H P

term 2 4" |

term 3 4"

Node#'s With Pointers
to Their Related List

. T-index

(11111
Node Label XDG Node%)'/ S~ (?gtitona;
—tree
Employee node 1 ,\/H\\H oo oo $ore
Department node 2= - D]]]]] inannn Sparse List of
. node 3|— - VRN __--~7 | k-BitPosition#'s
Article node 4| : [L1sl61el1alaloafe] - =-
Author Z—— = 7 8 1 Index to
node 5 Yo o3 5 5 7 0 doail = ~’| Physical Address
’A - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ . Physical Address
' node 9
Information .
from XDG P-index

Figure 5: Term (top) and path index (bottom) with mappings to PIDs and physical addresses

In the following, we use the term position number for a full
position bit string in the context of full paths and node num-
bers respectively, rather than for just single nodes. Then, a
PID is a pair of a node number and a position number, e.g.,
(5, 3) for the third para node in Figure 4.

Worst-case Analysis. In theory, PIDs can become quite
large. For an XML source with n = 3m + 1 nodes, the PID
can reach a maximum bit length of 2m +log(m+1) = O(n)
(left side of Figure 6), the node number accounting for only
log(m + 1) bits. A completely degenerate, linear tree (right
side in Figure 6) requires no bits for node positions, thus
giving an optimal PID length of log(n), but results in a
large main-memory XDG. However, as our experiments pre-

7 2 Bits 0 Bits -

Position Bits

Figure 6: Worst-case XML source for PIDs

sented in Section 5 confirm, such worst case scenarios rarely
occur in practice. In practice, not the worst-case behav-
ior of a node id scheme is considered, e.g., in [14], but the
application-relevant behavior matters. Furthermore, notice
that for an XML source with only few degenerated parts,
PIDs will only be longer for these parts. Thus, only the
storage and querying of these untypical, degenerated parts
are affected.

3.3 Index Structures

We now describe how the proposed node id and encoding
scheme is used in constructing space efficient index struc-
tures that support the processing of pattern queries.

As in similar approaches, the XML source to index is parsed
twice. During the first run, all information necessary to
construct the Extended DataGuide (XDG) is collected, in-
cluding information about existing rooted label paths and
their related arities. From the arities, the numbers of bits
required for all node and thus path position numbers are
derived. Here, as proposed in earlier schemes [17], some
room could be left in position numbers to account for future
insertions into the XML source. Due to space limitations,
however, we cannot discuss all the aspects of growing data
sources or the extension of our scheme to suitably account
for data modifications. During the first parsing run, addi-
tionally the complete text is tokenized in order to determine
terms (text strings) and related term statistics.

The second time the XML source is parsed, the XDG is
used to determine PIDs utilized in two main kinds of index
structures shown in the upper and lower part of Figure 5.

The first index structure maps term numbers to PIDs of
nodes the terms directly occur in. PIDs are grouped by
node numbers and sorted by node number as primary and
document order as secondary sorting criterion. A small pre-
ceding index, e.g., in form of a B-tree, allows for a direct
access to lists associated with node numbers. Since each
such list contains only PIDs related to a single node num-
ber, only position numbers of constant k-bit size need to be

stored. We call this index term index or T-index.

The second index, called path index or P-index, serves two
functions. It allows for (1) determining instances of a certain
rooted label path by providing lists of position numbers re-
lated to each node number. The index furthermore provides
for (2) a mapping from logical PIDs to the addresses of phys-
ical data locations. This is achieved by mapping the (accord-
ing to Proposition 2) monotonic sequences of position num-
bers that contain some gaps, e.g., (1,2,3, <gap>,6,7,8,9,
<gap>, 13,14, 15, <gap>, 21), to the trivial, continuous se-
quence (1,2,3,4, 5,...). The latter sequence can easily be
used as direct pointers into a sequential flat or paged list
of physical addresses. The indirection between logical and
physical identifiers is desirable in order to account for data
modifications.

The mapping from logical to physical ids does not require
storing an index position to a physical address for every
position number. Only the first number in each contiguous
subsequence requires a stored mapping, for instance, in the
above example, the mapping from position numbers 1 to 1,
6 to 4, 13 to 8, 21 to 11 (see also Figure 5). Information
about which other position numbers and thus, PIDs, exist
for the current node number, and the position of the physical
counter part can be derived by looking at the respective next
entry in the list, e.g., (6,4) for (1,1), and (13,8) for (6,4) etc.
After the first and second entry, there have to be 4—1—1 =2
and 8 — 4 — 1 = 3 entries whose mappings are not included
explicitly. Their related physical address indices must be
1+1=2and14+2=3,and4+1=05,4+2 =6, etc.

PIDs are suitable for other kinds of indexes that support
non-containment-based conditions as well, e.g., a B-tree over
time values for which a < comparison is important. Such
a comparison is not supported by a term index as in our
or existing structural join approaches. If each entry in the
additional index leads to a PID, it is possible to incorporate
a path condition check without accessing any other index.

4. QUERY PROCESSING

In this section, we discuss the processing of different types
of queries using the PID scheme and index structures intro-
duced in the previous section. We start with path pattern
queries in Section 4.1, and discuss the processing of tree
pattern queries, including a general algorithm and several
optimization aspects, in Section 4.2.

4.1 Path Pattern Queries

Path pattern queries are the most simple type of queries
since they do not contain conditions or branches. Consider
the simple path pattern query Document/Author/Name ask-
ing for all names of authors in documents. The leaf node
of this pattern is Name. The Extended DataGuide (XDG)

provides us with direct pointers to all nodes labeled Name in
the XDG. The nodes directly relate to a rooted label path.
By traversing all such Name nodes backwards in the XDG
up to the root node, it is easy to discover all label paths
that match the given pattern. The node number associated
with each remaining Name node that matches the pattern
then leads directly to a related path index list that contains
exactly the query result.

The index list with its position numbers complements the
node number obtained from the XDG to deliver full PIDs.
The PIDs then identify the nodes in the data source that
form the query result. Furthermore, an access to the path
index can deliver physical address locations on the fly while
answering a query. Here, as in all later examples, if and
only if the result has to be in document order, we have to
merge lists for multiple node numbers into one list. Since
every list itself is already in document order the merging
can be done in linear time with respect to the number of
elements in all lists combined. Path patterns that include a
condition on text are handled in an analogous fashion. The
only difference of a path pattern that ends in a term like
in Document/Author/Name/” Smith” is that the term index
instead of the path index is used.

If the path pattern involves ancestor-descendant relation-
ships, e.g., Document//Author, the same procedure as above
is applied. If the query path contains a condition on a term
as a descendant element, e.g., Author//”Smith”, the result
is a set of adjacent lists in the term index starting with the
number of, in the example, an Author node. If the node num-
ber of an Author node is 17, then all its descendant nodes
have numbers in the interval [17, 2] where z is a descendant
of node 17, but = + 1 is not.

The above examples show that all kinds of path pattern
queries can be processed very efficiently by using the XDG
and index structures introduce in our approach. The general
procedure always consists of two steps. It begins by finding
instances of a query pattern within the XDG. The instances
are rooted label paths in the XDG. The leaf node numbers
of these paths then lead to lists in the indexes which deliver
instances of the rooted label paths in the source, i.e., PIDs
that represent rooted data paths.

4.2 Tree Pattern Queries

Our basic procedure for processing tree pattern queries is
similar to earlier structural join approaches in that a com-
plete query tree pattern (QTP) is broken up into smaller
units. For each of these simpler units, potential instances are
identified through the index structures. Then, the units are
stitched together to the full pattern by joining smaller units
to larger units. However, unlike in the earlier approaches,

the units are not nodes with a certain label but complete
rooted paths. The paths that together assemble the query
tree pattern are matched based on the information from the
XDG. Only then, joins between index lists that are known
to produce the pattern are executed. Joins are required only
for every branch point and not for every edge in the QTP,
thus leading to an obvious improvement in efficiently pro-
cessing such types of queries.

Consider the example QTP shown at the top of Figure 7. In
an XPath-like format, the query can be expressed as Docu-
ment[./Abstract//” XML"]//Author[./Address/Country/” USA”
and .//Email]. The query asks for documents that contain

Document

/ \ Query Pattern Tree
Abstract

H / \ Every branch

. requires ajoin
"XML" Address Email au! ot

@

Country

<root> <root> <root> <root>

"USA"

@ DocumentDocument Document

‘ Histo‘rical ‘
{ } }
Aut‘hors’ Docu‘men{
|
Add‘ress Add‘ress
| | |

Address Country Email Email
Node# | ‘ 21 87
ode " " Expanded Label
i ~ Countr p
"USA"

Figure 7: QTP and one of two "macro joins”

“XML” in the abstract and have an author with an address
in the United States and at least one E-mail address.

There are three leaf nodes in the example QTP. In the fig-
ure, they are identified by the encircled numbers 1, 2, and 3.
Each leaf node in the QTP has a related query path P; start-
ing at the root of the QTP. In the first step, all instances
of these query paths within the XDG that together assem-
ble the full query pattern are identified. E.g., in the figure
assume the two instances for each of the paths P> and P
as given (for the moment, we ignore the terms "XML” and
”USA”). Each query path instance is uniquely identified by
a node number. Thus, we can consider all instances related
to a query path P; as a set P; = {ps1,pi2, - . . Dix; }, where the
pi; are node numbers, overloading the symbol P; with this
second meaning. In the example, we have P> = {13,21} and
P3 = {15,37}; assume P; = {5, 8,9} — the related instances
are not shown in the figure.

An instance of the full query pattern can be considered as

a node number tuple T" = (p1,p2,...,p1),pi € P;, where [

is the number of leaf nodes in the query pattern. That is,
the tuple consists of one rooted label path for each of the
leaf-related query paths. There are k1 x k2 X ... X k; poten-
tial matches for the query pattern. In the example, we have
3x2x2 = 12 potential instances of the query pattern. How-
ever, notice that the paths related to the node numbers 13
and 37 do not match even though the paths below Author
match and both have a Document ancestor above Author.
Thus, there can not be any matching (x, 13, 37) tuple. This
results in checks for other matches becoming redundant. All
the combinations of nodes can be checked based on the XDG
before looking at any of their data paths represented in the
index, an important aspect that can lead to a drastic de-
crease of join operations. For our running example, a graph
as shown in Figure 8 might result. A path from the left to

Instances of
query paths

Py P2 P3
XU
™13 ias--=(8.21,19)
8/ 4 !
Lo ‘21‘ ;37:”>(8, 21, 37)
! 91 ! 1 ! 1

\ \ N

Figure 8: Query path instances and their matches

as full query tree pattern

the right through all the groups of node numbers represents
a valid query pattern instance in the XDG, i.e., only for
those paths potential join results can exist. However, this
does not necessarily imply that any such instance exists in
the data source.

In order to determine instances of the query pattern in the
data source we have to match instances of the node number
tuples representing the pattern within the XDG. Each node
number directly leads to exactly one list within our indexes.
For matching elements, i.e., position numbers, in two such
lists, only a bit string prefix match has to be executed. The
exact number of bits is determined by the position of the
branch point between the two related paths. For instance,
in Figure 7, the selection node Author is also a branch point.
For matching, e.g., the paths with the numbers 21 and 15,
we just have to know how many bits the position number
takes from the root to the author node. This information is
readily available in the XDG. Two instances of the nodes 21
and 15 that share this bit prefix in their position numbers
necessarily match (see also Proposition 1). The number of
bits of this prefix is fixed for each pair of node numbers as
node numbers denote unique rooted label paths. Thus, the
number of bits can be predetermined during the construction
of the graph in Figure 8.

Each node number-related list in the index is in document

order. Therefore a standard merge-join can be applied.
However, there is no need to maintain pairs of matching
elements from two lists, as both elements encode informa-
tion for a full rooted data path. Thus, a semi-join is applied.
In case the selection node is on the path for one of the lists,
the elements from that list need to be kept, making this
list the outer list in the semi-join. If the selection node is
on both related paths or none, the outer list can be freely
chosen. The only requirement for the join order is to match
longer paths in terms of position number bits first. This
condition is satisfied if joins related to QTP branch points
are executed bottom up (in terms of paths in the XDG).

For the list order, the results of the joins related to one node
tuple are always ordered, as the semi-join keeps the existing
order. When the same node is involved in multiple joins,
e.g., 8in (8,21,15) and (8,21, 37) in in Figure 8, we obtain
multiple lists related to one node. Each of these lists is still
in document order. However, if the final result has to be in
document order, lists with the same node number as well as
lists of different node numbers need to be merged.

Reconstructing instances of a QTP as described above po-
tentially requires several “micro joins”, i.e., semi-joins on in-
dex lists, for every “macro join” (a conceptual join between
query paths related to leaf nodes in the query pattern). Fig-
ure 7 shows the macro join for the Author branch point and
the label paths whose lists are involved in its related micro
joins. The implementation of a macro join as several micro
joins involves loading multiple lists into main memory at the
same time, or possibly reloading some lists.

In the following, we provide a more concise form of the query
processing algorithm for tree pattern queries, summarizing
the above individual steps. After this, we outline several
optimization approaches that greatly reduce the costs asso-
ciated with joins.

Algorithm QTP_Matching(QTP Q)
Input: Minimized pattern tree @ with [leaf nodes and one
distinguished selection node
Output: A list R of PIDs that match Q in the position of
the selection node

1. Determine all leaf nodes in Q (ignoring term conditions)
2. For each of the leaf nodes 1...1:

(a) find all instances of the path pattern from the leaf
to the root of @ in the Extended DataGuide (XDG)

(b) let P; = {ni1,ms2,...,nik, } be the set of node
numbers related to these instances

3. For all I-tuples T' = (p1,p2,-..,m),p: € Pi:

(a) determine whether the rooted label paths related
to the node numbers p1,p2, ..., pr constitute a tree

that matches @

(b) while checking this, for every branch point node,
look up the total number of bits of its position num-
ber in the XDG

4. For every resulting tuple 77 = (pl, ph, ..., p}):

(a) Fetch the list for p; from the index; let L be this list
(b) Fori=2tol:
i. fetch L;, the list related to p;, from the term
or path index
ii. if p; contains the selection node and p; does
not, swap L and L;

iii. semi-join L; and L using L as the outer list

(c) Append L to the result list R

5. If results need to be in document order, merge-sort R

The principle procedure given in step four of the algorithm
is very basic in that it does not account for any adaptable
grouping of joins across different tuples 7. Thus, this step
will benefit most from an optimization. Furthermore, the
seemingly significant number of micro joins appears to be
a serious cost factor in our approach. However, it should
be noted again that in our approach much less macro joins
than in earlier approaches need to be performed. Further-
more, lists are rather fine-grained and thus relatively short.
In particular, the sparse storage of path index entries (s.
Section 3.3) greatly reduces the number of list elements to
be loaded as we show Section 5. Here, wirtual joins that
do not instantiate list elements but join a consecutive range
of elements represented by just one index entry would be
extremely effective.

There are several more types of optimizations that can be
applied. As a first, basic optimization, we can assume that
the QTP is minimized [22]. Moreover, notice that a graph
like the one in Figure 8 contains complete information about
what lists are used most frequently in joins. Given the fact
that the indexes also directly contain the length of each lists,
this provides for an optimal join order selection, given the
memory availability etc. of the execution environment of the
query engine. This is because the length of a list represents
the selectivity of a rooted label path.

5. EXPERIMENTAL EVALUATION

In this section, we analyze in detail various statistics of our
indexing and PID scheme, in particular their size. For this,
we have implemented a system from scratch that produces
the exact index structures discussed in Section 3. Further-
more, we have implemented the related index structures as

Name Size [Kb] Nodes (% attributes) Terms (unique) XDG nodes (labels) Depth
XMark 1Gb 1,144,846 20,532,978 (19%) 126 mio (47,537) 548 (83) 12
XMark 500 480,625 8,631,135 (19%) 52.5 mio (47,464) 548 (83) 12
XMark 100 113,793 2,048,193 (19%) 12.4 mio (46,235) 548 (83) 12
XMark 10 11,396 206,130 (19%) 1.2 mio (32,725) 536 (83) 12
Reuters 1,386,468 37,864,292 (51%) 174 mio (313,800) 27 (26) 7
LA Times 486,681 5,472,913 (10%) 72.9 mio (250,560) 71 (28) 7
Shakespeare 7,469 179,690 (0%) 0.9 mio (23,076) 58 (22) 7
Table 1: General XML data source statistics

Name Path index [Kb] Term index [Kb] Node id length [bits]

Ival PID Ival PID Ival PIDmax (pos#) Pos#avg
XMark 1Gb 142,869 24,764 (17.3%) 865,119 313,803 (36.3%) 54 39 (29) 19.79
XMark 500 57,949 9,756 (16.8%) 347,819 130,302 (37.5%) 52 38 (28) 18.78
XMark 100 12,251 2,051 (16.7%) 73,729 32,643 (44.3%) 46 36 (26) 16.64
XMark 10 1,082 164 (15.2%) 6,731 4,384 (65.1%) 40 31 (21) 12.95
Reuters 268,082 57,193 (21.3%) 1,140,548 531,578 (46.6%) 55 34 (29) 26.89
LA Times 34,740 5,537 (15.9%) 395,495 221,669 (56%) 49 48 (41) 29.08
Shakespeare 921 338 (36.7%) 4,716 3,173 (67.3%) 39 35 (29) 28.17

Table 2: Index size statistics for our PID and the structural join interval id (Ival) scheme

utilized in the structural join approach of [31, 2] and ex-
tended in [6, 5]. These approaches are based on the interval
(Tval) node identification scheme.

Our index structures utilize a bit-accurate storage of PIDs.
In order to make the index sizes reported here for both
schemes comparable, we also store Ival ids in only the re-
quired number of bits. That is, an XML source with n nodes
and a maximum tree depth of d requires only [2xlog,(n)]+
[log,(d)] bits for storing an Ival id’s interval bounds and tree
depth. As a result, our implementation of the earlier ap-
proach is significantly more storage efficient than reported,
e.g., in [31]. Moreover, notice that the improvements [6, 5]
of the basic structural join approach are based largely on
further extending the earlier indexes. The resulting index
sizes, however, are not reported. Consequently, the index
size numbers we present here for the Ival scheme can be
considered a lower bound for the whole class of structural
join approaches.

Table 1 presents the main statistics for the XML sources
used for evaluating our index structures. We mainly rely
on sources of auction-related data generated by the XML
Benchmark project’s XML generator [24]. These sources
contain a fair amount of structure, similar to the typical
data we expect our scheme to be applied to, e.g., views over
relational databases. The other sources are mostly collec-
tions of text documents with little structure but more text.

However, due to their different structure, document collec-

tions still provide valuable insights into our indexing scheme.
LA Times is a source typically used for information retrieval
testing, and is part of the standard Text Retrieval Confer-
ence (TREC') document collections. Reuters refers to disk
1 of the Reuters Corpus [32].

The Extended DataGuide (XDG) is meant to always reside
in main memory. The largest XDG for all the test sources
consists of 548 nodes. Our current implementation uses a
flag of one bit for each pair of nodes to represent the node
This leads to about 37 Kb of
required memory. The children function is implemented as

number ancestor function.

a list. Together with a few parameters stored for each node,
e.g., the total number of bits of a node’s position number,
this still results in a very reasonable memory requirement
for the whole XDG below 100 Kb.

Table 1 lists the size and total number of nodes (attributes
and elements) with the percentage of attribute nodes in
brackets. Furthermore, the number of unique terms and the
number of their instances, i.e., tokens extracted from the
text, are given. As the last columns in the table, the num-
ber of nodes in the XDG and the number of distinct node
labels as well as the depth of the XML tree give an insight
into the structural complexity of the source. The number
of terms and thus, the term index size, depend on the tok-
enization algorithm employed. In general, we tokenize using

trec.nist.gov

whitespace characters. Only the large number of idref val-
ues, e.g., "person7512” in the XMark source, are split up
into a constant part that still distinguishes the idref from a
regular "person” term, and the number part. All numbers
are split up into groups of at most four digits. All terms are
converted to lower case, but no terms are eliminated based
on their high frequency (“stop-wording” [30]).

Table 2 presents the index and node identifier sizes for all
XML sources for both approaches. The percentage numbers
in brackets are the relative size of the PID index with respect
to the Ival index. For the XMark sources, our path index is
at about 16% of the size of the Ival index. We cannot ex-
plain the slight percentage increase for growing sources, but
believe it to be no general trend. The relative size of the
term index decreases significantly for growing source size,
due to the relatively shrinking overhead each node position
list introduces. Even if a term occurs only once under a cer-
tain rooted label path, a frequent case especially for small
sources, a pointer within the term-internal index (see Figure
5) and the list length is stored. Therefore, the smallest rela-
tive index size of about 36% (for XMark 1Gb), compared to
the Ival term index, can be expected for other data sources
of equal or greater size as well.

For the document collections, the absolute storage space re-
quired is in general greater for the term index, because of
the higher number of unique terms and the higher percent-
age of text. The Shakespeare collection is rather small and
shows again a significant overhead introduced by the larger
number of small lists in the PID indexes.

The total size of both indexes combined and the size of the
node and term index alone (in brackets) are given in Table 3
as percentage of the source size. It is an interesting fact that
the PID schemes effectiveness increases with the size of the
XML source and in particular with an increasingly complex
structure. This is because the XDG encodes information
about the structure effectively outside the index, eliminating
redundant storage of structure information with every index

entry.
Name Size (Ival)[%] Size (PID)[%)]
XMark 1Gb 88.1 (125/75.6) 29.6 (2.2/27.4)
XMark 500 84.4 (12.0/72.4) 29.1 (2.0/27.1)
XMark 100 75.6 (10.7/64.8) 30.5 (1.8/28.6)
XMark 10 68.6 (9.5/59.0) 39.9 (1.8/38.5)
Reuters 101.6 (19.3/82.3) 42.5 (4.1/38.3)
LA Times 88.4 (7.1/81.3) 46.7 (1.1/45.5)
Shakespeare 75.5 (12.3/63.1) 47.0 (4.5/42.5)

Table 3: Index sizes with respect to the XML source

Even the maximum length of PIDs is always below that of

the interval scheme, as also shown in Table 2. Still, only
the PID’s position number, which is only a part of the PID,
is repeatedly stored in the indexes. However, despite being
fixed-length within each index list, the value that actually
determines the effectiveness of PID’s position numbers is its
average length (Pos#tavg). The average is reported over all
entries in the term index and remarkably low for all XMark
sources. For the other sources, the relatively small amount
of structure requires more information to be encoded into
position numbers as indicated above.

A low average PID (position) length results from a favorable
term distribution with respect to the depth of the XML
source. If terms occur significantly below the maximum
depth of the XML tree, the average position number length
decreases. Figure 9 shows that this is the case for XMark
1Gb. Notice that the maximum depth of the XMark sources
is 12, for all the other sources 7. For Reuters, and LA Times
as document collections, text is mostly contained at a sin-
gle node which is close to or at the maximum tree depth.
The figure clearly shows how well the PID scheme adapts to
database-style, structured data exploiting the relatively low
depth of text for a more efficient storage.

i
1M1 g
l ——
c 9=
§ ¥ OLA Times
g 7] W Reuters
g 5] : EXmark 1Gb

0.00% 20.00% 40.00% 60.00% 80.00%
% of all terms

Figure 9: Percentage of terms at a certain tree depth

Figure 10 provides more details about how many elements
within the term index have an n-bit position number, for all
occurring n. This number is directly related to the storage

100%

90% - _

80%

70%

60% - O Xmark 1Gb
50% - H Reuters
40% - OLA Times
30% -

20% - m

0% |l [

0% - man ll Dol p o N

13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Position# length [bits]

Figure 10: Term index entries per position# length

space required by the term index. It can be seen again, that

the relatively large amount of text stored close to the max-
imum depth for the Reuters and LA Times sources causes
mostly long PIDs. For XMark, middle-sized PID lengths
attract the most text.

The small size of the PID path index both relatively to the
Ival approach as well as with respect to the source is founded
in the sparse storage of consecutive position numbers. Fig-
ure 11 sheds some light on this. The figure shows the total
number of elements as the complete bar and the number of
elements actually stored for the XMark 1Gb data source.
The dark parts at the bottom of each bar relating to the

= 700
600 -
500 -

400 ~ Not stored
300 + m Stored

200

100 w1

0 ,___.AAMW_MMLNMMM_.;___&ILM_W

1 45 89 133177 221 265 309 353 397 441 485 529
Node#

Node list elements [in 1000

Figure 11: Total and actually stored node list entries

number of stored elements are hardly noticeable. As the un-
derlying data shows more clearly than the figure, the shorter
lists usually have a higher percentage of elements that need
to be stored than the longer list (which are the once most vis-
ible in the figure). The total number of nodes is about 20.5
mio (see Table 1). The average list length is about 37,000.
the average number of elements stored is about 10,000. The
maximum list length is almost 600,000. Actually stored are
at most 112,000 elements in one list. 112 of the 548 lists
(20%) require only a single element to be stored. Notice
that in particular for these lists, if involved in a micro join
as introduced in Section 4.2, only a single element needs to
be loaded. This eliminates the cost for many of these joins
almost completely and allows for effective virtual joins (s.
Section 4.2). The same holds for the other only partly stored
list, although to a smaller degree.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced Path Identifiers (PIDs), a new
XML node identification scheme. In combination with an

extension of an in-memory, tree-based DataGuide, PIDs space-

efficiently encode full rooted paths in a data source. PIDs
are utilized in two index structures that map terms and
rooted label paths to lists of PIDs of their occurrence. The
indexes are very space efficient taking less than a third of the
space of the indexed XML source, which is less than 40% of
the size of existing, comparable approaches for reasonably-
sized, database-style data. Through the directly encoded
path information, path pattern queries are trivial to answer

in our PID scheme. Tree pattern queries benefit from shift-
ing much of the query processing effort to main memory,
eliminating a large number of disk accesses. Furthermore,
significant improvements can be expected when PIDs are
used in indexes not based on containment or equality, e.g.,
B-trees over values with a '<’ order.

We are currently investigating several optimizations of tree
pattern queries using our approach, most notably join order
selection and wirtual joins, which directly work on sparse
lists of PIDs implicitly representing a much larger number
of PIDs. Moreover, we are studying the significant influ-
ence of different tokenization algorithms on the usefulness
and storage-efficiency of our index structures. Here, the se-
lectivity of terms plays a major role. A further interesting
aspect we consider is index compression. So far, each PID
effectively encodes its related path information. However,
no overall compression is employed despite some obvious
regularities within PID lists which could be exploited for
an index compression. Finally, we are working on extend-
ing our indexing scheme to allow for data modifications and
construction of an indexed XML source from scratch.

7. ACKNOWLEDGEMENTS
We thank Reuters for providing us with the Reuters Corpus.

8. REFERENCES
[1] S. Abiteboul, H. Kaplan, T. Milo. Compact labeling
schemes for ancestor queries. In 12th Annual Symp. on
Discrete Algorithms (SODA), 547-556, 2001.

[2

S. Al-Khalifa, H. Jagadish, N. Koudas, J. M. Patel,
D. Srivastava, Y. Wu. Structural joins: A primitive for
efficient XML query pattern matching. In

Int. Conference on Data Engineering, 141-152, 2002.

[3] S. Amer-Yahia, S. Cho, L. Lakshamanan,
D. Srivastava. Minimization of tree pattern queries. In
SIGMOD Int’l Conf. on Management of Data,
497-508, 2001.

[4] S. Boag, D. Chamberlin, M. F. Fernandez,
D. Florescu, J. Robie, J. Siméon, M. Stefanescu.
XQuery 1.0: An XML query language. W3C working
draft, W3C, Apr. 2002. www.w3.org/TR/xquery/.

[6] N. Bruno, N. Koudas, D. Srivastava. Holistic twig
joins: Optimal XML pattern matching. In SIGMOD
Int’l Conf. on Management of Data, 310-311, 2002.

[6] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras,
C. Zaniolo. Efficient structural joins on indexed XML
documents. In 28th VLDB Conference, 2002.

[7] J. Clark , S. DeRose. XML path language (xpath).
W3C recommendation, W3C, Nov. 1999.
www.w3.org/TR/xpath/.

(8]

[9]

[14]

[15]

[16]

[17]

[22]

E. Cohen, H. Kaplan, T. Milo. Labeling dynamic
XML trees. In Symposium on Principles of Database
Systems (PODS), 271-281, 2002.

B. F. Cooper, N. Samle, M. J. Franklin, G. R.
Hjaltson, M. Shadmon. A fast index for
semistructured data. In 27th VLDB Conference, 2001.

A. Deutsch, M. Fernandez, D. Suciu. Storing
semistructured data with stored. In SIGMOD Int’l
Conf. on Management of Data, 431-442, 1999.

A. Eickler, C. A. Gerlhof, D. Kossmann. A
performance evaluation of oid mapping techniques. In
21th International Conference on Very Large
Databases (VLDB), 18-29, 1995.

D. Florescu , D. Kossmann. Storing and querying
XML data using an rdbms. In IEEE Data Engineering
Bulletin, volume 22, 27-34, 1999.

R. Goldman, J. Widom. Dataguides: Enabling query
formulation and optimization in semistrucutred
databases. In 23rd VLDB Conference, 436—445, 1997.

H. Kaplan, T. Milo, R. Shabo. A comparison of
labeling schemes for ancestor queries. In 11th Annual
Symp. on Discrete Algorithms (SODA), 2002.

G. Koch, C. Koch, R. Pichler. Efficient algorithms for
processing XPath queries. In 28th VLDB Conference,
2002.

C.-C. Kanne, G. Moerkotte. Efficient storage of XML
data. In Int’t Conference on Data Engineering 2000,
pp- 198, 2000.

Q. Li, B. Moon. Indexing and querying XML data for
regular path expressions. In 27th VLDB Conference,
361-370, 2001.

J. McHugh, J. Widom. Query optimization for XML.
Technical report, Stanford University, 1999.

J. McHugh, J. Widom, S. Abiteboul, Q. Luo,
A. Rajaraman. Indexing semistructured data.
Technical report, Stanford University, 1998.

T. Milo, D. Suciu. Indez Structures for Path
Ezxpressions, In ICDT 99, 277-295. LNCS 1540,
Springer, 1999.

S. Nestorov, J. Ullmann, J. Wiener, S. Chawathe.
Representative objects: Concise representations of
semistructured, hierarchical data. In 13th Int’l
Conference on Data Engineering (ICDE), 79-90, 1997.

P. Ramanan. Efficient algorithms for minimizing tree
pattern queries. In SIGMOD Int’l Conference on
Management of Data, 299-309, 2002.

23]

[24]

(25]

[26]

27]

28]

[29]

(30]

31]

32]

[33]

[34]

R. Sacks-Davis, T. Dao, J. A. Thom, J. Zobel.
Indexing documents for queries on structure, content
and attributes. In Intl’l Symposium on Digital Media
Information Base, 236-245, 1997.

A. Schmidt, F. Waas, M. Kersten, D. Florescu,

I. Manolescu, M. Carey, R. Busse. The XML
benchmark project. Technical Report INS-R0103,
Centrum voor Wiskunde en Informatica, Apr. 2001.

J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, B. Reinwald. Efficiently
publishing relational data as XML documents. The
VLDB Journal, 10:133-154, 2000.

D. Shasha, J. T.-L. Wang, R. Giugno. Algorithmics
and applications of tree and graph searching. In
Symp. on Principles of Database Systems, 39-52, 2002.

E. J. Shekita, M. J. Carey. A performance evaluation
of pointer-based joins. In SIGMOD Int’l Conference
on Management of Data, 300-311, 1990.

P. M. Tolani and J. R. Haritsa. Xgrind: A
query-friendly XML compressor. In 8th Int’l
Conference on Data Engineering, 225-234, 2002.

I. Tatarinov, S. D. Viglas, K. Beyer,

J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered xml using a relational
database system. In Proceedings of SIGMOD 2002,
pages 204-215, 2002.

I. H. Witten, A. Moffat, T. C. Bell. Managing
Gigabytes — Compressing and Indexing Documents
and Images. Morgan Kaufmann, 2nd edition, 1999.

C. Zhang, J. Naughton, D. DeWitt, Q. Luo,

G. Lohman. On supporting containment queries in
relational database management systems. In SIGMOD
Int’l Conf. on Management of Data, 425-436, 2001.

Reuters Corpus, Volume 1, English language,
1996-08-20 to 1997-08-19, Release data 2000-11-03,
Format version 1, Correction level 0. Reuters, 2000.
about.reuters.com /researchandstandards-
/corpus/index.asp.

The University of Michigan Timber Project.
www.eecs.umich.edu/db/timber.

The University of Wisconsin Niagara Project.

www.cs.wisc.edu/niagara.

