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ABSTRACT
Recent years witnessed an increasing interest in researches
in XML, partly due to the fact that XML has now become
the de facto standard for data interchange over the inter-
net. A large amount of work has been reported on XML
storage models and query processing techniques. However,
few works have addressed issues of XML query optimiza-
tion. In this paper, we report our study on one of the chal-
lenges in XML query optimization: containment join size
estimation. Containment join is well accepted as an impor-
tant operation in XML query processing. Estimating the
size of its results is no doubt essential to generate efficient
XML query processing plans. We propose two models, the
interval model and the position model, and a set of estima-
tion methods based on these two models. Comprehensive
performance studies were conducted. The results not only
demonstrate the advantages of our new algorithms over ex-
isting algorithms, but also provide valuable insights into the
tradeoff among various parameters.

1. INTRODUCTION
XML, the Extensible Markup Language, has now become

the de facto standard for data interchange over the internet.
Unlike relational data, a unique feature for data encoded
in XML format is that they are virtually semi-structured
data. The structure of XML data is usually defined by
XML schema (or previously DTD). Several data models have
been proposed for XML data, e.g., Document Object Model
(DOM), and they all assume a tree based model to repre-
sent XML data. Consequently, many query languages pro-
posed are designed to allow queries that have both content
and structural constraints. For example, the XPath query
//paper[appendix/table] selects those papers that have a
table in their appendix sections.

Containment join, proposed in [29], has been recognized
as the core part for XML query processing. A containment
join between a set of ancestor nodes (denoted as A) and a
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set of descendant nodes (denoted as D) is to find all pairs
of (a, d), a ∈ A and d ∈ D, such that a is an ancestor
of d. Region coding scheme, i.e., each element is encoded
with its (physical or logical) start and end positions, is a
powerful technique widely used to efficiently evaluate con-
tainment join. When the region coding scheme is used, a
containment join between A and D can be evaluated as the
following complex relational θ-join: A ./θ D, where the θ is
A.start < D.start ∧ D.end < A.end. [20, 29, 2] have shown
that containment joins not only can be used to answer arbi-
trary XPath queries, but often outperform other alternative
methods as well.

While there are many studies on efficient containment join
algorithms, there has not been much research into the size
estimation problem for containment join. An accurate esti-
mate of the result size of a containment join is a prerequisite
for cost-based XML query optimizers. For example, con-
sider the same XPath query: //paper[appendix/table].
Given that we have some mechanism to retrieve //paper,
//appendix and //table efficiently, a query optimizer has
to choose the containment join order. One plan is to con-
tainment join //paper and //appendix and then join the
intermediate result with //table by another containment
join. Another plan is to containment join //appendix and
//table first and then join the intermediate result with
//paper. If the sizes of two intermediate results differ greatly,
then the total costs of the two plans might differ greatly as
well. Accurate estimation of the intermediate result sizes,
in this example, can help to choose a better query execu-
tion plan. Size estimation can also be useful in internet
or interactive applications, where the estimated result sizes
can be presented to the user in order to decide whether it
is necessary to really launch the query, as it might require
substantial system resources.

Containment join on data coded in region codes is essen-
tially a complex relational θ-join. In addition, XML data has
unique features that make any estimation method nontriv-
ial. Although we are aware of existing works in the following
areas, none of them is directly applicable to our containment
join size estimation problem.

• Relational techniques. Estimation of join sizes has
been widely studied in the context of relational equi-
joins. However, the proposed methods were either de-
signed to optimize for the worst case [18] or hard to
be generalized to handle complex inequality join con-
ditions [21, 13, 3].

• Estimation methods for XML data. To the best of our



knowledge, [28] is the only work that addressed the
same estimation problem for XML data. In partic-
ular, PH and coverage histograms were proposed for
join size estimation. However, those methods rely on
a few strong assumptions and their performance may
degrade greatly if the data do not conform to the as-
sumptions.

• Spatial techniques. Most existing spatial join size es-
timation methods [5, 23, 27] rely heavily on multidi-
mensional uniform distribution assumption and cannot
take into consideration the constraints of XML data
distribution.

In this paper, we propose two models, the interval model
and the position model, and a set of estimation methods
based on these two models. A unique feature of our models
is that they can capture alternative information for an ele-
ment set according to its role (ancestor or descendant set) in
a containment join. The interval model treats every element
in a node set as an interval, when the node set acts as the
ancestor set in the join or a point, when the node set acts as
the descendent set. In the position model, conceptually, two
auxiliary tables are constructed for each element set. The
former table records the coverage information when the el-
ement set acts as the ancestor set, while the latter captures
the start position information of each element when the el-
ement set acts as the descendant set. These two models
enable us to transform the original challenging estimation
problem to other estimation problems which are tractable.
Based on the two models, two classes of estimation algo-
rithms are proposed: histogram based and sampling based
algorithms. We show that our histogram based method uses
weaker and more reasonable assumptions than those used by
PH histogram and Coverage histogram [28]. Our sampling
based methods leverage adaptive sampling techniques and
have provable accuracy of the estimated results. Extensive
experiments were conducted. The results not only demon-
strate the advantages of our new algorithms over existing
ones, but also provide valuable insights into the tradeoff
among various parameters.

The major contributions of the paper can be summarized
as follows.

1. We propose two models for the containment join size
estimation problem. The challenge of the original prob-
lem is to estimate the result size for a complex, in-
equality join, which renders existing models and hence
methods inapplicable. We show that, in our newly pro-
posed models, the original problem can be converted
to other estimation problems that are tractable.

2. We propose and study two classes of estimation meth-
ods based on the new models. For each method, we ex-
hibit our efforts to exploit the unique features of XML
data and containment joins. We also give theoretical
bounds on the quality of estimated results (whenever
applicable) as well as detailed discussions.

3. We report results of experiments performed for various
datasets under different settings. Our new algorithms
are shown to outperform previous ones up to an order
of magnitude and are more robust. The experiment
results also provide valuable insights into the tradeoff
between various parameters.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 introduces and discusses
two proposed models. Histogram based approaches are dis-
cussed in Section 4 while Section 5 discusses approaches
based on sampling. Section 6 presents our detailed experi-
ment results and analyses. Section 7 concludes the paper.

2. RELATED WORK
We will give a brief review of existing works on statistical

estimation. Then we focus on PH histogram [28] and bifocal
sampling [13], which are closely related to the work reported
in this paper.

Although histograms are by far the most popular statis-
tical data structure for estimating query sizes, there is little
work on estimating join sizes using histograms. [18] studied
the kind of histogram based method that is optimal in the
worst case and pointed out that all histograms are equally
good on average with respect to the metric defined.

There is not much work on estimating join sizes in the spa-
tial database context either. [5] studied several histogram
schemes for spatial join estimation. They proposed the
parametric histogram (PH) based on the previous work [6].
Another histogram, Geometric Histogram (GH), was also
proposed, based on the key observation that the intersec-
tion of two MBRs results in four intersecting points. GH
was demonstrated to outperform PH and other methods
without using histograms. The GH method, however, re-
quires a fine grid over the workspace and may result in
inaccurate estimation when this condition fails. [23] pro-
posed formulae for selectivity estimation of pairwise joins
restricted by two selections. Their focus is on adjusting
the workspace given two original workspaces of the joining
datasets. Recently, a framework for spatial join size esti-
mation was proposed in [27], based on the notion of Euler
Diagram. Different probabilistic data distribution models
can be plugged into the framework which generates differ-
ent formulae to estimate the join results of corresponding
grids from the datasets. Specifically, they integrated the
formulae in [23, 5] and showed the improved accuracy over
previous approaches.

There have been many studies of (adaptive) sampling based

estimation algorithms since Hou, Özsoyoglu and Taneja pre-
sented their initial work in this area [16, 17]. [14] introduced
a partial ordering that compares the variability of the esti-
mators of different classes, such as t index, t cross, etc. [13]
proposed a new bifocal sampling technique that overcomes
some well-known problems in previous schemes. We will dis-
cuss it in more details later. Recently, [22] reexamined Lip-
ton and Naughton’s adaptive sampling algorithm [21] and
Haas and Swami’s adaptive algorithm mainly in terms of
efficiency. It also studied the Monte-Carlo algorithm due to
E. Cohen [9]. [15] proposed the systematic sampling tech-
nique, which was demonstrated to outperform the t cross
sampling method with the same amount of sampling. The
idea is to sample the first k = dN

n
e tuples of R and every

k-th tuple thereafter in the sorted order of the join attribute.
More recently, [4, 3, 10] proposed to use sketch based

methods to estimate self-join and join sizes in the stream
data processing setting. The basic idea of those approaches
is much similar to that of sampling approaches: in order
to estimate a function of F (x) over a dataset, we instead

compute an unbiased estimator F̂ (x) of F (x) such that the



variance of F̂ (x) is small and bounded. The mathemati-
cal tool used is four-wise independent binary random vari-
ables, which can be constructed from the orthogonal array of
strength 4. Although sketch based methods have been suc-
cessfully applied in many problems, it is not obvious to be
applicable to the containment join size estimation problem.

A different but related problem is estimation of the selec-
tivity of path expressions for XML data [8, 1, 12, 24]. Most
existing approaches tried to solve the problem by capturing
the structure of the XML data tree or graph. [1] proposed
two techniques, namely path trees and Markov tables, to
summarize the structures of XML data. [12] employed XML
Schema types and histograms as statistical summaries. [24]
exploited localized graph stability in a graph-synopsis model
to approximate path and branching distribution in an XML
data graph. Our problem differs from theirs in that we do
not have any restriction on the two datasets involved in the
join nor do we need to capture the global statistics for the
whole XML document.

2.1 PH Histogram and Coverage Histogram
[28] is the only previous work that addressed the same

containment join size estimation problem. Their approach
is to mapping XML data into 2D space and maintaining
certain statistics for data fallen in each pre-defined grid
over the workspace. XML specific characteristics, such as
(a) strictly nested property and (b) nesting within each
dataset, are taken into consideration, which results in the
PH-Histogram and Coverage Histogram. The underlying
assumption is two-dimensional uniform distribution of both
datasets. That is, as we will show later, a strong and static
assumption. For example, the estimated result for two cor-
responding, off-diagonal grids (buckets) will always be 1

4
·

na · nd. In addition, their PH histogram based estimation
methods will give a highly erroneous estimation when no two
nodes in the ancestor set can be of ancestor-descendant rela-
tionship, i.e., when the ancestor set has no-overlap property.
Coverage histogram and new estimation algorithms were
hence proposed as a remedy. However, their new method
still suffers a lot from the additional assumption that the
global coverage statistics are the same as the local coverage
statistics.

2.2 Bifocal Sampling
Bifocal sampling was introduced as a new adaptive sam-

pling technique for estimating equijoin sizes in the rela-
tional context [13]. It classifies tuples in each relation into
two groups, sparse and dense, based on the number of tu-
ples with the same join value. Distinct estimation proce-
dures were employed for various combination of joining tu-
ples, namely, the DenseDense subjoins and SparseAny sub-
joins. Bifocal sampling was shown to be able to overcome
some well-known problems in previous adaptive sampling
schemes. However, it focuses on relational equijoin only and
it is not obvious as to extend the method to the complex
containment join here.

3. ESTIMATION MODELS FOR XML DATA
In this section, we first give the formal definition of the

problem, followed by discussions of the unique features of
XML data and containment joins. They render existing
estimation methods in other areas not directly applicable.
Two novel models that address above-mentioned challenges

are proposed. They underpin the three classes of estimation
algorithms to be discussed in the later sections.

3.1 Problem Definition and Challenges
XML data are commonly modelled as trees, termed as

data trees. Given an XML data tree T , we can get a set
of element nodes by certain predicate based on values and
structures. For example, the predicate could be an XPath
query like //appendix. A set of element nodes is defined
when the above predicate is evaluated against a given XML
data tree.

A containment join between two element sets A and D
returns all pairs of (a, d), where a ∈ A and d ∈ D, such
that a is an ancestor of d. [29] proposed to use region codes,
i.e., (start, end), for each element and the containment join
between A and D can be evaluated as a complex θ-join:
A ./θ D, where θ = A.start < D.start ∧ D.end < A.end.
Note that due to the strictly nested property of XML data,
the above join condition can be simplified to θ′ as A.start <
D.start < A.end. In addition, without loss of generality, we
assume the region codes are distinct, that is, no two elements
in T have the same start or end value.

Given an XML data tree T labelled with region codes, we
denote cmin and cmax as the minimum of the start codes of
all elements in the tree and the maximum of the end codes
of all elements in the tree respectively. Formally, cmin =
mine∈T {e.start} and cmax = maxe∈T {e.end}. The region
[cmin, cmax] is also termed workspace.

We formally define our containment join size estimation
problem as follows.

Definition 1. Given two element sets A and D where ev-
ery element in both sets is encoded in region code, i.e.,
(start, end), correctly estimate the cardinality of the con-
tainment join result between A and D.

There are several unique features of our estimation prob-
lem that impose serious challenges.

1. Complex θ-join conditions. The join condition consists
of two correlated inequality conditions on multiple at-
tributes.

2. Data distribution. There are two constraints that con-
fine the distribution of the elements.

(a) end value should always be greater than start.

(b) Due to the strictly nested nature, the regions of
any two elements cannot partially overlap. In
the two-dimensional description, this constraint
results in the forbidden region observed in [28].

3. Correlation pattern. Correlation is recognized as the
major difficulty in estimating the result size of equi-
joins or spatial joins. There are two observations about
the correlation between the ancestor and descendant
sets.

(a) The correlation is determined by the structures
of the data tree T .

(b) The correlation effects of the two sets are asym-
metric. Specifically, one element in the ancestor
set could join with all elements in the descendant
set, while one element in the descendant set can
only join with up to H elements in the ancestor



set, where H is the height of the XML data tree
T .

Now we will briefly review previous models and show that
their methods are not well suited to capture the above-
mentioned features.

For one-dimensional histogram based methods, they are
based on the model of frequency distribution table (or data
distribution), which contains the set of pairs T = {(v1, f1),
. . . , (vD, fD)}, where vi is the value of the attribute in ques-
tion and fi is the number of tuples in the relation that have
value vi in that attribute [25]. However, such model cannot
be directly extended to join predicates that involve multi-
ple attributes. Multidimensional histograms were also pro-
posed, but their ability to capture correlation among dimen-
sions is still questionable, let alone the unique correlation
pattern in XML data. Last, histogram based methods are
best suited for answering range/point queries, but not joins.

Both sampling and sketch based methods are based on
statistic theorems. There has been no reported work on
using sampling techniques in the presence of inequality joins.
Sketch based methods, while performing well for joins and
self-joins, cannot be easily extended to handle inequality
joins either.

There are only few works for spatial join size estimation.
All the existing works make some assumption on the data
distribution of two joining datasets. Either power-law com-
pliant assumption [11] or multidimensional uniform / inde-
pendence assumptions are used. Those assumptions are not
suitable for XML data either.

Wavelet or Fourier transformation based methods were
successfully used in estimation problems in one-dimensional
or multidimensional context. However, one unsolved diffi-
culty is that it is still unknown how to find good transfor-
mation for data distribution with certain constraints. For
example, a large portion of approximated data could be in-
valid due to their violation of the strictly nested property.
We defer studies in this direction to our future research.

3.2 Interval Model
The interval model is a one-dimensional model. Concep-

tually, each element set corresponds to two sets: interval set
and point set. An interval set contains intervals and a point
set contains points. The interval set of element set S, de-
noted as IMA(S), is used when S acts as an ancestor set in
a containment join. For each element e in S, it corresponds
to an interval of [e.start, e.end]. The point set of element
set S, denoted as IMD(S), is used when S acts as a descen-
dant set in a containment join. For each element e in S, it
corresponds to a point e.start.

Theorem 1 indicates that the original estimation problem
can be converted into the problem of estimating overlapping
interval-point pairs.

THEOREM 1. Under the interval model, the result size
of the containment join between A and D is equal to the
number of overlapping interval-point pairs between IMA(A)
and IMD(D).

Example 1. We show an example XML data tree in Fig-
ure 1(a). We choose three nodes as the ancestor set A and
four nodes as the descendant set D. Their region codes are
also shown respectively. For example, node a1 has region
code (2, 7).

(2,7)

a3

a1 a2

d1 d2 d3 d4

(1,22)

(3,4) (9,10) (11,12) (19,20)

(18,21)

(a) An Example XML Data Tree

a1 a2

d1 d2 d3 d4

a3

IMA(A)

a3 a1 a2

IMD(A)

IMD(D)

IMA(D)

d2d1 d3 d4

(b) Interval Model

V F
1 1
2 2
3 2
4 2
5 2
6 2
7 2
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 2
19 2
20 2
21 2
22 1

V F
1 1
2 1
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 1
19 0
20 0
21 0
22 0

V F
1 0
2 0
3 1
4 1
5 0
6 0
7 0
8 0
9 1
10 1
11 1
12 1
13 0
14 0
15 0
16 0
17 0
18 0
19 1
20 1
21 0
22 0

V F
1 0
2 0
3 1
4 0
5 0
6 0
7 0
8 0
9 1
10 0
11 1
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 1
20 0
21 0
22 0

PMA(A ) PMD (A ) PMA(D ) PMD (D )

(c) Position Model

Figure 1: Illustration of Two Models

The interval sets and the point sets of the ancestor set and
the descendant set are shown in Figure 1(b). Node a1, for
example, corresponds to an interval from 2 to 7 in IMA(A)
and node d2 corresponds to a point at 9 in IMD(D).

3.3 Position Model
The position model is also a one-dimensional model. Con-

ceptually, each element set corresponds to two tables: cover-
ing table and start table. Both tables have the same schema:
(V, F ), where dom(V ) = [cmin, cmax] and dom(F ) = {x ∈
Z|x ≥ 0}. The covering table of element set S, denoted as
PMA(S), is used when S acts as an ancestor set in a contain-
ment join. For every tuple t ∈ PMA(S), t.F = |{e|e.start ≤



t.V ≤ e.end}|. That is, the F field records the number of
elements whose regions cover the corresponding V value.
The start table of element set S, denoted as PMD(S), is
used when S acts as a descendant set in a containment join.
For every tuple t ∈ PMD(S), t.F = |{e|e.start = t.V }|.
That is, the F field records the number of elements whose
start values are equal to the V value. Note that, since the
codes are distinct, the value of F for any tuple in PMD(S)
can be either 0 or 1, as there could only be 0 or 1 element
with a given start value.

Theorem 2 indicates that the original estimation problem
can be converted into the estimation of the size of an equi-
join.

THEOREM 2. Under the position model, the result size
of the containment join between A and D is equal to the in-
ner product of of PMA(A) and PMD(D), i.e.,

∑

cmin≤i≤cmax

(PMA(A)[i] · PMD(D)[i]).

Example 2. We show the covering and start tables for
both ancestor and descendant sets in Figure 1(c). For ex-
ample, position 19 is covered by two ancestor nodes, namely
a2 and a3, therefore, its F value is 2. The inner product of
PMA(A) and PMD(D) is 6, which is equal to the result size
of the containment join between A and D.

4. ESTIMATION VIA HISTOGRAM
Based on the interval model, we propose a new histogram

based estimation method. In our new method, each descen-
dant element d will correspond to a point in IMD(D) and
each ancestor element a will be an interval in IMA(A). We
will use A to denote IMA(A) and D to denote IMD(D)
throughout this section, as long as there is no ambiguity.

4.1 PL Histogram
The PL Histogram (Point-Line Histogram) is based on

the interval model. The basic idea is to partition the whole
workspace [cmin, cmax] into buckets and estimate the over-
lapping (interval, point) pairs within each bucket according
to some assumptions.

We choose to make the following two basic assumptions:

• Data distribution of A and D are independent.

• D conforms to uniform distribution in each bucket.

Note that

1. They are not unreasonable assumptions. Independence
assumption and uniform assumption are often made
in the relational context and spatial context as well.
They enable us to do the estimation without any a
priori knowledge about the data distribution or corre-
lation of the joining data.

2. One-dimensional uniform assumption can be made ap-
proximately valid if the data is regular and bucket
boundaries are carefully selected. This assumption is
weaker than the two-dimensional uniform assumption
adopted in the early work, i.e., the PH histogram in
[28]. It can be shown that if the data distribution
is two-dimensional uniform, it is also one-dimensional
uniform. In addition, we only require the assumption
on D’s distribution.

We now introduce the PL histogram and its estimation al-
gorithm. We first divide the whole workspace of the element
set into b buckets. For each bucket, we keep the following
statistics n, wss, wse, l. The definitions of the statistics are
listed in Table 1, where R could be either A or D.

Table 1: Statistics for PL Histogram

Symbol Definition

n(R, i) number of intervals/points in the i-th bucket
wss(R, i) start position of the i-th bucket
wse(R, i) end position of the i-th bucket
l(R, i) average length of the intervals in the i-th

bucket (not valid for D)

Let us consider the case when the whole workspace is a
bucket. For each a ∈ A, according to our assumptions, the
expected number of D elements that lie inside the range of

a is l(a)
wse−wss

· n(D), where l(a) is the length of an element

a ∈ A. Therefore the total number of (a, d) pairs can be
estimated as

X̂ =
∑

a∈A

l(a)

wse − wss
· n(D)

=
n(A) · l

wse − wss
· n(D)

=
l

wse − wss
· n(A) · n(D)

We can generalize the above formula (for 1 bucket) to the
case of b buckets if we use the same partitioning scheme for
both A and D. We can then estimate the size of containment
join as:

X̂ =
∑

1≤i≤b

X̂i

=
∑

1≤i≤b

l(A, i)

wse(A, i) − wss(A, i)
· n(A, i) · n(D, i) (1)

Note that

1. Our formula is an adaptive one. Intuitively, if there

is no overlap of a in A, n(A)∗l
wse−wss

< 1 and the result
size is less than D. That is reasonable as each d ∈ D
can join with at most one a ∈ A. On the other hand,
if elements in A are heavily nested, the results could
be larger than D. On the contrary, the formula in PH
histogram takes the form of c·n(A)·n(D) for estimation
within a bucket (grid), where c is a constant (such as
1
4
, 1

12
).

2. In order to avoid multiple counting when some ele-
ment lies across bucket boundaries, we use the fol-
lowing rules: each a across multiple buckets will be
counted multiple times, while each d across multiple
buckets will be only counted in the first bucket, that
is, the bucket where d.start is located.

Algorithm 1 describes the procedure to estimate the join
size with PL histograms built on both datasets. The algo-
rithm iterates over all the b buckets of A, and for each bucket
of A, it calculates the estimated number of joining pairs ac-
cording to Equation 1 (Line 4). We sum up the estimated
result for each bucket of A to get the final estimated result
for the containment join between A and D.



Algorithm 1 PL-Hist-Est(A, D)

Input:
A and D are ancestor and descendant sets respectively
and both are partitioned identically into b buckets.

Output:
return the estimated size of join results.

Description:
1: est = 0
2: for i = 1 to b do
3: est = est + l(A,i)

wse(A,i)−wss(A,i)
· n(A, i) · n(D, i)

4: end for
5: return est

4.2 The MRE Measure
Although our formula is accurate in the continuous do-

main, it can fail for a certain class of cases in the discrete
domain when D is relatively sparse. To illustrate this, let us
look at the examples in Figure 2. There are 5 uniformly dis-
tributed elements (points) from D and 1 element (interval)
from A in both Figure 2(a) and (b). Let the interval move
from the initial position (the solid line) to the new positions
denoted in dashed lines. We calculate and draw in the fig-
ure the number of matches (i.e., overlapping interval-point
pairs) during this process. It is clear that the number of
matches will vary. Intuitively, this illustrates that relative
offset of a and d can affect the accuracy of the estimation.

l/cov

(a) (b)

#match
1
1
0
0

#match
3
3
2
2

d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

l

Figure 2: An Example that Shows the Effect of the
Offset to the Join Size

Formally, in the case of discrete data (both a and d can
only start/end at integer positions and d can never be redun-
dant, i.e., having multiple d’s with the same Start position),
the estimation formula is correct in the average case, but the
real number (even the assumptions are valid) depends much
on the relative offset of a and d. Let cov = l

wse−wss

n(D)

=

l·n(D)
wwe−wws

. Intuitively cov measures how many d’s one a can
cover on the average. From Figure 2, we can see that the
join result will be n(A)∗dcove with probability (cov−bcovc)
and be n(A) ∗ bcovc with probability 1− (cov−bcovc). Tra-
ditionally, unlike sampling based methods, estimation given
by histogram methods does not give any “confidence” mea-
surement. Here, we define a measure named the maximum
relative error to characterize the worst case estimation error
as

MRE = max{
|x − x̂|

x
}

= max{
dcove − cov

dcove
,
cov − bcovc

bcovc
} (2)

Intuitively, if the MRE value is large, we have the risk of
having high inaccuracy for the estimation result. The worst
case error will be big if cov is small. Specifically, if cov < 1,
the maximum relative error could be unbounded. Even in
terms of the absolute error, it could still be big when cov < 1.
We show the MRE values for cov ranging from 1.0 to 10.0
in Figure 3. We can see that MRE values vary regularly
with a period of 1 and the maximum value of MRE within
each period goes down consistently when cov increases. We
do not plot the cases when cov < 1 here, because the MRE
values are unbounded.
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Figure 3: MRE vs cov for cov > 1 (MRE is unbounded
when 0 < cov < 1)

To address the above problem, we use the following two
approaches simultaneously.

• We provide a “rough” confidence measure to the user
about the estimated result: the MRE measure given
in Equation 2. If cov > 1, it can be shown that
0 < MRE < 1, and the maximum of MRE values
over each period decreases when cov increases. Intu-
itively, MRE gives the bound of relative errors of the
estimation when datasets conform well to the assump-
tions of our PL histogram. Note that the actual rela-
tive error could be even higher if the joining datasets
do not conform to our assumptions well enough.

• The root of the problem is the inability for histograms
to capture correlations. Therefore, we develop other
estimation techniques (such as sampling based meth-
ods in the next section) which can provide accurate
estimation with high confidence measures (although
the two measures cannot be directly compared) even
in the presence of correlation.

5. ESTIMATION VIA SAMPLING
In this section, we present a class of new sampling algo-

rithms, designed to take into consideration unique features
of XML data and the containment join.

Although the effectiveness and the practicality of sam-
pling based estimation methods have been demonstrated by
many previous research works, none of them considers the
case of estimating the result size of complex inequality joins.
Here, we consider the estimation problem under both the in-
terval model and the position model. It will be shown that



with the help of the models, our new sampling based algo-
rithms are capable of giving provably good estimation of the
containment join size.

5.1 Interval Model Based Adaptive Sampling
In the interval based model, the analogy to the equal-

ity condition of two relations is the overlapping condition
of intervals from IMA(A) table and points from IMD(D)
table. Our algorithm is inspired by the bifocal sampling
algorithm [13] as well as the following observation: An in-
terval in IMA(A) could join with many points in IMD(D)
(up to |D|), while a point in IMD(D) can only join with
relatively much fewer intervals in IMA(A) (up to H, where
H is the height of the XML data tree). Bifocal sampling
will classify all subjoins between A and D into two classes,
DenseDense subjoins and SparseAny subjoins, and distinct
adaptive sampling algorithms are used for each class due to
their different characteristics. H is usually a small constant
and thus we assume H < O(

√

|A|). Under this assumption,
the original bifocal sampling algorithm can be greatly sim-
plified. The idea is that we only need to sample from D
and all the subjoins will be sparse. Due to the fixed, small
constant H, the variances among subjoin sizes are also well
bounded, which provides good estimation accuracy and con-
fidence.

The IM-DA-Est algorithm, simplified from the bifocal sam-
pling algorithm according to our assumption, is shown in Al-
gorithm 2. The algorithm takes m random points from the
IMD(D) tables, then probes IMA(A) to calculate each sub-
join size. The sizes of subjoins are summed up and scaled to
get an estimate of the size of the containment join between
A and D. The IM-DA-Est algorithm approximates the real
size with high probability due to Theorem 3.

Algorithm 2 IM-DA-Est(A, D, m)

Input:
A and D are ancestor and descendant sets respectively.
m is the number of sampled points from IMD(D) table.

Output:
Return the estimated size of containment join result be-
tween A and D.

Description:
1: est = 0
2: S∗ = a random sample (of size m) from IMD(D).
3: for all point p in S∗ do
4: x = the number of intervals in IMA(A) that join with

p.
5: est = est + x
6: end for
7: return est · (|D|/m)

THEOREM 3. Let the size of the containment join be-
tween A and D be X, and let the estimate given by the IM-
DA-Est algorithm be X̂. Let n = |D|. We have E[X̂] = X,

with high probability X̂ = Θ(X) + O(n).

Proof. (sketch) Let ancA(d) denote the number of in-
tervals a point d ∈ IMD(D) will stab, or the number of
ancestors that will join with the element corresponding to
d. Let J(d) be the contribution of d ∈ IMD(D) to the esti-

mate X̂. It is obvious that X̂ =
∑

d∈IMD(D) J(d).

J(d) =

{

n
m

· ancA(d) , if d ∈ S∗

0 , otherwise

where S∗ is the set of samples with size equal to m. The
expected value of J(d) is

E[J(d)] =
n

m
· ancA(d) · Pr[d ∈ S∗] + 0 · Pr[d /∈ S∗]

= ancA(d)

Therefore,

E[X̂] = E





∑

d∈IMD(D)

J(d)



 =
∑

d∈IMD(D)

E[J(d)]

=
∑

d∈IMD(D)

ancA(d) = X

Moreover, J(d) is a random variable taken from domain
[0, z], where z = n/m · H. By Hoeffding bounds, X =

Θ(E[X]) with probability e−Θ(E[X/z]). Let m = nα, where
0 < α < 1, then the above probability is high if X =
Ω(n).

Notice that our confidence of the estimated result is high
even when the real result is O(n). This is an improvement
upon the previous requirement in [13], which is O(n log n).
This improvement is due to our effort to exploit the unique
feature of containment join for XML datasets.

5.2 Position Model Based Adaptive Sampling
In the position model, tables (PMA(S) and PMD(S)) are

generated for each dataset describing its positional infor-
mation within the workspace under different circumstances.
We have shown that the size of the containment join be-
tween A and D is equal to the inner product of PMA(A)
and PMD(D). Hence, we choose to use a simplified bifocal
sampling method to do the estimation for the equijoin. The
simplification also comes from the observation that the size
of subjoins are bounded the constant H, the height of the
XML data tree. The PM-Est algorithm is shown in Algo-
rithm 3. It takes m random points from the workspace, then
probes both PMA(A) and PMD(D) to calculate each sub-
join size. The sizes of subjoins are summed up and scaled
to get an estimate of the size of containment join between
A and D. The PM-Est algorithm approximates the real size
with high probability due to Theorem 4.

THEOREM 4. Let the size of the containment join be-
tween A and D be X, and let the estimate given by the PM-
Est algorithm be X̂. Let n = cmax − cmin + 1. We have
E[X̂] = X, with high probability X̂ = Θ(X) + O(n).

Note that the n in the above theorem is the length of the
workspace, which is no less than |A| + |D|. Each subjoin
size in PM-Est method is also bounded by H. Therefore,
we expect the performance of this method will be inferior
to IM-DA-Est. This is further verified by our experiment
result.

5.3 Discussions



Algorithm 3 PM-Est(A, D, m)

Input:
A and D are ancestor and descendant set respectively.
m is the number of sampled points from the workspace
[cmin, cmax]. w is the length of the workspace, i.e.,
cmax − cmax + 1.

Output:
Return the estimated result size of the containment join
between A and D.

Description:
1: est = 0
2: S∗ = a random sample (of size m) from the workspace

[cmin, cmax].
3: for all value v in S∗ do
4: x = PMA[v]
5: y = PMD[v]
6: est = est + x · y
7: end for
8: return est · (w/m)

5.3.1 Indexes
In both IM-DA-Est and PM-Est methods, we need to

calculate the subjoin size for every sample. We consider
building auxiliary indexes for the datasets to accelerate such
probing operations.

For IM-DA-Est algorithm, we need to answer the following
type of queries: given a point, return the number of inter-
vals that overlap the point. We consider two kinds of indexes.
The first index is the XR-Tree [19], which is a dynamic ex-
ternal index structure capable of answering such stabbing
queries (as well as range queries) efficiently. Efficient con-
tainment join algorithms have been developed based on the
XR-Tree. Probing the XR-Tree index might not be optimal
for the stabbing count query here, as we do not actually need
to return all intervals that the query point stabs. However,
probing in the XR-Tree will cost only several page accesses
in the worst case (when none of the nodes is in the buffer)
and, more importantly, such probing helps to load part of
the XR-Tree index into the buffer, which will benefit the
later containment join processing based on XR-Tree. The
other kind of index is based on the observation that the
PMA(S)[x] (if we build PMA for the ancestor set S) is ex-
actly the number of intervals that overlap point x. Instead
of recording the whole PMA(S), we only need to index ev-
ery turning point K of PMA(S) as well as the associated
PMA(S)[K] value via a B+-tree. A turning point K is a
point where PMA(S)[K] 6= PMA(S)[K−1]. It can be shown
that there are only O(|S|) such turning points and PMA(S)
values between two adjacent turning points are the same.
We refer a B+-tree built on those turning points and their
values as a T-tree. We can look up the value of PMA(S)[q]
by 1) find Ki ≤ q < Ki+1 in the B+-tree and 2) return the
value associated with Ki.

Figure 4 shows an example T-tree constructed for the an-
cestor dataset in Figure 1(c). If the query point is 6, we can
use the B+-tree to search for the largest key that is no larger
than the query key. In this example, we find 2 and return
the frequency value associated with 2, which is also 2.

For PM-Est algorithm, we need to answer the following
type of query: given a point, return the value associated with
the point in either PMA(S1) or PMD(S2). The above men-
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Figure 4: An Example T-Tree

tioned T-tree is capable of answering such queries efficiently.
Notice that for the probing query on PMD(S2), any other
index structures built on the start field of elements are ca-
pable to answer it, e.g. B+-tree, XR-Tree or hash indexes
etc. If the query key is found in the index, then its value is
1, otherwise, the value is 0.

5.3.2 Boosting
The probabilistic boosting method [4] can also be applied

to our sampling methods. We can prepare s1 · s2 indepen-
dently generated random samples and get their estimated
results. We then take the average of every s1 estimated re-
sults and take the median of the s2 averages as the final
result.

6. EXPERIMENTAL STUDY
In this section, we present the results of our experiment

study of the newly proposed algorithms. We also give some
suggestions on the choice of the estimation algorithms based
on the analysis of our experiment results.

6.1 Experiment Setup
We ran experiments on a PC with AMD Atholon 900

MHz CPU, 512M RAM and 40G hard disk. The operating
system is Microsoft Windows 2000. We have implemented
PL-Hist-Est (PL), IM-DA-Est (IM) and PM-Est algorithms
(PM). We also implemented positional histogram/coverage
histogram (PH), which is the previous work on the same
problem proposed in [28].

We used both synthetic and real datasets in our experi-
ments. We used one real dataset, DBLP and two benchmark
datasets, XMARK [26] and XMACH [7]. We will focus on
our results using XMARK and DBLP datasets because the
results on XMACH datasets are very similar to those on
XMARK datasets. DBLP dataset was chosen because (1) It
is used in the experiment of PH algorithm [28] and (2) Com-
pared to XMARK, the schema of DBLP data is relatively
simple and its data distribution is more regular. XMARK
is complex and was also chosen as the experiment dataset in
[12] because the XML data tree features both large fanouts
and deep nesting in the element structure. For each dataset,
we selected a set of predicates, usually the element tag name



Table 2: Statistics for Datasets
(a) Statistics for XMARK

Predicate Name Node Count Overlap Property

item 8700 no overlap
desp 17800 no overlap
parlist 8419 N/A
listitem 24544 N/A
text 42314 no overlap
open auction 4800 no overlap
keyword 28058 no overlap
name 19300 no overlap
mailbox 8700 no overlap
reserve 2355 no overlap
bidder 23521 no overlap
increase 23521 no overlap

(b) Statistics for DBLP

Predicate Name Node Count Overlap Property

inproceeding 10350 no overlap
author 21700 no overlap
title 10378 no overlap
cite 3805 no overlap
sup 42 no overlap
label 340 no overlap

(c) Statistics for XMACH

Predicate Name Node Count Overlap Property

host 1803 N/A
path 20235 N/A
doc info 10000 no overlap
doc id 10000 no overlap
chapter 313 no overlap
section 3338 N/A
head 3651 no overlap
paragraph 8328 no overlap
link 407 no overlap

and derived a set of containment joins accordingly. Table 2
shows the selected predicates and detailed statistics for each
dataset. Notice that we also gathered the overlap property
information for each element set. Such information (espe-
cially the information that a dataset has no-overlap prop-
erty) is key to effectively estimating results of many queries
for the PH algorithm. Table 3 shows the set of queries for
each dataset.

We use relative error as the metric to judge the quality of

the estimated result. Formally, it is defined as |x−x̂|
x

×100%,
where x is the real value and x̂ is the estimated value. The
performance of sampling based algorithms were obtained by
averaging over multiple runs under the same setting.

6.2 Overall Performance
We show the relative estimation error for all the queries

on XMARK and DBLP datasets in Figure 5 and Figure 6
respectively. For each dataset, we repeated the experiment
for three different settings of different space budgets: 200,
400 and 800 bytes. Note that even 800 bytes is well below
1% of the size of joining element sets. These settings roughly

Table 3: Queries for Datasets
(a) Queries for XMARK

Query Ancestor Descendant

Q1 item name
Q2 item mailbox
Q3 text keyword
Q4 desp parlist
Q5 desp listitem
Q6 parlist text
Q7 listitem keyword
Q8 parlist listitem
Q9 open auction text
Q10 open auction reserve
Q11 bidder increase

(b) Queries for DBLP

Query Ancestor Descendant

Q1 inproceeding author
Q2 inproceeding title
Q3 inproceeding cite
Q4 inproceeding label
Q5 title sup
Q6 cite label

(c) Queries for XMACH

Query Ancestor Descendant

Q1 host path
Q2 path doc inf
Q3 doc inf doc id
Q4 chapter section
Q5 section head
Q6 section paragraph
Q7 paragraph link

correspond to using 25, 50, 100 buckets for PH histogram
method, 10, 20, 40 buckets for PL histogram method and
25, 50, 100 samples for the sampling methods.

From the figures, we can see that under the same amount
of space budget, IM algorithm always achieves the best accu-
racy among the four algorithms. In fact, its relative errors
are close to zero for most queries, and up to one order of
magnitude smaller than the PH algorithm. Another finding
is that sampling based algorithms (IM and PM), in general,
achieve lower relative errors than the histogram based algo-
rithms. In all queries in the two datasets, the relative errors
of sampling algorithms are below 60% (usually below 20%),
while PH algorithm gives very bad result for some queries
(37514.55% for Q7 in XMARK).

In the following two subsections, we focus on relative per-
formance of two alternative algorithms for different classes
of algorithms (histogram based and sampling based).

6.3 Histogram Based Algorithms
Figure 7(a) and 7(b) show the relative errors of PH and PL

algorithms on the XMARK dataset for different number of
buckets respectively. The relative errors of PH algorithm for
Q6, Q7 and Q8 are omitted in Figure 7(a) because they are
extremely large (1600% to 37500%). Figure 7(c) reexamines
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Figure 5: Overall Performance on XMARK
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Figure 6: Overall Performance on DBLP

their accuracy .
Several observations can be made from the figures:

• Neither histogram based algorithm is sensitive to the
number of buckets. In particular, queries having large
relative errors cannot be significantly improved by al-
locating more buckets. This is partly due to the fact
that histogram based methods cannot capture correla-
tion between joining datasets and thus cannot reduce
the inaccuracy that is due to correlation.

• PL algorithm does not require overlap information of
the ancestor set, and is more robust even if such infor-
mation is available to PH algorithm. Notice that PH
algorithm will give extremely erroneous estimation if
the no-overlap property is not known beforehand.

• As discussed in the previous sections, PL algorithm
bears high risk when the descendant set is relatively
sparse, in which case the cov value is small and thus
MRE value is high. We have listed the average cov
values for all the queries on the DBLP dataset in Ta-
ble 4. We can see that cov values for Q4, Q5 and Q6 of
the DBLP dataset are extremely small (< 0.033) com-
pared to the rest of the queries. Therefore, we expect
the real join sizes will be quite sensitive to the data
correlation and our PL estimates might be instable.
This conjecture is proved in Figure 6, as the relative
errors of PL algorithm for Q4, Q5 and Q6 are notably
higher than those for Q1, Q2 and Q3. However, PL al-
gorithm still outperforms PH algorithm in all but one
query (Q4).

6.4 Sampling Based Algorithms
Figure 8(a) and 8(b) show the relative errors of IM and

PM algorithms for different number of samples respectively.
Figure 8(c) reexamines their accuracy on the XMARK dataset.

Several observations can be made from the figures:

Table 4: Average cov Values for Queries on the
DBLP Dataset

Query Cov

Q1 2.0520
Q2 0.9814
Q3 0.3598
Q4 0.0322
Q5 0.0003
Q6 0.0201

• IM algorithm steadily improves its accuracy with more
sample points, while PM algorithm still shows some
fluctuation for certain queries. For all the queries on
XMARK dataset, IM algorithm has lower relative er-
ror rate than PM algorithm. These are mainly because
PM algorithm requires more sample points than IM al-
gorithm to achieve a good level of accuracy with high
probability. This observation coincides with our pre-
diction on the inferior performance of PM algorithm
to the IM algorithm. Nevertheless, the relative error
rates of the PM algorithm are still much lower than ei-
ther of the histogram based methods (PL or PH) (See
Figure 5).

• Both algorithms give good estimation under a small
space budget. For many queries, IM algorithm can al-
ready give very accurate estimation on XMARK dataset
with 25 samples (i.e., 200 bytes). With 100 samples
(i.e., 800 bytes), IM algorithm can give estimated re-
sults within 2% of the real values for all queries and
PM algorithm can still give estimated results within
40% of the real values.

6.5 Summary
To sum up, IM algorithm achieves the best performance
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Figure 8: Performance of Sampling Based Algorithms

with a small space requirement and sampling algorithms
tend to behave better than histogram based algorithms, es-
pecially in the presence of strong correlation between the
ancestor and descendant sets.

Therefore, we recommend that a system should use PL
histograms (with few buckets only) rather than PH his-
tograms mainly for their robustness against the worst case,
if there is no stringent requirement on the accuracy. On
the other hand, in case when highly accurate estimation is
required, or when the cov value is small and MRE value
is high or unbounded, the interval model based sampling
algorithm is the best choice.

7. CONCLUSIONS
In this paper, we have reported our comprehensive study

of size estimation problem for containment joins on XML
data. Accurate estimation of the containment join size is a
key part for XML query optimization. The unique features
of XML data and containment joins impose great challenges
on the estimation problem and have rendered previous ap-
proaches inapplicable. We proposed two models, the interval
model and the position model, in which the original con-
tainment join estimation problem are made tractable. Two
classes of estimation algorithms, based on histogram and
sampling techniques respectively were proposed. The new
PL histogram based method makes minimal assumptions
about the data distribution and correlation and is shown
to be more robust than previous histogram based methods.
We also proposed sampling based estimation methods that

have provable accuracy with high probability. Various opti-
mizations of the new algorithms are discussed as well.

Extensive experimental evaluation using both real and
benchmark datasets has demonstrated the effectiveness of
the proposed methods. Our new algorithms usually outper-
form previous methods up to an order of magnitude and are
more robust. We have also observed interesting tradeoffs
among various factors for different algorithms.

Our future work includes investigating alternative meth-
ods for the containment join size estimation problem. We
are interested in applying other existing techniques, such as
wavelet approximation and sketch, to this problem.
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Taneja. Processing aggregate relational queries with
hard time constraints. In James Clifford, Bruce G.
Lindsay, and David Maier, editors, Proceedings of the
1989 ACM SIGMOD International Conference on
Management of Data, pages 68–77, 1989.

[18] Yannis E. Ioannidis. Universality of serial histograms.
In Rakesh Agrawal, Seán Baker, and David A. Bell,
editors, Proceedings of the 19th International
Conference on Very Large Data Bases, pages 256–267,
1993.

[19] Haifeng Jiang, Hongjun Lu, Wei Wang, and
Beng Chin Ooi. XR-Tree: Indexing XML data for
efficient structural joins. In Proceedings of the 19th
International Conference on Data Engineering, 2003.

[20] Quanzhong Li and Bongki Moon. Indexing and
querying XML data for regular path expressions. In
Proceedings of the 27th International Conference on
Very Large Data Bases, 2001.

[21] Richard J. Lipton and Jeffrey F. Naughton. Query size
estimation by adaptive sampling. In Proceedings of the
Ninth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 40–46, 1990.

[22] James F. Lynch. Analysis and application of adaptive
sampling. In Proceedings of the nineteenth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 260–267, 2000.

[23] Nikos Mamoulis and Dimitris Papadias. Selectivity
estimation of complex spatial queries. In Proceedings
of the 7th International Symposium on Advances in
Spatial and Temporal Databases, pages 155–174, 2001.

[24] Neoklis Polyzotis and Minos N. Garofalakis.
Statistical synopses for graph-structured XML
databases. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data,
pages 358–369, 2002.

[25] Viswanath Poosala, Yannis E. Ioannidis, Peter J.
Haas, and Eugene J. Shekita. Improved histograms for
selectivity estimation of range predicates. In
Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pages 294–305,
1996.

[26] Albrecht Schmidt, Florian Waas, Martin Kersten,
Daniela Florescu, Loana Manolescu, Michael J. Carey,
and Ralph Busse. The XML benchmark project.
Technical report, CWI, 2001.

[27] Chengyu Sun, Divyakant Agrawal, and Amr El
Abbadi. Selectivity estimation for spatial joins with
geometric selections. In Proceedings of the 8th
International Conference on Extending Database
Technology, pages 609–626, 2002.

[28] Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish.
Estimating answer sizes for xml queries. In 8th
International Conference on Extending Database
Technology, pages 590–608, 2002.

[29] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt,
Qiong Luo, and Guy M. Lohman. On supporting
containment queries in relational database
management systems. In Proceedings of the 27th ACM
SIGMOD International Conference on Management of
Data, 2001.


