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ABSTRACT
Search engine optimization (SEO) techniques are often abused to
promote websites among search results. This is a practice known
as blackhat SEO. In this paper we tackle a newly emerging and
especially aggressive class of blackhat SEO, namely search poi-
soning. Unlike other blackhat SEO techniques, which typically at-
tempt to promote a website’s ranking only under a limited set of
search keywords relevant to the website’s content, search poison-
ing techniques disregard any term relevance constraint and are em-
ployed to poison popular search keywords with the sole purpose of
diverting large numbers of users to short-lived traffic-hungry web-
sites for malicious purposes.

To accurately detect search poisoning cases, we designed a novel
detection system called SURF. SURF runs as a browser component
to extract a number of robust (i.e., difficult to evade) detection fea-
tures from search-then-visit browsing sessions, and is able to ac-
curately classify malicious search user redirections resulted from
user clicking on poisoned search results. Our evaluation on real-
world search poisoning instances shows that SURF can achieve a
detection rate of 99.1% at a false positive rate of 0.9%. Further-
more, we applied SURF to analyze a large dataset of search-related
browsing sessions collected over a period of seven months starting
in September 2010. Through this long-term measurement study we
were able to reveal new trends and interesting patterns related to a
great variety of poisoning cases, thus contributing to a better un-
derstanding of the prevalence and gravity of the search poisoning
problem.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval—Relevance feedback
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1. INTRODUCTION
Search engines, capable of digging out the most relevant from

oceans of information, have become web surfers’ first choice when
seeking information on the web. In fact, for most websites more
than 70% of their visitors reach their pages through search en-
gines [6]. Therefore, website owners always strive to attract more
visits by optimizing their exposure in relevant search results. To
fulfill this need, web developers use a number of search engine op-
timization (SEO) techniques, which can improve the visibility of a
website to the search crawlers, highlight its relevance under certain
search terms, and promote its raking in the search results.

Legitimate uses of SEO techniques are accepted and even en-
couraged by search engines [1]. However, dishonest web devel-
opers may choose to abuse these techniques in various ways to
gain (or cheat) a favorable ranking in the search results, a prac-
tice known as blackhat SEO. In this case, search crawlers are pre-
sented with deceptive views of a website, which consist of spe-
cially crafted webpages with inflated relevance to a set of target
search terms. Attempts to counter blackhat SEO have been pro-
posed mainly in the information retrieval community [18, 24], but
with very limited success against the recent surge of blackhat SEO
adopters [11]. In the meantime, blackhat SEO has not captured
sufficient attention from the security community, perhaps because
such techniques have been historically employed by non-harmful
websites, including some high profile ones [10], that execute overly
aggressive marketing strategies to win search users from their com-
petitors.

This paper tackles a newly emerging class of blackhat SEO tech-
niques developed by Internet miscreants to lure search users into
visiting malicious websites [7]. We refer to this new class of black-
hat SEO as search poisoning. Unlike other blackhat SEO tech-
niques, which typically attempt to promote a website’s ranking
only under a limited set of search keywords relevant to the web-
site’s content, search poisoning techniques disregard any term rel-
evance constraint. In practice, search poisoning techniques target
any search term that can maximize the number of incoming search
users (e.g., popular keywords). This is in contrast with SEO or
other blackhat SEO techniques adopted by regular websites, be-
cause if search poisoning were to be used to promote a regular web-
site, users landing on the website via completely unrelated search
terms may get annoyed and the website’s reputation may be ir-
reparably damaged. Therefore, we posit that search poisoning can-
not be used for legitimate purposes and is only useful to short-lived
traffic-hungry websites that aim to attract search users for malicious
purposes.

We approach the search poisoning problem from a new angle,
compared to previous work on blackhat SEO. We focus on detect-
ing malicious search user redirections, an essential component of



search poisoning that we discovered during our study (Section 2.2).
To detect malicious search user redirections, we designed a novel
detection system named SURF (Search User Redirection Finder),
which runs as a browser component and is able to accurately de-
tect poisoned search results. In this paper, we restrict our defini-
tion of “malicious search user redirections” to be any redirection
that starts from a search landing page (i.e., the immediate page a
search result points to) promoted by search poisoning and ends at
an unwanted or malicious terminal page (i.e., the final destination
of the redirection). We show that these malicious redirections can
be characterized by a number of distinctive features that are collec-
tively difficult to circumvent. SURF is designed to capture this very
type of malicious redirections, and in turn to detect search poison-
ing instances. Other malicious redirections on landing pages not
involving search poisoning are out of the scope of this work.

To detect search poisoning instances, SURF analyzes data col-
lected during a search-then-visit browsing session and outputs a
classification result, namely whether or not the monitored brows-
ing session includes malicious search user redirections caused by a
poisoned search result. As shown in Figure 1, the monitored brows-
ing session starts from the search result page, passes by the landing
page and possibly some intermediate pages, and stops at the termi-
nal page to which the search user is eventually redirected. During
this course, SURF collects the following information: (i) browser
events to track page (and frame) loads and redirections; (ii) net-
work information to model the redirection chain; and (iii) search
result information to measure the poisoning likelihood of the land-
ing page. From this information, SURF extracts a number of statis-
tical features, which are then fed to a classifier trained to identify
instances of search poisoning. Given the adversarial nature of clas-
sifying search poisoning instances, we selected our feature set with
particular emphasis on individual feature robustness while retain-
ing collective feature generality. To identify a suitable set of fea-
tures, we performed a manual analysis of a dataset Sstudy contain-
ing 1,084 real-world search poisoning cases (see Section 2.2). We
then experimented with 15 candidate features on a separate dataset
Seval containing 2,344 independently labeled samples of brows-
ing sessions, 1,160 of which where related to search poisoning and
there remaining 1,184 were not. Through feature selection, we re-
fined the initial feature set down to 9 features based on which we
evaluated SURF’s classifier, which achieved an average true posi-
tive rate of 99.1% at a false positive rate of 0.9%.

To further demonstrate the effectiveness of SURF, we developed
a prototype system and deployed it to classify daily popular search
results obtained from both Google and Bing over a period of seven
months (from September 2010 to April 2011). This large scale
evaluation allowed us to conduct extensive measurements of real-
world search poisoning cases, through which we observed that, on
average, about 50% of popular searches contain poisoned results.
During this measurement study we also observed a surge in both the
volume of search poisoning instances and the variety of malicious
content reached through poisoned search results.

In summary, this paper makes the following contributions:

• We clearly define search poisoning and distinguish it from
other abuses of SEO techniques. We report an in-depth study
to motivate and inspire countermeasures against this increas-
ing threat.

• We design and evaluate SURF, a system that is able to detect
search poisoning with a 99.1% true positive rate at a 0.9%
false positive rate.
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Figure 1: SURF Architecture

• Using a SURF prototype, we conducted a seven-month mea-
surement study on poisoned popular search results, which
highlights the severity of search poisoning and provides in-
sight into its fast growing trends.

2. BACKGROUND AND PROBLEM STUDY
In this Section, we provide a brief overview of the fundamentals

of search engines and the reason why search results are subject to
manipulation. We then present a study of search poisoning based
on real world data, and discuss the observations that inspired our
detection approach.

2.1 Search Engine and Blackhat SEO
Search engines typically employ crawlers to discover newly cre-

ated or updated webpages. Each crawled page is then indexed
based on keywords retrieved from its content. Upon a search query,
webpages are ranked based on their relevance to the search terms
and presented to the user.

This gives the abusers the following advantages. First, search en-
gines implicitly trust the authenticity of the content on the indexed
webpages, even though the content is under complete control of
the website owners. Second, a web server can easily distinguish
between search crawlers and human visitors. It is this implicit trust
and distinguishability that give rise to blackhat SEO, whereby a
web server fulfills webpage requests from crawlers with specially
crafted content having inflated relevance to a selected set of key-
words, referred to as the target keywords. In addition, these crafted
pages often contain large numbers of cross-reference hyperlinks to
webpages that belong to the same blackhat SEO campaign. These
hyperlinks have the effect of increasing the incoming link count
for the promoted webpages, thus boosting the ranking in the search
results.

Despite the fact that they involve some level of dishonesty, black-
hat SEO techniques are sometimes used by legitimate businesses.
In this paper, we distinguish between two types of blackhat SEO,
namely search inflating and search poisoning. Search inflating
aims to boost a website ranking through search keywords closely
related to the promoted website, therefore only attracting users who
search for topics related to the promoted website. On the other
hand, search poisoning aims to boost a website’s ranking though
popular search keywords, regardless of whether these keywords are
actually related to the promoted website’s content or not. Unlike
search inflating, which may be adopted by some legitimate web-
sites, search poisoning only fits the need of visitor-hungry websites
that simply want to increase the number of visitors for malicious
purposes (e.g., for malware propagation purposes).

Most previous works on blackhat SEO detection apply lexical
and structural analysis on page content [18, 22], or graph-based
analysis on hyper-links [24]. However, very limited success has
been achieved in practice [9], as the battle soon turned into an arms



race. Having full control over webpage visibility and the freedom
of adopting new evasion techniques gives adversaries significant
upper hands, and makes it fundamentally difficult to design robust
detection schemes based on lexical and structural analysis. To mit-
igate these problems, our approach aims to detect search poison-
ing instances using a set of features that are collectively difficult to
evade because they are intrinsic to how search poisoning works, as
we discuss in Section 3.2.1.

2.2 Search Poisoning Study
Search poisoning instances luring visitors to malware websites

were first reported in 2007 [7]. However, until recently search poi-
soning has not been sufficiently studied, and has been only sporad-
ically mentioned within the anti-malware community (mostly due
to fake AV websites [20]).

To gain a more in-depth understanding of the search poisoning
problem, we manually analyzed a dataset Sstudy containing 1,084
real-world search poisoning cases collected in September 2010.
This preliminary study aimed to discover a set of robust features
that can be leveraged for detection purposes, and to inspire our
overall detection approach.

To collect the dataset Sstudy we proceeded as follows. We de-
ployed an army of instrumented browsers, which on a daily ba-
sis automatically query Google and Bing with keywords that have
been popular for the past 7 days. For each query, the browsers
visited the top 100 URLs in the search results1. All network data
and browsing events occurred during each browsing session were
recorded as a browsing trace. This data collection process resulted
in a very large dataset D containing over half a million browsing
traces. Sstudy was derived from D using a simple heuristic to se-
lect traces that lead to malicious [3] or non-reputable webpages [4]
with content irrelevant to the search keywords. This coarse-grained
filtering yielded 1,084 highly likely search poisoning cases consist-
ing of 596 unique landing URLs. It is worth noting that this dataset
is not meant to be inclusive of all poisoning traces in D, which
is impossible to achieve without first developing a reliable detec-
tion system. However, our filtering heuristic produced a Sstudy
dataset that exhibits satisfactory accuracy and sufficient diversity,
as confirmed by our manual analysis. Therefore, Sstudy represents
a reasonable base for our preliminary study of search poisoning.

Below we itemize our observations and lessons learned from our
manual analysis, which inspired the choice of the statistical features
used by SURF.

O1: Ubiquitous use of cross-site redirections
We found that over 98% traces in Sstudy contain one or more

redirections that cross website boundaries. The remaining 2% of
browsing traces that do not contain such redirections are mostly
due to incompletely rendered webpages, or modal dialogs that re-
quire non-trivial user interactions to proceed. On the other hand,
less than 6% of the entire traces in (D−Sstudy) involve cross-site
redirections. This ubiquitous use of cross-site redirections can be
intuitively explained by the high risk and low effectiveness of ex-
posing the malicious terminal website directly to search engines for
rank promotion (thus a separated landing website is needed). For
example, search engines have various security detectors in place
to filter known malicious webpages and downgrade ranks of suspi-
cious ones. Therefore, directly promoting malicious webpages can
be a vain attempt and risks to jeopardize the entire search poison-
ing campaign. In fact, as our study went deeper, more evidence
emerged supporting the need for malicious search user redirection
in search poisoning.

1excluding URLs already flagged as malicious by search engines.

O2: Search poisoning as a service
From all traces in Sstudy we extracted their chain of redirections,

which are then used to compose a redirection graph, in which the
nodes represent encountered domains and the directed edges rep-
resent redirections from one domain to another. Large numbers
of inter-connected chains form subgraphs that represent different
search poisoning campaigns. Two representative subgraphs are
shown in Figure 2, as examples to illustrate our findings. Success-
ful campaigns are able to employ many landing domains and target
different search keywords to maximize the incoming search users.
Figure 2 (top) shows a campaign that successfully poisoned over
28 “trendy” search keywords and injected at least 46 URLs into
top search results. Furthermore, the variety of terminal domains
supported by a single campaign suggests that specialized search
poisoning services are available to all kinds of malicious websites
for purchase. The graph also indicates a two-tier affiliate marketing
model followed by this campaign. Some landing pages redirected
search users to centralized “super affiliate” domains (circled in the
graph), which then dynamically dispatch the lured users to differ-
ent terminal domains. As a result, more intermediate webpages
appeared in the redirection chains.

O3: Sophisticated poisoning and evasion tricks
Cloaking techniques [12] are commonly used in search poison-

ing (by 97% landing pages in Sstudy). Search crawlers are pre-
sented with specially crafted content with fake relevance. The ma-
licious redirection process only starts when visited by search users
that queried the target (poisoned) keywords, while blocking other
visitors as an attempt to prevent security detectors reaching the ma-
licious content or domains. By forging the browser’s User-Agent
strings, we managed to obtain the search crawler views of 26 land-
ing pages in our Sstudy dataset that did not verify the crawler’s
source IP address. These views were carefully composed to mimic
normal webpages (e.g., blogs or news sites), with highly relevant
content (possibly scraped from elsewhere) organized in a smooth
way. We noticed that this well-crafted content may easily fool hu-
man readers, and is therefore very likely to evade content-based
blackhat SEO detectors. In addition, we discovered a handful of
image-rich landing pages that likely targeted at multimedia searches.

Another way in which search poisoning try to evade detection
is by hosting the landing pages on compromised websites. These
websites typically have been indexed by search engines for quite
some time and accumulated a non-trivial domain history or rep-
utation. This can help search poisoning to bypass some security
checks performed by search engines and to facilitate rank promo-
tion. In our study dataset Sstudy we found that about 70% of the
redirections start from domains with a fair reputation score in [4]
and only 2% originate from blacklisted domains in [3].

O4: Persistence under transient appearances
To achieve a persistent poisoning effect, search poisoners have

to accommodate for the volatility of popular search keywords. The
bottom graph in Figure 2 shows a campaign that made multiple
appearances on different popular search results across the entire
study period: old landing domains had been active only for a lim-
ited time (a few days) before a new batch came in with a new set
of poisoned search keywords. Rapidly rotating landing domains
not only enable a wide coverage on trendy search topics, but also
hinder detection efforts due to their transient appearance. Termi-
nal domains behave in a similar way. An important difference is
the fact that terminal domains tend to be disposable and have short
registration periods (likely using domain tasting services), which
further impedes blacklist-based detection.
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Figure 2: Redirection graphs of two search poisoning campaigns

O5: Various malicious applications
While previous reports always associate search poisoning with

malware distribution websites [8, 14], search poisoning is used in
a variety of other malicious applications. Figure 2 shows at least
three types of malicious websites that use search poisoning to pro-
mote different types of cyber crimes, such as distributing fake AV
software, hosting of rogue pharmacy sites, and other types of scams.
Other types of uses (not reported in Figure 2) were also observed in
Sstudy , such as sites that host drive-by download exploits, are part
of click fraud schemes, or host phishing pages. Therefore, we ar-
gue that security solutions specific to individual types of malicious
websites fail to thoroughly address the general search poisoning
problem.

Lessons learned: Detecting search poisoning is a daunting
task. Solely relying on identifying suspicious features associated
with the landing pages (e.g., deceptive relevance, suspicious link-
age structures, etc.) is immediately subject to evasion, given the at-
tackers’ freedom to craft the page content. At the same time, detect-
ing malicious terminal pages is hindered by their diversity and con-
ditional accessibility of the actual malicious content (in particular,
malicious sites can detect crawlers and security scanners). How-
ever, our observations convey a positive message to the defenders:
the malicious search user redirections are intrinsic to search poi-
soning cases and exhibit distinguishable behaviors that are difficult
to avoid completely for search poisoning to be successful, as we
further discuss in Section 3.2.1. SURF’s design was inspired by
these findings.

3. SURF DESIGN AND EVALUATION
Based on the lessons learned from our search poisoning study

(Section 2.2), we set three primary design goals for our detection
system:

• Generality: Search poisoning techniques are employed by
attackers to promote a variety of malicious contents, and are
not limited to luring users to visiting malware distribution
pages. Therefore, SURF aims to detect generic search poi-
soning instances, regardless of the malicious content the at-
tackers intend to promote.

• Robustness: While it is arguably impossible to completely
prevent an arms race between defenders and attackers, we
aim to identify features typical of search poisoning cases that
are difficult to evade. In practice, we restrict SURF to using
a set of robust features, which cannot be evaded by adver-
saries without incurring a significant cost (e.g., because of

the need to completely change their attack strategy, or move
to a different attack infrastructure).

• Wide deployability: Unlike most previous work on blackhat
SEO detection, which is constrained by the dependency on
search engine private data and only deployable at the search
engine side, our approach aims to provide a solution that can
be deployed at end-user’s browsers (as a plugin), at auto-
mated security crawlers, and inside search engines. End-
users can be protected from malicious terminal webpages
hidden behind poisoned search results. At the same time,
search engines or security vendors can deploy SURF in a
“browsers farm” to accurately detect whether a search key-
word is poisoned and harvest the malicious terminal page.

3.1 SURF System Overview
To meet the goals listed above, we designed SURF as a browser

component. An overview of SURF is shown in Figure 1. In prac-
tice, SURF sits in a browser and observes search-related browsing
sessions. Whenever a user submits a query to a search engine and
receives the result page, SURF starts its monitoring on page loads
and redirections, from the search result page, to the landing page
(on user’s click), and to the terminal page the user is eventually
brought to (after going through several intermediate pages in some
cases). During this course, SURF extracts a number of statistical
features from a range of sources, such as browser events, network
information regarding the domain names and IP addresses involved
in the redirection chain, and the search results themselves (see Sec-
tion 3.2 for details). The resulting feature vector is then sent to the
SURF Classifier, which is trained to distinguish between normal
redirections and malicious search user redirections. In practice,
the SURF Classifier is a supervised statistical classifier trained us-
ing a labeled dataset containing examples of redirection chains re-
sulted from clicking on either legitimate or a variety of poisoned
search results. It is worth noting that our definition of “malicious
search user redirections” in this paper is restricted to redirections
following poisoned search results. Detecting other types of mali-
cious redirection is out of the scope of this work. While the vast
majority of redirections used by the search poisoning cases we en-
countered during our study (Section 2.2) only change the URLs of
webpages’ top frames, SURF also covers the malicious redirections
that occur within dynamic subframes (e.g., an iframe).

3.2 Detection Features
Inspired by the study presented in Section 2.2, and keeping in

mind the design goals outlined at the beginning of Section 3, we



Aspects Features Source* Evasion 
Possibility

Redirection 
Composition

Total redirection hops
Cross-site redirection hops
Redirection consistency

B
B,N
B

Low
Low
Low

Chained 
Webpages

Landing to terminal distance
Page load/render errors
IP-to-name ratio

B,N
B,N
B

Low
Low

Medium

Poisoning 
Resistance

Keyword poison resistance
Search rank
Good rank confidence

S
S
S

Low
Low
Low

* B=browser events/data;     N=network info;    S=search result

Table 1: Feature selection

identified a set of nine statistical features that capture the charac-
teristics of generic search poisoning instances, and that are difficult
for the attacker to evade without incurring a significant cost (e.g.,
the attacker would need to move to a new search poisoning strategy
and infrastructure). The features extracted by SURF are divided in
three groups as summarized in Table 1 and detailed below.

Redirection composition: This group of three features aims at cap-
turing discrepancies between the legitimate and malicious search
user redirections. The total redirection hops records the
number of redirections that transport the visitor from the landing
page to a terminal page, whereas the cross-site redirection
hops counts how many of these redirections cross website bound-
aries. In SURF, a cross-site redirection is a redirection that brings
from a domain d1 to a domain d2, where the second-level domains2

of d1 and d2 differ (e.g., www.cnn.com and blogs.cnn.com
share the same second-level domain, while www.cnn.com and
www.bbc.com do not). As noted in Section 2.2, the vast ma-
jority of poisoned search results rely on cross-site redirections to
transport search users to the malicious terminal pages hosted on
covert domains. On the other hand, legitimate search user redi-
rections rarely send incoming visitors away to another websites,
simply because of the common incentive of keeping as many vis-
itors as possible within their own domain. The redirection
consistency feature captures whether a redirection is only vis-
ible to targeted search users. In legitimate search user redirec-
tions, users who arrive to the landing page through a search en-
gine or though a direct link (e.g., by typing the same URL on the
browser’s address bar, or clicking the hyperlink on a “non-search”
website) will be redirected to the same terminal page displaying
relevant content. This is in contrast with search poisoning cases,
in which typically only users that reach the landing page through a
search will be redirected to the malicious content, while other vis-
itors will be presented with non-malicious content in an attempt to
evade some detection systems or manual analysis (see Section 2.2).
To measure redirection consistency, SURF can first command the
browser to directly visit the landing page (thus effectively stripping
the Referrer field in the HTTP request, for example), and then
allows the user’s click on the search result link to go through so that
the two obtained sets of redirection events can be compared for con-
sistency. When used at the search engine-level (e.g., in a “browsers
farm”), SURF could perform this comparison on redirections ob-
tained by visiting the landing page from different IP addresses to
bypass some of the cloaking techniques discussed in Section 2.2
whereby the malicious content is not provided to IP addresses vis-
iting the same landing page twice in a row. It is worth noting that

2The second-level domain of a domain name d.c.b.a is typically
defined as b.a, where a is called the top-level domain. We lever-
age Mozilla’s public domain suffix list to take effective top-level
domains such as co.uk into account.

such cloaking technique would not affect SURF’s protection when
deployed at end user’s browsers. If the attacker refuses to offer the
malicious content at the second visit (i.e., when SURF allows the
user’s click on a search result to go through), the user will not be
exposed to the malicious content in the first place.

Chained webpages: This group of features measures three prop-
erties of the webpages involved in search user redirections. The
landing to terminal distance feature measures the (ap-
proximate) geographical and topological distances between the land-
ing page and the terminal page. In practice, to measure this distance
we leverage information about the geo-location of the IPs where
the two pages reside, the autonomous systems (AS) the IPs belong
to, and the websites’ domain names. The intuition is that mali-
cious search user redirections always “travel” a long distance. The
reason is that in search poisoning cases the landing page is usually
hosted on a (likely compromised) website that belongs to a separate
(usually legitimate) organization, while the terminal page is often
hosted on a “bullet-proof” server provided by a different (usually
not legitimate or boarder-line) organization often located in a dif-
ferent country.

The page load/render errors flags pages in the redi-
rection chain that failed to load or render properly, due to excep-
tions or network errors. The intuition is that compromised pages
are sometimes blacklisted or remediated, and the redirection chain
to the malicious terminal page may end prematurely. The IP-to-name
ratio feature represents the number of the redirection URLs that
use an IP address (e.g., http://192.168.0.1/index.php)
divided by the number of redirection URLs that instead use a do-
main name (e.g., http://example.com/index.php). This
is motivated by the fact that a large number of search poisoning
cases encountered in our study involve URLs that use IPs that are
dynamically assigned to unnamed hosts, in an effort to bypass URL
blacklists commonly available in major browsers.

Poisoning resistance: This group of features measure properties
of the search keywords and their corresponding search results. The
keyword poison resistance quantifies the difficulty of poi-
soning search results under a given keyword. We measure this fea-
ture using publicly available information. The basic idea is straight-
forward: given a certain search keyword, the competitiveness of
promoting a link higher in the result rankings is reflected by how
prominent the top ranked webpages are under that keyword. We use
Google’s PageRank [19] to measure the prominence of a website.
The keyword poison resistance of a keyword k is de-
fined as the average PageRank value of the top 10 ranked websites
obtained from the search results under k. In practice, the higher the
value of this feature, the more prominent websites competing for
the top rank positions, and thus the more difficult for an attacker
to poison the keyword and force a link to a rogue landing page to
appear higher in the ranking.

From our study dataset Sstudy (see Section 2.2), we noticed
that the distribution of poisoned keywords across different search
poisoning cases is skewed towards keywords with low keyword
poison resistance. This result was somewhat expected, be-
cause keywords that are popular and yet easier to poison than others
tend to attract the attackers’ attention. Another feature we consider
is the search rank of a landing page. The higher the rank of a
landing page, the lower the probability that the result has been poi-
soned. This follows directly from our previous argument that top
ranked pages are often prominent websites, making it difficult for
search poisoners to promote their sites ahead of these prominent
sites. The rank confidence feature is computed by dividing
the keyword poison resistance by the rank of a partic-



ular search result. The higher the rank confidence, the less
likely that the result is poisoned.

3.2.1 Qualitative Robustness Analysis
Here we present a qualitative analysis of the robustness of SURF’s

statistical features against evasion attempts. A quantitative robust-
ness analysis is discussed in Section 3.4.

Redirection composition: This group of features tries to capture
the “search poisoning as a service” phenomenon discussed in Sec-
tion 2.2. In practice, attackers often compromise several legitimate
websites to host rogue landing pages, which use deceptive content
to promote their ranks and at the same time redirect lured search
users to the malicious terminal webpages. While in principle an at-
tacker can attempt to evade this group of features, this would force
the attacker to move to a completely different malicious network
infrastructure in which all malicious redirections and terminal ma-
licious pages are hosted on the same second-level domain, for ex-
ample. In addition to incurring the significant cost of changing the
malicious network infrastructure, this could also increase the risk of
being detected by the compromised website’s administrators, thus
exposing search poisoning instances to a more prompt remediation,
and end up sacrificing the established rogue landing pages which
typically take considerable amount of time and efforts to mature.

Chained webpages: This group of features measure properties of
the webpages involved in search user redirections. The IP-to-name
ratio, while useful for classification in most practical cases, is
not very difficult to evade because it only requires the attacker to
register more domain names. However, we would like to emphasize
that carrying an evasion attack on this feature will not significantly
impact SURF’s accuracy, as shown in the quantitative analysis in
Section 3.4. The remaining two features are harder to evade. The
landing to terminal distance feature depends on the
attacker’s network infrastructure, and therefore the same arguments
we made for the redirection composition features hold in this case.
The page load/render errors may depend, for example,
on pages (and domains) along the redirection chain that have been
blacklisted or remediated. Therefore, this feature is not under the
attacker’s direct control and is difficult to evade.

Poisoning resistance: Since these three features are derived from
the search result pages themselves with the help of public PageR-
ank data, which is determined by the search engine algorithms and
out of attackers’ control. Therefore these features are difficult to
evade.

3.3 Prototype Implementation
SURF only requires a limited amount of data to be collected dur-

ing search-then-visit browsing sessions, and can be easily incorpo-
rated into a browser as a plugin. To demonstrate the effectiveness of
our detection approach, we implemented SURF on top of an instru-
mented version of Internet Explorer 8. This instrumented browser
leverages mshtml.dll for HTML parsing and rendering, and
is able to listen for event notifications (e.g., used to identify sub-
frame redirections) and peek into browsing data (e.g., HTML code
and user visible content) at different rendering stages. In addition,
SURF is capable of emulating simple user interactions during visit-
ing sessions that require certain user input to proceed (e.g., clicking
on a message dialogue box, activating a mouse-over action, etc.).

To perform our evaluation of SURF, we used several instrumented
browser instances and instructed them to retrieve lists of popu-
lar (or “trendy”) search keywords, query each keyword on both
Google and Bing, and visit the top 100 search results for each
query. Our evaluation data collection started in September 2010.
We deployed our browser on 20 virtual machines which would run
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Figure 3: Threshold Curves (ROC)

daily to query search keywords that had reached popularity within
the past seven days. In addition, our instrumented browser was
enhanced with BLADE [16], which we used to protect the VMs
from drive-by download malware infections and to log attempted
exploits. The obtained browsing information for each browsing
session was then saved for offline analysis. While we performed
our evaluation offline for convenience reasons, mainly to be able to
run cross-validation experiments on large datasets, once the statis-
tical classifier has been trained SURF can detect search poisoning
instance online (see Figure 1).

3.4 Evaluation Results
Evaluation Dataset: To the best of our knowledge, there exist no
public labeled dataset of search results and their related user redi-
rection events related to search poisoning cases. Therefore, we
chose to semi-manually label part of our dataset. In particular,
we labeled browsing sessions collected during October 2010. In
the following, we refer to obtain dataset as Seval. It is worth not-
ing that Seval differs from the Sstudy dataset that we used for the
search poisoning study in Section 2.2 (Sstudy was collected one
month earlier). This is to make sure that SURF does not “overfit”
Sstudy because Sstudy inspired the choice of SURF’s statistical
features, and to avoid over-estimating SURF’s accuracy. For the
same reasons, none of the statistical features measured by SURF
were used to guide our labeling. We simply semi-manually labeled
the data using a separate set of heuristics based on the relation be-
tween the search terms and a (visual) analysis of the terminal page
content rendered by the browser.

In practice, we labeled search poisoning cases related to three
types of malicious activities: search result for popular search key-
words that lead to irrelevant terminal pages serving (1) drive-by
download malware, (2) fake AV software, or (3) hosting rogue phar-
macy sites. We labeled all these cases as poisoned (or positive). At
the same time, we labeled a search result as non-poisoned (or neg-
ative) only when all URLs appeared in redirection chain have a fair
reputations (e.g., according to [4]) and none of them are flagged
as malicious by website scanning or blacklisting services (e.g, us-
ing [3]). Overall, Seval consists of 1,184 negative samples and
1,160 positive ones, with 585 fake AV, 414 drive-by download, and
161 rogue pharmacy cases.

To evaluate SURF and confirm it follows the design goals out-
lined at the beginning of Section 3, we conducted three different
experiments. The first experiment aims to estimate SURF’s accu-
racy, while the second attempts to show that SURF is able to detect
generic search poisoning cases, and is not limited to one specific
type of malicious content. The third experiment aims to show what
features are the most important for classification, and how SURF
may respond to evasion attempts on these features. Throughout all
our experiments, we used Weka’s J48 decision tree classifier [13],
which is an implementation of the well known C4.5 algorithm [5].
This choice is motivated by the fact that decision trees are efficient



(both during the training and testing phases) compared to other sta-
tistical classifiers, and the resulting trained classifier can be easily
interpreted.

Overall accuracy: To estimate SURF’s detection rate and false pos-
itives, we performed a 10-fold cross validated of SURF’s classi-
fier on the Seval dataset, achieving an average true positive rate of
99.1% at a 0.9% false positive rate. The ROC curve in Figure 3
shows a very slow decrease of the detection rate as the false pos-
itive rate is pushed down from 0.9% to 0.28%. Therefore SURF
can satisfy a relatively wide range of usage scenarios with different
levels of tolerance to false positives, while still maintaining a rea-
sonably high true positive rate. In our SURF prototype we set the
detection threshold to limit the false positive rate to 0.4% (marked
point in Figure 3). We also analyzed the decision tree produced
by the trained J48 classifier and found that misclassifications were
mainly caused by those rare cases in which poisoned search results
achieved a top rank under a very competitive keyword, or cases in
which a legitimate landing page redirects visitors to a very “dis-
tant” terminal page (see Section 3.2) and detours sampled visitors
through third-party traffic analysis services.

Generality test: To confirm that SURF is able to detect generic
search poisoning cases, regardless of the specific malicious content
that they promote, we performed the following experiment. We
prepared three datasets, D, F , and P , containing labeled search
poisoning example from the drive-by malware downloads, fake AV,
and rogue pharmacy cases from Seval, respectively. In addition,
we prepared two separate datasets, Na and Nb, containing ran-
domly selected negative examples (i.e., legitimate search redirec-
tion cases). We then performed a 3-fold cross validation by using
D ∪ F ∪ Na for training, and testing on P ∪ Nb for the first fold,
training onD∪P ∪Na and testing on F ∪Nb for the second fold,
and training on F ∪ P ∪ Na and testing on D ∪ Nb for the third
one. Figure 3 shows the three separate ROC curves (one per fold).
Averaging the results of the 3-fold validation, we obtained a detec-
tion rate of 98% at a false positive rate of 1.8%. It is worth noting
that while this result does not appear to be as good as the result
obtained for the overall 10-fold cross validation experiment, our 3-
fold evaluation presents SURF with much harder cases in which no
examples of search poisoning instances of the same category used
for testing are present in the training set. However, the high detec-
tion rate and relatively limited false positives demonstrate that the
features used by SURF can indeed capture generic search poison-
ing properties, independent of the specific type of malicious content
delivered by the terminal page.

Feature Robustness: This experiment attempts to quantify SURF’s
resistance to evasion effects on the statistical features. To perform
the experiments, we ran SURF’s classifier on 100 randomly chosen
positive samples. We artificially modified the values of the features
describing these 100 samples to simulate different evasion scenar-
ios, and evaluated how the classifier’s accuracy changed as a conse-
quence. We first artificially set the IP-to-name ratio to zero,
which is the most common value of the feature in negative samples.
The IP-to-name ratio feature is the only one among SURF’s
features that is not difficult to evade. After altering this feature,
only 1 out of 100 samples was misclassified, which suggests that
the attacker cannot gain much by attempting to evade it. Despite
the fact that other features are hard to evade (see Section 3.2.1),
we nonetheless wanted to investigate the effect of altering the most
discriminant features, i.e., the features that appeared close to the
root of the decision tree. The redirection consistency
and landing to terminal distance turned out to be the
top two most discriminant features. Replacing their values with

values drawn from negative samples caused 80 out of 100 samples
to be misclassified. However, it is worth noting that evading these
two features would require the attacker to change her malicious net-
work infrastructure, thus incurring a significant cost, as discussed
in Section 3.2.1.

4. DISCUSSION
At a first glance, our evaluation may seem unconvincing because

we used a dataset labeled by ourselves. However, to the best of our
knowledge, no public labeled dataset exists that contains brows-
ing session data related to a variety of search poisoning instances.
As discussed in Section 3.4, our semi-manual labeling process is
based on a set of heuristics that do not overlap with any of the de-
tection features measured by SURF. This allowed us to perform
an unbiased evaluation. While we acknowledge that our semi-
manual labeling can only help us collect partial “ground truth”, it
is extremely difficult, if not impossible, to obtain complete ground
truth without a deterministic search poisoning detection system.
In absence of such perfect search poisoning detector, our labeling
method represents our best effort to produce a representative (even
though not complete) ground truth that includes a variety of search
poisoning instances leading to different types of malicious content.

During our feature selection process, we discarded a few can-
didate features that may help the classification accuracy but are
not robust. For example, we chose not to include features based
on measuring the relevance of the content of terminal pages to the
search keywords because the content of the terminal pages is un-
der complete control of the attacker, making these types of fea-
tures easy to evade. Also, we did not include features related to the
structure of the URLs involved in malicious search user redirec-
tions. These features usually require historical knowledge of the
“normal” structure of the URLs for each particular website. While
these type of features may be included in a search engine-side de-
ployment of SURF, client-side deployments would not be able to
collect and leverage this kind of information, and therefore we de-
cided not to add them to our prototype implementation. Further-
more, an attacker has a non-negligible flexibility when choosing
the structure of the redirection URLs, and therefore it is not clear
how robust these features would be. We also considered some fea-
tures based on domain or IP reputation scores. Though capable of
reducing the false positive rate, these features were excluded from
our selection because of their heavy dependence on external se-
curity services, and because we wanted to evaluate the detection
accuracy of SURF based solely on the strengths of our own fea-
tures. In practice, SURF implementations may opt to incorporate
reputation-based features to improve classification accuracy.

When deployed at the search engine side (e.g., using a “browser
farm”), SURF can be used to analyze suspicious search results and
accurately detect poisoning cases. This can provide search engines
with valuable information that goes beyond specific poisoning in-
stances. For instance, the landing pages involved in search poison-
ing are often organized in a “botnet mode”, so that the keywords
to be poisoned can be periodically fetched from a command-and-
control server. Therefore, detecting search poisoning cases can re-
veal information about compromised websites and botnet organi-
zations. In addition, newly detected malicious terminal webpages
may serve as labeled samples for malicious webpage detectors that
require periodic re-training.

At the same time, SURF can be deployed at each single client to
detect (and block) poisoned search results. A possible deployment
scenario could include large numbers of client-side SURF instal-
lations that collaboratively detect search poisoning case and share
information about the underlying malicious network infrastructures
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(e.g., domain names, IP address, etc.) through a cloud service, thus
potentially improving SURF’s detection accuracy.

5. EMPIRICAL MEASUREMENTS
To gain a deeper insight into the search poisoning problem, we

performed a long-term (7 months, 212 days) measurement study.
As discussed in Section 2, we manually analyzed data in the first
month. We used SURF to analyze browsing data we collected in
the next 6 months. During this period we instructed SURF to an-
alyze over 12 millions search results from both Google and Bing
collected by querying the top 40 “trendy” keywords [2]. In prac-
tice, once a search keyword appeared in the top 40 list on a given
day, we used SURF to query the search engines for this keyword
for the following 7 days. Overall, during our measurement study
SURF automatically queried the search engines with 8,480 key-
words. This long-term data collection process enabled us to study
in-the-wild search poisoning instances from two different angles,
a “micro measurement” study based on a 7-day window that fo-
cuses on how search poisoning evolves with respect to frequently
changing keyword popularity, and a “macro measurement” study
that looks at poisoning trends over the entire 7-month period.

5.1 Micro Measurements
Due to frequent changes in the trendy search keywords [2], we

expected that some time (e.g., a few days) would be required for the
attackers to poison the search terms and make their landing pages
of choice appear in the related top search results. Surprisingly, our
measurements on the micro developments of detected search poi-
soning cases suggest otherwise: adversaries are extremely respon-
sive and have built effective approaches to promote rogue landing
pages under the targeted trendy search keywords in a short time.

Among the 3,869 keywords for which we detected related poi-
soned search results, 38% of them had poisoning lag (i.e., the time
it takes for the first poisoned result to be detected) of one day or
less. This percentage decreases as the lag increases, and only 7%
of the keywords had a poisoning lag of 7 days, as shown in Figure 4.
This results suggest that the adversaries are capable of keeping up
with search users’ interests, and that the majority of their poisoning
attempts succeed within the first 3 days.

We also found that the average life time of a rogue landing page
involved in search poisoning is only 1.7 days. This indicates that
adversaries favor a fast-switching strategy to reduce the exposure
window, thus reducing the possibility of the rogue pages being de-
tected and conserving the compromised landing sites for reuse in
future poisoning attacks. However, the appearance of these rogue
landing pages in the search results lasts for more than 3 days on
average, until the page ranking is demoted due to the new informa-
tion retrieved by the search crawlers. At the same time, the relative
volume of detected rogue landing pages for a given poisoned key-
word keeps increasing throughout the 7-day observation window,

as shown by the poisoned volume increase in Figure 4 (the poi-
soned volume is relative to the total number of detected poisoned
results during the 7-day period). We believe this fast paced op-
eration proposes significant challenges for blacklisting and other
traditional security solutions, making them inadequate to solve the
search poisoning problem. In fact, well-known malicious webpage
scanners (e.g., [3]) have failed to detect 78.9% of malicious termi-
nal pages involved in the search poisoning cases detected by SURF
(we scanned all the terminal pages using [3] on the same day when
SURF detected the related search poisoning instance).

Our measurements show that the visiting traffic reaching a par-
ticular malicious terminal page is always contributed by multiple
landing pages that appear in poisoned search results related to dif-
ferent search keywords. In particular, we found that during a 7-day
period, for each given malicious terminal page, their visitors were
supplied in average by 2.9 poisoned search keywords and 2.2 differ-
ent rogue landing sites per keyword. We speculate this is a reflec-
tion of a growth in the “search poisoning as a service” phenomenon
discussed in Section 2.2.

5.2 Macro Measurements
After examining the development of poisoned search results in

the first 7 days period, we now zoom out our measurement win-
dow to consider the entire 7-month data collection period. Through
these long-term measurements we aim to discover search poison-
ing’s evolving trends and characteristics that are observable only
throughout a long period of time. To highlight specific patterns and
long-term trends, we divide the 7-month observation period in 31
epochs, where each epoch is equal to one week. Then, for each
week we compute a number of statistics (discussed below), and
plot how these statistics vary with respect to time.

During most epochs, we found that more than 50% of the search
keywords that became popular on that epoch got poisoned. For
this particular measurement, a search keyword is considered to be
poisoned if at least one out of the top 100 search results for that
keyword is related to a search poisoning instance. Figure 5 (left)
plots the percentage of poisoned keywords for each week, broken
down into different degrees of success in terms of search ranking.
We can see that during some of the epochs, almost 60% of the
trendy search keywords resulted in rogue landing pages that ranked
within the top 50 search results. Furthermore, in some cases ad-
versaries managed to promote their rogue landing pages up to the
top 10 search results. These particularly successful attacks were
related to about 15% of all poisoned keywords on average. These
findings are alarming because they suggest that a large number of
search users can easily be affected by search poisoning.

Figure 5 (right) shows two curves. One represents the number
of rogue landing sites (counted as the number of distinct related
domain names) that were involved in search poisoning cases, and
the other the number of distinct (landing domain, keyword) pairs.
The two peeks (marked by A and B in the figure) that appeared
around Christmas time and the Super Bowl are not a coincidence.
Our analysis shows that important predictable events can help ad-
versaries to further increase their poisoning success rate, given the
sufficiently large preparing time (enabled by the predictability of
the events) and the interest of large number of search users in the
events being exploited. At the same time, less predictable break-
ing news that receive broad attention for a not too short amount of
time (e.g., a few days) are also an easy target for search poisoning.
An example of this is the earthquake and tsunami that recently hit
Japan (marked by C in Figure 5). Furthermore, as the targeted key-
words (upper curve) fluctuated between attempts to leverage differ-
ent events, the number of detected landing domains (lower curve)
remained somewhat more stable, suggesting that search poisoning
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operators have a solid footing in the search engines’ indexes, and
are ready to launch new attacks whenever the opportunity comes.

On average, users who fall victim of search poisoning are redi-
rected at least twice, including one cross-domain redirection, be-
fore reaching the malicious terminal page. About 29% of these
redirections were due to HTTP 30x responses. Not surprisingly,
the majority of the remaining 70% were mostly due to client-side
scripts (likely an attempt to evade security crawlers that do not sup-
port script execution). About 78% of the landing page URLs ex-
plicitly contained the targeted search keywords to boost the page
relevance perceived by search crawlers. About 98% of the inter-
mediate URLs include ID-like parameters to track unique visitors,
identify search poisoning affiliates, or prevent repeated visits. In
94% of the cases, the terminal page URLs used domain names
registered for less than a year, with many of these domain cho-
sen to purposely deceive victim users and promote specific scams.
Among the detected search poisoning cases, the most frequently
used top-level domains (TLDs) for landing pages are .com, .org,
.net, and .info, with a TLD distribution similar to regular web-
sites. On the other hand, domains related to terminal pages were
mostly registered under TLDs such as .cc, .com, .in, and .net,
some of which are known to be malware friendly.

To have a sense of the variety of malicious content promoted
by search poisoning, we surveyed 350 randomly chosen terminal
pages. These 350 terminal pages were evenly distributed across
our 7-months measurement period. The results are shown in Fig-
ure 6. We manually categorized the terminal pages based on data
saved at the time when the page was visited by SURF, including
screen shots of each rendered page. As expected, fake AVs are the
most prevalent adopters of search poisoning during the entire 7-
month period. However, we noticed that their pervasiveness started
fading as other types of malicious terminal pages increased. Drive-
by malware downloads and other browser exploitation techniques
did not appear to be commonly leveraging search poisoning. On
the other hand, various types of social engineering-based malicious
pages are dominant players. The figure shows a clear surge of rogue
search engine pages, which present the users with links seemingly
relevant to the search keyword but aim to profit from user clicks.

0%!

20%!

40%!

60%!

80%!

100%!

2010-9! 2010-10! 2010-11! 2010-12! 2011-1! 2011-2! 2011-3!

Unknown!
Void Page!
Click Fraud!
Rogue Pharmacy!
Scam (discount luxury)!
Scam (local service)!
Scam (free gift)!
Rogue Search Engine!
Drive-by download!
FakeAV!

Figure 6: Terminal page variety survey

Scam pages (e.g., watch replicas, etc.) represent another significant
fraction of the surveyed terminal pages. Regardless of their individ-
ual tactics, scam pages in general bait traps with free or unrealis-
tically cheap goods to attract users and steal private information
(e.g., credit card numbers, passwords, etc.). We also encountered
a number of malicious terminal pages related to click fraud and
rogue pharmacies. The terminal pages categorized as “void” typi-
cally contain clues of of certain types of maliciousness (e.g., based
on their domain name patterns) but were inaccessible when visited
due to unsuccessful DNS resolution, or webpage errors. SURF’s
ability to detect even these “void” malicious terminal pages sup-
ports our initial goal of building a detection system that is agnostic
to the specific content of malicious pages promoted through search
poisoning.

6. RELATED WORK
In this section, we identify and discuss two lines of work related

to our detection system.

Blackhat SEO countermeasures: Blackhat SEO, which involves
abusing search engine optimization techniques to achieve unde-
served rankings, is not a new problem and has been studied for year,
especially in the information retrieval community. Most proposed
detection methods work at the search engine level and attempt to
identify deceptive information introduced by the adversaries into
the search index to influence the rankings of their websites. Various
detection features explored by these methods mainly focus on two
aspects of indexed webpages: intra-page characteristics [18,22,25]
and inter-page linkages [24]. However, for adversaries with full
control over their injected search landing pages, such features are
not difficult to evade, sometimes even without requiring changes to
their operation routines. In fact, this traditional way of countering
blackhat SEO has failed to stop its rising trend [11]. SURF ad-
dresses search poisoning, a new class of blackhat SEO, building on
the lessons learned from previous work and approaching the detec-
tion from a new angle using a set of feature that is more robust to
evasion (see Section 3.2.1).

deSEO [15] is a very recent work done in parallel with SURF. It
detects URLs from the search index that contain signatures derived
from known search poisoning landing pages and exhibit patterns
not previously seen by the search engine on the same domain. Since
there is no need to crawl each URL, this approach scales much bet-
ter than SURF when facing a huge volume of search results. How-
ever, deSEO is limited by the coverage of the URL signatures, and
may only find a subset of what SURF detects. For example, about
12% landing page URLs detected by SURF in Section 5.2 do not
contain trendy search keywords, and thus may be missed by de-
SEO. Moreover, SURF does not rely on any information internal to
search engines and can be deployed at the client side, enabling sin-
gle browsers to detect poisoned search results as well as malicious
webpages behind them before the content is presented to the user.



Malicious webpage detection: SURF, when implemented as an
automated detection agent, can be viewed as a dynamic crawler
used to scan search results looking for poisoned ones. From this
perspective, SURF is similar to many proposed systems that crawl
the Internet for various kinds of malicious webpages [17,23]. Such
systems always employ an army of browsing agents running in a
controlled environment to visit suspicious URLs in batch and detect
signs of specific types of malicious activities. SURF can be easily
integrated into these systems and can enable the detection of search
poisoning cases along with the related compromised landing page
and malicious terminal pages. On the other hand, solely relying on
malicious page detectors for finding poisoned search results may
achieve limited success, because of the variety of terminal pages,
many of which use social engineering attacks that are difficult to
detect.

Applying machine learning techniques to data collected during a
crawling session is also a common approach to detecting malicious
webpages. A recent work [21] is able to detect URLs that lead to
spam pages. Our work is different because SURF is not limited to
detecting spam pages, and can instead detect generic search poi-
soning cases.

7. CONCLUSION
Search poisoning is an abuse of SEO techniques by which mis-

creants target any search term that can maximize the number of
incoming search users to their malicious websites. We observed
through an empirical study that a key characteristic of search poi-
soning is the ubiquitous use of cross-site redirections. We designed
and implemented SURF, a novel detection system that runs as a
browser component and is able to detect malicious search user redi-
rections resulted from user clicking on poisoned search results.
SURF extracts a number of detection features from search-then-
visit browsing sessions. These features are robust and the resulting
classifier is hard to evade because they capture the key properties
of search poisoning (derived from our empirical study and analy-
sis). Our evaluation showed that SURF can achieve a detection rate
of 99.1% at a false positive rate of 0.9% on a dataset that contains
real-world search poisoning instances. Using SURF, we also per-
formed a long-term measurement study on search poisoning on the
Internet over a period of seven months. Our study revealed new
trends and interesting patterns related to a great variety of poison-
ing cases, and underscored the prevalence and gravity of the search
poisoning problem.
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