
An Efficient XPath Query Processor for XML Streams

Yi Chen, Susan B. Davidson and Yifeng Zheng

University of Pennsylvania
yicn@cis.upenn.edu, susan@cis.upenn.edu, yifeng@cis.upenn.edu

Abstract

Streaming XPath evaluation algorithms must record a po-
tentially exponential number of pattern matches when both
predicates and descendant axes are present in queries, and
the XML data is recursive. In this paper, we use a compact
data structure to encode these pattern matches rather than
storing them explicitly. We then propose a polynomial time
streaming algorithm to evaluate XPath queries by probing
the data structure in a lazy fashion. Extensive experiments
show that our approach not only has a good theoretical com-
plexity bound but is also efficient in practice for a variety of
queries and datasets.

1 Introduction

XML has become the de facto standard for data exchange.
The problem of efficiently evaluating XML queries, e.g.
XPath, in both main memory and streaming environments
has therefore attracted a lot of attention from the research
community [7, 16, 29].

In this paper, we focus on a streaming environment, as
found with stock market data or sports tickers. In such an
environment, data arrives continuously and must be pro-
cessed in real time using a single sequential scan. Query
results should be distributed incrementally, and as soon as
they are found. Furthermore, the query processing algo-
rithm should scale well in time and space. An algorithm that
meets these requirements for XPath processing over XML
data is called a streaming XPath evaluation algorithm.

Several streaming XPath evaluation algorithms based on
finite state automata (FSA) have been proposed to process
XPath queries containing the child axis (‘/’), descendant
axis (‘//’) and wildcard (‘*’) [3, 19]. Automaton-based
methods are attractive due to their efficiency and clean de-
sign. However, they cannot evaluate XPath queries which
contain predicates (‘[...]’) since an FSA is memory-less, as
observed in [26]. Since predicates are common in XPath
queries, we must be able to handle not only wildcards, child
and descendant axes, but also predicates.

When evaluating predicates on XML streams, we may
encounter data that potentially can be a query solution – a
candidate node – before we encounter the data required to
evaluate the predicates to decide its membership; therefore,
we must remember candidates as well as their query pattern
matches until the relevant data is encountered. For exam-
ple, consider the XPath query

������� ���	��
�� ��������
and the sam-

ple XML document shown in figure 1(a)1. When we process
the XML element

���
in the document order (or equivalently,

a pre-order traversal of the XML tree), we cannot determine
whether or not it is in the query result at the point that it is
encountered. We therefore need to record information about
the pattern match to subquery

��������
������
: � ������
���������� until

we can determine the predicate satisfaction of
���

and

��

,
thus deciding whether or not

���
is a solution.

Based on this intuition, several algorithms [23, 26, 27,
21, 20] have been proposed to process XML queries con-
taining predicates. These algorithms are efficient and scale
well for nonrecursive XML streams, i.e. data in which tags
do not repeat along a root-to-leaf path. However, when
predicates are combined with descendant axis traversal and
the XML data is recursive, evaluating XPath queries in a
streaming fashion raises new challenges:� Due to the combination of descendant axis traversal in
a query and the recursive structure of XML data, a single
XML node can have a potentially exponential number of
pattern matches to a subquery. Consider the query � ���������� � �	� ��
�� ���	� ���

and the XML data in figure 1(a).2 For the
XML node

���
there are !#" ways for

���
to match subquery������� �
�� ���

: � �%$&��
&' ������� , (*),+-),! , (.)0/1),! .� At least one pattern match must satisfy the query predi-
cates to make a candidate become part of the result. How-
ever, until a pattern match which satisfies the query predi-
cates is found, we must record all the pattern matches for a
candidate and test their predicate satisfaction. In the worst
case, we will not know whether or not the candidate is in-
deed a solution until all pattern matches are considered.

For example, when node
���

is met, since we are not able
to determine the predicate satisfaction of its !2" subquery
pattern matches we must record them all. Processing the
data in document order, we then verify that the matches� �3$&��
�'�������� , 45)6+7)8! , 45)9/:)6! fail the predicates
in � �

. At the very end, we find that the match � �;���<
����������
satisfies the predicates and therefore

���
is a query solution.

These challenges do not exist in a non-streaming envi-
ronment since XML nodes can be randomly accessed dur-
ing query processing. For example, in the best known poly-
nomial time main memory algorithms for evaluating XPath
queries [16], the whole document is loaded into main mem-

1Throughout the paper, we use subscripts to distinguish nodes with the
same tag.

2Note that =?> is different from the earlier query due to the descendant
(rather than child) axis traversal between tags @ and A .

a1

…

an

b1

…

bn

c1

e1

dnd1

…

d

c

b

a

e

//

//

//

(a) Data � �
(b) Query � �

Figure 1: Sample XML Data and an XPath Query

ory before query processing. Since XML nodes can be ran-
domly accessed, predicates can be checked first so that we
do not need to remember the pattern matches. These tech-
niques are not suitable for processing XML streams, where
only a single sequential scan is allowed. Furthermore, as
will be shown in section 6, the algorithms have trouble pro-
cessing large XML files.

Previous XPath streaming algorithms that handle pred-
icates either do not support descendant axis traversal [23,
21], or explicitly store all pattern matches [26, 27]. As ana-
lyzed in [27], the worst case complexity of the algorithms
in [26, 27] is � ��� �����04�� 	
���� � , where � ��� is the size of
the XML data, � ��� is the size of the XPath query, and � is
the number of different query pattern matches in which an
XML node participates. For the sample query � �

, � is !#" .
Representing � in terms of the size of the data and query,
this becomes � �&��� ��� � � ��� � � 	�� � .

As discussed, recording pattern matches by enumerating
and storing them explicitly can be expensive. Motivated by
[7], we therefore design a stack-based data structure to con-
cisely encode pattern matches. We then propose a novel
XPath streaming algorithm, TwigM , which searches for
satisfying matches in the compact data structure by prun-
ing the search space without enumerating all the pattern
matches. In this way, TwigM achieves a complexity which
is polynomial in the size of the data and query.

The TwigM algorithm was implemented in an XPath
query processor for XML streams and demonstrated in [11].

The contributions of this paper are:

1. We design a data structure to encode the matches in
a compact form. For example, to process � �

on the
sample data in figure 1(a), TwigM stores 4�! nodes to
encode !�" pattern matches.

2. We propose a streaming XPath evaluation algorithm
called TwigM . Recall that to determine whether a
candidate is indeed a solution entails finding at least
one pattern match that satisfies all the query predicates.
Rather than computing all the pattern matches in the
search space explicitly from the compact data struc-
ture, and then testing predicate satisfaction, TwigM
prunes the search space as we process the XML stream
by checking predicate satisfaction on a small number
of elements in the data structure. For example, we only
need to check predicate satisfaction on 4�! elements in-
stead of checking ! " pattern matches to evaluate � " .

3. We analyze the time complexity of TwigM, which is
polynomial in terms of the size of the data and query.

4. We present a detailed performance evaluation of an im-
plementation of TwigM compared with several other
related systems. The results show that our approach
not only has a good theoretical complexity but a good
performance on various practical queries and data sets.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the data model and query language. Sec-
tion 3 gives an overview our XPath streaming evaluation
strategy. TwigM is introduced and analyzed in section 4.
Section 5 discusses how to process general XPath queries.
Section 6 presents performance results. Section 7 discusses
related work, and section 8 concludes the paper.

2 Data Model and Query Language
In this paper, XML data is modeled as a stream of
modified SAX events: startElement(� ��� , � ���%� � , + �) and
endElement(� ��� , � ���3� �), where � ��� is the tag of the node be-
ing processed, � ���%� � is level of the node in the correspond-
ing XML tree, and + � is unique identifier of the node 3.
These events are the input to our algorithms.

Definition 2.1: The current node is the XML node whose
tag is currently being parsed by the SAX parser. An active
node is an XML node whose start tag has been processed
but end tag has not yet been processed by the SAX parser.

Proposition 2.1: At any point in time, the number of active
nodes is bounded by the depth of the XML tree.

We support XPath 1.0 navigation. For the purpose of dis-
cussion, we first focus on a commonly used subset of XPath:��������� ����� !�#" $&%

, following [26, 24, 17, 33].
�'�(����� ���)�)�#" $&%

con-
sists of child axis traversal (/), descendant axis traversal (//),
wildcards(*), branches (or predicates, denoted as [...]), and
name tests. Other XPath axis as well as value testing are
discussed in section 5

Following previous work [1, 7], we represent an XPath
query in

���(���)� �����)�#" $*%
as a query tree. For example, the

query � �
:
������� � �	� ��
�� ���	� ���

searches for all
�

nodes that are
descendants of

nodes which have a child

�
and an ancestor�

with at least one child
�
. The tree corresponding to � �

is
shown in figure 1(b). The

�
node in � �

is called the return
node and is indicated by darkening the node. An unanno-
tated line between two nodes represents a child axis, and
a line annotated with // represents a descendant axis. If a
node has more than one child or is the return node, then it is
called a branching node. For example, nodes

�
,

and
�

are
branching nodes in � �

. We use “XPath query” and “query
tree” interchangeably.

As discussed in section 1, there are two challenges in
efficiently processing

���(����� ����� !�#" $&%
on XML streams: first,

descendant axes in the query combined with the recursive
structure of XML data; and second, predicates in the query

3We omit for now attributes, however our implementation supports at-
tributes as well as elements.

combined with the single-scan requirement of stream pro-
cessing. Therefore we will start by considering two simple
subsets of

���(����� �����)�#" $&%
:
��������� ���)� �%

, which denotes XPath
queries without branching; and

��� �����#" $&%
, which denotes

XPath queries without descendent axis traversal and wild-
cards. The techniques used in processing queries in these
sub-languages will then be combined in a query processor
for

��������� ����� !�#" $&%
.

3 Overview of Query Processing

In this section, we give the intuition of how
��� ����� ����� !�#" $&%

queries are evaluated over XML data streams; details of the
algorithms will be given in the next section.

For an XPath query � , we build a machine
�

which
takes as input a sequence of SAX events of an XML stream
� and computes a set of node ids as solutions of � 4.
The structure of

�
resembles that of � , with data struc-

tures attached to machine nodes to record information about
matches(see figure 2(b) and (c)). We start by describ-
ing machines for the simple cases, PathM for queries in�������)� ����� �%

and BranchM for queries in
��� �����#" $&%

, before
extending them to one for

���(����� ����� !�#" $&%
, TwigM .

3.1 PathM :
���(����� ����� �%

Query Processing

As discussed earlier, the combination of descendant axis
traversal in queries and the recursive structure of XML data
can result in an exponential number of pattern matches for
a single query solution. To evaluate queries using polyno-
mial time and space, we must therefore use only polynomial
space to encode matches and avoid enumerating all matches
for a solution.

To achieve the first requirement, we attach a stack to each
machine node

�
to record active XML nodes which are solu-

tions to the subquery from the machine root to
�
. The XML

nodes on a stack are retained only as long as they are active,
and therefore by Proposition 2.1 the memory requirement
for a stack is bound by the document depth. Since a tag may
occur multiple times in query, the total memory requirement
is bound by the size of the query times the document depth.

To achieve the second requirement, we push an XML
node to the stack of machine node

�
if its relationship with

the nodes in the stack of
�
’s parent node � satisfies the axis

between � and
�

. Since � ’s stack stores all active solutions
for the subquery from the root to � , the XML node pushed
onto

�
’s stack is a solution for the subquery from the root

to
�
. The time to check the push condition for each XML

node is therefore bound by the number of active nodes (i.e
the document depth, Proposition 2.1) times the query size.

Example 3.1: Figure 2(c) shows the machine
�
" for the

query � " in figure 2(b). A machine node is created for each
query node and given the label of its corresponding query
node’s tag. For example, machine node

�%�
is labeled

�
,
�
"

is labeled

, and

���
is labeled

�
. The machine node built

for the root (return) node in the query is also called the root

4Our implementation returns XML fragments instead of node ids.

a1

…

an

b1

…

bn

c1

a

b

//

//

c

//
2n+1

n+1

1

n
…

a

b

(≥, 1)

(≥, 1)

v1

v2

c

(≥, 1)

v3

2n
…

(a) Data � " (b) Query � " (c) PathM
�
" for � "

Figure 2: Example for PathM

(return) node in the machine. Thus
�3�

is the root of
�
" and���

is the return node.
A stack is built for each machine node to record informa-

tion about active XML nodes that are solutions to its sub-
query. For example, the stack for

�%�
records active XML

nodes reachable by
� ���

, and the stack for
�
" records active

XML nodes reachable by
������� �

. Since active XML nodes
can be distinguished by their levels, the stacks in our exam-
ples record only the level of matching active nodes.

The edge between machine nodes is annotated with a
node push condition according to the axis between the cor-
responding query nodes. For example, the parent edge of�
" is labeled by “(� , ()”, since corresponding query node

has a parent edge of ‘//’. The edge label indicates that an

XML node will be pushed to
�
" ’s stack if and only if there

exists a node in
�3�

’s stack such that their level difference is
� (.

PathM accepts the SAX events of an XML stream and
computes the solutions for the query. Each SAX event
(� ��� , � � �%� � , + �) will be sent to machine nodes whose label
is the same as � ��� or ‘*’. In

�
" ’s execution on the XML

tree � " of figure 2(a), the SAX event startElement(
�
, (, � �)

will be sent to
� �

since its label is
�
.

A machine node
�

qualifies for a startElement SAX event
(� ��� , � � �%� � , + �), if (1)

�
is the root and � ���%� � satisfies its par-

ent edge label; or (2)
�

is not the root and there exists an
��� on the stack of

�
’s parent such that � � �%� �
	 ��� satisfies�

’s parent edge label. This XML node is pushed onto the
qualified node

�
’s stack as a solution to the subquery from

the root to
�

. Continuing our example,
�;�

is pushed on
���

’s
stack since

���
is the root,

���
’s parent edge is labeled (� , (),

and
���

’s � ���3� �� (�� (. Similarly, we push data nodes
�
" ,����� , �%� on

�3�
’s stack, data nodes

��
, ����� ,
 � on

�
" ’s stack,

and data nodes
� �

on
� �

’s stack. The snapshot of
�
" ’s state

at this point of execution is shown in figure 2(c). Since
� �

is the return node, node id
� �

is output.
A machine node

�
qualifies for an endElement

event(� ��� , � ���3� �) if � ���%� � is equal to the top node in
�

’s stack
(meaning that this is the matching end tag);

�
then pops its

stack to guarantee that only active nodes remain. For exam-
ple, endElement(

�
, 4�!�� () is sent to machine node

���
since

its label is
�
. Furthermore, the top element in

���
’s stack is

level 4�!�� (and is equal to the � ���3� � of the endElement
event; we therefore pop

���
’s stack.

As an optimization, we do not need to create machine
nodes for ‘*’ interior query nodes. Instead, we record the

a1

b1

c1
e1

d1

d

c

b

a

e

(a) Data � � (b) Query � �

v3 c

v2 b

v1 a

d v4

e v5

L: level B: branch match C: candidates

1 F FL BC

c12 T TL BC

CL -1 φ

CL -1 φ

CL -1 φ

(c) BranchM
� �

for � �

Figure 3: Example for BranchM

level difference of non-‘*’ query nodes through the edge
labels of their corresponding machine nodes.

Observe that in this example, although there are ! "
pattern matches which qualify

� �
as a query solution

(� � $ ��
 ' ��� � � where (.),+-)�! , (.)7/1)�!), we only store 4�!
nodes. Furthermore, to verify each sub-query solution it is
sufficient to check nodes on the parent stack of a qualified
machine node. For example, to determine that

���
is a query

solution we only need to check nodes in
�
" ’s stack, rather

than enumerating and testing all !2" query pattern matches
that

���
participates in.

Although the stacks used in PathM are similar to those
proposed in [7], the algorithms to compute query results
are quite different. First, PathM pushes nodes onto a stack
if and only if they are solutions to the corresponding sub-
query, rather than pushing all nodes whose tag matches the
label of the stack. Second, to determine if an XML node is a
query solution, we only need to check its relationship with
nodes in the parent stack of the query return node (poly-
nomial time), rather than enumerating and verifying all the
pattern matches the XML node participates in.

3.2 BranchM :
���������#" $&%

Query Processing

Another challenge for evaluating XPath queries in a stream-
ing environment lies in checking predicate satisfaction. We
focus on this problem in BranchM , which processes
queries in

���(���)�#" $&%
. The issue is that when a data node

matches a machine node, we may not be able to determine
if it is a solution to the query since the nodes matching the
predicate conditions may not have been seen yet.

We therefore associate with each machine node a set of
possible solutions called candidates. To verify a candidate,
we need to record pattern matches to subqueries and test
predicate satisfaction on them. Since a predicate is a filter
which can be satisfied with a single match for each condi-
tion (an existential test), we attach a boolean array called
branch match to each machine node and record whether or
not each of the child conjunctions has found a match in the
XML data rather than recording all the matches.

Example 3.2: Figure 3(c) shows the machine
� �

for query� � in figure 3(b). The BranchM machine is different from
a PathM machine in three key ways: First, an edge label
in BranchM is always (=,1) since there are only child axes
and no ‘*’-nodes; we therefore omit edge labels from the
figure. Second, at any moment there is at most one active
XML node matching a query node; machine nodes there-
fore record a single match rather than a stack of matches.
Third, for each BranchM machine node, we associate the
level � of the match (initialized to �), a set of candidates�

(initialized to �), and the boolean branch match array �
(initialized to � � ��� � , �).

Now, consider the action of
� �

on the data in figure 3(a).
In this example, we are not able to determine if

���
is a query

solution until we test predicate satisfaction of the pattern
match � ������
����&����� for subquery

�����
����
.

As in PathM , when BranchM receives a SAX
event(� ��� , � ���3� � , + �) it will send it to the machine nodes
whose label is the same as � ��� . For example,
startElement(

�
, (, � �) will be sent to the machine node

� �
since its label is

�
.

A machine node determines if it qualifies for a
startElement(� ��� , � ���%� � , + �) event by comparing � ���3� � with
the element in its parent node according to the parent edge
condition, as in PathM . The � ���3� � of a matched active data
node is then recorded in � . If the machine node is the return
node, we add + � to its candidate set

�
. Continuing the ex-

ample above, machine node
�3�

qualifies for this event since
the label of

�3�
is
�

and
�3�

is 	�
�
 � . The level information (is
therefore recorded in

� �
’s � . Similarly, we record the level

of

 �

(2) in
�
" ’s � and the level of

� �
(3) in

� �
’s � , and put

the id of
� �

into
� �

’s candidate set.

When a machine node receives endElement(� ��� , � ���3� �),
it checks if the event corresponds to the recorded data node.
For any qualified machine node

�
, it then checks if all com-

ponents in its branch match array � are �	 � � (�). If so,
this branch has found a match to all its predicates. If

�
is

the root, we output its candidate set
�

; otherwise, we set
its parent’s branch match component for

�
to �	 � � , and add�

’s candidate set to its parent’s candidate set. We then reset
the qualified machine node’s state to (� � 	.(, � � � ,
� ����� � ����� � ���).

Continuing the example above, when endElement(
�
, �) is

sent to
� �

, it again matches
� �

. Since
� �

’s branch match is
trivially true (there are no qualifications on the match, and
therefore � is missing for

� �
in the figure), we set its parent�

" ’s branch match for
� �

to � , add
� �

’s candidate set � � ���
to
�
" ’s candidate set, and reset

���
’s state. We proceed in a

similar fashion for the other startElement and endElement
events. The snapshot after the endElement event for

�3�
is

shown in figure 3(c). Finally, on the endElement event for���
, machine node

�3�
qualifies; since its branch match � is

all � , its candidate set � ��� � is output as the query solution.

v3 c

v2 b

v1 a

(≥, 1)

(≥, 1)

(≥, 1)

d v4

e v5

(=, 1)

(=, 1)

L: level B: branch match C: candidates

CL B

CL B

…
c1n+1

F, Tc12n

F, T

…
1

F, Fn

F, F

Figure 4: TwigM
� �

for � �
in Figure 1

3.3 Putting Them Together in TwigM

Having discussed the technical approaches for dealing with
descendant axis traversal and predicate testing, we now put
the two together in TwigM for evaluating queries in the
language

���(����� �����)�#" $&%
over recursive XML streams.

There are three important features of TwigM . First, as
in BranchM, TwigM tests predicate satisfaction on a given
pattern match using a branch match boolean array in a re-
cursive fashion to verify a candidate query solution. Sec-
ond, because of the presence of ‘//’ and ‘*’, TwigM builds
a stack to record active XML node matches for each query
node as in PathM . However, each stack element now con-
tains the level, candidate set, and branch match array for
the matched data node. The stacks compactly encode all
the pattern matches to subqueries that a candidate query so-
lution participates in. Third, since TwigM needs to test
predicates on multiple pattern matches to verify each candi-
date, it groups pattern matches and eliminates the ones with
failed predicates effectively without enumeration. There-
fore TwigM only probes a polynomial number of matches
in a potentially exponential search space and achieves a
polynomial complexity.

Example 3.3: Figure 4 shows the machine
� �

for query � �
in figure 1(b). There are five nodes in

� �
,
����� �

"
� ���������

and���
labeled

�
,

,
�
,
�

and
�
, respectively. Each node has the

level difference requirement on its parent edge as in PathM
. Each node also has a stack, which is initially empty. An
element of a stack has the same data structure as the state of
a node in BranchM ; it is a triple, representing the matching
XML node’s level, candidate set and branch match array.

Now, consider the action of
� �

on the data � �
in fig-

ure 1(a). The startElement processing is similar to PathM
except a triple with level information, candidates and branch
match is pushed onto the stack instead of only level infor-
mation. For example, when processing the data node

� �
with level (and id

� �
, since machine node

� �
qualifies for

this event, the triple (� � (, � � � , � � � � � � �) is
pushed on

� �
’s stack. Similarly, we push corresponding in-

formation for nodes
�
" , ����� ,

� �
on

� �
’s stack, nodes

 �
, ����� ,
 �

on
�
" ’s stack, and

� �
along with its node id as a candidate

on
���

’s stack.
When the endElement event of

� �
is received by

� �
, the

event is sent to
� �

. The top element ! in
� �

’s stack has the
same level as

� �
. Since ! ’s branch match � is trivially all � ,

for each element in the stack of
���

’s parent (
�
") whose level

satisfies the parent edge condition, we set its branch match
for

���
to � , denoting that it has found a match to query child�

, and upload the candidate set: � ��� � . In this example, ev-
ery element in

�
" ’s stack satisfies the parent edge condition.

Then we pop
� �

’s stack. The snapshot at this moment is
shown in figure 4, where the second component of branch
matches for

�
" has been set to � to denote that the match

for
� �

has been found.
When the endElement event for

��
is received, it matches

the top element ! in
�
" ’s stack. However, since one com-

ponent of the branch match of ! is � (predicate
�

has not
found a match), we directly pop

���
’s stack. Similarly, we

process the endElement events for nodes

�� � � , ����� ,
 " and

startElement events for node
� �

. On the endElement event
of

���
, a match is now found for the top element ! of

���
’s

stack. Since ! satisfies the parent edge condition with the
top element in

�
" ’s stack,

��
, we set

��
’s branch match for� �

to � and pop ! . On the endElement event for

 �

, since
its branch match is all � , we set the branch matches of the
elements in

� �
’s stack (which all satisfy the parent edge la-

bel condition) for
�
" to � , upload their candidate sets, and

pop the stack. Finally, on the endElement event for
� �

, since���
’s branch match is all � and it is the root, its candidate set

� ��� � is output as the query result.

As we can see, TwigM uses stacks to compactly encode
query pattern matches. In the above example, !2" pattern
matches (� !�" elements) to subquery

������� �
�� ���
in which

the XML node
� �

participates are recorded using 4�!�� (
elements in stacks. To verify a candidate query solution,
TwigM removes a set of unsatisfied pattern matches by pop-
ping one element in the stack. For example, since node

��
does not satisfy the predicate we pop it, eliminating all !
matches in which

��
was involved (� �%$ ��
 ��������� , (*),+) !).

When multiple satisfying pattern matches exist for a query
solution, TwigM eliminates duplicate copies of a candi-
date by taking the union. Therefore TwigM only needs to
process a polynomial number of elements in the stacks to
verify a candidate query solution instead of computing an
exponential number pattern matches. In the above example,
TwigM processes 4�! elements in the stacks rather than !2"
pattern matches.

4 Algorithms

4.1 Abstract Machine TwigM

We now formally present TwigM discussed in the previous
section. First we define an

���(����� ����� !�#" $&%
query � .

Definition 4.1: An
�'������� ����� !�#" $&%

query is a tree � (
�

, � , � ,	 , 	�
�
 � ,
 , ��
 �), where� � is a finite set of nodes� � is a finite alphabet of node tags� � :
��� � ‘*’

�� � is the name function; � �! � returns the
name of ! , which can be either a tag or ‘*’��	 : ��� ��� �� � is the parent function; 	 �! � returns the
parent node of !

�
 : ��� � ���<� � � is the parent edge function;
�� ��� returns
the label of the incoming edge of

�
� 	�
�
 ��� � is the root of �� ��
 ��� � is the return node.

TwigM machine is a tuple (
�

, � , � , ��� , �	� , 	�
�
 � , ��
 �) built
from a query � (

� � , � , � � , 	 � , 	�
�
 � � ,
 � , ��
 � �) where� � is a set of machine nodes corresponding to nodes in � .
	�
�
 � and ��
 � are machine nodes corresponding to 	�
�
 � � and
�
 ��� of the query tree � , respectively. Several functions are
defined on machine nodes.

A name function � returns the label of a machine node.
Each machine node except the 	�
�
 � has a parent which

can be retrieved by a parent function 	 .
Parent edge function
 : � � � � � � � ��
 on a node

�
returns

�
’s parent edge label, which records the level dif-

ference and axis information between
�

and its parent 	 � ���
as the condition on which an XML node should be pushed
into the state of

�
. The first component is a function, either

“ � ” or “ � ”, depending on the axis of query nodes between�
and 	 � �%� , and the second component is a positive integer

representing level difference of between
�

and 	 � ��� . We say
that an integer � satisfies the parent edge condition of

�
if the

function
�� �%��� (� � � �
 � ����� 4 �� returns � (true).
A child identity function � � � �
 identifies a child

within its parent by its order, so that match information of
the child can be recorded in the parent’s branch match.� � is the input SAX event startElement (� ��� , � � �%� � , + �) or
endElement (� ��� , � ���%� �) which are described by the domain
of node tags � 5, node level , and XML node ids � .� � denotes the state associated with machine nodes, and
is described by a stack function � : ��� �� � � � � � � �
� � 6. In the following we use � to denote the states ���
� � � � � ��� � . ��� ��� returns a stack of active XML nodes
that are solutions to the subquery from the query root to the
query node � � ��� . For each stored XML node, we record its
level, branch match and candidate set information. Branch
match records for each child

�
of
�

whether or not a match
on data has been found. The candidate set records the set of
possible solutions to be verified with respect to

�
.� � � and � � are transition functions corresponding to

startElement and endElement events, respectively. The
functions compute the next state of a machine node accord-
ing to its current state and the input SAX event.

4.2 Machine Construction

Next, let us describe how to construct a TwigM for a given
query � :� Nodes

�
, ��
 � , name function � :

For each query node
� � in

� � whose name is an XML
tag (� � � � � � � �), we build a machine node

�
and set

��� �%� � � � � � � � ; for each branching or leaf query node whose
label is ‘*’, we build a machine node

�
and set � � ��� � ‘*’.

All
�

thus constructed comprise
�

. Let � and � � represent

5We assume that the alphabet of node tags in the query is the same as
that of the XML data, and add � for empty id in the last component of
endElement events.

6The stacks we use allow examining all elements.

the mapping functions between query nodes and machine
nodes, � � � � � � � �

and � � ��� � � � . Set ��
 � = � � ����
 ��� � .
Note that we could create a machine node for each query

node. However, we do not need to build machine nodes for
interior ‘*’ nodes since we capture them in the level differ-
ence between nodes, as described next.� Parent function 	 , parent edge function
 , child identity
function � , 	�
�
 � :
To construct
 and 	 , for two query nodes

� �� and
� �" , such

that
� �� is an ancestor of

� �" with no intervening non *-nodes
(that is, the path between

� �� and
� �" is comprised of all *-

nodes), let c be the number of *-nodes between
� �� and

� �" .Set � � � � �� � to be the parent of � � � � �"
�
, and set the second

component of the edge label between them in TwigM to be� �,(. If one of the edges between
� �� and

� �" in � is labeled
‘//’, then set the first component of the edge to � ; otherwise
set it to � .

We set the 	�
�
 � as the machine node without parent. For
each child

�
of a machine node

�
, we set �-� ��� to be the order

of
�

within
�
.� Stack function �

For each node
� � � , we build a stack and initialize it to be

empty.� Start element function ���
��� � � ��� � ��� � � � ��
 � � � � � � computes the next
state of node

�
according to input startElement SAX events,

current state of
�

’s parent and
�

’s parent edge label.
A startElement(

�
, � , + �) event invokes the ��� function on

each qualified machine node
�

. A node
�

is qualified if: (1)
� � ��� � �

or � � �%� � ‘*’; (2)
�

is the root and � satisfies the
parent edge condition; or (3)

�
is not the root and there ex-

ists an element
�

in the stack of
�
’s parent whose level is � ’

and � 	 � ’ satisfies
�
’s parent edge condition. If

�
is qual-

ified, then we push � � � ��� � ����� � � � � � onto
�

’s stack.
Furthermore, if

�
is �
 � then we add + � to

�
’s candidate set.

� � is formally defined in algorithm 1.� End element function � �
� � � � ��� � ��� � � � ��
 � � � � � � computes the next
state of node

�
and that of its parent according to the input

endElement SAX events,
�

’s current state, and
�

’s parent
edge label.

An endElement event (
�

, �) invokes the � � function on
every qualified machine node

�
. A node

�
is qualified if

� � ��� � �
or � � ��� � ‘*’, and the level of the top element of�

’s stack is � .
Let ! be the top element of

�
’s stack. If

�
is 	�
�
 � and! ’s branch match is all � , we can determine that there is

a pattern match for the query, therefore ! ’s candidates are
output as query solutions. If

�
is not 	�
�
 � and ! ’s branch

match is all � , then for every element ! � in
�
’s parent stack,

such that the level difference of ! and ! � satisfies
�
’s parent

edge label condition, we know that ! is a match to a query
child of ! � ’s, and therefore set the component of

�
in ! � ’s

branch match to � . Furthermore, we load the candidates
of ! to ! � to be verified with respect to

� � ’s subtree query.
Finally, we pop the top element of

�
’s stack. Note that if

node ! ’s branch match contains � , we not only discard ! ,
but all the pattern matches ! is involved in; therefore we can

Algorithm 1 Functions ��� , �	� for TwigM
Start Element Function ���

1: for all � such that ���������
	����	����������
	�� ‘*’ 	�	�������������������	��� ���
	��! �"#�%$'& � ���
	�� (�")	*�+���-,.�/��������	*�10
21354��76����
	�	�� � ���
	��8 �"#�%$:9
2*�8 �"%& � ���
	�� (�")	�	 do

2: ;-<�=�>?�74@���
	�&BAC$'&BACDE&BFBF�F�DHGI&�JKG�	 ;
3: if ���K�/=B�:$�	 then
4: �L�M;N�74@���
	�	�� O�"-���P��;?�74����
	�	�� O�"*QSR�T#U@V ;
5: end if
6: end for

End Element Function ��W
1: for all � such that ���������
	X� @	Y�Z���[���
	\� ‘*’ 	�]�
�7�L�M;N�74@���
	�	��8 �"^�_$�	 do

2: if �)`-TM���7�P��;?�74����
	�	�� (�"#� T�"^�bac	�	 then
3: if ���K�_��������	 then
4: ��<d;-<����7�L�M;N�74����
	�	�� O�"7	 ;
5: else
6: for all 2 such that 2e3f4��76����
	�	g� � ���
	��! �"#�%$h9

2*�! �"%& � ���
	�� (�")	 do
7: 2*� (�"#� ij���
	'"���a ;
8: 2*� O�"^�k2*� O�"*Q5�L�M;N�74@���
	�	�� O�" ;
9: end for

10: end if
11: end if
12: ;-�M;N�74@���
	�	
13: end for

remove failed pattern matches without having to enumerate
them. � � is formally defined in Algorithm 1.

4.3 Correctness and Complexity Analysis

Theorem 4.1: TwigM correctly evaluates queries.

To prove the theorem, we first give several definitions.

Definition 4.2: Given a node
�

in a query tree � , we name
the subquery from 	�
�
 � to

�
without branches the prefix sub-

query of
�
. If we cut off all branches on nodes between root

and
�
, excluding

�
. We name the remainder of � the suffix

subquery of
�
.

For example,
������� �

is the prefix subquery of node

with respect to � in figure 1(b),
������� �
�� ���	� ���

is the suffix
subquery of

, however,

� ��������
������
is not a suffix subquery

of

.

Since each query node whose label is not ‘*’ has a corre-
sponding machine node, we blur machine nodes and query
nodes in the following.

Proposition 4.2: On the startElement event for a node
�
,
�

is pushed onto a machine node
�

’s stack if and only if if
�

is an active node and a solution to the prefix subquery of
�

.
Proof Sketch: Proof by induction on the levels of machine
nodes in TwigM starting from the root. According to the
construction of the parent edge function
 , it holds immedi-
ately for the root. Assume the proposition holds for a node
with level � . An XML node

�
is pushed onto the stack of

node
�

with level � � (, if and only if there is a node in
�

’s
parent’s stack, and their level difference satisfies

�
’s parent

edge condition. Therefore the proposition holds.

Proposition 4.3: On an endElement event for a data node�
, which matches the top node ! in the stack of a machine

node
�
, we set the branch match of

�
to the nodes in

�
’s

parent’s stack if and only if each candidate of ! is a solution
to the suffix subquery of

�
.

Proof Sketch: Proof by induction on the level of node
�

in
TwigM starting from leaves. The base case holds according
to proposition 4.2.

Theorem 4.1 is a special case of proposition 4.3.

Theorem 4.4: The time complexity of TwigM is � �&��� ��� �l � � � � � � ��� � , where
l

is the depth of the XML tree.
Proof Sketch: The polynomial time complexity results
from three key features of TwigM . First we use a stack
structure to store an exponential number of pattern matches
in polynomial space. Second, by guaranteeing the nodes in
a stacks are solution to the prefix subquery, we can check
the predicate satisfaction of a partial pattern match locally.
In other words, we only need to check the relationship be-
tween the current node and the nodes in its parent stack.
Third, for predicates, we only use a boolean to record its
satisfaction.

All the detailed proofs can be found in [10].

5 Processing General XPath Queries

Having shown how to handle
�'�(����� ���)�)�#" $&%

, we now briefly
discuss how to support the full set of XPath axes.

Other Forward Axes. Descendant-or-self axis can be
processed in the same way as the descendant axis using the
parent edge label � � � � � . To support the following axis, we
split the query tree at each following axis edge and eval-
uate resulting subqueries in parallel. For each subtree ob-
tained, we set the incoming axis of its root to ‘//’. We build
TwigM for each subtree and set the node with the following
axis or the original return node as the return node. We also
record the position of each candidate and return the (�
�
 � ,
��
 � � � +
�!) pair instead of only returning ��
 � � � +
�! . Then the
returned results of all �1m + � � s are joined according to the
following axis relationship on node positions to obtain the
final result. To support to following-sibling axis, we addi-
tionally store the parent node id of a return node which is
used to check sibling relationship.

Reverse Axes. As proposed in [25], an XPath query with
reverse axes can be transformed into an equivalent reverse-
axis-free one. Using this technique, TwigM can also pro-
cess all reverse axes including parent, ancestor, ancestor-or-
self, preceding and preceding-sibling.

Other Axes. The self axis can be processed by setting
the parent edge label to be ��� � � � . Attributes can be han-
dled in the same way as elements and modeled in SAX
events. Namespace axis can be supported using a filter on
SAX events.

The previous discussion focuses on structural naviga-
tion in XPath. Node value tests over constant values are
supported by applying the test directly to XML nodes se-
lected from structural navigation. Value testing does not af-

fect the overall complexity of query processing, as observed
in [3, 26, 24].
�1m + � � can be extended to evaluate certain aggrega-

tion functions such as
�
 �;!�� , ����� , �

���
and � + ! by us-

ing a variable to record the current aggregate value and
updating it when a new query solution is found. For
example, consider a modified query of � �

in Figure 1:� ����� ���	� �
�� ���	� �������
 �;!���� � , which counts the number of sat-
isfying nodes rather than return the nodes. To evaluate it,
we use a counter which is initialized to zero. The counter
is increased by one when an XML node is determined to
match

� ����� � �����
�� ��������
.

6 Experimental Evaluation

We have implemented TwigM in C++ and demonstrated it
in [11]. The SAX parser used is Expat [12]. In this section,
we present results of a detailed performance study of this
implementation.

6.1 Experiment Setup

Environment. All experiments were conducted on a Pen-
tium III 1.5GHz machine with 512MB memory, running the
Redhat 9 distribution of GNU/ Linux(kernel 2.4.20-8). All
experiments were repeated 10 times and the average pro-
cessing time was calculated disregarding the maximum and
minimum values.
Datasets. We conducted experiments on three datasets. The
first is a synthetic dataset generated by IBM’s XML Gener-
ator [18], which takes a DTD and a set of workload param-
eters as input. We use the Book DTD from the XQuery use
cases [31] as the input DTD. We apply the default settings of
XML Generator for all the parameters except for Number-
Levels and MaxRepeats. NumberLevels bounds the maxi-
mum depth of the XML document generated and is set to 20.
MaxRepeats determines the maximum number of times an
element can repeat in its parent and is set to 9. The second
is a synthetic benchmark data set generated by XMark [32].
The data generated conforms to the default benchmark auc-
tion DTD provided. The third one is a real dataset from the
International Protein Sequence Database [15]. Features of
the datasets are shown in figure 5.
Queries. We tested 10 queries on the book and pro-
tein datasets, as listed in figure 6. � �

to � � belong to�������)� ����� �%
, � � to ��� belong to

���(����� �����#" $&%
, but restrict

the path expressions in predicates to be either an attribute or
a single child axis. ��� has a value test as predicate and pro-
duces a small result. ��� and � �
	

belong to
�'������� ���)�)�#" $&%

,
and allow multiple predicates to apply to a single node,
path expressions in

���(����� ����� !�#" $&%
to be present in predicates,

predicates to be nested, and ‘*’s to appear anywhere. � ��	
of

book dataset has the solution node tagged with ‘*’, so every
event in the stream will be sent to this node. For the bench-
mark dataset, we tested the benchmark queries provided by
XMark [32] which only contain “/”, “//”, “*” and predicates.
We use the original query names for the benchmark queries.
Systems. We compare TwigM with several XML query
processing systems. XMLTK (version 1.01) [3] is a stream-

Name Size Node Number Tag Number Depth
Book 9MB 149K 12 20

Benchmark 34MB 616K 77 12
Protein 75MB 2277K 66 7

Figure 5: Dataset Description

Book Dataset� > //section/title��
//section//figure���
//title���
//book//section//title���
//section[./figure]/title���
//section[./section]/title���
/book//section[./title]/figure���
//section/figure/image[@source=“defaultCDATA24553”]���
//section[./figure/image/@source=“defaultCDATA3”]/title� >�� //section[.//section]/figure/*

Protein Dataset� > /ProteinDatabase//protein/name�
/ProteinDatabase/ProteinEntry/*/*/*/author� �
//ProteinEntry/reference/refinfo/xrefs/xref/db���
//ProteinEntry//reference//refinfo//xrefs//xref//db���
//organism[./source]� �
//ProteinEntry[./reference]/@id���
//ProteinEntry//refinfo[./volume]//author���
//ProteinEntry/reference/refinfo[./year=“1988”]/title���
//ProteinEntry[.//refinfo[./title, ./citation/@type]]/@id� >�� //ProteinEntry/*/[created date = “10-Sep-1999”]/uid

Figure 6: Query Sets

ing XPath
���(���)� ����� �%

processor using a DFA (Determin-
istic Finite Automaton) constructed lazily. XSQ (version
1.0) [26] is a streaming XPath

��� ����� �����#" $*%
processor using

transducers, in which a predicate is restricted to be a single
child axis or an attribute, with an optional value test. The
release versions of other XML query streaming processors
such as SPEX [24], XSM [23],XAOS [6], TurboXPath [20]
and BEA/XQRL [14] are not yet publically available. We
also compare with two non-streaming XML query proces-
sors: Galax (release 0.3.5) [29] is a commercial prod-
uct which is a comprehensive implementation of XQuery
1.0. XMLTaskForce (release 2003-01-30) [16] is a main-
memory, nearly complete implementation of the XPath 1
recommendation, and the only such system with polynomial
time complexity in the literature.

TwigM, XMLTK and XMLTaskForce are implemented
in C++, while XSQ and Galax are implemented in Java
and OCaml, respectively. In order to get a fair comparison,
we referenced a Java performance benchmark against C [8]
which tested 8 different benchmarks for various execution
environments. We found the closest execution environment
to be the Sun JDK 1.3.0 client versus the C++ compiler gcc
2.91.66 running on a 700 MHz Pentium III Linux machine.
We took the ratio of the Series benchmark in which Java
had the worst performance compared to C (1: 0.484321)
and normalized the execution time of XSQ in the follow-
ing comparisons. We only found one OCaml benchmark
against C [2] and applied the ratio (1: 0.5013424) where the

7 4097 47 47 45 45 36

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

Ti
m

e
(s

ec
on

d)

TwigM XMLTK XSQ Galax XMLTaskForce

25351021265

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

1274 72 20

0

1

2

3

4

5

6

7

8

Q1 Q2 Q5 Q6 Q15

Queries

T
im

e
 (

s
e
c
o

n
d

)

TwigM XMLTK XSQ Galax XMLTaskForce

N
/A

N
/A

N
/A

N
/A

N
/A

204

0

5

10

15

20

25

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

Ti
m

e
(s

)

TwigM XMLTK XSQ

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

(a) Book Dataset (b) Benchmark Dataset (c) Protein Dataset
N/A means that the query cannot be supported by the system. In (c), Galax takes more than 1 hour, and XMLTaskForce reports “out-of-memory”.

Figure 7: Query Execution Time

84 84 96 106 84 84 84 86 9287

0

5

10

15

20

25

30

35

40

45

50

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

M
em

or
y

(M
B)

TwigM XMLTK XSQ Galax XMLTaskForce

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

202325207 193193246184

0

2

4

6

8

10

12

14

16

18

20

Q1 Q2 Q5 Q6 Q15

Queries

M
e
m

o
ry

(M
B

)

TwigM XMLTK XSQ Galax XMLTaskForce

N
/A

N
/A

N
/A

N
/A N

/A

0

5

10

15

20

25

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

M
em

or
y

(M
B

)

TwigM XMLTK XSQ

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

(a) Book Dataset (b) Benchmark Dataset (c) Protein Dataset
N/A means that the query cannot be supported by the system. In (c), Galax takes more than 1 hour, and XMLTaskForce reports “out-of-memory”.

Figure 8: Memory Usage

OCaml has the worst performance compared to C, to nor-
malize Galax’s execution time.

We also tested YFilter [13] using the command-line
benchmarking mode with parameter –result=ALL. YFilter
is implemented in Java. Experimental results show that
YFilter works well for

�'������� ����� �%
queries on small data,

and
��������� �����)�#" $&%

queries on small non-recursive data. On
the Book dataset, YFilter answers � �

to � � with normal-
ized time 1.64, 1.74, 2.12 and 2.13 seconds respectively,
and reports errors for � � to � �
	

. It reports out of memory
for all queries on the Benchmark and Protein datasets. Since
YFilter is a filtering system and is designed for answering
multiple queries in parallel, it is unfair to compare YFilter
against TwigM in this experimental setting. We therefore
do not include YFilter in the following experiments.

6.2 Query Processing Time

First we compare the processing time of TwigM with
XMLTK, XSQ, Galax and XMLTaskForce. Figures 7(a),(b)
and (c) report the query execution time for the Book, Bench-
mark and Protein datasets respectively. As we can see, for�������)� ����� �%

XMLTK has the best performance; for other
queries, TwigM is the fastest.

The performance of TwigM and XMLTK is stable, and
does not degrade on complex queries. The performance of
the other systems degrades due to enumerating multiple pat-
tern matches to a subquery for a query result. For example,� � and � � on Book have the same set of nodes as query re-
sult, while each result of � � has multiple pattern matches to� ��

�
 � � � � ��� � +
�! since section nodes are nested. TwigM

and XMLTK use the same amount of processing time for
both queries, the processing time of XMLTaskForce on � �
increases a little compared to � � , while the performance of
XSQ and Galax degrades significantly.

As we can see, only TwigM is able to evaluate all the test
queries on three datasets. Its performance is good and sta-
ble: it performs well on recursive and non-recursive data, as
well as simple and complex queries. When multiple pattern
matches are present (e.g. the book dataset), the performance
advantage of TwigM is substantial. Although XMLTK out-
performs TwigM on � �

to � � , the difference between their
performance is small compared to the difference between
TwigM ’s performance and that of XSQ and Galax. For
queries containing multiple ‘*’, XMLTK needs to build a
DFA with an exponential number of states in the worst case
and its performance degrades significantly.

6.3 Memory Usage

Next we compare the memory usage of TwigM with
XMLTK, XSQ, Galax and XMLTaskForce. Process mem-
ory usage is measured using Redhat’s system monitor. The
total memory usage of XSQ include memory consumed by
the Java virtual machine. Figures 8(a), (b) and (c) report
the memory usage for the Book, Benchmark and Protein
datasets, respectively. There are several observations. First,
the streaming processors, TwigM , XMLTK and XSQ,
use substantially less memory than the non-streaming pro-
cessors, Galax and XMLTaskForce, which require memory
much larger than the data size. Second, as the sizes of the
datasets change from 9MB(Book) to 34MB(Benchmark)

0

5

10

15

20

25

9 18 27 36 45 54

Data Size(MB)

T
im

e
(s

)

TwigM XMLTK XSQ Galax XMLTaskForce

98

0

10

20

30

40

50

60

9 18 27 36 45 54

Data Size (MB)

T
im

e
(s

)

TwigM XMLTK XSQ Galax XMLTaskForce

1264

0

10

20

30

40

50

60

9 18 27 36 45 54

Data Size (MB)

T
im

e
(s

)

TwigM XSQ Galax XMLTaskForce

(a) � �
(b) � " (c) � �

0

5

10

15

20

9 18 27 36 45 54

Data Size (MB)

T
im

e
(s

)

TwigM XSQ Galax XMLTaskForce

45

0
5

10
15
20
25
30
35
40
45
50

9 18 27 36 45 54

Data Size (MB)

T
im

e
(s

)

TwigM Galax

0

2

4

6

8

10

12

9 18 27 36 45 54

Data Size (MB)

T
im

e
(s

)

TwigM XMLTaskForce Galax

78

(d) ��� (e) � � (f) � �
	
Galax reports “exception stack overflow” for data larger than ������� . Systems that are not shown in the legend cannot support the query.

Figure 9: Query Execution Time as Book Data Size Increases

0.01

0.1

1

10

100

1000

1 2 3 4 5

Query Repetition

T
im

e(
s)

XSQ XML TaskForce TwigM Galax

The file size for testing 0.11MB. The query cannot be supported by
XMLTK.

Figure 10: Scalability of Query Processing Time as Query
Size Increases

to 75MB(Protein), the memory consumption of TwigM ,
XMLTK and XSQ remains roughly the same; XMLTask-
Force runs out of memory for Protein. Third, TwigM and
XMLTK use as little as 1MB memory for all queries in all
datasets.

6.4 Scalability of Query Processing Time

We also measure the scalability of the systems as the data
and query sizes increase.

To test the scalability as the data size increases, we du-
plicated the Book dataset between 2 and 6 times. Figure 9
reports the processing time on increasing sizes of XML data
for queries of different types: � �

, � " , �
�
, �	� , � � and � �
	

,
respectively. The performance of other queries are similar
and are omitted. The results show that as the file size in-
creases the execution time of TwigM increases very slowly
for both simple and complex queries.

To test scalability as the query size increases,
we use queries “//section[figure]/p”, “//sec-

tion[figure]//section[figure]/p”, and so on, by repeating
“//section[figure]” from 2 to 5 times. Since the query
processing time of Galax and XSQ increases dramatically
as the query size increases, we use a small book dataset
of size 114KB as input. This book dataset is generated by
IBM’s XML Generator [18] with parameters “maxRepeats”
set to

and “numberLevels” set to � .

Figure 10 shows that the execution time of TwigM and
XMLTaskForce are almost constant, and the execution time
of Galax stays polynomial as the query size increases. On
the other hand, the time required by XSQ becomes expo-
nential as the query size increases. This is because in the
book dataset the section nodes are nested; for each result
node tagged by p, the number of pattern matches to the sub-
query from the query root to the return node grows expo-
nentially as the query size increases. By computing all pat-
tern matches using a “depth stack”, XSQ has an exponential
time complexity in the query size.

6.5 Scalability of Memory Usage

Figure 11 shows the memory usage of different systems as
the book data size increases. As we can see, when the data
size increases from �

� � to �

 � � , the memory usage

of the streaming processors (TwigM , XMLTK and XSQ)
is constant, while the memory consumption of Galax and
XMLTaskForce increases much faster than the data size.
When the book dataset is ��4 � � , XMLTaskForce reports
“out-of-memory”.

6.6 Overall Results

From the experiments, we can see that TwigM has several
benefits:

0
20
40
60
80

100
120
140
160
180
200

9 18 27 36 45 54

Data Size (MB)

M
em

o
ry

 (
M

B
)

TwigM XMLTK XSQ Galax XMLTaskForce

0

50

100

150

200

250

9 18 27 36 45 54

Data Size (MB)

M
em

o
ry

 (
M

B
)

TwigM XSQ Galax XMLTaskForce

0

50

100

150

200

250

300

9 18 27 36 45 54

Data Size (MB)

M
em

o
ry

(M
B

)

TwigM Galax XMLTaskForce

(a) � � (b) � � (c) � �
	
Galax reports “exception Stack overflow” for dataset larger than ������� . Systems not shown in the legend cannot support the query.

Figure 11: Memory Usage as Book Data Size Increases

� TwigM has polynomial time complexity in the size of
the data and query, which is verified in the experiment.

� When multiple pattern matches are present, the per-
formance of TwigM is substantially better than other
systems, as shown in the book dataset.

� TwigM efficiently processes queries without enumer-
ating all pattern matches for each solution, as shown in
all datasets.

� TwigM is suitable for processing data streams with
small memory usage. The memory consumption of
TwigM remains almost constant (1MB) as the data and
query sizes change in the experiments. We have also
tested benchmark queries over data that is over 1GB
in size, and found that the memory usage remains at
1MB.

7 Related Work

Several XPath streaming engines have been proposed.
XSQ [26], SPEX [24],and XSM [23] use a hierarchical ar-
rangement of transducers augmented with a buffer. XSQ
processes XPath queries with child and descendant axes,
and predicates with the restriction that each query node can
contain at most one predicate without axes. SPEX processes
regular expressions, which are similar to the XPath queries
of XSQ. XSM and FluX [21] do not support descendant axis
traversal. [5] analyzes the buffer requirement for evaluating
XPath queries without wildcards on XML streams. In con-
trast, TwigM is a polynomial algorithm for XPath queries
containing child axis, descendant axis, wildcards and (unre-
stricted) predicates.

XAOS [6] is an XPath processor that supports reverse
axes (parent and ancestor) using a matching structure to
store XML nodes. XAOS produces query results by travers-
ing the matching structure at the end of the stream. In con-
tract, TwigM can produce results incrementally.

[20] discusses how to handle child, descendant axis,
predicates and wildcards in XQuery using TurboXPath.
When a recursive data node matching a query node is met,
an independent thread of control is generated. Therefore the
pattern matches to the query are independently recorded and
manipulated explicitly.

BEA/XQRL [14] is a full implementation of XQuery.
The design goal of BEA/XQRL is different from our work:
BEA/XQRL targets processing general XQuery queries on
small XML messages (a few 100KB in size), while our goal
is to process a commonly used subset of XPath queries ef-
ficiently on large XML streams (megabytes and gigabytes).
We believe these two systems demonstrate the trade-offs be-
tween query language expressiveness and system simplicity
and efficiency.

[30] discusses how to exploit schema information to op-
timize XQuery evaluation on XML streams. [22] proposes
XQuery rewriting techniques to enable a larger number of
queries to be executed on data streams.

A number of XPath query filtering systems have been
proposed. Filtering systems determine whether or not an
XML stream matches a query, which is a simpler prob-
lem than returning solutions. On the other hand, filtering
systems typically focus on supporting high throughput for
a large number of queries using only a moderate amount
of memory, while our results focus on processing a single
query. YFilter [13] uses a single automaton to evaluate com-
mon expressions of queries to improve the performance.
XTrie [9] uses a trie structure instead of a flat table to index
XPath queries based on common substrings. XPush [17]
lazily constructs a single deterministic pushdown automa-
ton to filter XPath queries with predicates. [4] gives the
lower bounds of XPath filter algorithms.

There are many papers on non-streaming XPath query
processing. [16, 28] proposes polynomial main memory
algorithms for answering full XPath queries by randomly
accessing an XML document. Galax [29] is a full-fledged
XQuery query engine based on random accesses on a DOM
model. [33, 1, 7] process tree pattern queries over a database
system for XML data. Although [1, 7] also use a stack-
based data structure, they focus on a different processing
environment than ours, and therefore have different algo-
rithms. First, our algorithm takes a streaming XML doc-
ument as input, while the input of [1, 7] is relations of
XML node labels � DocID, StartPos, EndPos, Level

�
with

optional indices. Second, our algorithm produces results in-
crementally, while [1, 7] use sort and merge-join, which are
blocking operations; they therefore cannot produce results
incrementally. Furthermore, we focus on XPath query pro-
cessing which returns the nodes matching the return node in

the query; therefore it is possible to achieve a polynomial
time complexity. On the other hand, the queries handled by
[1, 7] return all pattern matches, which can be exponentially
large in the query size, as shown in section 1.

8 Conclusions

We have discussed reasons for the potentially exponential
time and space complexity of existing XPath streaming
query processors: computing all pattern matches for each
solution of queries containing both predicates and descen-
dant axis traversal on recursive data. Using a compact data
structure to encode pattern matches, we then gave a poly-
nomial time algorithm to evaluate a large class of XPath
queries,

���(���)� �����)�#" $*%
, over streaming XML data. The al-

gorithm, TwigM , achieves its efficiency by searching for
results lazily without enumerating all the pattern matches.
A detailed experimental study shows that our approach not
only has a good theoretical complexity bounds but also
works well in practice on a wide variety of queries and
datasets.

References
[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Sri-

vastava, and Y. Wu. Structural joins: A primitive for effi-
cient XML query pattern matching. In Proceedings of ICDE,
2002.

[2] J. Assange. Ocaml Draws with C in Trivial Benchmark.
http://caml.inria.fr/archives/200008/msg00018.html/.

[3] I. Avila-Campillo, T. J. Green, A. Gupta, M. Onizuka,
D. Raven, and D. Suciu. XMLTK: An XML Toolkit for Scal-
able XML Stream Processing. In Programming Language
Technologies for XML(PLAN-X), 2002.

[4] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the Mem-
ory Requirements of XPath Evaluation over XML Streams.
In Proceedings of PODS, 2004.

[5] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering
in Query Evaluation over XML Streams. In Proceedings of
PODS, 2005.

[6] C. M. Barton, P. G. Charles, D. Goyal, M. Raghavachari,
V. Josifovski, and M. F. Fontoura. Streaming XPath Pro-
cessing with Forward and Backward Axes. In Proceeding of
ICDE, 2003.

[7] N. Bruno, N. Koudas, , and D. Srivastava. Holistic twig
joins: Optimal XML pattern matching. In Proceedings of
SIGMOD, 2002.

[8] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Bench-
marking Java against C and Fortran for scientific applica-
tions. In Java Grande, pages 97–105, 2001.

[9] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Ef-
ficient filtering of XML documents with XPath expressions.
In Proceedings of ICDE, 2002.

[10] Y. Chen, S. B. Davidson, and Y. Zheng. An Efficient XPath
Streaming Processor. Technical Report MS-CIS-04-02, Uni-
versity of Pennsylvania, 2004.

[11] Y. Chen, S. B. Davidson, and Y. Zheng. ViteX: A Streaming
XPath Processing System. In Proceedings of ICDE, 2005.

[12] J. Clark. The Expat XML Parser, 2003.
http://expat.sourceforge.net/.

[13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer.
Path Sharing and Predicate Evaluation for High-Performance
XML Filtering. TODS, 28(4):467–516, 2003.

[14] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal.
The BEA/XQRL Streaming XQuery Processor. In Proceed-
ings of VLDB, 2003.

[15] Georgetown Protein Information Re-
source. Protein Sequence Database, 2001.
http://www.cs.washington.edu/research/xmldatasets/.

[16] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for
Processing XPath Queries. In Proceedings of VLDB, 2002.

[17] A. Gupta and D. Suciu. Stream Processing of XPath Queries
with Predicates. In Proceedings of SIGMOD, 2003.

[18] IBM. XML Generator, 1999.
http://www.alphaworks.ibm.com/tech/xmlgenerator.

[19] Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML query
engine for network-bound data. VLDB Journal, 11(4), 2002.

[20] V. Josifovski, M. F. Fontoura, and A. Barta. Querying XML
Steams. VLDB Journal(to appear), 2004.

[21] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
Schema-based Scheduling of Event Processors and Buffer
Minimization for Queries on Structured Data Streams. In
Proceedings of VLDB, 2004.

[22] X. Li and G. Agrawal. Efficient Evaluation of XQuery over
Streaming Data. In Proceedings of VLDB, 2005.

[23] B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou.
A Transducer-Based XML Query Processor. In Proceedings
of VLDB, 2002.

[24] D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Regular
Path Expressions with Qualifiers against XML Streams. In
Proceedings of ICDE, 2003.

[25] D. Olteanu, H. Meuss, T. Furche, and F. Bry. Symmetry
in XPath. In Proceedings of Seminar on Rule Markup Tech-
niques, no. 02061, Schloss Dagstuhl, Germany (7th February
2002), 2001.

[26] F. Peng and S. S. Chawathe. XPath queries on streaming
data. In Proceedings of SIGMOD, 2003.

[27] F. Peng and S. S. Chawathe. XSQ: A Streaming XPath En-
gine. Technical Report CS-TR-4493, University of Mary-
land, 2003.

[28] L. Segoufin. Typing and querying XML documents: some
complexity bounds. In Proceedings of PODS, 2003.

[29] J. Simeon and M. Fernandez. Galax. http://db.bell-
labs.com/galax.

[30] H. Su, E. A. Rundensteiner, and M. Mani. Semantic Query
Optimization for XQuery over XML Streams . In Proceed-
ings of VLDB, 2005.

[31] W3C. XML Query Use Cases, 2003.
http://www.w3.org/TR/xquery-use-cases.

[32] XMARK the XML-benchmark project, April 2001.
http://monetdb.cwi.nl/xml/index.html.

[33] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.
Lohman. On supporting containment queries in relational
database management systems. In Proceedings of SIGMOD,
2001.

