
Automated Response Using System-Call Delays

Anil Somayaji
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

soma@cs.unm.edu

Stephanie Forrest
Santa Fe Institute

Santa Fe, NM 87501
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

steph@santafe.edu, forrest@cs.unm.edu

Abstract

Automated intrusion response is an important unsolved
problem in computer security. A system called pH (for
process homeostasis) is described which can success-
fully detect and stop intrusions before the target system
is compromised. In its current form, pH monitors ev-
ery executing process on a computer at the system-call
level, and responds to anomalies by either delaying or
aborting system calls. The paper presents the rationale
for pH, its design and implementation, and a set of initial
experimental results.

1 Introduction

This paper addresses a largely ignored aspect of com-
puter security—the automated response problem. Pre-
viously, computer security research has focused almost
entirely on prevention (e.g., cryptography, firewalls and
protocol design) and detection (e.g., virus and intru-
sion detection). Response has been an afterthought,
generally restricted to increased logging and adminis-
trator email. Commercial intrusion detection systems
(IDSs) are capable of terminating connections, killing
processes, and even blocking messages from entire net-
works [3, 12, 22]; in practice, though, these mechanisms
cannot be widely deployed because the risk of an in-
appropriate response (e.g., removing a legitimate user’s
computer from the network) is too high. Thus, IDSs be-
come burdens, requiring administrators to analyze and
respond to almost every detected anomaly. In an era of
expanding connectivity and ubiquitous computing, we

Published in the Proceedings of the 9th USENIX Security Symposium
(August 14–17, 2000). Copyright c

�
2000 Anil Somayaji & Stephanie

Forrest.

must seek solutions that reduce the system administra-
tor’s workload, rather than increasing it. That is, our
computers must respond to attacks autonomously.

In earlier work, we and others have demonstrated several
methods of anomaly detection by which large classes of
intrusions can be detected, e.g., [1, 27, 17, 16]. Good
anomaly detection, however, comes at the price of per-
sistent false positives. Although more sophisticated
methods will no doubt continue to be developed, we
believe that it is infeasible to eliminate false positives
completely. There are several reasons for this. First,
computers live in rich dynamic environments, where in-
evitably there are new patterns of legitimate activity not
previously seen by the system — a phenomenon known
as perpetual novelty (see Hofmeyr [21] for an empirical
model of the rate at which new patterns appear in a lo-
cal area network). Second, profiles of legitimate activity
change continually, as computers and users are added or
deleted, new software packages or patches are added to
a system, and so forth. Thus, the normal state of the sys-
tem is evolving over time. Finally, there is inherent am-
biguity in the distinction between normal and intrusive
(or abnormal) activities. For example, changes to system
configuration files are legitimate if performed by a sys-
tem administrator; however, the very same actions are a
security violation conducted done by a non-privileged
user or an outside attacker. Thus, any automated re-
sponse system must be designed to account for persis-
tent false-positives, evolving definitions of normal, and
ambiguity about what constitutes an anomaly.

We have chosen to focus on automated response mech-
anisms which will allow a computer to preserve its own
integrity (i.e. stay “alive” and uncompromised), rather
than ones that help discover the source or method of an
intrusion. Within this context, we believe that the best
way to approach the automated response problem is by
designing a system in which a computer autonomously

monitors its own activities, routinely making small cor-
rections to maintain itself in a “normal” state. In biol-
ogy, the maintenance of a stable (normal) internal en-
vironment is known as homeostasis. All living systems
employ a wide range of homeostatic mechanisms in or-
der to survive under fluctuating environmental condi-
tions. We propose that computer systems should sim-
ilarly have mechanisms which strive to maintain a sta-
ble environment inside the computer, even in the face of
wide variations in inputs. Under this view, automated
response is recast from a monolithic all-or-nothing ac-
tion (which if incorrect can have dire consequences) to
a set of small, continually occurring changes to the state
of the system. With this view, occasional false alarms
are not problematic, because they have small impact. In
earlier papers, we have advocated a view of computer
security based on ideas from immunology [16, 34, 20].
This paper naturally extends that view by recognizing
that immune systems are more properly thought of as
homeostatic mechanisms than pure defense mechanisms
[26].

In the following sections, we describe a working imple-
mentation of these ideas—a set of extensions to a Linux
kernel which does not interfere with normal operation
but can successfully stop attacks as they occur. We call
the system pH (short for process homeostasis). To cre-
ate pH, we extended our earlier intrusion-detection work
using system calls [16] by connecting system calls with
feedback mechanisms that either delay or abort anoma-
lous system calls.

Delays form a natural basis for interfering with program
behavior: small delays are typically imperceptible to a
program, and are minor annoyances to a user. Longer
delays, however, can trigger timeouts at the application
and network levels, effectively terminating the delayed
program. By implementing the delays as an increasing
function of the number of recent anomalous sequences,
pH can smoothly transition between normal execution
and program termination.

This paper makes two principal contributions. First, it
demonstrates the feasibility of monitoring every active
process at the system-call level in real-time, with min-
imal impact on overall performance. Second, it intro-
duces a practical, relatively non-intrusive method for au-
tomatically responding to anomalous program behavior.

The paper proceeds as follows. First, we review our
system call monitoring and anomaly detection method.
Next, we explain the design and implementation of pH.
We then demonstrate pH’s effectiveness at stopping at-
tacks, show through benchmarks that it runs with low

overhead, and describe what it is like to actually use
pH on a workstation. After a review of related work,
we conclude with a discussion of limitations and future
work.

2 Background

Both the monitoring and the response components of pH
use ideas introduced in [16]. What follows is a descrip-
tion of our original testing methodology, with which we
gathered on-line data for off-line analysis. Subsequent
sections explain how these techniques were modified to
create pH.

To review, we monitored all the system calls (without
arguments) made by an executing program on a per-
process basis. That is, each time a process was invoked,
we began a new trace, logging all the system calls for
that process. Thus, for every process the trace consists
of an ordered list (a time-series) of the system calls it
made during its execution. For commonly executed pro-
grams, especially those that run with privilege, we col-
lected such traces over many invocations of the program,
when it was behaving normally. We then used the col-
lection of all such traces (for one program) to develop an
empirical model of its normal behavior.

Once the system had been trained on a sufficient num-
ber of normal program executions, the model was tested
on subsequent invocations of the program. The hope was
that the model would recognize most normal behavior as
“normal” and most attacks as “abnormal.” Our method
thus falls into the category of anomaly intrusion detec-
tion.

Given a collection of system call traces, how do we use
them to construct a model? This is an active area of
research in the field of machine learning, and there are
literally hundreds of good methods available to choose
from, including hidden Markov models, decision trees,
neural networks, and a variety of methods based on de-
terministic finite automata (DFAs). We chose the sim-
plest method we could think of within the following con-
straints. First, the method must be suitable for on-line
training and testing. That is, we must be able to con-
struct the model “on the fly” in one pass over the data,
and both training and testing must be efficient enough
to be performed in real-time. Next, the method must
be suitable for large alphabet sizes. Our alphabet con-
sists of all the different system calls—typically about
200 for UNIX systems. Finally, the method must create

models that are sensitive to common forms of intrusion.
Traces of intrusions are often 99% the same as normal
traces, with very small, temporally clumped deviations
from normal behavior. In the following, we describe a
simple method, which we call “time-delay embedding”
[16]. Warrender [38] compared time-delay embedding
with several other common machine learning algorithms
and discovered that it is remarkably accurate and effi-
cient in this domain.

We define normal behavior in terms of short � -grams of
system calls. Conceptually, we define a small fixed size
window and “slide” it over each trace, recording which
calls precede the current call within the sliding window.
The current call and a call at a fixed preceding window
position form a “pair,” with the contents of a window of
length � being represented by ��� � pairs. The collection
of unique pairs over all the traces for a single program
constitutes our model of normal behavior for the pro-
gram.1

More formally, let

� �
alphabet of possible system calls� �
trace�
the sequence �
	����������������
��������
��� �� �
window size ����� � �! " �
profile�
set of patterns associated with

�
and �� #%$'& � � &)(�*�+�,-& � � &)(� � � � �/.10 �2�3 ,54 � 3 0/ 6�7.��

�98 �:& � �
� 8�; + �<& (�

For example, suppose we had as normal the following
sequence of calls:

execve, brk, open, fstat, mmap, close, open,
mmap, munmap

and a window size of 4. We slide the window across
the sequence, and for each call we encounter, we record
what call precedes it at different positions within the
window, numbering them from 0 to � � �

, with 0 be-
ing the current system call. So, for this trace, we get the
following windows:

1Our original paper on using system calls for intrusion detection
[16] used a technique called “lookahead pairs.” pH uses the original
lookahead pairs algorithm as described here, except that it looks be-
hind instead of ahead. Later papers [20, 38] report results based on
recording full sequences. We reverted to lookahead pairs because it is
simple to implement and extremely efficient.

position 3 position 2 position 1 current
execve

execve brk
execve brk open

execve brk open fstat
brk open fstat mmap
open fstat mmap close
fstat mmap close open
mmap close open mmap
close open mmap munmap

When a call occurs more than once in a trace, it will
likely be preceded by different calls in different contexts.
We compress the explicit window representation by join-
ing together lines with the same current value (note the
open and mmap rows):

current position 1 position 2 position 3
execve
brk execve
open brk, close execve, mmap fstat
fstat open brk execve
mmap fstat, open open, close brk, mmap
close mmap fstat open
munmap mmap open close

This table can be stored using a fixed-size bit array. If = � =
is the size of the alphabet (number of different possible
system calls) and � is the window size, then we can store
the complete model in a bit array of size: = � =?>@= � =A>@B � ���C

. Because � is small (6 is our standard default), our
current implementation uses a � 4-4 >D� 4�4 byte array, with
masks to access the individual bits.

At testing time, system call pairs from test traces are
compared against those in the normal profile. Any sys-
tem call pair (the current call and a preceding call within
the current window) not present in the normal profile is
called a mismatch. Any individual mismatch could indi-
cate anomalous behavior (a true positive), or it could be
a sequence that was not included in the normal training
data (a false positive). The current system call is defined
as anomalous if there are any mismatches within its win-
dow.

To date, all of the intrusions we have studied produce
anomalous sequences in temporally local clusters. To fa-
cilitate the detection of these clusters, we record recent
anomalous system calls in a fixed-size circular array,
which we refer to as a locality frame. More precisely,
let � be the size of our locality frame, and let E � be theF
-th entry of the locality frame array, with

4 � F 0 � and
EG�G� #�4 � �IH . Then, for system call

&
(
4 � & 0J) with

mismatches KML , EDL mod N � �
iff KOLQP 4

, and is 0 other-

wise. Thus, the locality frame implicitly stores the num-
ber of the past � system calls which were anomalous.
We call this total of recent anomalies,

� E � , the local-
ity frame count (LFC).2 For the experiments described
below, we used a locality frame of size 128.

3 pH Design

pH performs two important functions: It monitors indi-
vidual processes at the system-call level, and it automat-
ically responds to anomalous behavior by either slowing
down or aborting system calls. Normal behavior is de-
termined by the currently running binary program; re-
sponse, however, is determined on a per-process basis.

To minimize I/O requirements and maximize efficiency,
stability, and security, we have implemented most of pH
in kernel space. We considered several alternative ap-
proaches, including audit packages, system-call tracing
utilities (such as strace), and instrumented libraries.
However, each of these other approaches has serious
drawbacks. Audit packages generate voluminous log-
files, which are expensive to create and even more ex-
pensive to analyze. Additionally, they do not routinely
record every system call. User-space tracing utilities are
too slow for our application, and in some cases, they in-
terfere with privileged daemons to the extent that they
behave incorrectly. Instrumented libraries cannot detect
every system call, because not every system call comes
through a library function (e.g., buffer overflow attacks).
In addition, a kernel implementation allows us to put
our monitoring and response mechanisms exactly where
they are needed, in the system call dispatcher, and allows
the implementation to be as secure as the kernel.

For each running executable, pH maintains two arrays
of pair data: A training array and a testing array. The
training array is continuously updated with new pairs as
they appear; the testing array is used to detect anomalies,
and is never modified except by replacing it with a copy
of the training array. Put another way, the testing array
is the current normal profile for a program, while the
training array is a candidate future normal profile.

A new “normal” is installed by replacing the testing ar-
ray with the current state of the training array. The re-
placement occurs under three conditions: (1) the user ex-

2A somewhat different approach was taken in Hofmeyr [20], where
the measure of anomalous behavior was based on Hamming distances
between unknown sequences and their closest match in the normal
database.

plicitly signals via a special system call (sys pH) that a
profile’s training data is valid; (2) the profile anomaly
count exceeds the parameter � ��� K������ � F K F � ; (3) the
training formula is satisfied. When an anomaly is de-
tected, the current system call is delayed according to a
simple formula. Details of these conditions and actions
are given in the next several paragraphs.

The training to testing copy can occur automatically
based on the state of the following training statistics:

�
	�� F � ���� � � , # calls since array initialization
��� & � K ��� ���� � � , # calls since array was last

modified��� 	�K���� ����� � � � �
	�� F � ���� � � ����� & � K ��� ���� � �

When the training array meets all of the following con-
ditions, it is copied onto the testing array (note: this is
the normal mechanism for initiating anomaly detection
in the system):

��� & � K ��� ���� � � P K ��� K F � F K � K��� 	�K���� ���� � � P ��� 	�K���� K F � F K � K����� � N �
����N �N�� ��� �"! �
�#��N � P ��� 	�K���� 	��%� F �

The three parameters on the right are user defined, and
can be set at runtime.

As we mentioned earlier, pH responds to anomalies by
delaying system call execution. The amount of delay is
an exponential function of the current LFC, regardless
of whether the current call is anomalous or not. The
unscaled delay for a system call is � � � LFC. The effec-
tive delay for a system call is � > �%$ ���%� &'� � � � 	 , where�%$ ���%� &'� � � � 	 is another user-defined parameter. Note
that delays may be disabled by setting �%$ ���%� &'� � � � 	 to
0. If the LFC ever exceeds the � � � $ 	 F
(�-� F ��� � F K F � pa-
rameter (which is 12 for the experiments described be-
low), the training array is reset, preventing truly anoma-
lous behavior from being incorporated into the testing
array.

Because pH monitors process behavior based on the exe-
cutable that is currently running, the execve system call
causes a new profile to be loaded. Thus, if an attacker
were able to subvert a process and cause it to make an
execve call, pH might be tricked into treating the cur-
rent process as normal, based on the data for the newly-
loaded executable. To avoid this possibility the maxi-
mum LFC count (maxLFC) for a process is recorded. If

maxLFC exceeds the � � � 	�� $ � $����%$ threshold, then all
execve’s are aborted for the anomalous process.

pH also keeps a count of the raw number of anoma-
lies each profile has seen. This count can be seen as a
measure of ongoing, non-clustered abnormal behavior.
If this number exceeds the parameter � ��� K������ � F K F � ,
pH automatically copies the training array to the test-
ing array, causing pH to treat similar future behavior as
normal. Borrowing from immunology, we refer to this
process as tolerization. Low values of � ��� K������ � F K F �
allow pH to automatically tolerize most novel behavior,
while higher values inhibit tolerization. When a system
is initially set up, automatically-created normal profiles
may contain too little normal behavior. To reduce the
number of reported anomalies, � ��� K������ � F K F � should
be set to a small value (less than 10). Then, once the
system has stabilized, � ��� K��%��� � F K F � should be set to
at least 20 to prevent pH from automatically learning the
behavior of attacks.

4 Implementation

The pH prototype is implemented as a patch for the
Linux 2.2 kernel, and was developed and tested on sys-
tems running a pre-release of the Debian/GNU Linux
2.2 distribution [35]. The modified kernel is capable of
monitoring every executed system call, recording pro-
files for every executable. An overview of the system is
shown in Figure 1.

Program profiles for each executable are stored on disk.
Each profile contains both a training and testing array,
and so is actually two “profiles” by the terminology in
Section 2. The kernel loads the current profile when
a new program begins executing (on execve), and then
writes it out again when the process terminates. When
a new executable is loaded via the execve system call,
the kernel attempts to load the appropriate profile from
disk; if it is not present, a new profile is created. If
another process runs the same executable, the profile
is shared between both processes. To prevent consis-
tency problems due to interleaving, each executing pro-
cess maintains its own record of recent system calls (its
current sequence). When all processes using a given pro-
file terminate, the updated profile is saved to disk. A
loaded profile consumes approximately 80K of kernel
(non-swappable) memory.

We modified the system call dispatcher so that it calls
a pH function (pH process syscall) prior to dis-

patching the system call. pH process syscall im-
plements the monitoring, response, and training logic.
pH is controlled through its own system call, sys pH,
which allows the superuser (root) to take the following
actions:

� Start, stop monitoring processes.

� Set system parameters (see Section 3 for descrip-
tions):

– � $ ��� � &'� � � � 	
– � � � 	�� $ � $����%$
– K ��� K F � F K � K
– ��� 	�K���� K F � F K � K
– ��� 	�K���� 	��%� F �
– � � � $ 	 F
(�%� F ��� � F K F �
– � ��� K������ � F K F �

� Turn on/off logging of system calls to disk (expen-
sive, used for debugging).

� Turn on/off logging novel sequences to disk.

� Status (prints out current values of system parame-
ters to the kernel log).

� Write all profiles to disk.

� Reset 0 pid P : Resets the profile to be empty.

� Start normal 0 pid P : Copies the training array for3 F � ’s executable to its testing array, and marks the
profile as normal.

� Tolerize 0 pid P : Change the normal flag for
3 F � ’s

profile to 0, reset its locality frame, and cancel any
current delay for it.

� Sensitize 0 pid P : Clears the training array. This
mechanism is used to prevent known true positives
from being incorporated into the training data.

� Turn on/off debugging messages sent to kernel log-
ging facility.

More specifically, we extended the Linux task structure
(the kernel data structure used to represent processes and
kernel-level threads) with a new structure which con-
tains the following fields: the current window of system
calls for the task, a locality frame, and a pointer to the
current profile. A profile is a structure containing two
byte-arrays for storing pairs (the training and testing ar-
rays) and some additional training statistics described in
Section 3.

user code
and data

system call
dispatcher

testing
delay
training

pH

system call
implementations

scheduler

train
test

profile:

call
system

delay

kernel data

task_struct:
pH: profile

sequence
LFC

Figure 1: Basic flow of control and data in a pH-modified Linux kernel.

5 Experimental Results

In this section, we report on some early experiments test-
ing out pH in a live environment. We are interested in
three aspects of the system: Its effectiveness in intrusion
response (can it really detect and stop an attack before
the system is compromised?), performance impact (what
is the overhead of the installed system?), and usability
(what is it like to live with pH on your own computer?).

5.1 Can pH detect and stop attacks in time to
prevent system compromise?

To test how pH could respond to security violations, we
tested its behavior by seeing how it could detect and re-
spond to a Secure Shell (SSH) daemon [29] backdoor,
an SSH daemon buffer overflow, and a sendmail [13]
attack that exploits a bug in the Linux kernel’s capabili-
ties code. These three violations all allow an attacker to
obtain root privileges, using different techniques to gain
access. Delays alone are significant inhibitors of these
attacks; with execve aborts, pH can effectively stop all
of them.

To test the SSH attacks, the sshd program in Debian
2.2’s packaged version of Secure Shell (ssh-nonfree),
version 1.2.27-6 was modified in two basic ways. First,
it was made to link against the RSAREF2 library, to
make it vulnerable to a buffer overflow attack script pub-
lished on the BUGTRAQ mailing list [2]. Second, the
source was modified using the rkssh5 trojan patch [37],
and was built using the “global password” flag. This op-
tion allows an attacker to access to any account on the
system using a compiled in, MD5-encoded password.
In addition, use of this password disables most logging,
minimizing the evidence of the intrusion.

A normal profile for this modified sshd binary was cre-
ated by exercising the program on a personal worksta-
tion. Normal logins via root and a regular user were
tested, using the password, RSA-secured rhosts, and
pure RSA methods of authentication. Also, failed lo-
gins were tested, using nonexistent users and incorrect
passwords. Together these produced 687 sequences, and
a profile with 1725 pairs, over 47756 system calls.

Relative to this synthetic normal profile, we first tested
whether pH could detect the use of the global password
to gain access to the root account. With all responses
disabled, the backdoor produced 5 anomalies, 3 in the
child (which exec’s the remote user’s shell), and 2 in the

0 50 100 150 200

System Call Count

0

10

20

30

40

50

D
el

ay
 (

ji
ff

ie
s)

Figure 2: A graph showing the pH-induced system-call
delay during the sshd backdoor intrusion. Note the ex-
ponential increase (from 0 to 8, 16, then 32) and de-
crease, with a constant delay for most calls within the
locality frame. The process shown is the child process,
and it terminates with a shell being exec’d. The pair
window size is 6, the locality frame size is 128, and the�%$ ���%� &'� � � � 	 is set to 4. Time is measured in jiffies,
which are 1/100 of a second on Linux running on i386-
compatible machines.

parent (which maintains the network connection). Set-
ting �%$ ���%� &'� � � � 	 to 4 produced the same anomaly pro-
file, but did not prevent the remote user from logging
in; however, the resulting connection was slowed down
significantly, as shown in Figure 2. With � � � 	�� $ � $����%$
set to 1, the backdoor was closed, whether delays were
enabled or not.

With all responses disabled, the buffer overflow attacked
produced 4 clustered anomalies in the parent SSH pro-
cess. Setting �%$ ���%� &'� � � � 	 to 4 produced the same
anomalies, and allowed the attacker to obtain a root
shell; however, this shell was less useful than might be
supposed. Recall that pH delays every process with a
non-zero LFC, and the LFC is only updated if the pro-
gram has a valid normal (test) profile. As it turns out,
bash, the standard shell on most Linux systems, is a
large, complicated program that tends not to reach a sta-
ble profile. Thus, the 64 jiffy (0.64s) delay incurred by
the overflowed sshd is passed on to the exec’d bash, and
bash keeps this delay forever! Even if this weren’t the
case, because of the 128 entry locality frame, we’d see
the delay for 125 system calls, giving us at least an 80s
delay. Not a huge amount of time, but possibly enough
to make a cracker think the attack isn’t working.

With execve aborts enabled, the overflow attack was
stopped, whether delays were enabled or not. The
attack script does not simply fail, though; since the
overflow code keeps retrying the execve call if it fails,
the aborts cause an infinite loop. Each pass through
the loop generates 3 anomalies, due to the failed ex-
ecve; a few times through this tight loop thus causes
the � � � $ 	 F
(�-� F ��� � F K F � to be exceeded, causing sshd’s
training profile to be reset.

The Linux capability vulnerability allows a non-
privileged program to prevent a privileged one from
dropping its capabilities on systems running recent 2.2
kernels (2.2.14 and 2.2.15 are both vulnerable). An
exploit was published on BUGTRAQ [28] which uses
sendmail to take advantage of this hole. Because this is
a flaw in the kernel, it can succeed even though sendmail
does the right thing and tries to drop its privileges.

A normal profile for sendmail (Debian version 8.9.3-22)
was first generated, based on normal usage on a per-
sonal workstation. This normal had 3443734 system
calls with 1061 unique sequences, and produced a pro-
file with 2412 system call pairs. Relative to this nor-
mal, the exploit was extremely noticeable. The exploit
generates several different sendmail processes, and just
one of them had 47 anomalies! Indeed, the numerous
anomalies caused the � � � $ 	 F
(�%� F ��� � F K F � to be reached

numerous times. Enabling execve aborts did nothing to
inhibit the attack; this makes sense, since the exploit
doesn’t have sendmail directly run a privileged shell; in-
stead, it creates a setuid-root shell in /tmp. However, a�%$ ���%� &'� � � � 	 of 4 effectively stopped the attack — de-
lays were produced which lasted for at least two hours.
Time delays of this magnitude would almost certainly
frustrate a normal cracker; a patient one could be ad-
dressed by automatically killing any process that had
been delayed for a long time period, say 30 minutes or
more.

5.2 What is the overhead of running pH?

To determine the performance impact of our kernel mod-
ifications, we ran the HBench-OS 1.0 [11] low-level
benchmark suite on an HP Pavilion 8260 (266 MHz
Pentium II, 160M SDRAM, Maxtor 91020 10G Ultra-
DMA IDE hard disk) running a pre-release version of
Debian/GNU Linux 2.2. Tests were run for ten itera-
tions on a system running in single user mode. In Tables
1 and 2, “Standard” refers to a stock Linux 2.2.14 ker-
nel. “pH” refers to a 2.2.14 kernel with pH extensions,
with monitoring enabled for all processes and with status
messages and automated response turned off. All times
are in microseconds.

Tables 1 and 2 show that our modifications add signif-
icantly to system call overhead. Table 1 indicates that
pH adds approximately 4.7 � & to the execution time of
simple system calls that normally would take less that
2 � & to execute. Table 2 shows that pH causes process
creation to be almost twice as slow for a dynamically-
linked shell. Although these tables show a significant
performance hit, they are not indicative of the impact on
overall system performance.

Table 3 shows how overall performance is affected for
a set of tasks. Here we report the output of time for
three different kinds of operations: kernel builds, find
/ -print > /dev/null (a basic traversal of the
file system), and Quake 2 frame rates. All of these tests
were run in single-user mode. The most dramatic ef-
fect is seen in the system time of the kernel build, which
almost doubles due to monitoring overhead. This differ-
ence, however, only causes a 4% slowdown in the clock
time. The find test shows almost a 10% slowdown, and
this is for a program that is almost entirely bound by the
speed of filesystem-access system calls. Interestingly,
the Quake 2 frame rate tests shows virtually no slow-
down. These tests illustrate what we have observed in-
formally by using the system ourselves: If delays are

System Call Standard (� &) pH (� &)
getpid 1.1577 (0.00000) 5.8898 (0.00025)
getrusage 1.9145 (0.00000) 6.6137 (0.00138)
gettimeofday 1.6703 (0.00184) 6.3779 (0.00112)
sigaction 2.5609 (0.00010) 7.2928 (0.01029)
write 1.4135 (0.00187) 6.1637 (0.00075)

Table 1: System call latency results. All times are in
microseconds. Standard deviations are listed in paren-
theses.

Operation Standard (� &) pH (� &)
null 408.80 (00.618) 2497.90 (40.923)
simple 2396.24 (11.124) 8206.62 (11.795)
/bin/sh 9385.66 (26.761) 18223.96 (26.777)

Table 2: Dynamic process creation latency results. Null
refers to a fork of the current process. Simple is a fork
of the current process plus an exec() of a hello-world
program written in C. /bin/sh refers to the execution of
hello-world through the libc system() interface, which
uses /bin/sh to invoke hello-world. All times are in mi-
croseconds. Standard deviations are listed in parenthe-
ses.

turned off, a user can use the modified workstation with-
out noticing any differences in system behavior, even if
she decides to run a compute and I/O intensive applica-
tion such as Quake 2.

5.3 pH in Practice

To understand the usability of the prototype, the modi-
fied kernel was installed on the authors’ personal com-
puters, configured to monitor every process on the sys-
tem. As indicated above, such a configuration has a
minimal performance impact in practice; however, en-
abling delays in this situation can cause certain prob-
lems. Privileged programs, such as login, send-
mail, and cron, have a highly constrained behavior
profile; thus, after a day or two of sampling, these pro-
grams tend to settle into a stable normal, and exhibit
few anomalies. Large non-privileged programs, such as
netscape and emacs, have more complicated behaviors,
and thus tend not to shift into a normal monitoring mode,
and so are never delayed.

Some of the more interesting programs are ones which
perform simple system monitoring, such as asclock (a
NeXTStep-style clock) and wmapm (a battery monitor-
ing program). These programs execute a large number of

Benchmark Standard pH
kernel build (s)

real 702.47 (0.07) 727.44 (0.29)
user 669.35 (0.60) 673.67 (0.55)
sys 33.00 (0.61) 53.60 (0.70)

find / -print (s)
real 5.68 (0.58) 6.24 (0.54)
user 1.61 (0.09) 1.59 (0.09)
sys 3.27 (0.09) 3.90 (0.17)

Quake 2 (fps)
demo1 22.89 (0.03) 22.87 (0.05)
demo2 23.30 (0.00) 23.30 (0.00)

Table 3: Overall system performance. All units are sec-
onds (s), except for the Quake 2 test, which is in frames
per second (fps). Ten trials were run for each exam-
ple, except 100 trials were run for find. Each test was
run once before beginning the measurements in order to
eliminate initial I/O transients. Standard deviations are
listed in parentheses.

system calls, and most of the time they have repetitious
behavior. However, when a user perturbs the system by
changing desktops or by moving windows, the behaviors
of these programs can change. In the current prototype,
these programs tend to be the first to obtain normals,
and the first to be slowed down. Over a few days they
tend to settle down and operate normally; this transition,
however, can require a number of user-supplied toleriza-
tion events. This suggests that the heuristics described
in Section 3 may need to be refined. However, by tem-
porarily setting � ��� K������ � F K F � to a low value (such as
5), the number of reported anomalies can be kept to a
minimum.

As monitoring programs are generally not critical appli-
cations, problems involving them can be seen as minor
nuisances. A more significant set of issues arises with
the behavior of one large, privileged program: the X
server. The X server is responsible for initializing and
controlling access to the video display, on behalf of X
clients such as xterm and netscape. X servers are sim-
ilar to monitoring programs, in that they make a large
number of mostly-repetitive system calls, and so tend to
acquire a normal profile quickly. User actions can also
perturb the X server’s behavior, causing it to be delayed.
In this case, the delays can have dramatic effects, such as
causing a user’s entire session to be frozen or leaving the
video hardware in a confused state when they occur dur-
ing server initialization or shutdown. Fortunately, most
of these problems can be avoided by initially starting up
and shutting down the X server a few times, allowing
pH to learn the critical initialization and shutdown sys-

tem call patterns.

These two classes of problems suggest a weakness in
our current approach. Programs which make large num-
bers of system calls in a short period of time tend to
acquire normal profiles, even when a true sampling of
behavior has not yet occurred. A natural solution is to
take time into account during the normal profile deci-
sion process. Such a strategy might require a signifi-
cant amount of computation, and so is probably better
implemented in a userspace control daemon. It would
also allow additional factors to be considered, such as
size of executable, number of invocations, and perhaps
program-specific heuristics. Such a daemon is planned
for the future.

6 Related Work

Our approach to homeostatic computing is similar in
spirit to Brooks’ approach to mobile robot control, based
on loosely coupled feedback loops, real-time interac-
tions with dynamic environments, and no centralized
representation of the outside world [9, 10]. We believe
Brooks’ subsumption architecture can be applied to the
construction of a computer security system. pH in its
current form is analogous to feedback loops that help a
robot maintain balance; with the addition of a parameter-
adjusting control daemon, we may be able to teach pH
how to “walk.”

Although research IDSs have performed anomaly de-
tection for years [1, 27, 17, 16], most commercial sys-
tems emphasize misuse detection (i.e. pattern matching
for known attacks), requiring frequent updates as new
exploits are developed. Many current commercial net-
work IDSs [3, 12, 22] are capable of automatically re-
sponding to network attacks through increased logging,
firewall reconfiguration, termination of connections, and
even automatic blocking of suspicious networks. Com-
bined host and network IDSs such as ISS RealSecure
[22] can also respond to threats by terminating individ-
ual processes. However, because responses that halt at-
tacks can also cause significant service reductions, these
responses must be reserved for attacks which can be eas-
ily and reliably identified through specific misuse sig-
natures. Although useful for high-security installations,
actions such as session capture and email/pager notifica-
tion are simply a burden to most administrators.

Sekar, Bowen, and Segal [30] have developed a
specification-based approach for intrusion detection and

automated response at the system-call level. They have
created a language called ASL for specifying program
behavior and responses to abnormal behavior, and they
have created Linux kernel extensions which allow their
specifications to be enforced on-line. Their approach
has the advantage of allowing subtle responses to secu-
rity violations, ranging from changing system call argu-
ments to confining a program to an alternative file sys-
tem. Unfortunately, it also has the disadvantages of be-
ing labor-intensive, in that specifications must be con-
structed manually for each executable.

Michael Ernst and others at the University of Washing-
ton have developed techniques for dynamically deter-
mining program invariants [15]. pH also dynamically
detects invariants in program behavior, although it does
so at the system-call instead of the data-structure level.
Perhaps Ernst’s techniques could be used to create an on-
line data monitoring tool which would complement the
system-call monitoring of pH.

Delays are used throughout computing to achieve vary-
ing goals. Most laptop CPUs have the ability to run at a
slower speed to minimize heat or maximize battery life;
Transmeta’s Crusoe processor [14] goes a step further
by allowing the speed of the chip to vary continuously
in response to system load, maximizing battery life and
perceived performance. The Ethernet protocol arbitrates
wire access by having transmitting computers exponen-
tially delay their packets when collisions are detected
[36]. And, at the software level, the standard login
program on most UNIX systems delays repeated login
attempts to interfere with password guessing attacks. A
final example is the program getty, which notices if
it spawns processes too frequently on a given tty device
and in this event, puts itself to sleep for a few minutes.

The core of pH can be seen as an unusual type of pro-
cess scheduling. In most UNIX systems [4], processes
are scheduled using static priorities (provided by the ad-
ministrator), dynamic priorities (based on recent CPU
and I/O behavior), and the number of processes on the
system. “Fair share” schedulers divide CPU time be-
tween users, not processes [18, 24]. pH’s delay mecha-
nism could be viewed as an implicit mechanism for al-
locating CPU time; however, instead of being fair to all
processes or users, it favors processes which are behav-
ing “normally.”

Research on high-performance operating systems em-
phasizes extensible [5, 31] and minimal [23] kernels.
These systems require novel security mechanisms to
moderate the increased power given to application
programs, relative to operating systems with conven-

tional, monolithic kernels. In contrast, our work on
biologically-inspired OS extensions assumes a conven-
tional kernel, and aims to increase the stability and secu-
rity of the system.

Adaptive, on-line control has been widely studied as a
method for improving system performance. Whether
motivated by non-stationary workloads [7], extensible
operating systems [32], parallelism [25], or on-line
database transaction processing [39], researchers have
focused on using adaptive methods for improving sys-
tem performance, not robustness. Work in using adap-
tive control in real-time systems [6] has focused on us-
ing adaptation to help meet timing and robustness con-
straints.

Finally, pH can be seen as a type of fault tolerant system
[8, 33, 19], except that we focus on security violations
instead of hardware or software failures.

7 Discussion

A major point of this paper is that it is feasible to use
system-call delays to stop intrusions in real-time, with-
out prior knowledge about what form an attack might
take (unlike signature-based scanners). The three exam-
ple exploits help show that pH can do this, even for very
different types of attacks. However, in practice pH’s ef-
fectiveness is determined by whether it can obtain stable
normals for the binaries on a system. Currently, pH can
do this automatically only for programs which are rel-
atively simple and are called on a regular basis; even
then, there is an ongoing risk that pH could be trained
to accept intrusions as normal behavior. Research still
needs to be done on more effective training heuristics
that minimize the time for pH to obtain a normal profile,
but also minimize the chances of pH tolerizing truly ab-
normal behavior. By incorporating such heuristics into a
pH control daemon, we should be able to minimize the
need for user or administrator intervention.

It may be necessary to implement a default timeout
mechanism through pH, in which any process that is
delayed beyond a certain point is automatically termi-
nated. It may also be necessary to increase pH’s reper-
toire to include actions such as system call parameter
modifications. Additional response mechanisms may re-
quire computationally expensive analysis algorithms to
be added; because abnormally-behaving processes are
delayed, pH actually has the time to perform more so-
phisticated analysis when anomalies are detected. Our

philosophy, however, is to wait until such a need arises
before implementing additional mechanisms.

A second major point of the paper is to show that system-
call monitoring is practical, even when every executing
process on the system is monitored simultaneously. pH
routinely monitors every system call executed by every
process with little perceptible overhead. Thus, we be-
lieve that the current implementation of pH is efficient
enough to satisfy a wide variety of users.

The current version of pH is not completely secure. pH
does restrict use of the sys pH system call to users who
have the kill capability (which, by default is only root);
however, there are no checks to ensure that a profile has
not been tampered with on disk, or restrictions on user
access to profiles — they are currently owned by root,
but readable by anyone. An attacker could use this in-
formation to design a less-detectable attack based on the
system call usage on the target machine. pH could be
used to generate a denial-of-service attack by trigger-
ing abnormal (but otherwise benign) behavior in a target
program. Also, it may be useful to implement mecha-
nisms to prevent users (including root) from being able
to directly modify the stored profiles. Such “hardening”
of pH, though, should wait until pH’s basic functionality
has undergone further testing.

In the past, we have emphasized that system call pro-
filing is a suitable technique for monitoring privileged
programs. pH in its current form, however, monitors
and responds to anomalies in all programs. In the fu-
ture, we may decide to restrict monitoring to privileged
programs; yet, with the increasing use of active con-
tent on the Internet, it may also be desirable to have
pH respond to anomalies in word processors and web
browsers. Some large programs such as netscape are im-
plemented using userspace threads, causing system calls
to be interleaved in apparently random patterns due to
variations in thread scheduling; thus, the system call pro-
files of these programs may never stabilize. We believe,
though, that this will be less of a problem in the future,
as programs switch to using kernel threads. Because
the Linux kernel uses the same data structure to repre-
sent threads and processes, pH is able to monitor kernel
threads individually, avoiding interleaving effects.

8 Acknowledgments

The authors gratefully acknowledge the support of the
National Science Foundation (grant IRI-9711199), the

Office of Naval Research (grant N00014-99-1-0417),
and the Intel Corporation.

Steven Hofmeyr wrote the original program for analyz-
ing system call traces, Julie Rehmeyr rewrote the code
so that it was suitable to run in the kernel, and Ge-
off Hunsicker developed the original login trojan, which
we ported for these experiments. Margo Seltzer sug-
gested some of the benchmarks used in the paper. Erin
O’Neill pointed out to us that the immune system is bet-
ter thought of as a system for maintaining homeostasis
than as a defense mechanism. We are grateful to the
above people and all the members of the Adaptive Com-
putation group at UNM, especially David Ackley, for
their many helpful suggestions and interesting conver-
sations about this work.

9 Availability

The current version of pH may be obtained via the fol-
lowing web page:

http://www.cs.unm.edu/ � soma/pH/

The distribution contains a kernel patch and a few sup-
port programs. All are licensed under the terms of the
GNU General Public License (GPL).

References

[1] Debra Anderson, Thane Frivold, and Alfonso
Valdes. Next-generation intrusion detection expert
system (NIDES): A summary. Technical Report
SRI–CSL–95–07, Computer Science Laboratory,
SRI International, May 1995.

[2] Ivan Arce. SSH-1.2.27 & RSAREF2
exploit. BUGTRAQ Mailing list (bug-
traq@securityfocus.com), December 14 1999.
Message-ID: 0 3856C3EF.230F0AE@core-
sdi.com P .

[3] Axent Technologies, Inc. Netprowler.
http://www.axent.com, 2000.

[4] M. J. Bach. The Design of the UNIX Operat-
ing System. Prentice-Hall, Englewood Cliffs, NJ,
1986.

[5] Brian Bershad, Stefan Savage, Przemyslaw
Pardyak, Emin Gun Sirer, David Becker, Marc
Fiuczynski, Craig Chambers, and Susan Eggers.
Extensibility, safety and performance in the spin
operating system. In Proceedings of the 15th
ACM Symposium on Operating System Principles
(SOSP-15), pages 267–284, Copper Mountain,
CO, 1995.

[6] Thomas E. Bihari and Karsten Schwan. Dynamic
adaptation of real-time software. ACM Transac-
tions on Computer Systems, 9(2):143–174, May
1991.

[7] P.R. Blevins and C.V. Ramamoorthy. Aspects of
a dynamically adaptive operating system. IEEE
Transactions on Computers, 25(7):713–725, July
1976.

[8] Anita Borg, Wolfgang Blau, Wolfgang Graetsch,
Ferdinand Herrmann, and Wolfgang Oberle. Fault
tolerance under unix. ACM Transactions on Com-
puter Systems, 7(1):1–24, February 1989.

[9] Rodney A. Brooks. A robust layered control
system for a mobile robot. A.I. Memo 864,
Massachusetts Institute of Technology, September
1985.

[10] Rodney A. Brooks and Anita M. Flynn. Fast,
cheap, and out of control: a robot invasion of the
solar system. Journal of The British Interplanetary
Society, 42:478–485, 1989.

[11] A. Brown and M. Seltzer. Operating system bench-
marking in the wake of lmbench: A case study of
the performance of netbsd on the intel x86 archi-
tecture. In Proceedings of the 1997 ACM SIGMET-
RICS Conference on Measurement and Modeling
of Computer Systems, Seattle, WA, June 1997.

[12] Cisco Systems, Inc. Cisco secure intrusion
detection system. http://www.cisco.com/warp
/public/cc/cisco/mkt/security/nranger/tech
/ntran tc.htm, 1999.

[13] Sendmail Consortium. sendmail.org.
http://www.sendmail.org/, 2000.

[14] Transmeta Corporation. Crusoe processor:
Longrun technology. http://www.transmeta.com
/crusoe/lowpower/longrun.html, January 2000.

[15] Michael D. Ernst, Adam Czeisler, William G. Gris-
wold, , and David Notkin. Quickly detecting rel-
evant program invariants. In Proceedings of the
22nd International Conference on Software Engi-
neering (ICSE 2000), Limerick, Ireland, June 7–9
2000.

[16] S. Forrest, S. Hofmeyr, A. Somayaji, and
T. Longstaff. A sense of self for unix processes.
In Proceedings of the 1996 IEEE Symposium on
Computer Security and Privacy. IEEE Press, 1996.

[17] L. T. Heberlein, G. V. Dias, K. N. Levitt,
B. Mukherjee, J. Wood, and D. Wolber. A net-
work security monitor. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE Press,
1990.

[18] G.J. Henry. The fair share scheduler. Bell Sys-
tems Technical Journal, 63(8):1845–1857, October
1984.

[19] M. A. Hiltunen and R. D. Schlichting. Adaptive
distributed and fault-tolerant systems. Computer
Systems Science and Engineering, 11(5):275–285,
September 1996.

[20] S. Hofmeyr, A. Somayaji, and S. Forrest. Intrusion
detection using sequences of system calls. Journal
of Computer Security, 6:151–180, 1998.

[21] Steven A. Hofmeyr. An Immunological Model of
Distributed Detection and its Application to Com-
puter Security. PhD thesis, University of New
Mexico, 1999.

[22] Internet Security Systems, Inc. RealSecure 3.0.
http://www.iss.net, 1999.

[23] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Héctor M. Briceño, Russell Hunt, David
Mazières, Thomas Pinckney, Robert Grimm, John
Jannotti, and Kenneth Mackenzie. Application per-
formance and flexibility on exokernel systems. In
Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles (SOSP ’97), pages 52–65,
Saint-Malô, France, October 1997.

[24] J. Kay and P. Lauder. A fair share scheduler.
Communications of the ACM, 31(1):44–55, Jan-
uary 1988.

[25] D.M. Ogle, K. Schwan, and R. Snodgrass.
Application-dependent dynamic monitoring of dis-
tributed and parallel systems. IEEE Transactions
on Parallel and Distributed Systems, 4(7):762–
778, July 1993.

[26] Erin O’Neill. Personal Communication, October
1998.

[27] P. Porras and P. G. Neumann. EMERALD: Event
monitoring enabling responses to anomalous live
disturbances. In Proceedings National Information
Systems Security Conference, 1997.

[28] Wojciech Purczynski. Sendmail & procmail
local root exploits on Linux kernel up to
2.2.16pre5. BUGTRAQ Mailing list (bug-
traq@securityfocus.com), June 9 2000. Message-
ID: 0 Pine.LNX.4.21.0006090852340.3475-
300000@alfa.elzabsoft.pl P .

[29] SSH Communications Security. SSH secure shell.
http://www.ssh.com/products/ssh/, 2000.

[30] R. Sekar, T. Bowen, and M. Segal. On preventing
intrusions by process behavior monitoring. In Pro-
ceedings of the Workshop on Intrusion Detection
and Network Monitoring. The USENIX Associa-
tion, April 1999.

[31] Margo Seltzer, Yasuhiro Endo, Christopher Small,
and Keith Smith. Dealing with disaster: Surviving
misbehaved kernel extensions. In Proceedings of
the 1996 Symposium on Operating System Design
and Implementation (OSDI II), 1999.

[32] Margo Seltzer and Christopher Small. Self-
monitoring and self-adapting systems. In
Proceedings of the 1997 Workshop on Hot Topics
on Operating Systems, Chatham, MA, May 1997.
http://www.eecs.harvard.edu/ � vino/vino/papers/
monitor.html.

[33] E. Shokri, H. Hecht, P. Crane, J. Dussault, and
K.H. Kim. An approach for adaptive fault-
tolerance in object-oriented open distributed sys-
tems. International Journal of Software Engineer-
ing and Knowledge Engineering, 8(3):333–346,
September 1998.

[34] A. Somayaji, S. Hofmeyr, and S. Forrest. Princi-
ples of a computer immune system. In New Secu-
rity Paradigms Workshop, New York, 1998. Asso-
ciation for Computing Machinery.

[35] SPI. Debian. http://www.debian.org/, 2000.

[36] Andrew S. Tanenbaum. Computer Networks, chap-
ter 3, pages 145–146. Prentice Hall PTR, Engle-
wood Cliffs, NJ, 2nd edition, 1989.

[37] timecop. Root kit SSH 5.0. http://www.ne.jp
/asahi/linux/timecop/, January 2000.

[38] C. Warrender, S. Forrest, and B. Pearlmutter. De-
tecting intrusions using system calls: Alternative
data models. In Proceedings of the 1999 IEEE
Symposium on Security and Privacy, pages 133–
145, Los Alamitos, CA, 1999. IEEE Computer So-
ciety.

[39] G. Weikum, C. Hasse, A. Monkeberg, and P. Zab-
back. The COMFORT automatic tuning project.
Information Systems, 19(5):381–432, July 1994.

