XDuce: A Typed XML Processing Language

(Preliminary Report)

Haruo Hosoya
Department of CIS
University of Pennsylvania

hahosoya@cis.upenn.edu

1. INTRODUCTION

Among the reasons for the popularity of XML is the hope
that the static typing provided by DTDs [13] (or more so-
phisticated mechanisms such as XML-Schema [14]) will im-
prove the safety of data exchange and processing. But, in
order to make the best use of such typing mechanisms, we
need to go beyond types for documents and exploit type
information in static checking of programs for XML process-
ing.

In this paper, we present a preliminary design for a statically
typed programming language, XDuce (pronounced “trans-
duce”). XDuce is a tree transformation language, similar in
spirit to mainstream functional languages but specialized to
the domain of XML processing. Its novel features are regular
ezpression types and a corresponding mechanism for reqular
ezpression pattern matching. Regular expression types are
a natural generalization of DTDs, describing, as DTDs do,
structures in XML documents using regular expression oper-
ators (i.e., *, 7, |, etc.). Moreover, regular expression types
support a simple but powerful notion of subtyping, yielding
a substantial degree of flexibility in programming. Regular
expression pattern matching is similar to ML pattern match-
ing except that regular expression types can be embedded
in patterns, which allows even more flexible matching.

In this preliminary report, we show by example the role of
these features in writing robust and flexible programs for
XML processing. After discussing the relationship of our
work to other work, we briefly sketch some larger applica-
tions that we have written in XDuce, and close with remarks
on future work. A formal definition of the core language can
be found in the full version of this paper [6].

2. PROGRAMMING IN XDUCE

We develop a series of examples of programming in XDuce,
using regular expression types and regular expression pat-
tern matching.

2.1 Regular Expression Types
211 Valuesand Types

XDuce’s values are XML documents. A XDuce program
may read in an XML document as a value and write out a
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value as an XML document. Even values for intermediate
results during the execution of the program have a one-to-
one correspondance to XML documents (besides some trivial
differences).

As concrete syntax, the user has two choices: XML syntax
or XDuce’s native syntax. We can either write the following
XDuce value (we assign it to the variable mybook for later
explanation)

val mybook = addrbook[
name ["Haruo Hosoya"],
addr ["Tokyo"],
name ["ABC"],
addr["Def"],
tel["123-456-789"],
name ["Benjamin Pierce"],
addr ["Philadelphia"]]

in the native syntax, or the following corresponding docu-
ment in standard XML syntax:

<addrbook>
<name>Haruo Hosoya</name>
<addr>Tokyo</addr>
<name>ABC</name>
<addr>Def</addr>
<tel>123-456-789</tel>
<name>Benjamin Pierce</name>
<addr>Philadelphia</addr>

</addrbook>

XDuce provides term constructors of the form label[...],
where . .. is a sequence of other values. This corresponds to
<label>...</label> in XML notation. We enclose strings
in double-quotes, unlike XML.

Observe the sequence contained in addrbook. It is natural to
impose a structure on the seven children so that they can be
regarded as three “entries,” each of which consists of fields
tagged name, addr and optional tel. We can capture this
structure by defining the following regular expression types.

type Addrbook = addrbook[(Name,Addr,Tel?)*]
type Name = name[String]

type Addr = addr[String]

type Tel = tel[String]



These XDuce definitions roughly correspond to the following
DTD:

<!ELEMENT addrbook (name,addr,tel?)x*>
<!'ELEMENT name #PCDATA>
<!'ELEMENT addr #PCDATA>
<!ELEMENT tel #PCDATA>

(Just as XDuce can read standard XML documents, we also
provide a construct to import DTDs as regular expression
types.) Type constructors labell[...] have the same form
as the term constructors that they classify. In addition,
types may be formed using the regular expression operators
* for repetition, | for alternation, and 7 for optional ele-
ments. (We will show examples of alternations later.) For
instance, the type (Name,Addr,Tel?)* stands for zero or
more repetitions of the sequence of a Name, an Addr, and an
optional Tel.

The notion of subtyping will play a crucial role in the calcu-
lation that justifies assigning the type Addrbook to the value
mybook.

2.1.2 Subtyping

Before showing the subtyping relation, we need to clearly
state this: the elements of every type in XDuce are se-
quences. For example, the type Tel* contains the following
sequences.

O the empty sequence
tel["123"] sequence with one Tel
tel["123"],tel["234"] sequence with two Tel’s

In the type language, comma is the type constructor for con-
catenation of sequences. For example, the type (Name,Tel*,
Addr) contains

name ["abc"],addr ["ABC"]
name["abc"],tel["123"],addr ["ABC"]
name["abc"],tel["123"],tel["234"],addr ["ABC"]

i.e., sequences with one Name value, followed by zero or more
Tel values, then followed by one Addr value. The comma op-
erator on types is associative: the types ( (Name,Tel*) ,Addr)
and (Name, (Tel*,Addr)) have exactly the same set of ele-
ments.

The subtype relation between two types is simply inclusion
of the sets denoted by types.

We now show the sequence of steps involved in verifying that
mybook has type Addrbook. First, from the intuition that ?
means “optional,” we would expect the following relations:

Name, Addr <: Name,Addr,Tel?
Name,Addr,Tel <: Name,Addr,Tel?

Notice that each right hand side has more possibilities than
the left hand side. Similarly, * means “zero or more” intu-
itively, so in particular it could be three:

T,T, T < T=*

Combining these relations, we obtain

(Name,Addr) , (Name,Addr,Tel) , (Name, Addr)
<: (Name,Addr,Tel?) *.

Since comma is associative, we can get rid of parentheses:

Name ,Addr ,Name,Addr,Tel ,Name,Addr
= (Name,Addr), (Name,Addr,Tel), (Name,Addr)

(Here, we mean by T = U that both T <t U and U < T.)
Finally, combining these two relations and enclosing both
sides by addrbook constructor, we obtain

addrbook [Name ,Addr ,Name ,Addr,Tel,Name,Addr]

<: addrbook[(Name,Addr,Tel?) *]

€ef pddrbook.

Since the mybook value trivially has the type on the left hand
side, it has also the type on the right hand side.

2.1.3 Union Types

XDuce also provides a union (or alternation) type construc-
tor |. For example, we write (Name|Tel) to mean “either
Name or Tel”; the basic subtyping relations for union types
are the following,.

Name <
Tel <

Name | Tel
Name | Tel

Notice that each right hand side offers more possibilities,
and so describes a larger set of sequences.

Union types substantially increase our flexibility in program-
ming. In particular, union types yield two interesting re-
lations: “forget ordering” subtyping and “distributivity.”
These are the distinguishing points in union types, as op-
posed to conventional tagged sum types (as found, say, in
ML). To illustrate these, let us consider the following sce-
nario of a “database evolution.”

Suppose we begin with a trivial database consisting of just a
list of names, with type Name*. At some point, this database
is copied to two different sites and maintained and evolved
separately. At one site, address information is added to each
name and the type of the database becomes (Name,Addr) *,
while at the other telephone numbers are added and it be-
comes (Name,Tel)*.

Now, suppose we want to re-integrate these databases—that
is, combine the copies srcl, whose type is (Name,Addr)*,
and src2 of type (Name,Tel) * by concatenating them: srci,
src2. The type of this merged database is, of course, (Name,
Addr) *, (Name,Tel)*.

Next, suppose we want to do something with our new database
that involves extracting the common part (i.e., the name)
from each record. Since we have two repetitions in the type,
we might expect to need two loops in the program. (We do
not show such a program explicitly, but it is easy to write.)
However, we can do better by making the two loops into
one, using the following “forget ordering” subtype relation:

(Name,Addr)*, (Name,Tel)*
< ((Name,Addr) | (Name,Tel))*



The intuition behind this relation is that the ordering infor-
mation of the left hand side is forgotten on the right hand
side. That is, on the left hand side, any (Name,Tel) pairs
must occur after any (Name,Addr) pairs, while on the right
hand side, these pairs can appear in any order.

Finally, since we have two alternatives joined by | in the
new type, we might expect to need two branches in our
inner loop, to extract the Name field from each of them. But
we don’t: we can use the following distributive subtyping
law

(Name,Addr) | (Name,Tel) = Name,(Addr | Tel)

to reorganize the type so that the Name field can be accessed
directly.

2.2 Regular Expression Pattern Matching

Our term language is based on a powerful form of pattern
matching. Our pattern matching is similar in spirit to ML’s
(or Haskell’s, etc.), but somewhat more powerful, since it
includes the use of regular expression types to dynamically
match values of those types. Our patterns also require a
different treatment of the usual checks for exhaustiveness
and ambiguity of patterns.

The body of a XDuce program is a series of function defi-
nitions. As an example, the following function converts an
address book into a telephone list.

fun mkTelList : (Name,Addr,Tel?)* — (Name,Tel)* =
name [n:String], addr[a:String],
tel[t:String], rest:(Name,Addr,Tel?)*
— name[n], tel[t], mkTelList(rest)
name[n:String], addr[a:String],
rest: (Name,Addr,Tel?)*

— mkTelList(rest)
IO
- O

This function takes a value of type (Name,Addr,Tel?)* and
returns a value of type (Name,Tel)*. The body is a pattern
match that breaks up the possibilities on the input values
into three cases. The first case matches when the input value
is a sequence beginning with name, addr, and tel labels, fol-
lowed by some further sequence of type (Name,Addr,Tel?) *.
In this case, we pick out the name and tel elements and
prepend them to the result of calling mkTelList recursively
on the remainder. The second case matches when we cannot
find tel after addr, and simply calls mkTelList recursively.
The third case matches the empty sequence, and returns the
empty sequence.

As another example, consider the following function firstTriple,

which takes out the first entry with a tel element.

(Name,Addr,Tel?)* —
(Name,Addr,Tel)? =
ps:(Name,Addr)*, t:(Name,Addr,Tel),
rest:(Name,Addr,Tel?)* — t
| whole:(Name,Addr,Tel?)* — ()

fun firstTriple :

The function firstTriple has a pattern matching with two
cases. In the first case, we skip all “pair” entries (i.e.,

(Name,Addr) ) from the beginning and then pick out the first
“triple” entry (i.e., (Name,Addr,Tel)) if such an entry ex-
ists. The second case matches otherwise and returns the
empty.

The second example is more interesting in that the use of
regular expression types is more critical there than in the
first example. In the first case in the first example, the
pattern matcher will walk over the first three elements of
label name, addr, and tel, and then try to match the rest
value against the pattern rest:(Name,Addr,Tel?)*. How-
ever, any value should already have this type. Therefore
such a matching would not be meaningful. This is not true
in the first case in the second example. When the pat-
tern matcher looks at the first pattern ps: (Name,Addr) * in
the first case, there is no hint about how many entries are
“pairs.” Therefore the matcher must walk through the input
value to find where the chain of pairs ends. This matching
for a wariable length sequence is beyond ML pattern match-

ing.

In these examples, pattern matchings are exhaustive. That
is, all the values of type (Name,Addr,Tel?)* are covered by
these patterns. In order to check exhaustiveness, we again
use subtyping. For instance, in the first example, we check
the following subtype relation

(Name ,Addr,Tel?) *
<:  name[Stringl, addr[Stringl, tel[Stringl,
(Name,Addr,Tel?)*
| name[String], addr[String], (Name,Addr,Tel?)x*
I O

where the left hand side is the parameter type on the an-
notation and the right hand side is the type constructed
from the patterns (i.e., the union of the patterns with all
the term variables n, a, etc. removed). (Although in these
examples subtyping of the other way around also holds, we
do not check this since allowing this sometimes makes pro-
gramming easier. Such a situation typically occurs when a
pattern contains variables whose type information is useless
in the body.)

Our pattern matchings can have two kinds of ambiguity.
The first ambiguity occurs when multiple patterns match the
same input value. For example, the patterns in firstTriple
function above are ambiguous since any value that matches
the first pattern also matches the second pattern. In such
a case, we simply take the first matching pattern (“first
matching policy”). The second ambiguity occurs when a
single pattern can have multiple ways for variable bindings.
This is intrinsic in regular expression pattern matching. For
example, suppose we replace the first case in firstTriple
with the following:

es:(Name,Addr,Tel?)*, t:(Name,Addr,Tel),
rest:(Name,Addr,Tel?)* — t

since we now skip both pair and triple entries at the be-
ginning using the pattern es: (Name,Addr,Tel?)*, it is not
clear which triple entry the variable t is bound to. We re-
solve this ambiguity by adpoting a “longest match” policy
where patterns appearing earlier have higher priority. In this



example, the first (Name,Addr,Tel?)* matches as a long se-
quence as possible and therefore t is bound to the last triple
entry.

Another possible approach to resolving this ambiguity issue
would be to simply disallow ambiguity. However, when we
want to write a “default case” in a pattern matching, this
restriction would force to write a somewhat cumbersome
pattern that captures the “negation” of the other cases.

2.3 More Complex Example: Folder Manip-
ulation

Up to now, the types that we have seen looked like regular
expressions on strings. More interesting programs involve
regular expressions on trees. Consider the following pro-
gram.

type Folder = Record*
type Record = name[String], folder[Folder]
| name[String], url[String], exists[Bool]

fun tidyFolder : Folder—Folder =
record:Record, folder:Folder

— tidyRecord(record), tidyFolder(folder)
O -0

fun tidyRecord : Record—Record? =

name [nm:String], folder[fl:Folder]
— name[nm], folder[tidyFolder(£fl)]

name [nm:String], url[s:String], exists[false[]]
- O

name [nm:String], url(s:Stringl, exists[true[]]
— name[nm], url[s], exists[true[]]

The mutually recursive types Folder and Record define a
simple template for storing structured lists of bookmarks, as
might be found in a web browser: a folder is a list of records,
while a record is either a named folder or a named URL plus
a boolean indicating whether the link is good or broken. The
functions tidyFolder and tidyRecord traverse a bookmark
list recursively, preserving leaves with good links and drop-
ping ones with bad links.

3. RELATED WORK

Mainstream XML-specific languages can be divided into query

languages such as XML-QL [5] and Lorel [1] and program-
ming languages such as XSLT [15]. In general, when one
is interested in rather simple information extraction from
XML databases, programs in programming languages are
less succinct than the same programs in a suitable query
language. On the other hand, programming languages tend
to be more suitable for writing complicated transformations
like conversion to a display format. XDuce is categorized as
a programming language.

Static typing of programs for XML processing has been ap-
proached from several different angles. One popular ap-
proach is to embed a type system for XML in an exist-
ing typed language. The advantage is that we can enjoy
not only the static safety and typechecking, but also all the

other features provided by the host language. The cost is
that XML values and their corresponding DTDs must be
some how “injected” into the value and type space of the
host language; this usually involves adding more layers of
tagging than were present in the original XML documents,
which inhibits subtyping. The lack of subtyping (or avail-
ability of only restricted forms of subtyping) is not a serious
problem for simple traversal of tree structures; it becomes a
stumbling block, though, in tasks like the “database evolu-
tion” that we discussed in Section 2, where forget-ordering
subtyping and distributivity were critically needed.

A recent example of the embedding approach is Wallace and
Runciman proposal to use Haskell as a host language [12]
for XML processing. The only thing they add to Haskell is
a mapping from DTDs into Haskell datatypes. This allows
their programs to make use of other mechanisms standard
in functional programming languages, such as higher-order
functions, parametric polymorphism, and pattern matching.
However, they do not have any notion of subtyping. More-
over, pattern matching in XDuce is more powerful than
Haskell’s in some cases. For instance, as shown in Sec-
tion 2.2, we can concisely write patterns that skip a variable
length sequence by using regular expression types. A differ-
ence in the other direction is that XDuce does not currently
support higher-order functions or parametric polymorphism.
(We are working on both of these extensions.)

Another piece of work along similar lines is the functional
language XM for XML processing, proposed by Meijer and
Shields [8]. Their type system is not described in detail
in this paper, but seems to be close to Haskell’s, except
that they incorporate Glushkov automata in type checking,
resulting in a more flexible type system.

A closer relative to XDuce is the query language YAT [11],
which allows optional use of types similar to DTDs. The
notion of subtyping between these types is somewhat weaker
than ours (lacking, in particular, the distributivity laws used
in the “database evolution” example in Section 2.1).

Types based on tree automata have also been proposed in
a more abstract study of typechecking for a general form of
“tree transformers” for XML by Milo, Suciu, and Vianu [9].
The types there are conceptually identical to those of XDuce.

The type system of XDuce was originally motivated by the
observation by Buneman and Pierce [2] that untagged union
types corresponded naturally to forms of variation found in
semistructured databases.

4. CONCLUSIONS AND FUTURE WORK

‘We have presented several examples of XDuce programming
and shown how we can write flexible and robust programs
for processing XML by combining regular expression types
and regular expression pattern matching.

We consider XDuce suitable for applications involving rather
complicated tree transformation. Moreover, for such appli-
cations, our static typing mechanism would help in reducing



development periods.

In this view, we have built a prototype implementation of
XDuce and used it to develop some small but non-trivial
applications:

Bookmarks can be viewed as a simple database query.
It takes as input an Netscape bookmarks file of type
Bookmarks, which is a subset of the (much larger) type
HTML. It extracts a certain folder named “Public”,
formats it as a free-standing document, adds a table
of contents at the front, and inserts links between the
contents and the body. The result has type the full
HTML type. (Total: 224 lines)

Html2Latex takes an HTML file (of type HTML) and con-
verts it into LaTeX format (of type String). (264
lines)

Diff implements the “tree diff” algorithm proposed by Chawathe

[3]- It takes a pair of XML files of generic Xml type
and returns a tree with annotations indicating whether
each subtree has been retained, inserted, deleted, or
changed between the two inputs. (300 lines)

The first two applications are written in the way that tra-
verses the input tree by several simple recursive functions.
The third one is more complex. The first phase is a dynamic
programming algorithm, where regular expression types are
used for representing the internal data structures; the sec-
ond phase combines two input trees and inserts annotations
at each node, where types ensure that the annotations and
the actual trees are never confused. In the course of writ-
ing these applications, our type checker gave us tremendous
help in finding silly mistakes.

The implementation of XDuce raises many algorithmic is-
sues. The primary source of complication is that types and
patterns in XDuce are essentially tree automata and there-
fore we need to use operations on tree automata [4], which
are in general expensive. For instance, decision for sub-
typing is inclusion of tree automata, which is known to be
EXPTIME-complete [10]. We have addressed this problem
and obtained an algorithm that runs efficiently in practice
[7]. In particular, the HTML type® used in the above appli-
cations is generally considered to be one of the largest XML
DTDs, yet type checking of our programs involving it takes a
fraction of a second on stock hardware. As other implemen-
tation issues, we are working on a type inference algorithm
to eliminate spurious type annotations in patterns, and a
pattern compilation scheme to improve run-time efficiency.

XDuce’s language design is far from finished. We plan to
add standard features from functional programming, such as
higher-order functions and parametric polymorphism. We
also consider a support for object-oriented features found in
XML-Schema specifications [14]. The combination of these
features with regular expression types raises some subtle is-
sues, which we are now seeking to solve.

'More precisely, we use XHTML, which is an XML imple-
mentation of HTML.

Our prototype implementation is written in O’Caml (6500
lines excluding libraries such as the XML parser). Interested
readers are invited to visit our home page:

http://www.cis.upenn.edu/ hahosoya/xduce.html
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