NoTamper: Automatic Blackbox Detection of Parameter
Tampering Opportunities in Web Applications

Prithvi Bisht

University of lllinois at Chicago
Chicago, lllinois, USA
pbisht@cs.uic.edu

Radoslaw Bobrowicz

Timothy Hinrichs
University of Chicago
Chicago, lllinois, USA
tih@uchicago.edu

Nazari Skrupsky
University of lllinois at Chicago
Chicago, lllinois, USA
nskroups@cs.uic.edu

V.N. Venkatakrishnan

University of lllinois at Chicago University of lllinois at Chicago

Chicago, lllinois, USA
rbobrowi@cs.uic.edu

ABSTRACT

Web applications rely heavily on client-side computation to exam-
ine and validate form inputs that are supplied by a user (e.g., “credit
card expiration date must be valid”). This is typically done for
two reasons: to reduce burden on the server and to avoid latencies
in communicating with the server. However, when a server fails
to replicate the validation performed on the client, it is potentially
vulnerable to attack. In this paper, we present a novel approach for
automatically detecting potential server-side vulnerabilities of this
kind in existing (legacy) web applications through blackbox anal-
ysis. We discuss the design and implementation of NOTAMPER, a
tool that realizes this approach. NOTAMPER has been employed to
discover several previously unknown vulnerabilities in a number of
open-source web applications and live web sites.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Verification; K.4.4 [Electronic
Commerce]: Security; K.6.5 [Security and Protection]: Unau-
thorized access

General Terms

Languages, Security, Verification

Keywords

Parameter Tampering, Exploit Construction, Constraint Solving,
Blackbox Testing, Symbolic Evaluation

1. INTRODUCTION

Interactive form processing is pervasive in today’s web appli-
cations. It is crucial for electronic commerce and banking sites,
which rely heavily on web forms for billing and account manage-
ment. Originally, typical form processing took place only on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’10, October 4-8, 2010, Chicago, Illinois, USA.

Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

Chicago, lllinois, USA
venkat@cs.uic.edu

server-side of a web application. Recently, however, with the facil-
ities offered by the use of JavaScript on web pages, form processing
is also being performed on the client-side of a web application. Pro-
cessing user-supplied inputs to a web form using client-side Java-
Script eliminates the latency of communicating with the server, and
therefore results in a more interactive and responsive experience for
the end user. Furthermore, client-side form processing reduces net-
work traffic and server loads.

The form processing performed by the browser mostly involves
checking user-provided inputs for errors. For instance, an elec-
tronic commerce application accepting credit card payments re-
quires the credit card expiry date to be valid (e.g., be a date in future
and be a valid month / day combination). Once the input data has
been validated, it is sent to the server as part of an HTTP request,
with inputs appearing as parameters to the request.

A server accepting such a request may be vulnerable to attack if it
assumes that the supplied parameters are valid (e.g., the credit card
has not yet expired). This assumption is indeed enforced by the
browser-side JavaScript; however, malicious users can circumvent
client-side validation by disabling JavaScript, changing the code
itself, or simply crafting an HTTP request by hand with any param-
eter values of the user’s choice. Servers with parameter tampering
vulnerabilities are open to a variety of attacks (such as enabling
unauthorized access, SQL injection, Cross-site scripting).

While there has been extensive work to address specific server-
side input validation problems such as SQL injection and Cross-site
scripting, the parameter tampering problem itself has received little
attention in the research literature despite its prevalence. SWIFT [8]]
and Ripley [24]] focus on the broader issue of ensuring data integrity
in web application development frameworks. The goal of these ap-
proaches is to realize new web applications that are effectively im-
mune to parameter tampering attacks. In contrast, the focus of this
paper is solely on detecting parameter tampering vulnerabilities in
existing web applications (or legacy applications) that are already
in deployment.

Our goal is to develop an approach and a tool that can be used
by testing professionals, website administrators or web application
developers to identify parameter tampering opportunities. Specif-
ically we aim to determine in a blackbox fashion, if a given web
site (i.e., a deployed web application) is vulnerable to parameter
tampering attacks, and produce a report of potential vulnerabilities
and the associated HTTP parameters that triggered these vulnera-
bilities. We envision this report being used in a variety of ways:
professional testers using the inputs generated by our tool to de-
velop and demonstrate concrete exploits; web application develop-

[NeNe)] Checkout

Checkout

—4 |Kitchenaid 5-Quart Mixer, Red ($399.99)

1 | All-Clad Copper Core 14-Piece Set ($1,999.95)

Total Price: 399.95

Credit Card : [IPEEEFERCIPEE LT |

7890-1234-5678-9012

Delivery Instructions

Figure 1: Running example of a shopping application

ers checking server code and developing patches as needed; and
finally, web site administrators using the report to estimate the like-
lihood that their site is vulnerable and alerting the concerned devel-
opers.

Summary of contributions.

e We develop the first systematic approach for detecting pa-
rameter tampering opportunities in web applications. We im-
plement our approach in a tool that we call NOTAMPER. Our
approach makes the following technical advances.

— Client-side JavaScript code analysis techniques special-
ized to form validation code.

— Input-generation techniques that cope with the many
challenges of black-box vulnerability analysis.

— Novel heuristics to generate and prioritize inputs that
are likely to result in vulnerabilities.

e We empirically demonstrate NOTAMPER’s use by reporting
several parameter tampering opportunities from eight open
source applications and five online web sites. Furthermore,
starting from these opportunities, we develop concrete ex-
ploits for a majority of these applications / web sites. Our ex-
ploits demonstrate serious security problems: unauthorized
monetary transactions at a bank, unauthorized discounts added
to a shopping cart, and so on.

This paper is organized as follows. In Section 2] we provide
motivation through a running example, formulate the problem pre-
cisely, and present a high-level overview of our approach. Section[3]
describes the architecture of NOTAMPER and the main technical
challenges addressed by our approach. Section] describes the al-
gorithms used by NOTAMPER. Section [5] presents our evaluation
over several real world examples and web sites. Section [f] presents
the related work, and in Section [7] we conclude.

2. HIGH LEVEL OVERVIEW

Figure[T]illustrates the client-side of a small web application that
serves as the running example throughout this paper. This exam-
ple is based on real-world scenarios. It presents the checkout form
of a shopping cart application in which a user has already selected

<script type="text/javascript">

function validateForm() {
var copies, copiesZ2;
copies = document.getElementById(’copies’);
copies2 = document.getElementById(’copies2’);
if (copies.value < 0 || copiesZ.value < 0){
alert ("Error: Need positive copies");
return false;

}

return true;

}

function validateText () {
var dir;
dir = document.getElementById(’directions’);

var textRE = /([la-zA-Z])x*/;

var bReturn = textRE.match(dir);
if (! bReturn)

alert ("Error: No special characters.");
return bReturn;

}

</script>

Figure 2: JavaScript validation for running example.
validateForm() is called when the form is submitted, and
validateText () is called when the delivery instructions
change.

two products for purchase. The form asks the user for the quan-
tity of each product, the credit-card to be charged (displayed in a
drop-down list of previously-used cards), and any special delivery
instructions. Before this data is submitted to the server, the client-
side JavaScript code (Figure [2) ensures that the quantity for each
product is non-negative, and that the delivery instructions include
no special characters. The onsubmit event handler performs this
validation and submits the data to the server if it finds them valid,
or asks the user to re-enter with an appropriate error message. The
server, however, fails to replicate these validation checks, enabling
a number of attacks.

Attack 1: Negative quantities. = We discovered the follow-
ing attack on the website of an online computer equipment retailer.
By disabling JavaScript, a malicious user can bypass the valida-
tion check on the quantity of each product (parameters copies and
copies2) and submit a negative number for one or both products.
It is possible that submitting a negative number for both products
would result in the user’s account being credited; however, that at-
tack will likely be thwarted because of differences in credit card
transactions on the server involving debit and credit. However, if a
negative quantity is submitted for one product and a positive quan-
tity is submitted for the other product so that the resulting total is
positive, the negative quantity acts as a rebate on the total price. In
the figure, the quantities chosen were -4 and 1 respectively, result-
ing in a ‘discount’ of $1600.

Attack 2: Charging another user’s account. We discovered
a similar exploit at a financial institution and were able to trans-
fer funds between arbitrary accounts. When the form is created,
a drop-down list is populated with the user’s credit card account
numbers (parameter payment). By submitting an account number
not in this list, a malicious user can purchase products and charge
someone else’s account.

Attack 3: Pattern validation bypass. This attack enabled us
to perform a Cross-site Scripting attack and escalate to admin priv-
ileges. The web form ensures that the delivery instructions (param-

eter directions) contain only uppercase and lowercase letters.
In particular, special characters and punctuation are disallowed to
prevent command injection attacks on the server. By circumvent-
ing these checks, a malicious user can launch attacks such as XSS
or SQL injection.

2.1 Problem Description

In a form submission, the client side of a web application solic-
its n string inputs from the user and sends them to the server for
processing. Formally, each string input is a finite sequence of char-
acters from some alphabet ¥. We will denote an n-tuple of such
inputs as I, and the set of all such [as Z.

IT=Y"xY¥" x---xX"

Conceptually, both the client and the server perform two tasks:
checking that user-supplied inputs satisfy certain constraints, and
either communicating errors to the user or processing those inputs.
For the problem at hand, we ignore the second task on both the
client and server and focus entirely on the constraint-checking task.
Formally, constraint-checking code can be formulated as a func-
tion Z — {true, false}, where false indicates an error. We use
Pelient to denote the constraint-checking function on the client and
Pserver to denote the constraint-checking function on the server.

Problem formulation. Our approach is based on the observa-
tion that for many typical form processing web applications there
is a specific relationship between pserver and perient: that Pserver
is more restrictive than pciien:. Because the server often has access
to more information than the client, pscrver SOmetimes rejects in-
puts accepted by peiient. For example, when registering a new user
for a website, the server will guarantee that the user ID is unique,
but the client will not. In contrast, if pserver accepts an input, then
we expect perient to accept it as well; otherwise, the client would
be hiding server-side functionality from legitimate users. Thus, we
expect that for all inputs

Dserver (1) = true = peiient(I) = true. (1)

The server-side constraint checking is inadequate for those in-
puts I when the negation of this implication holds:

Dserver (1) = true A perient(I) = false.)

We call each input satisfying) a potential parameter tampering
attack vector.

In practice, parameter tampering attack vectors sometimes arise
because the developer simply fails to realize that the client checks
should be replicated on the server. But even if the developer at-
tempts to replicate the client checks on the server, the server and
client are usually written in different languages, requiring the client
and server checks to be implemented and maintained independently
of one another. Over a period of time, the validation checks in these
two code bases could become out of sync, opening the door for pa-
rameter tampering attacks.

2.2 Approach overview

Our goal is to automatically construct inputs that exercise pa-
rameter tampering vulnerabilities using a black-box analysis of the
server. The benefit of black-box server analysis is that our approach
is agnostic about the server’s implementation (e.g., PHP, JSP, ASP)
and is therefore broadly applicable, even including antiquated and
proprietary server technology. The drawback of black-box server
analysis is that we may not have sufficient information to eliminate
false positives and false negatives. In particular, we may not be able
to reasonably generate all of the inputs the server should be tested

on, and even for those inputs that we do generate, there is no reli-
able way to know if the server accepts them. Our goal is therefore
to identify opportunities for parameter tampering while requiring
as little manual guidance as possible. In particular, we ask two
things of human developers / testers: to provide hints about vital
information not present on the client and to check whether or not
the parameter tampering opportunities we identify are true vulner-
abilities (perhaps by generating actual exploits).

Our high level approach is as follows: On the client, whose
source is in HTML and JavaScript, we extract fciien:: a logical
representation of peiient using techniques from program analysis.
Subsequently, using logical tools, we generate inputs hi,...,h,
such that fejient(hs) = false for each i. We call each such in-
put hostile because it is designed to illustrate a possible parameter
tampering attack. In addition, we also generate inputs b1,...,bm
such that feiient(b;) = true for each j. We call each such input
benign because it is an input the server will process normally. In
our approach, we take hints from developers to confirm that these
generated inputs were indeed processed normally.

The benign inputs help assess which hostile inputs represent ac-
tual opportunities. We submit each hostile and benign input to the
server, producing responses Hi,..., H,, and Bi,..., By,, respec-
tively. We then compare each hostile response H; to the benign
responses Bi,..., By, to produce a score that represents the like-
lihood that the server accepted h;. Intuitively, each of the benign
responses represent success messages from the server, and the more
similar a hostile response is to the benign responses, the more likely
the hostile input was successful and therefore a parameter tamper-
ing opportunity.

Finally, the hostile inputs and responses are presented to the hu-
man tester ranked by similarity to benign responses. The tester is
then free to verify hostile inputs as bona fide parameter tamper-
ing vulnerabilities and explore the severity of each vulnerability by
sending modified hostile inputs to the server.

Discussion. While we believe observation (I)) holds for many
interactive form processing applications, sometimes it does not,
e.g., when the server is a generic web service (such as Google
maps), and the client is an application using a portion of that ser-
vice (such as a map of Illinois). While this falls outside our in-
tended scope, NOTAMPER can be used in such settings by replac-
ing the automatic extraction of fcj;en+ from HTML/JavaScript with
a manually constructed fci;ent. The construction of benign/hostile
inputs and their evaluation then proceeds as described above. In
other words, NOTAMPER treats fci;ent, however it is generated, as
an approximate specification for the intended behavior of the server
and then attempts to find inputs that fail to satisfy that specification.
NOTAMPER can therefore be viewed as a formal verification tool
with a program analysis front-end for extracting a specification of
intended behavior.

Finally, due to the inherent limitations of black-box analysis, our
approach cannot offer guarantees of completeness; rather, we jus-
tify the utility of our approach by the severity of the real vulnera-
bilities we have discovered.

3. ARCHITECTURE & CHALLENGES

In this section, we discuss the architecture of NOTAMPER and
the high level challenges addressed by each of its components. In
Section @] we discuss our implementation, focusing on our con-
straint language and algorithms.

Figure3]shows the high-level architecture: the three components
comprising NOTAMPER and how they interact. First, given a web
page, the HTML / JavaScript Analyzer constructs logical formu-
las representing the constraint-checking function for each form on

| Hostile

| Input

Web ! NoTamper .
1
HTML - 1
page | / Logic Input
1

Generator | hy,..,

JavaScript

» Opportunity | 'Ranking External _
Detector ! Analysis Exploits

Figure 3: NOTAMPER end-to-end architecture and application.

that web page. For our running example, the HTML / JavaScript
Analyzer constructs the following formula (fciient) that says the
parameters copies and copies2 must be greater than or equal to
0; the parameter directions must not contain special characters;
and the parameter payment must be one of the values in the drop-
down list.

copies > 0 A copies2 > 0
/\ directions € [a-zA-Z]*
payment €
(1234-5678-9012-3456 | 7890-1234-5678-9012)

The Input Generator takes the resulting formulas and any hints pro-
vided by the user and constructs two sets of inputs for the server:
(i) those the server should accept (benign inputs by, ..., by,) and
(ii) those the server should reject (hostile inputs hy,..., hy,). In our
example, the Input Generator constructs one benign input (variable
assignment that satisfies the above formula):

{copies — 0, copies2 — 0, directions —

payment — 1234-5678-9012-3456}.

The Input Generator also constructs a number of hostile inputs
(variable assignments that falsify the formula above). Below are
two such inputs that are the same as above except in (1) copies is
less than 0 and in (2) directions contains special characters.

1.{copies — —1, copies2 — 0, directions — “”,

payment — 1234-5678-9012-3456}
2.{copies — 0, copies2 — 0, directions — “; x& Q"
payment — 1234-5678-9012-3456}

The third component, the Opportunity Detector takes the hostile
and benign inputs, generates server responses for each one, ranks
the hostile inputs by how likely they are parameter tampering op-
portunities, and presents the results to an external tester for further
analysis.

Below we discuss the challenges each of the three components
addresses in more detail.

3.1 HTML/JavaScript Analyzer

Web page initialization. The JavaScript analysis of NOTAM-
PER specifically focuses on features / properties that concern form
validation and submission. In order to analyze the JavaScript code
pertaining to form processing, NOTAMPER simulates an environ-
ment similar to a JavaScript interpreter in a browser, including the
Document Object Model (DOM). In such an environment, user in-
teractions cause JavaScript code to be executed, resulting in changes
to the JavaScript environment and the DOM. (User interactions
may trigger asynchronous server requests via AJAX, but our im-
plementation currently does not support AJAX).

To analyze the JavaScript code that actually performs validation,
it is often important to understand the global JavaScript state as
it exists when the browser first loads the form. To compute this
global state, NOTAMPER executes all the initialization code for the

web form concretely. It downloads external JavaScript, executes
inlined JavaScript snippets, and keeps track of changes to global
variables.

Identifying JavaScript validation code. To construct feiient,
the HTML/JavaScript Analyzer must identify the code snippets rel-
evant to parameter validation and understand how those snippets
interact. This can be difficult because validation routines can be
run in two different ways: (1) when a form is submitted and (2)
in event handlers each time the user enters or changes data on the
form.

A state machine naturally models the event-driven execution of
JavaScript. Each state represents the data the user has entered and
flags indicating which data contains an error. As the user supplies
or edits data, JavaScript code validates the data and updates the er-
ror flags accordingly, resulting in a state transition. The constraints
imposed by the client on some particular data set could in theory
be dependent on the path the user took through the state machine
to enter that data, and hence the formula f.;cn: could depend upon
the structure of that state machine.

NOTAMPER addresses this challenge by analyzing the JavaScript
event handlers as if they were all executed when the form was sub-
mitted. The benefit of doing so is computational: it obviates the
need to manually simulate events or consider the order in which
events occur. But it also reflects a reasonable assumption users of-
ten make about data entry—that the order in which data was entered
does not affect the validity of that data. For those cases where the
order of data entry matters, our analysis may be overly restrictive,
e.g., considering all event handlers may simulate the occurrence of
mutually exclusive events.

Analyzing JavaScript validation code. Once the validation
routines contributing to feient are identified, they must be ana-
lyzed. Such code may span several functions each of which may
consist of multiple control paths. Each such control path may en-
force a unique set of constraints on inputs, requiring an all-path
inter-procedural analysis. Further, JavaScript may enforce con-
straints that are not dependent on user inputs e.g., disallow repeated
submissions of a form through a global variable. The challenge is
to extract only the constraints imposed on inputs by a given piece
of JavaScript validation code.

NOTAMPER addresses this challenge by employing a mixed
concrete-symbolic execution approach [9]] to analyze JavaScript and
identify the constraints enforced on user supplied data. Symbolic
execution provides coverage of all control paths in the validation
code and simulates validation of user supplied data. Concrete exe-
cution enables NOTAMPER to ignore code snippets not dependent
on symbolic inputs and to provide a suitably initialized environ-
ment for symbolic execution.

Resolving document object model (DOM) references. Java-
Script validation routines typically use the DOM to access the form
input controls. In our simulation of the JavaScript environment,
associating DOM references in JavaScript to HTML input con-

trols is non-trivial but necessary for constructing fejient. Further,
the DOM may be dynamically modified by JavaScript by adding
/ deleting additional input controls or disabling / enabling existing
input controls.

NOTAMPER addresses this challenge by constructing the perti-
nent portion of the DOM from the given HTML in such a way that
it is available to the JavaScript concrete - symbolic evaluation en-
gine during execution. Additionally, this DOM is maintained dur-
ing the JavaScript evaluation by simulating DOM functions that are
used to modify the DOM structure.

3.2 Input Generator

The logical formulas given to the Input Generator are written in
the language of string constraints (described in Section[d). The In-
put Generator encompasses two independent tasks: (i) constructing
new logical formulas whose solutions correspond to hostile and be-
nign inputs and (ii) solving those formulas to build concrete inputs.
Here we focus on the first task, leaving the second to Section[d]

Avoiding spurious rejections. Two superficial but common
forms of server-side parameter validation hide server vulnerabili-
ties from a naive analysis: checking that all “required” variables
have values and checking that all variables have values of the right
type. Without accounting for such simple parameter validation,
NOTAMPER would have discovered only a few parameter tamper-
ing opportunities.

To address this challenge, the Input Generator constructs hostile
and benign inputs where all required variables have values and all
values are of the right type. NOTAMPER employs heuristics (Sec-
tion El]), which can be manually overridden, to compute the list of
required variables and variable types.

Generating orthogonal hostile inputs. Each hostile input
would ideally probe for a unique weakness on the server. Two hos-
tile inputs rejected by the server for the same reason (by the same
code path on the server) are redundant. In our running example, the
client requires one variable (copies) to be greater than or equal to
zero and another variable (directions) to be assigned a value that
contains no punctuation. To avoid redundancy, NOTAMPER should
generate one hostile input where copies violates the constraints (is
less than zero) but directions satisfies the constraints (contains
no punctuation), and another input where copies satisfies the con-
straints but directions does not.

To generate such orthogonal inputs, the Input Generator converts
felient to disjunctive normal form (DNF)[T_] and constructs a hostile
input for each disjunct. Generally, each disjunct represents inputs
that violate fejien+ for a different reason than the other disjuncts.

Coping with incomplete information. Sometimes the formula
felient fails to contain sufficient information to generate a true be-
nign input or a hostile input that exposes a real vulnerability, yet a
human tester is willing to provide that information. For example,
many web forms only accept inputs that include a valid login ID
and password, but the client-side code does not itself provide a list
of valid IDs and passwords; in this case, feiient does not contain
sufficient information for generating inputs that will be accepted by
the server.

To address this issue, the Input Generator accepts hints that guide
the search for hostile and benign inputs. Those hints take the form
of logical constraints (in the same language as fci;ent) and are de-
noted o. For example, to force the login variable user to the value
“alice" and the password variable pass to the value “alicepwd", the

"In our experience DNF conversion was inexpensive (despite its
worst-case exponential character) because of feiient’s structural
simplicity.

user would supply the logical statement user = “alice” Apass =
“alicepwd”.

Addressing state changes. Web applications often store infor-
mation at the server, and web form submissions change that state.
This can cause the set of valid inputs to change over time. For ex-
ample, a user registration web form will ask for a login ID that has
not already been chosen. Submitting the form twice with the same
login ID will result in a rejection on the second attempt. This is
problematic because NOTAMPER submits many different inputs to
check for different classes of potential vulnerabilities, yet the login
ID is both required and must be unique across inputs.

To address this issue, the Input Generator takes as an optional
argument a list of variables required to have unique values and en-
sures that the values assigned to those variables are distinct across
submissions. In our evaluation, generating inputs where certain
variables all have unique values has been sufficient to address server-
side state changes, though in general more sophisticated graybox
mechanisms will be necessary (e.g., the ability to roll-back the
server-side databases between test cases).

Summary. In total, the Input Generator expects the follow-
ing arguments (1) the formula logical feiient (representing the set
of inputs accepted by the client), (2) a list of required variables,
(3) types for variables, (4) a manually supplied set of constraints
(hints), and (5) a list of unique variables ((4) and (5) are optional).
It generates hostile inputs (a set of I such that feisent (1) = false)
and benign inputs (a set of I such that fei;ent(I) = true) such that
all required variables have values, all values are of the right type,
all manual constraints are satisfied, and each unique variable has a
different value across all inputs. All arguments to the Input Gener-
ator are computed by the HTML/JavaScript Analyzer (as described
in Section[d).

3.3 Opportunity Detector

The Input Generator produces a set of hostile inputs h1,..., hp
and a set of benign inputs b1, ..., by,. The goal of the opportunity
detector is to determine which hostile inputs are actually parameter
tampering opportunities. The main challenge is that NOTAMPER
must ascertain whether or not a given hostile input is accepted by
the server while treating the server as a black box.

NOTAMPER addresses this challenge by ordering hostile inputs
by how structurally similar their server responses are to the server
responses of benign inputs. The more similar a hostile response
is to the benign responses, the more likely the hostile input is a
parameter tampering opportunity.

In our running example, consider a hostile input where the pa-
rameter copies is assigned a negative number. If the server fails
to verify that copies is a positive number, both the hostile and
benign responses will present a confirmation screen, the only dif-
ference being the number of copies and total price. On the other
hand, if the server checks for a negative number of copies, the
hostile response will be an error page, which likely differs signifi-
cantly from the confirmation screen.

4. ALGORITHMS & IMPLEMENTATION

This section details the core algorithms employed by NOTAM-
PER. All but one of them manipulate a logical language for repre-
senting restrictions on user-data enforced by the client. Currently,
the language employed by NOTAMPER is built on arithmetic and
string constraints. It includes the usual boolean connectives: con-
junction (A), disjunction (V), and negation (—). The atomic con-
straints restrict variable lengths using <, <, >, >, =, # and vari-
able values using €, ¢ in addition to the above operators. The se-
mantics for the only non-obvious operators, € and &, express mem-

<sent> ::= <atom> | <conj> | <disj> | <neg>
<conj> 1= (<sent> A <sent>)

<disj> = (<sent> V <sent>)

<neg> ::= (—<sent>)

<atom> = (<term> <op> <term>>)
<op>i=<|<|>|>|=|#|€|¢

<term> ::= <var> | <num> | <str> | <len> | <reg>
<reg> ::=perl regexp

<len> ::= len (<var>)

<str> = “<var>"
<var> ::=?[a-zA-Z0-9]%
<num> ::= [0-9]%

Table 1: Language of formulas generated by NOTAMPER

bership constraints on regular languages. For example, the follow-
ing constraint requires x to be a non-negative integer: x € [0-9]+.
Table [T] shows a Backus-Naur Form (BNF) grammar defining the
constraint language.

Below we describe algorithms in the order they are executed
by NOTAMPER: (1) extracting client constraints from HTML and
JavaScript, (2) generating the additional inputs accepted by the In-
put Generator component, (3) constructing logical formulas whose
solutions are hostile and benign inputs, (4) solving such logical for-
mulas, and (5) identifying similarity between hostile and benign
Server responses.

4.1 Client Constraint Extraction

Extracting the constraints enforced by the client on user-supplied
data and representing them logically as fciient, is done in two steps.
First, an HTML analyzer extracts three items from a given web
page: (1) constraints on individual form fields, enforced through
HTML (2) a code snippet representing JavaScript executed on load-
ing the web page as well as JavaScript executed for parameter val-
idation performed by the client, and (3) a DOM representation of
the form. Second, our concrete / symbolic JavaScript evaluator uses
(3) during the symbolic evaluation of (2) to extract additional con-
straints that it then combines with (1). The result is the formula
f client-

Step 1: HTML analyzer.

Table [J] summarizes the constraints imposed by each HTML in-
put control through examples. In our running example, there is
a drop-down list for the payment control that includes two credit
card values. The resulting constraint requires payment to be as-
signed one of the values in that list, as shown below:

payment €
(1234-5678-9012-3456 | 7890-1234-5678-9012).

The construction of a JavaScript snippet representing the parame-
ter validation performed by the client is accomplished by collect-
ing all the event handlers (and associated scripts) and generating
a single function that invokes all those event handlers, returning
true exactly when all the event handlers return true. All the in-
lined JavaScript in the web page is then added as a preamble to
the above script to initialize environment for the form validation
JavaScript. The DOM representation for the form is constructed by
recursively building the document object in the above JavaScript
snippet i.e., the form being analyzed is initialized as a property of
the document object which captures input controls as properties.
Further, the document object simulates a small set of core methods
that were necessary for processing forms e.g., getElementById.
Currently, we do not support document.write Or document.
innerHTML and we are working towards adding support for these.

Control Example Constraints
<select name=x> xe (1]12]3)
<option value="1">

SELECT <option value="2" >
<option value="3" >

RADIO / <input type=radio name=x X € (10]20)

CHECKBOX value="10">
<input type=radio name=x
value="20">
HIDDEN <input name:f ty'Pe:hldden x =20
value="20">
<input name=x maxlength=10 len(x) < 10
maxlength type=text/password >
<input name=x readonly x =20
readonly value="20">

Table 2: Constraints imposed by HTML form controls.

Step 2: JavaScript symbolic evaluator. The key observa-
tion for extracting parameter validation constraints from a given
JavaScript snippet is that form submission only occurs if that code
returns true. In the simplest case, the code includes the state-
ment return true Or return <boolexp>, where <boolexp>
is a boolean expression. In theory, the code could return any value
that JavaScript casts to true, but in our experience the first two
cases are far more common. This observation leads to the key in-
sight for extracting constraints: determine all the program condi-
tions that lead to t rue return values from all event handler func-
tions.

To extract validation constraints, the symbolic analyzer begins
by executing the validation code concretely. When a boolean ex-
pression with symbolic variables is encountered, the execution forks:
one assuming the boolean expression is t rue and the other assum-
ing it is false. Both executions replicate the existing variable
values (program state) except for those affected by assuming the
boolean expression is true or false. Concrete execution then
resumes. Supported DOM modification APIs act on the DOM spe-
cific to a fork.

For a given program location, the program condition is the
set of conditions that must be satisfied for control to reach that
point. If a fork returns false, it is stopped and discarded. If a fork
returns t rue, it is stopped and the program conditions to reach that
point are noted. Further, the DOM representation at this point re-
flects state of the HTML input controls while submitting the form
including any modifications done by the JavaScript as well. The
constraints checked on this fork are then computed by combining
constraints of enabled controls in the DOM representation and pro-
gram conditions using a conjunction (A).

Once all forks have been stopped, feiient is computed by com-
bining formulas for each path that returned t rue with disjunction
(V).

For the running example one control path succeeds in returning
true, resulting in the following formula.

—(copies < 0V copies2 < 0))
directions € [a-zA-Z] *

The above is then combined with constraint on variable payment
mentioned before to generate feiient-

4.2 Hostile Input Guidance

NOTAMPER’s overall success depends crucially on generating
interesting hostile inputs. Below we discuss the heuristics the HTML
/ JavaScript component uses to compute these values from a given
web page. These heuristics were tested and refined by manually

examining two of our test applications (SMF and LegalCase) but
were left unchanged for the remainder of our experiments.

Initial values. While generating feiient, NOTAMPER uses
a heuristic to determine the intentions of default values for form
fields. Some form fields are initialized with values that are simply
illustrative of the kind of input expected, e.g., the value 1 for the
number of product copies. Other form fields are initialized with a
value that cannot be changed if submission is to be successful, e.g.,
a hidden field initialized to a session identifier. Currently, NOTAM-
PER uses the default value for a hidden field as a constraint included
in feciient and considers the default value for all other fields as illus-
trative of the expected value. In either case, the list of initial values
is provided to the input generator and used for other heuristics as
described below.

Types. The type for each variable controls the set of possible
values occurring in both the hostile and benign inputs. Choosing
appropriate types can greatly improve the odds of success. In our
running example, if the type of copies were the positive integers,
the input generator would never find the vulnerability that appears
when copies is less than zero. Similarly, if the type of copies
were all strings, the likelihood that the generator randomly chooses
a string that represents a negative integer is unlikely. Currently,
NOTAMPER chooses a type for each variable based on (i) its occur-
rence in arithmetic constraints, (ii) the HTML widget associated
with that variable, and (iii) its initial value. Occurrence in an arith-
metic constraint implies a numeric type. An HTML widget that
enumerates a set of possible values implies a value drawn from the
set of all characters in the enumerated values. An initial value that
is numeric also implies a numeric type. Integers are assumed unless
there is evidence that real values are required.

Required variables. The list of required variables ensures that
every hostile input includes a value for every variable in the list.
Choosing too small a list risks hostile inputs being rejected because
they did not pass the server’s requirements for required values, and
choosing too large a list can cause the server to reject hostile inputs
because unnecessary variables are given invalid values. NOTAM-
PER employs two techniques for estimating the required variables.
One is analyzing the HTML for indications that a variable is re-
quired, e.g., asterisks next to field labels. The other is extracting
the variables from fe;en: that are required to be non-empty, e.g.,
the variable cannot be the empty string or the variable must be as-
signed one of several values (from a drop-down list).

Unique variables. When a variable appears in the unique vari-
able list, every pair of hostile inputs differs on that variable’s value.
This is useful, for example, when testing user registration pages,
where submitting the same user ID twice will result in rejection be-
cause the ID already exists. Choosing too large a list, however, can
result in fewer hostile inputs being generated and therefore fewer
vulnerabilities being found. For example, if a field can only take on
one of three values and is required to be unique across all hostile in-
puts, at most three inputs will be generated. Currently, NOTAMPER
is conservative in the variables it guesses should be unique. If there
is any indication that a variable can only take on a small number of
values, it is not included in the unique list.

4.3 Input Generation

The Input Generator constructs a series of formulas in the con-
straint language whose solutions correspond to hostile and benign
inputs. Here we detail how the construction of formulas for benign
and hostile inputs differ.

Benign inputs. To generate benign inputs satisfying feiient,
NOTAMPER converts feiient t0 DNF ! , augments each disjunct

len(<var>) = len(<var>)
<var> # <var>

<var> # len(<var>)
len(<var>) # len(<var>)

<var> ® <var>

<var> @ len(<var>)
len(<var>) ® len(<var>)
<var> @ <reg>

Table 3: The reduced constraint language: A and V over the
above atoms. ® is one of <, >, <, >. @ is either € or ¢.

with the user-provided constraints ¢ and required-variable and type
constraints, and finds one solution per disjunct.
In the running example, suppose feiient is the formula

(copies > 0V copies = 0) A (directions € [a-zA-2]+).

NOTAMPER finds one solution for copies > 0 A directions &€
[a-zA-7] » and another for copies = OAdirections € [a-zA-7] *.
If the type of copies is [0-9]+ and the type of directions is
[a-zA-70-9] +, NOTAMPER includes the constraints copites &
[0-9]+ and directions € [a-zA-20-9] . If the variable name
is required and has type [a-zA-2Z] », NOTAMPER includes the con-
straint name € [a-zA-Z]+. If o is nonempty, NOTAMPER in-
cludes it as well.

Satisfying the unique variable constraint is accomplished by keep-
ing track of the values assigned to each variable for each generated
input and adding constraints that ensure the next value generated
for each unique variable is distinct from those previously gener-
ated.

Hostile inputs. To generate hostile inputs, NOTAMPER starts
with = ferient instead of feiient and then proceeds as for the benign
case with one exception: filling in values for required variables.
Consider any disjunct ¢ in the DNF of = fcjiene. If all the required
variables occur within §, NOTAMPER simply finds a variable as-
signment satisfying J and returns the result; otherwise, NOTAMPER
augments that assignment with values for the required variables not
appearing in §. To do so, it finds values that satisfy fciient. The
hope is that if the server rejects the input it is because of the vari-
ables appearing in §, not the remaining variables; otherwise, it is
unclear whether or not the server performs sufficient validation to
avoid the potential vulnerability d.

In the example above, the disjunctive normal form of — fciient
produces a formula with two disjuncts.

\/ —(copies > 0) A =(copies = 0)
—(directions € [a-zA-Z] x)

Suppose that both copies and directions are required. The first
disjunct does not include directions, and the second does not in-
clude copies. After solving the first disjunct with, for example,
copies = —1, NOTAMPER assigns directions a value that satis-
fies the original formula, i.e., that satisfies directions € [a-zA-2] .
Likewise, after solving the second disjunct producing a value for
directions, NOTAMPER assigns copies a value that satisfies the
original formula, e.g., copies = 1.

4.4 Constraint Solving

To solve formulas in the constraint language, NOTAMPER uses
a custom-written constraint solver built on top of HAMPI [13], a
solver that handles a conjunction of regular language constraints on
a single variable of a fixed length. Our formula involves multiple
variables, and therefore we developed our own procedure that uses
HAMPI as described below.

NOTAMPER handles disjunction by converting a given formula
to DNF ! and solving each disjunct independently. For a given

Algorithm 1 SOLVE(vars, ¢, asgn, BOUNDS)

1: if vars = () then return asgn

2: values := ()

3: var := CHOOSE(vars, ¢, asgn, BOUNDS)

4: for all i in LOW(BOUNDS(var)) .. HIGH(BOUNDS(var)) do

5: if NUMERIC-VAR(var) then

6: if SAT(¢, asgn U {var — i}) then

7: newasgn := SOLVE(vars—{var}, ¢, asgn U {var— i},

BOUNDS)

8: if newasgn # unsat then return newasgn

9: else

10: if not SAT(¢A len (var) =i, asgn) then goto next i

11: loop

12: val := HAMPI(|var A var ¢ values, i)

13: if val = unsat then goto next i

14: values := values U {val}

15: if SAT(¢, asgn U {var — val}) then

16: newasgn := SOLVE(vars—{var}, ¢, asgn U
{var—val}, BOUNDS)

17: if newasgn # unsat then return newasgn

18: return unsat

disjunct (which is a conjunction), NOTAMPER performs type in-
ference to determine which variables are numeric and which are
strings, extracts bounds on the size of all variables, and simplifies
the disjunct to produce a conjunction of atoms from Table[3] Then
applies Algorithm [T]to search for a variable assignment satisfying
the resulting conjunction.

Algorithm [T] takes as input a list of variables that require val-
ues, a logical formula, a partial variable assignment, and a function
that maps each variable to that variable’s bounds. It either returns
unsat (denoting that no satisfiable assignment is possible) or an
extension of the given variable assignment that satisfies the logical
formula.

The first step of the algorithm is choosing a variable to assign.
Currently, NOTAMPER chooses the variable with the smallest range
of possible lengths. Then search commences. String variables and
numeric variables are treated differently. For numeric variables,
NOTAMPER loops over possible values and for each one checks
that assigning the variable the current loop value satisfies the con-
straints. If satisfaction holds, the variable is assigned the loop
value.

For strings, NOTAMPER loops over possible lengths (as opposed
to possible values), and for each one satisfying the length con-
straints invokes HAMPI to generate a variable assignment. HAMPI
takes as input a logical formula with one variable and a length for
that variable. It either returns unsat or a value satisfying the for-
mula. Reducing the given formula ¢ with multiple-variables to
a formula with just the chosen variable, denoted ¢|yqr, is per-
formed by selecting the subset of constraints where only the chosen
variable occurs. If HAMPI finds a satisfying value, the algorithm
checks that the value satisfies the relevant constraints HAMPI does
not check: those constraining multiple variables. Additionally, the
algorithm keeps a list of values HAMPI returns so that if the search
fails at a later point in the search, and another value needs to be gen-
erated for the current variable, we can augment the logical formula
given to HAMPI to require a value not already chosen.

Once a variable has been assigned a value, Algorithm [T]recurses
on the original variable list after having removed the chosen vari-
able, the original logical formula, the original variable assignments
augmented with the chosen variable’s assignment, and the origi-
nal variable bounds. When the variable list becomes empty, the

algorithm returns the given variable assignment, indicating that all
constraints are satisfied by that assignment. If no such assignment
can be found, the algorithm returns unsat.

4.5 HTML Response Comparison

In order to determine whether hostile inputs were accepted by
the server, our approach compares the server’s response against a
response that is known to have been generated by benign (valid)
inputs. Since the server’s responses are in HTML, we have to em-
ploy HTML similarity detection. There are many similarity detec-
tion algorithms for HTML responses in the literature, the most no-
table being algorithms for computing tree edit distance (ref. [5]).
These are especially useful in case of documents derived from a
variety of sources that may contain similar content (e.g., news arti-
cles from various newspapers). In our case, since the HTML doc-
uments are produced by a single web application, it is very likely
that these responses are structurally more aligned than documents
from different sources, and therefore we use a home-brewed doc-
ument comparison strategy based on the Ratcliff and Obsershelp
algorithm [16] on approximate string matching.

Approximate matching. An important issue to be addressed
in response comparison is that the contents of a HTML response
will frequently include a number of variable elements that are not
dependent on the server inputs, e.g., time stamps, user names, num-
ber of people logged in. A large number of such elements introduce
differences in benign responses, even when the inputs are identical;
therefore, we resort to an approximate matching strategy that filters
out such noise from benign responses before comparing to hostile
responses.

Suppose we have just two benign responses B and Bs. Analyz-
ing these responses and extracting their differences will often iso-
late the noisy elements in the page. These noisy elements can then
be removed. For this purpose, we developed a utility that analyzes
these two responses and returns the following: (1) the common se-
quences in B; and B> (2) content in B that is not in Bs, and (3)
content in B> that is not in B;. Elements (2) and (3) comprise the
noise, and once eliminated from B; and B> respectively, we arrive
at the same HTML document C';.

To analyze hostile response h;, we repeat the noise elimination
procedure, only this time with files B; and H;. The resulting
HTML, C', produces two possibilities, depending on whether the
input h; was accepted or not. If the input was accepted, based on
our observation above, the server response H; is likely to be sim-
ilar (modulo noise) to Bi, and therefore the result Cs is likely to
be structurally the same as C'. In case the input was rejected, the
server returns a response that is likely to be structurally dissimilar,
and therefore C will be less similar to C;.

The final step is the comparison between C1 and C». Again, a
naive comparison will not work because of the possibility that not
all noise causing elements were removed during the earlier step.
For example, page generation times are often embedded in the page
itself, if the times were the same for By and B>, but different for
H,, then C and C'; will not be strictly structurally the same. In-
stead, we again use our approximate matching strategy on C and
(5 as inputs. Only this time, we compute the edit distance between
the two structures, resulting in a numeric value (that we call differ-
ence rank) for each hostile input. The higher the rank for a given
hostile input, the less likely it is that the input points to a potential
vulnerability.

Complexity. Our comparison strategy for HTML files is based
on the gestalt pattern matching procedure [[16]], which itself finds
the longest common subsequence between HTML files, and then
recursively finds the common elements to the left and right of the

Application | Fo- | Hostile Pote. Conf. | Conf.
rms | Inputs | Oppo. | Exploit? FP

SMF 5 56 42 v 8

Ezybiz 3 37 35 v 16

OpenDB 1 10 8 v 1
MyBloggie 1 8 8 v 7
B2evolution 1 25 21 2
PhpNuke 1 6 5 v 4
OpenIT 3 28 27 v 0
LegalCase 2 13 9 v 0
smi-online.co.uk 1 23 4 2
wiley.com 1 15 4 2
garena.com 1 4 4 1
selfreliance.com 1 5 1 v 0
codemicro.com 1 6 1 v 0

Table 4: Summary of NOTAMPER results (Opportunities:169,
Examined: 50, Confirmed exploits: 9, False Positives:43).

common sequence. Our procedure has linear complexity in its best
case and has quadratic worst-case complexity.

4.6 Implementation

The HTML analysis was implemented on top of the APIs pro-
vided by the HTML Parselﬂ specifically using visitors for <form>
and <script> tags. The JavaScript analysis was performed using
a modified Narcissus JavaScript engine-based symbolic evaluator.
Narcissus is a meta-circular JavaScript interpreter that uses Spider-
Monkey JavaScript engine’s interfaces.

The Input Generator was built as a wrapper around the solver
HAMPI|[13] using the subroutine library Epiloéﬂ for manipulating
logical expressions written in KIlﬂ It consisted of 1700 lines of
Lisp code.

The Opportunity Detector was primarily implemented in Java.
Based on inputs generated by the constraint solver, a Java-based
module relayed HTTP requests to the test server, saved the re-
sponses for processing, and implemented algorithm to compute the
difference rank.

S. EVALUATION

Test suite and setup. We selected 8 open source applications
and 5 live websites. To choose the open source applications, we vis-
ited http://opensourcescripts.conl and found applica-
tions that are heavily reliant on web forms (mainly blogs, business
and management applications) and do not use AJAX. To choose the
live websites, we selected forms we used personally that seemed
likely to contain flaws (e.g., one of the authors has an account at
the exploited bank). Table 3] provides some background details for
these applications. For open source applications, columns 2 and 3
show the lines of code and number of files, respectively. Column
4 shows the type of constraints enforced by the evaluated forms
and the last column shows the functionality provided by the ap-
plication. We deployed the applications on a Linux Apache web
server (2.8GHz Dual Intel Xeon, 6.0GB RAM) and our prototype
implementation NOTAMPER ran under Ubuntu 9.10 on a standard
desktop (2.45Ghz Quad Intel, 2.0GB RAM).

Zhttp://htmlparser.sourceforge.net/
3http://logic.stanford.edu/
*http://www-ksl.stanford.edu/knowledge-sharing/kif/

Application Lines | Files Client- Use
of Code Side
Ezybiz | 186,691 | 1,103 | HTML+JS | Busn Mgt
Mybloggie 9,431 59 | HTML+JS | Blog
OpenDB 92,712 273 | HTML+JS | Inventory
SMF 97,304 166 | HTML+JS | Forum
OpenlT | 114,959 335 | HTML+JS | Support
Legalcase 58,198 195 HTML Inventory
PHP-Nuke | 228,058 | 1,745 | HTML+JS | Content Mgt
B2evolution | 167,087 531 HTML Blog
smi-online.co.uk HTML Conference
wiley.com HTML+JS | Library
garena.com HTML Gaming
selfreliance.com HTML Banking
codemicro.com HTML+JS | Shopping

Table 5: NOTAMPER analyzed 8 open source applications and 5
live websites

5.1 Summary

Our experimental findings are summarized in Table d] For each
application (column 1), the table includes the number of forms an-
alyzed (column 2), the number of hostile inputs NOTAMPER gen-
erated (column 3), the number of tampering opportunities (column
4), and whether or not we were able to confirm a vulnerability for
that application (column 5). The last column lists the number of
confirmed false positives.

When deployed by a web developer to analyze a web applica-
tion, column 4 is of primary interest. A developer need only look
through those hostile inputs that were accepted by the server, and
for each one manually decide whether or not the server is actually
vulnerable. When deployed by testers (blackhat team), they may
confirm exploits by further experimenting with the accepted hostile
inputs. In a similar spirit, we tried to confirm at least one exploit
in each application. The effort involved to examine 50 of the to-
tal 169 opportunities was moderate and required an undergraduate
student only a week of effort. We anticipate seasoned developers
and testers familiar with their applications to take much less time.
During this effort, we developed working exploits in 9 out of 13 ap-
plications. Below we highlight some of the exploits we discovered.

5.2 Details of Exploits

Unauthorized money transfers. The online banking website
www.selfreliance.com allows customers to transfer money be-
tween their accounts online. A customer logs onto the web site,
specifies the amount of money to transfer, uses a drop-down menu
to choose the source account for the transfer, and uses another drop-
down menu to choose the destination account. Both drop-down
menus include all of the user’s account numbers.

It turns out that the server for this application did not validate
that the account numbers provided were drawn from the drop-down
menus. Thus, sending the server a request to transfer money be-
tween two arbitrary accounts succeeded, even if the user logged
into the system was an owner of neither account.

When NOTAMPER analyzed this form, it generated a hostile in-
put where one of the account numbers was a single zero. The server
response was virtually the same as the response to the benign in-
puts (where the account numbers were drawn from the drop-down
menus). Therefore, this input was ranked highly by NOTAMPER as
a potential vulnerability. When we attempted to confirm the vul-
nerability, we were able to transfer $1 between two accounts of
unrelated individuals. (Note that if the server had checked for valid
account numbers but failed to ensure the user owned the chosen ac-
counts, NOTAMPER would not have discovered the problem; how-

http://opensourcescripts.com

Application | Formu. Pote. | HT- | JS | Hid-
Comp. | Oppo. | ML den

SMF 17 42 28 4 10

Ezybiz 28 35 19 | 11 5

OpenDB 29 8 8 0 0
MyBloggie 23 8 8 0 0
B2evolution 47 21 8 0 13
PhpNuke 6 5 4 0 1
OpenIT 20 27 21 3 3
LegalCase 13 9 3 0 6
smi-online.co.uk 36 4 2 1 1
wiley.com 20 4 4 0 0
garena.com 10 4 4 0 0
selfreliance.com 9 1 1 0 0
codemicro.com 12 1 0 1 0

Table 6: Details of NOTAMPER results.

ever, if the human tester provided valid account numbers as hints,
NOTAMPER would have identified the problem.)

We note that this vulnerability could have significant impact given
that the bank in question has over 30,000 customers. Further, a suc-
cessful exploit requires only the knowledge of victim account num-
bers, which are shared routinely when writing cheques. The bank
was contacted about this vulnerability and fixed it in less than 24
hours, during which time the functionality for transferring money
was disabled completely. Furthermore, Selfreliance had licensed
the software that contained the vulnerability from ESP Solutions
(www.espsolution.net), who applied a global patch for all their
clients that utilized this functionality and additionally fixed simi-
lar problems in their other key product FORzA that provides online
banking features.

Unlimited shopping rebates. The online shopping website
www.codemicro.com sells computer equipment, e.g., hard drives,
printers, network switches. The form in question shows the con-
tents of the shopping cart and allows a user to modify the quantities
of the selected products. The quantity fields employ JavaScript
to restrict shoppers to enter only positive numeric values.

When NOTAMPER analyzed this form, it supplied a negative
number for one of the quantity fields (and submitted through a
proxy). The resulting HTML page, while containing a different to-
tal and quantity than the benign input, was otherwise identical, and
thus NOTAMPER ranked it as a parameter tampering opportunity.

We were able to further develop this into another serious exploit:
we were able to add an item with negative quantities by disabling
JavaScript in the browser. When JavaScript was re-enabled, the
application computed the total purchase price by multiplying the
quantity of each product by its price. Thus, the negative quantities
enabled unlimited rebates for any purchase. Furthermore, these
negative quantities were successfully accepted by the server, thus
permitting the user to purchase at the reduced price.

The potential of exploiting this vulnerability could have been sig-
nificant as the website contains a very large inventory of computer
equipment. The site administrators confirmed the vulnerability and
fixed it within 24 hours.

Privilege escalation. The OpenIT application stores user pro-
files and employs a web form to allow users to edit their profiles.
After logging in, the application provides the user with a web form
for editing her profile. Included in that form is the hidden field
userid, where the application stores the user’s unique identifier.
When the form is submitted, the server updates the profile for the
user identifier corresponding to userid. By changing userid to
that of another user, it is possible to update any user’s profile.

When NOTAMPER analyzed this form, it generated a hostile in-

BZevolution

Log(Difference Rank)

Inputs sorted by Log(difference rank)

Figure 4: Graph illustrating the importance of hostile input
ranking, with bold triangles denoting thresholds used.

put where the value for userid was the number 2 (as opposed to
the initial value 1). The server’s response was virtually identical to
the benign input response (where the value was set to 1), and was
therefore reported as a tampering opportunity.

After confirming this vulnerability, we enhanced the exploit so as
to modify the profile of an admin user to include a Cross-site Script-
ing (XSS) payload. Every time the admin user logged in, the script
would execute and send the admin cookie to a server under our
control. With the help of the stolen cookie we then re-constructed
and hi-jacked the admin session, thus gaining all the privileges of
the admin. This experiment demonstrates that parameter tamper-
ing vulnerabilities could be used as a launch pad for other privilege
escalation attacks.

Summary of other exploits. The supplemental website [1]
provides details of the above exploits and the others found by No-
TAMPER. In the phpNuke application, tampering of a hidden name
field allowed us to bypass a CAPTCHA challenge and a confirma-
tion page during the registration process (work-flow attack). In the
OpenDB application, an XSS script was injected through a tampered
country field. In the sMF application, tampering of vote option
radio button violated integrity of the voting results.

5.3 Other Experimental Details

False positives. All FPs were either (a) pertaining to the
maxlength constraints on form inputs that couldn’t be exploited
to any serious vulnerability or (b) rewritten by the server without
any observable difference in HTML output (12 for the Ezybiz ap-
plication).

Categorizing potential vulnerabilities. Table [6]provides more
details of our experiments, categorized by application. Column
2 shows the average formula complexity for the client-side con-
straints, i.e., the average number of boolean connectives and atomic
constraints. Column 3 shows the total number of tampering oppor-
tunities. Column 4 shows the number of potential vulnerabilities
derived from HTML input controls other than hidden fields; Col-
umn 5 shows the number of potential vulnerabilities due to Java-
Script; and Column 6 shows the number derived from hidden fields.

Hostile input ranking. For each form input NOTAMPER issued
an HTTP request to the appropriate application and computed the
difference rank (edit distance in bytes) of the response as described
previously. A sorted list of the difference rank is produced for each
application. In our experience, it is easy to identify the threshold
limits for a potential parameter tampering opportunity, as the differ-
ence rank between inputs potentially accepted by the server tend to
be at least an order of magnitude smaller than the ones potentially
rejected by the server.

We use the graph in the Figure[d]to illustrate the thresholds. For
space reasons, we only chose one form from each application to
be represented in this graph, although our approach tested several
forms in every application. Since we are only interested in show-
ing a threshold, the graph plots the logarithm of the difference rank
in the Y-axis, with the X-axis representing the various input points
sorted according to their difference ranks. We identify the thresh-
olds for various forms using a bold triangle, and we classify those
inputs below the threshold as parameter tampering opportunities.
It is clear from the graph that such thresholds exist as denoted by
steep rises in the difference ranks.

Manual intervention. For each web form, we manually pro-
vided certain kinds of hints to NOTAMPER pertaining to informa-
tion not present on the client but that a human tester might provide.
For example, in the sMF application, the server required a valid
login name to access the form, and so we provided such a name
to NOTAMPER. Throughout all the forms, we added one of three
hints: credentials or session cookies, inputs required by the server
(required variables list), and variables required to be unique across
invocations (unique variables list). (See Section[3]for more details.)

To discover such restrictions, we used NOTAMPER to generate
an input satisfying the client-side constraints (fciient). If this input
was rejected, we examined why and provided hints that ensured
NOTAMPER could generate a benign input accepted by the server.

A total of 3 unique-variable hints were added in our experiments
(SMF: 2, phpNuke: 1). For every application except phpNuke, we
supplied a cookie with a valid session id. Further, a total of 12 re-
quired variable hints were supplied in all forms (SMF: 5 in 3 forms,
phpNuke: 4, B2evolution: 1, garena.com: 2). This manual
intervention is bounded by the number of input fields on a form
and typically required less than 5 minutes per form. We expect
this process to be simpler for a real tester who is familiar with the
application being tested.

Performance. The most computationally expensive component
of NOTAMPER was the Input Generator. The HTML / JavaScript
Analyzer ran in under a second for the most elaborate form in our
test suite. The Opportunity Detector ran in sub-second time for
each application, ignoring the delays between consecutive HTTP
requests built-in to avoid overloading the server. The most expen-
sive step of Input Generation was constraint solving; the remainder
of the Input Generation component ran in under a second. Over
the 22 forms, the constraint solver solved 315 formulas in a total
of 219 seconds, giving an average time of 0.7 seconds per input.
Such performance is acceptable for an off-line analysis tool such
as NOTAMPER.

6. RELATED WORK

Symbolic evaluation. A number of research approaches have
used symbolic execution to address a wide range of security prob-
lems, e.g., automated fingerprint generation 7] and protocol re-
play [[15]. Our own recent work [6] also applied this technique
to eliminate SQL injection attacks in legacy web applications by
retrofitting PREPARE statements through automated code transfor-
mation.

Research on input validation methods. The lack of sufficient
input validation is a major source of security vulnerabilities in web
applications. As a result, there is a fairly well developed body of
literature in server side techniques that attempt to curb the impact
of untrusted data. Attacks such as SQL injection [14} (12| 21} 4|
and Cross-site Scripting [20, 23] 22]] are well studied examples in
which untrusted data can result in unauthorized actions in a web
application.

Vulnerability analysis. There has been intense interest in ana-
lyzing JavaScript code for the purpose of detecting security flaws.
Kudzu [18] reduces JavaScript to string constraints for the pur-
pose of detecting client-side attacks, whereas our focus is utilizing
JavaScript analysis to discover server-side flaws. Our problem set-
ting has enabled us to specialize our concrete / symbolic evaluation
and constraint solving with many aspects of form processing, e.g.,
processing client-side formulas to generate logical queries that are
likely to succeed as tampering vulnerabilities and the development
of many practical heuristics. There are also approaches that per-
form white-box analysis of server side code for identifying such
vulnerabilities [2} 3]. However, there is little work on systematic
analysis of the kind of parameter tampering problems that were ad-
dressed in this paper.

Fuzzing/Directed testing. Fuzz and directed testing approaches
[9} 10k {19] aim to apply random/guided mutations to well-formed
inputs to discover vulnerabilities in a blackbox [19|] or a white-
box [[10] fashion. In that sense, NOTAMPER is similar to these
approaches as it generates hostile inputs to discover vulnerabilities.
However, our formulation of the parameter tampering problem as
one checking the consistency of the server and the client code bases
and development of methods specialized to this problem makes it
different from these approaches.

Prevention architectures. New browser architectures [11, |17,
25]] propose to sandbox the client side code of applications to pre-
vent undesired interactions. Recent works have also aimed at en-
suring that the server side of a web application remains protected
from malicious clients. Ripley [24] aims to detect malicious ac-
tivities at the client by replicating the client execution in a trusted
environment. SWIFT [8]] uses information flow analysis during the
development of new applications to ensure that constraints regard-
ing information flow confidentiality and integrity will be met in
client side code. NOTAMPER’s goals are very different from these
approaches as we focus on discovering vulnerabilities in existing
(legacy) applications.

7. CONCLUSION

In this paper, we described NOTAMPER, a novel approach for
detecting server-side HTTP parameter tampering vulnerabilities in
web applications. We formulated our problem in terms of the con-
straints implied on user data by client-side code, advocated pro-
gram analysis as a way of extracting those constraints, and em-
ployed constraint solving to generate tampering opportunities. Our
work exposed several serious exploits in existing open source web
applications and web sites, and we expect the number of discov-
ered vulnerabilities to grow as we analyze more applications. Our
results highlight a significant gap between the server-side parame-
ter validation that should occur and the server-side validation that
does occur in today’s web applications.

NOTAMPER currently employs black-box server-side analysis,
but in the future we expect to add white-box analysis. White-box
analysis will reduce false positive/negative rates and the manual
labor required to run the tool and analyze its results; however, the
white-box capability will be an optional feature, allowing NOTAM-
PER to continue being applicable to web forms for which white-box
analysis is infeasible.

Acknowledgements

This work was partially supported by National Science Foundation
grants CNS-0716584, CNS-0551660, CNS-0845894 and
CNS-0917229. Thanks are due to Mike Ter Louw and Kalpana

Gondi for their helpful comments. Finally, we thank the anony-
mous referees for their feedback.

8.
(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

REFERENCES

NOTAMPER Supplementary Website.
http://sisl.rites.uic.edu/notamper.
BALZAROTTI, D., CovA, M., FELMETSGER, V.,
JOVANOVIC, N., KIRDA, E., KRUEGEL, C., AND VIGNA,
G. Saner: Composing Static and Dynamic Analysis to
Validate Sanitization in Web Applications. In SP’08:
Proceedings of the 29th IEEE Symposium on Security and
Privacy (Oakland, California, USA, 2008).

BALZAROTTI, D., CovA, M., FELMETSGER, V. V., AND
VIGNA, G. Multi-Module Vulnerability Analysis of
Web-based Applications. In CCS’07: 14th ACM Conference
on Computer and Communications Security (Alexandria,
Virginia, USA, 2007).

BANDHAKAVI, S., BISHT, P., MADHUSUDAN, P., AND
VENKATAKRISHNAN, V. CANDID: Preventing SQL
Injection Attacks using Dynamic Candidate Evaluations. In
CCS’07: Proceedings of the 14th ACM Conference on
Computer and Communications security (Alexandria,
Virginia, USA, 2007).

BILLE, P. A survey on tree edit distance and related
problems. Theoretical Computer Science 337, 1-3 (2005),
217-239.

BISHT, P., SISTLA, A. P., AND VENKATAKRISHNAN, V.
Automatically Preparing Safe SQL Queries. In FC’10:
Proceedings of the 14th International Conference on
Financial Cryptography and Data Security (Tenerife, Canary
Islands, Spain, 2010).

BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOME,
J., AND SONG, D. Towards Automatic Discovery of
Deviations in Binary Implementations with Applications to
Error Detection and Fingerprint Generation. In SS°07:
Proceedings of 16th USENIX Security Symposium (Berkeley,
California, USA, 2007).

CHONG, S., LIU, J., MYERS, A. C., QI, X., VIKRAM, K.,
ZHENG, L., AND ZHENG, X. Secure Web Application via
Automatic Partitioning. SIGOPS Oper. Syst. Rev. 41, 6
(2007), 31-44.

GODEFROID, P., KLARLUND, N., AND SEN, K. DART:
Directed Automated Random Testing. SIGPLAN Not. 40, 6
(2005), 213-223.

GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. A.
Automated Whitebox Fuzz Testing. In NDSS’08:
Proceedings of the 16th Annual Network and Distributed
System Security Symposium (San Diego, California, USA,
2008).

GRIER, C., TANG, S., AND KING, S. T. Secure Web
Browsing With the OP Web Browser. In SP’08: Proceedings
of the 29th IEEE Symposium on Security and Privacy
(Oakland, California, USA, 2008).

HALFOND, W. G., VIEGAS, J., AND ORSO, A. A
Classification of SQL-Injection Attacks and
Countermeasures. In ISSE’06: Proceedings of the
International Symposium on Secure Software Engineering
(Washington, DC, USA, 2006).

KIEZUN, A., GANESH, V., Guo, P. J., HOOIMENIER, P.,
AND ERNST, M. D. HAMPI: A Solver for String
Constraints. In ISSTA *09: Proceedings of the 18th

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

international symposium on Software testing and analysis
(Chicago, Illinois, USA, 2009).

LivsHITS, V. B., AND LAM, M. S. Finding Security
Vulnerabilities in Java Applications with Static Analysis. In
S§S§°05: Proceedings of the 14th USENIX Security Symposium
(Baltimore, Maryland, USA, 2005).

NEWSOME, J., BRUMLEY, D., FRANKLIN, J., AND SONG,
D. Replayer: Automatic Protocol Replay by Binary
Analysis. In CCS’06: Proceedings of the 13th ACM
conference on Computer and communications security
(Alexandria, Virginia, USA, 2006).

RATCLIFF, J. W., AND METZENER, D. Pattern Matching:
The Gestalt Approach. Dr. Dobbs Journal (July 1988), 46.
REIS, C., AND GRIBBLE, S. D. Isolating Web Programs in
Modern Browser Architectures. In EuroSys’09: Proceedings
of the 4th ACM European conference on Computer systems
(Nuremberg, Germany, 2009).

SAXENA, P., AKHAWE, D., HANNA, S., MAO, F.,
MCCAMANT, S., AND SONG, D. A Symbolic Execution
Framework for JavaScript. In SP’10: Proceedings of the 31st
IEEE Symposium on Security and Privacy (Oakland,
California, USA, 2010).

SAXENA, P., HANNA, S., POOSANKAM, P., AND SONG, D.
FLAX: Systematic Discovery of Client-side Validation
Vulnerabilities in Rich Web Applications. In NDSS’10:
Proceedings of the 17th Annual Network and Distributed
System Security Symposium (San Diego, California, USA,
2010).

SAXENA, P., SONG, D., AND NADIJI, Y. Document
Structure Integrity: A Robust Basis for Cross-site Scripting
Defense. In NDSS’09: Proceedings of 16th Annual Network
& Distributed System Security Symposium (San Diego,
California, USA, 2009).

Su, Z., AND WASSERMANN, G. The Essence of Command
Injection Attacks in Web Applications. In POPL’06:
Proceedings of the 33rd symposium on Principles of
programming languages (Charleston, South Carolina, USA,
2006).

TER LOUW, M., AND VENKATAKRISHNAN, V. BluePrint:
Robust Prevention of Cross-site Scripting Attacks for
Existing Browsers. In SP’09: Proceedings of the 30th IEEE
Symposium on Security and Privacy (Oakland, California,
USA, 2009).

VAN GUNDY, M., AND CHEN, H. Noncespaces: Using
Randomization to Enforce Information Flow Tracking and
Thwart Cross-site Scripting Attacks. In NDSS’09:
Proceedings of the 16th Annual Network & Distributed
System Security Symposium (San Diego, California, USA,
2009).

VIKRAM, K., PRATEEK, A., AND LIVSHITS, B. Ripley:
Automatically Securing Distributed Web Applications
Through Replicated Execution. In CCS’09: Proceedings of
the 16th Conference on Computer and Communications
Security (Chicago, Illinois, USA, 2009).

WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T.,
CHOUDHURY, P., AND VENTER, H. The Multi-Principal OS
Construction of the Gazelle Web Browser. In S5°09:
Proceedings of the 18th USENIX Security Symposium
(Montreal, Canada, 2009).

http://sisl.rites.uic.edu/notamper

	1 Introduction
	2 High Level Overview
	2.1 Problem Description
	2.2 Approach overview

	3 Architecture & Challenges
	3.1 HTML/JavaScript Analyzer
	3.2 Input Generator
	3.3 Opportunity Detector

	4 Algorithms & Implementation
	4.1 Client Constraint Extraction
	4.2 Hostile Input Guidance
	4.3 Input Generation
	4.4 Constraint Solving
	4.5 HTML Response Comparison
	4.6 Implementation

	5 Evaluation
	5.1 Summary
	5.2 Details of Exploits
	5.3 Other Experimental Details

	6 Related Work
	7 Conclusion
	8 References

