
Towards Identity Anonymization on Graphs

Kun Liu
IBM Almaden Research Center

San Jose, CA 95120, USA
kun@us.ibm.com

Evimaria Terzi
IBM Almaden Research Center

San Jose, CA 95120, USA
eterzi@us.ibm.com

ABSTRACT
The proliferation of network data in various application do-
mains has raised privacy concerns for the individuals in-
volved. Recent studies show that simply removing the iden-
tities of the nodes before publishing the graph/social net-
work data does not guarantee privacy. The structure of the
graph itself, and in its basic form the degree of the nodes,
can be revealing the identities of individuals. To address
this issue, we study a specific graph-anonymization prob-
lem. We call a graph k-degree anonymous if for every node
v, there exist at least k−1 other nodes in the graph with the
same degree as v. This definition of anonymity prevents the
re-identification of individuals by adversaries with a priori
knowledge of the degree of certain nodes. We formally de-
fine the graph-anonymization problem that, given a graph
G, asks for the k-degree anonymous graph that stems from
G with the minimum number of graph-modification opera-
tions. We devise simple and efficient algorithms for solving
this problem. Our algorithms are based on principles re-
lated to the realizability of degree sequences. We apply our
methods to a large spectrum of synthetic and real datasets
and demonstrate their efficiency and practical utility.

Categories and Subject Descriptors: G.2.2 [DISCRE-
TE MATHEMATICS]: Graph Theory; H.2.8 [DATA-
BASE MANAGEMENT]: Database Applications—Data
mining

General Terms: Algorithms, Experimentation, Theory

Keywords: Anonymity, Degree Sequence, Dynamic Pro-
gramming

1. INTRODUCTION
Social networks, online communities, peer-to-peer file shar-

ing and telecommunication systems can be modelled as com-
plex graphs. These graphs are of significant importance in
various application domains such as marketing, psychology,
epidemiology and homeland security. The management and
analysis of these graphs is a recurring theme with increas-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

ing interest in the database, data mining and theory com-
munities. Past and ongoing research in this direction has
revealed interesting properties of the data and presented ef-
ficient ways of maintaining, querying and updating them.
However, with the exception of some recent work [2, 10,
19, 14, 18], the privacy concerns associated with graph-data
analysis and management have been largely ignored.

In their recent work, Backstrom et. al. [2] point out that
the simple technique of anonymizing graphs by removing the
identities of the nodes before publishing the actual graph
does not always guarantee privacy. It is shown in [2] that
there exist adversaries that can infer the identity of the
nodes by solving a set of restricted graph isomorphism prob-
lems. However, the problem of designing techniques that
could protect individuals’ privacy has not been addressed in
[2].

Hay et. al. [10] further observe that the structural sim-
ilarity of nodes’ neighborhood in the graph determines the
extent to which an individual in the network can be dis-
tinguished. This structural information is closely related to
the degrees of the nodes and their neighbors. Along this
direction, the authors propose an anonymity model for so-
cial networks – a graph satisfies k-candidate anonymity if
for every structure query over the graph, there exist at least
k nodes that match the query. The structure queries check
the existence of neighbors of a node or the structure of the
subgraph in the vicinity of a node. However, the authors
of [10] mostly focus on providing a set of anonymity defi-
nitions and studying their properties, and not on designing
algorithms that guarantee the construction of a graph that
satisfies their anonymity requirements.

Motivated by Backstrom et al. and Hay et al.’s work,
we want to answer the following question that is still unan-
swered: how to minimally modify the graph to protect the
identity of each individual involved? Being able to answer
this kind of questions is important to understand the privacy
issues on graph/social networks, the computational com-
plexity of the related problems, and other challenges and
opportunities in this emerging field (see e.g., Jon Kleinberg,
Challenges in Social Network Data: Processes, Privacy and
Paradoxes, ACM SIGKDD 2007 Invited Talk).

We note that in a social network, nodes correspond to in-
dividuals or other social entities, and edges correspond to
social relationships between them. The privacy breaches in
social network data can be grouped to three categories: 1)
identity disclosure: the identity of the individual who is asso-
ciated with the node is revealed; 2) link disclosure: sensitive
relationships between two individuals are disclosed; and 3)

content disclosure: the privacy of the data associated with
each node is breached, e.g., the email message sent and/or
received by the individuals in a email communication graph.
We believe that a perfect privacy-protection system should
consider all of these issues. However, protecting against each
of the above breaches may require different techniques. For
example, for content disclosure, standard privacy-preserving
data mining techniques [1], such as data perturbation and
k-anonymization can help. For link disclosure, the various
techniques studied by the link-mining community [8, 19] can
be useful.

In this paper, we focus on identity disclosure. We pro-
pose a systematic framework for identity anonymization on
graphs. We use some of the definitions proposed in [10],
and we solve the algorithmic problems that arise from these
definitions.

1.1 The Problem
In order to prevent the identity disclosure of individuals,

we propose a new graph-anonymization framework. More
specifically, we address the following problem: given a graph
G and an integer k, modify G via a set of edge-addition (or
deletion) operations in order to construct a new k-degree

anonymous graph Ĝ, in which every node v has the same
degree with at least k− 1 other nodes. Of course, one could
transform G to the complete graph, in which all nodes would
be identical. Although such an anonymization would pre-
serve privacy of individual nodes, it would make the anonym-
ized graph useless for any study. For that reason we impose
the additional requirement that the minimum number of
such edge-modifications is made. In this way, we want to
preserve the utility of the original graph, while at the same
time satisfy the degree-anonymity constraint.

In this paper, we assume that the graph is simple, i.e., the
graph is undirected, unweighted, containing no self-loops or
multiple edges. We focus our presentation on the problem of
edge additions. The case of edge deletions is symmetric and
thus can be handled analogously; it is sufficient to consider
the complement of the input graph. In the end of this paper,
we discuss how to extend the proposed framework to allow
simultaneous edge addition and deletion operations when
modifying the input graph.

1.2 Related Work
Since the introduction of the concept of anonymity in

databases [15], there has been increasing interest in the
database community in studying the complexity of the prob-
lem and proposing algorithms for anonymizing data records
under different anonymization models [4, 12, 13]. Though
lots of attention has been given to the anonymization of
tabular data, the privacy issues of graphs/social networks
and the notion of anonymization of graphs have only been
recently touched.

Backstrom et. al. [2] show that simply removing the iden-
tifiers of the nodes does not always guarantee privacy. Ad-
versaries can infer the identity of the nodes by solving a set
of restricted isomorphism problems based on the uniqueness
of small random subgraphs embedded in an network.

Hay et. al. [10] observe that the structural similarity of
the nodes in the graph determines the extent to which an
individual in the network can be distinguished from others.
Based on the notion of k-anonymity [15], they propose a
k-candidate anonymity model.

Pei and Zhou in [14] consider yet another definition of
graph anonymity – a graph is k-anonymous if for every node
there exist at least k − 1 other nodes that share isomorphic
neighborhoods; in this case the neighborhood of a node is
defined by its immediate neighbors and the connections be-
tween them. This definition of anonymity in graphs is differ-
ent from ours. In a sense it is a more strict one. Given the
difference in the definition, the corresponding algorithmic
problems arising in [14] are also different from the problems
we consider in this paper.

Zheleva and Getoor [19] consider the problem of protect-
ing sensitive relationships among the individuals in the anon-
ymized social network. This is closely related to the link-
prediction problem that has been widely studied in the link-
mining community [8]. In [19] simple edge-deletion and
node-merging algorithms are proposed to reduce the risk of
sensitive link disclosure. This work is different from ours in
that we are primarily interested in identity protection; once
the identity of each individual is disguised, there is no need
to hide the sensitive relationships any more. Also the set of
combinatorial problems that we need to solve in our frame-
work are very different from the set of problems discussed
in [19].

Sensitive link and relationship protection is also discussed
by Ying and Wu [18]. They study how anonymization al-
gorithms that are based on randomly adding and removing
edges change certain graph properties. More specifically,
they focus on the change caused in the eigenvalues (spec-
trum) of the network. The authors additionally explore,
how the randomized network can be exploited by the adver-
sary to gain knowledge about the existence of certain links.
The focus of our paper as well as the set of techniques we
develop are orthogonal to those discussed in [18].

Frikken and Golle [7] study the problem of assembling
pieces of graphs owned by different parties privately. They
propose a set of cryptographic protocols that allow a group
of authorities to jointly reconstruct a graph without reveal-
ing the identity of the nodes. The graph thus constructed is
isomorphic to a perturbed version of the original graph. The
perturbation consists of addition and or deletions of nodes
and or edges. Unlike their work, we try to anonymize a single
graph while keeping the data utility in mind. Moreover, the
methods in [7] involve cryptographic protocols that are com-
putationally demanding, while our approach employs simple
and efficient combinatorial algorithms.

1.3 Roadmap
The rest of the paper is organized as follows. In Sec-

tion 2 we define the graph-anonymization problem and in
Section 3 we provide a high-level overview of our approach.
Sections 4 – 7 consider the anonymization problem where
only edge additions (or only deletions) are allowed. In Sec-
tion 8 we show an extension of our framework that allows
simultaneous edge additions and deletions, and we conclude
the paper in Section 9.

2. PROBLEM DEFINITION
Let G(V, E) be a simple graph; V is a set of nodes and

E the set of edges in G. We use dG to denote the degree
sequence of G. That is, dG is a vector of size n = |V | such
that dG(i) is the degree of the i-th node of G. Throughout
the paper, we use d(i), d(vi) and dG(i) interchangeably to
denote the degree of node vi ∈ V . When the graph is clear

from the context we drop the subscript in notation and use
d(i) instead. Without loss of generality, we also assume that
entries in d are ordered in decreasing order of the degrees
they correspond to, that is, d(1) ≥ d(2) ≥ . . . ≥ d(n). Ad-
ditionally, for i < j we use d[i, j] to denote the subsequence
of d that contains elements i, i + 1, . . . , j − 1, j.

Before defining the notion of a k-degree anonymous graph,
we first define the notion of a k-anonymous vector of inte-
gers.

Definition 1. A vector of integers v is k-anonymous, if
every distinct value in v appears at least k times.

For example, vector v = [5, 5, 3, 3, 2, 2, 2] is 2-anonymous.

Definition 2. A graph G(V, E) is k-degree anonymous
if the degree sequence of G, dG, is k-anonymous.

Alternatively, Definition 2 states that for every node v ∈
V there exist at least k − 1 other nodes that have the same
degree as v. This property prevents the re-identification of
individuals by adversaries with a priori knowledge of the
degree of certain nodes. This echoes the observation made
by Hay et. al. [10].

Figure 1 shows two examples of degree-anonymous graphs.
In the graph on the left, all three nodes have the same degree
and thus the graph is 3-degree anonymous. Similarly, the
graph on the right is 2-degree anonymous since there are
two nodes with degree 1 and four nodes with degree 2.

Figure 1: Examples of a 3-degree anonymous graph
(left) and a 2-degree anonymous graph (right).

Degree anonymity has the following monotonicity prop-
erty.

Proposition 1. If a graph G(V, E) is k1-degree anony-
mous, then it is also k2-degree anonymous, for every k2 ≤
k1.

We use the definitions above to define the Graph Anony-
mization problem. The input to the problem is a simple
graph G(V, E) and an integer k. The requirement is to use
a set of graph-modification operations on G in order to con-

struct a k-degree anonymous graph Ĝ(V̂ , Ê) that is struc-
turally similar to G. We require that the output graph is
over the same set of nodes as the original graph, that is,

V̂ = V . Moreover, we restrict the graph-modification oper-

ations to edge additions, that is, graph Ĝ is constructed from
G by adding a (minimal) set of edges. We call the cost of

anonymizing G by constructing Ĝ the graph-anonymization

cost Ga and we compute it by Ga(Ĝ, G) = |Ê| − |E|.
Formally, we define the Graph Anonymization as fol-

lows.

Problem 1 (Graph Anonymization). Given a graph
G(V, E) and an integer k, find a k-degree anonymous graph

Ĝ(V, Ê) with Ê ∩ E = E such that Ga(Ĝ, G) is minimized.

Note that the Graph Anonymization problem always
has a feasible solution. In the worst case, all edges not
present in the input graph can be added. In this way, the
graph becomes complete and all nodes have the same degree;
thus, any degree-anonymity requirement is satisfied (due to
Proposition 1).

However, in the formulation of Problem 1 we want to
find the k-degree anonymous graph that incurs the mini-
mum graph-anonymization cost. That is, we want to add
the minimum number of edges to the original graph to ob-
tain a k-degree anonymous version of it. The least number
of edges constraint tries to capture the requirement of struc-
tural similarity between the input and output graphs. If

L1

(
d̂− d

)
=

∑
i

∣∣∣d̂(i)− d(i)
∣∣∣ ,

then minimizing the number of additional edges can be trans-
lated into minimizing the L1 distance of the degree sequences

of G and Ĝ. This is due to the fact that

Ga(Ĝ, G) =
∣∣∣Ê

∣∣∣− |E| =
1

2
L1

(
d̂− d

)
. (1)

It is obvious that Problem 1 can be modified so that it
allows only for edge deletions, instead of additions. It can
be easily shown that solving the latter variant is equivalent
to solving Problem 1 on the complement of the input graph.
Recall that the complement of a graph G(V, E) has the same
nodes as G and has as edges all edges that are not in G.
Therefore, all our results carry over to the edge-deletion case
as well. The generalized problem where we allow for simul-
taneous additions and deletions of edges so that the output
graph is k-degree anonymous is another natural variant. We
discuss this problem in Section 8 and we show that our algo-
rithmic framework need only be minimally modified to solve
the latter problem. For now, let us focus on Problem 1.

In general, requiring that Ĝ(V, Ê) is a supergraph of the
input graph G(V, E) is a rather strict constraint. We will
show that we can naturally relax this requirement to the one

where Ê∩E ≈ E rather than Ê∩E = E. We call this prob-
lem the Relaxed Graph Anonymization problem and we
develop a set of algorithms for this relaxed version. In our
experimental evaluation we show that the degree-anonymous
graphs we obtain in this case are still very similar to the
original input graphs.

3. OVERVIEW OF THE APPROACH
We propose a two-step approach for the Graph Anonymi-

zation problem and its relaxed version. For an input graph
G(V, E) with degree sequence d and an integer k, we proceed
as follows:

1. First, starting from d, we construct a new degree se-

quence d̂ that is k-anonymous and such that the degree-
anonymization cost

Da(d̂,d) = L1(d̂− d),

is minimized.

2. Given the new degree sequence d̂, we then construct a

graph Ĝ(V, Ê) such that dĜ = d̂ and Ê ∩ E = E (or

Ê ∩ E ≈ E in the relaxed version).

Note that step 1 requires L1(d̂−d) to be minimized, which
in fact translates into the requirement of the minimum num-
ber of edge additions due to Equation (1). Step 2 tries to

construct a graph with degree sequence d̂, which is a su-
pergraph (or has large overlap in its set of edges) with the

original graph. If d̂ is the optimal solution to the problem
in Step 1 and Step 2 outputs a graph with degree sequence

d̂, then the output of this two-step process is the optimal
solution to the Graph Anonymization problem.

Although in reality obtaining the optimal solution is not
that easy, we show how to solve the Graph Anonymiza-
tion and its relaxed version by performing Steps 1 and 2
as described above. These two steps give rise to two prob-
lems, which we formally define and solve in subsequent sec-
tions. Performing step 1 translates into solving the Degree
Anonymization defined as follows.

Problem 2 (Degree Anonymization). Given d, the
degree sequence of graph G(V, E), and an integer k construct

a k-anonymous sequence d̂ such that L1(d̂−d) is minimized.

Similarly, performing step 2 translates into solving the
Graph Construction problem that we define below.

Problem 3 (Graph Construction). Given a graph

G(V, E) and a k-anonymous degree sequence d̂, construct

graph Ĝ(V, Ê) such that d̂ = dĜ and Ê∩E = E (or Ê∩E ≈
E in the relaxed version).

In the next sections we develop algorithms for solving
Problems 2 and 3. There are cases where we are unable
to find the optimal k-degree anonymous graph Ĝ∗. In these
cases, we are content to finding a k-degree anonymous graph

Ĝ that has cost Ga(Ĝ, G) ≥ Ga(Ĝ∗, G) but as close to

Ga(Ĝ∗, G) as possible.

4. DEGREE ANONYMIZATION
In this section we give algorithms for solving the De-

gree Anonymization problem. Given the degree sequence
d of the original input graph G(V, E), the algorithms out-

put a k-anonymous degree sequence d̂ such that the degree-

anonymization cost Da(d) = L1(d̂− d) is minimized.
We first give a dynamic-programming algorithm (DP) that

solves the Degree Anonymization problem optimally in
time O(n2). Then, we show how to modify it to achieve
linear-time complexity. For completeness, we also give a fast
greedy algorithm that runs in time O(nk) and, as shown in
the experimental section, gives high-quality results in prac-
tice.

In Problem 1 we have restricted our attention to edge-
addition operations. Thus, the degrees of the nodes can only
increase in the Degree Anonymization problem. That is,

if d is the original sequence and d̂ is the k-anonymous degree

sequence, then for every 1 ≤ i ≤ n we have that d̂(i) ≥ d(i).
This allows us to make the following observation.

Observation 1. Consider a degree sequence d, with d(1)

≥ . . . ≥ d(n), and let d̂ be the optimal solution to the De-

gree Anonymization problem with input d. If d̂(i) = d̂(j),

with i < j, then d̂(i) = d̂(i + 1) = . . . = d̂(j − 1) = d̂(j).

Given a (sorted) input degree sequence d, let Da (d[1, i])
be the degree-anonymization cost of subsequence d[1, i]. Ad-
ditionally, let I (d[i, j]) be the degree anonymization cost
when all nodes i, i+1, . . . , j are put in the same anonymized
group. Alternatively, this is the cost of assigning to all nodes
{i, . . . , j} the same degree, which by construction will be the
highest degree, in this case d(i), or

I (d[i, j]) =

j∑

`=i

(d(i)− d(`)) .

Using Observation 1 we can construct a set of dynamic-
programming equations that solve the Graph Anonymiza-
tion problem. That is,

for i < 2k,

Da (d[1, i]) = I (d[1, i]) . (2)

For i ≥ 2k,

Da (d[1, i]) = min (3){
min

k≤t≤i−k

{
Da (d[1, t]) + I (d[t + 1, i])

}
, I (d[1, i])

}
.

When i < 2k, it is impossible to construct two different
anonymized groups each of size k. As a result, the optimal
degree anonymization of nodes 1, . . . , i consists of a single
group in which all nodes are assigned the same degree equal
to d(1).

Equation (3) handles the case where i ≥ 2k. In this case,
the degree-anonymization cost for the subsequence d[1, i]
consists of optimal degree-anonymization cost of the sub-
sequence d[1, t], plus the anonymization cost incurred by
putting all nodes t + 1, ..., i in the same group (provided
that this group is of size k or larger). The range of variable
t as defined in Equation (3) is restricted so that all groups
examined, including the first and last ones, are of size at
least k.

Running time of the DP algorithm: For an input degree
sequence of size n, the running time of the DP algorithm
that implements Recursions (2) and (3) is O(n2); First, the
values of I (d[i, j]) for all i < j can be computed in an
O(n2) preprocessing step. Then, for every i the algorithm
goes through at most n − 2k + 1 different values of t for
evaluating the Recursion (3). Since there are O(n) different
values of i, the total running time is O(n2).

We now show how to improve the running time of the
DP algorithm from O(n2) to O(nk). The core idea for this
speedup lies in the simple observation that no anonymous
group should be of size larger than 2k − 1. If any group is
larger than or equal to 2k, it can be broken into two subgroups
with equal or lower overall degree-anonymization cost. The
proof of this observation is rather simple and is thus omitted.
Using this observation, the preprocessing step that computes
the values of I (d[i, j]), does not have to consider all the
combinations of (i, j) pairs, but for every i consider only j’s
such that k ≤ j − i + 1 ≤ 2k − 1. Thus, the running time
for this step drops to O(nk).

Similarly, for every i, we do not have to consider all t’s
in the range k ≤ t ≤ i − k as in Recursion (3), but only
t’s in the range max{k, i − 2k + 1} ≤ t ≤ i − k. Therefore,
Recursion (3) can be rewritten as follows

Da (d[1, i]) = (4)

min
max{k,i−2k+1}≤t≤i−k

{
Da (d[1, t]) + I (d[t + 1, i])

}
.

For this range of values of t we guarantee that the first
group has size at least k, and the last one has size between
k and 2k − 1. Therefore, for every i the algorithm goes
through at most k different values of t for evaluating the
new recursion. Since there are O(n) different values of i, the
overall running time of the DP algorithm is O(nk). Therefore,
we have the following.

Theorem 1. Problem 2 can be solved in polynomial time
using the DP algorithm described above.

In fact, in the case where we consider edge additions or
deletions only and we do not consider simultaneous edge ad-
ditions and deletions, the running time of the DP algorithm
can be further improved to O(n). That is, the running time
can become linear in n but independent of k. This is due
to the fact that the value of Da (d[1, i′]) given in Equa-
tion (4) is decreasing in t for i and i′ sufficiently larger than
i. This means that for every i not all integers t in the in-
terval [max{k, i− 2k + 1}, i− k] are candidate for boundary
points between groups. In fact, we only need to keep a lim-
ited number of such points and their corresponding degree-
anonymization costs calculated as in Equation (4). With a
careful bookkeeping we can get rid of the factor k in the
running time of the DP algorithm. We refer to the details of
this speedup to the extended version of the paper.

For completeness, we also give a Greedy linear-time alter-
native algorithm for the Degree Anonymization problem.
Although this algorithm is not guaranteed to find the opti-
mal anonymization of the input sequence, our experiments
show that it performs extremely well in practice, achieving
anonymizations with costs very close to the optimal.

The Greedy algorithm first forms a group consisting of the
first k highest-degree nodes and assigns to all of them degree
d(1). Then it checks whether it should merge the (k +1)-th
node into the previously formed group or start a new group
at position (k + 1). For taking this decision the algorithm
computes the following two costs:

Cmerge =
(
d(1)− d(k + 1)

)
+ I (d[k + 2, 2k + 1]) ,

and

Cnew = I (d[k + 1, 2k]) .

If Cmerge is greater than Cnew, a new group starts with
the (k + 1)-th node and the algorithm proceeds recursively
for the sequence d[k + 1, n]. Otherwise, the (k + 1)-th node
is merged to the previous group and the (k + 2)-th node is
considered for merging or as a starting point of a new group.
The algorithm terminates after considering all n nodes.

Running time of the Greedy algorithm: For degree se-
quences of size n, the running time of the Greedy algorithm
is O(nk); for every node i, Greedy looks ahead at O(k) other
nodes in order to make the decision to merge the node with
the previous group or to start a new group. Since there are
n nodes, the total running time is O(nk).

5. GRAPH CONSTRUCTION
In this section we present algorithms for solving the Graph

Construction problem. Given the original graph G(V, E)

and the desired k-anonymous degree sequence d̂ output by
the DP (or Greedy) algorithm, we construct a k-degree anony-

mous graph Ĝ(V, Ê) with Ê ∩ E = E and degree sequence

dĜ with dĜ = d̂.

5.1 Basics on Realizability of Degree Sequences
Before giving the actual algorithms for the Graph Con-

struction problem, we first present some known facts about
the realizability of degree sequences for simple graphs. Later
on, we extend some of these results in our own problem set-
ting.

Definition 3. A degree sequence d, with d(1) ≥, . . . ,≥
d(n) is called realizable if and only if there exists a simple
graph whose nodes have precisely this sequence of degrees.

Erdös and Gallai [6] have stated the following necessary
and sufficient condition for a degree sequence to be realiz-
able.

Lemma 1. ([6]) A degree sequence d with d(1) ≥ . . . ≥
d(n) and

∑
i d(i) even, is realizable if and only if for every

1 ≤ ` ≤ n− 1 it holds that

∑̀
i=1

d(i) ≤ `(`− 1) +

n∑

i=`+1

min{`,d(i)} (5)

Informally, Lemma 1 states that for each subset of the
` highest-degree nodes, the degrees of these nodes can be
“absorbed” within the nodes and the outside degrees. The
proof of Lemma 1 is inductive ([9]) and it provides a natural
construction algorithm, which we call ConstructGraph (see
Algorithm 1 for the pseudocode).

The ConstructGraph algorithm takes as input the desired
degree sequence d and outputs a graph with exactly this
degree sequence, if such graph exists. Otherwise it outputs a
“No” if such graph does not exist. The algorithm is iterative
and in each step it maintains the residual degrees of vertices.
In each iteration it picks an arbitrary node v and adds edges
from v to d(v) nodes of highest residual degree, where d(v) is
the residual degree of v. The residual degrees of these d(v)
nodes are decreased by one. If the algorithm terminates
and outputs a graph, then this graph has the desired degree
sequence. If at some point the algorithm cannot make the
required number of connections for a specific node, then it
outputs “No” meaning that the input degree sequence is not
realizable.

Note that the ConstructGraph algorithm is an oracle for
the realizability of a given degree sequence; if the algorithm
outputs “No”, then this means that there does not exist a
simple graph with the desired degree sequence.

Running time of the ConstructGraph algorithm: If n
is the number of nodes in the graph and dmax = maxi d(i),
then the running time of the ConstructGraph algorithm is
O(ndmax). This running time can be achieved by keeping
an array A of size dmax such that A[d(i)] keeps a hash table
of all the nodes of degree d(i). Updates to this array (de-
gree changes and node deletions) can be done in constant
time. For every node i at most dmax constant-time opera-
tions are required. Since there are n nodes the running time

Algorithm 1 The ConstructGraph algorithm.

Input: A degree sequence d of length n.
Output: A graph G(V, E) with nodes having degree
sequence d or“No”if the input sequence is not realizable.

1: V ← {1, . . . , n}, E ← ∅
2: if

∑
i d(i) is odd then

3: Halt and return “No”
4: while 1 do
5: if there exists d(i) such that d(i) < 0 then
6: Halt and return “No”
7: if the sequence d are all zeros then
8: Halt and return G(V, E)

9: Pick a random node v with d(v) > 0
10: Set d(v) = 0
11: Vd(v) ← the d(v)-highest entries in d (other than v)
12: for each node w ∈ Vd(v) do
13: E ← E ∪ (v, w)
14: d(w) ← d(w)− 1

of the algorithm is O(ndmax). In the worst case, dmax can
be of order O(n), and in this case the running time of the
ConstructGraph algorithm is quadratic. In practice, dmax is
much less than n, which makes the algorithm very efficient
in practical settings.

Note that the random node in Step 9 of Algorithm 1 can
be replaced by either the current highest-degree node or the
current lowest-degree node. When we start with higher de-
gree nodes, we get topologies that have very dense cores,
while when start with lower degree nodes, we get topologies
with very sparse cores. A random pick is a balance between
the two extremes. The running time is not affected by this
choice, due to the data structure A.

5.2 Realizability of Degree Sequences with Con-
straints

Notice that Lemma 1 is not directly applicable to the
Graph Construction problem. This is because not only

do we need to construct a graph Ĝ with a given degree se-

quence d̂, but we also require that E ⊆ Ê. We capture these
two requirements in the following definition of realizability

of d̂ subject to graph G.

Definition 4. Given input graph G(V, E), we say that

degree sequence d̂ is realizable subject to G, if and only if

there exists a simple graph Ĝ(V, Ê) whose nodes have pre-

cisely the degrees suggested by d̂ and E ⊆ Ê.

Given the above definition we have the following alterna-
tion of Lemma 1.

Lemma 2. Consider degree sequence d̂ and graph G(V, E)

with degree sequence d. Let vector a = d̂ − d such that∑
i a(i) is even. If d̂ is realizable subject to graph G then

∑
i∈V`

a(i) ≤
∑
i∈V`

(
`− 1− d`(i)

)

+
∑

i∈V−V`

min{`− d`(i),a(i)}, (6)

where d`(i) is the degree of node i in the input graph G
when counting only edges in G that connect node i to one

of the nodes in V`. Here V` is an ordered set of ` nodes
with the ` largest a(i) values, sorted in decreasing order. In
other words, for every pair of nodes (u, v) where u ∈ V` and
v ∈ V \ V`, it holds that a(u) ≥ a(v) and |V`| = `.

Although the proof of the lemma is omitted due to space
constraints, one can see the similarity between Inequali-
ties (5) and (6); if G is a graph with no edges between its

nodes, then a is the same as d̂, d`(i) is zero, and the two
inequalities become identical.

Lemma 2 states that Inequality (6) is just a necessary con-
dition for realizability subject to the input graph G. Thus, if
Inequality (6) does not hold, we can conclude that for input

graph G(V, E), there does not exist a graph Ĝ(V, Ê) with

degree sequence d̂ such that E ⊆ Ê.
Although Lemma 2 gives only a necessary condition for

realizability subject to an input graph G, we still want to
devise an algorithm for constructing a degree-anonymous

graph Ĝ, a supergraph of G, if such a graph exists. We
call this algorithm the Supergraph, which is an extension of
the ConstructGraph algorithm (We omit the pseudocode of
Supergraph due to space limits).

The inputs to the Supergraph are the original graph G

and the desired k-anonymous degree distribution d̂. The
algorithm operates on the sequence of additional degrees a =

d̂− dG in a manner similar to the one the ConstructGraph

algorithm operates on the degrees d. However, since Ĝ is
drawn on top of the original graph G, we have the additional
constraint that edges already in G cannot be drawn again.

The Supergraph first checks whether Inequality (6) is sat-
isfied and returns “No” if it does not. Otherwise it proceeds
iteratively and in each step it maintains the residual addi-
tional degrees a of the vertices. In each iteration it picks an
arbitrary vertex v and adds edges from v to a(v) vertices
of highest residual additional degree, ignoring nodes v′ that
are already connected to v in G. For every new edge (v, v′),
a(v′) is decreased by 1. If the algorithm terminates and out-

puts a graph, then this graph has degree sequence d̂ and is a
supergraph of the original graph. If the algorithm does not
terminate, then it outputs “Unknown”, meaning that there
might exist a graph, but the algorithm is unable to find it.
Though Supergraph is similar to ConstructGraph, it is not
an oracle. That is, if the algorithm does not return a graph

Ĝ supergraph of G, it does not necessarily mean that such
a graph does not exist.

For degree sequences of length n and amax = maxi a(i)
the running time of the Supergraph algorithm is O(namax),
using the same data-structures as those described in Sec-
tion 5.1.

5.3 The Probing scheme
If the Supergraph algorithm returns graph Ĝ, then not

only do we guarantee that this graph is the k-degree anony-
mous but also that the least number of edge additions has
been made.

If Supergraph returns “No” or “Unknown”, we are con-
tent in tolerating some more edge-additions in order to get
a degree-anonymous graph. For that we introduce the Prob-
ing scheme that forces the Supergraph algorithm to output
the desired k-degree anonymous graph with a little extra
cost. This scheme is in fact a randomized iterative process

that tries to slightly change the degree sequence d̂.

Algorithm 2 The Probing scheme.

Input: Input graph G(V, E) with degree distribution d
and integer k.

Output: Graph Ĝ(V, Ê) with k-anonymous degree se-

quence d̂, such that E ⊆ Ê.

1: d̂ = DP(d) /* or Greedy(d) */

2:
(
realizable, Ĝ

)
= Supergraph(d̂)

3: while realizable = “No” or “Unknown” do
4: d = d + random noise
5: d̂ = DP(d) /*or Greedy(d) */

6:
(
realizable, Ĝ

)
= Supergraph(d̂)

7: Return Ĝ

The pseudocode of the Probing scheme is shown in Algo-
rithm 2. For input graph G(V, E) and integer k, the Prob-

ing scheme first constructs the k-anonymous sequence d̂ by
invoking the DP (or Greedy) algorithm. If the subsequent

call to the Supergraph algorithm returns a graph Ĝ, then
Probing outputs this graph and halts. If Supergraph re-
turns “No” or “Unknown” , then Probing slightly increases
some of the entries in d via the addition of uniform noise
- the specifics of the noise-addition strategy is further dis-
cussed in the next paragraph. The new noisy version of d
is then fed as input to the DP (or Greedy) algorithm again.

A new version of the d̂ is thus constructed and input to the
Supergraph algorithm to be checked. The process of noise
addition and checking is repeated until a graph is output by
Supergraph. Note that this process will always terminate
because in the worst case, the noisy version of d will con-
tain all entries equal to n − 1, and there exists a complete
graph that satisfies this sequence and is k-degree anonymous

with E ⊆ Ê.
Since the Probing procedure will always terminate, the

key question is how many times the while loop is executed.
This depends, to a large extent, on the noise addition strat-
egy. In our implementation, we examine the nodes in in-
creasing order of their degrees, and slightly increase the
degree of a single node in each iteration. This strategy is
suggested by the degree sequences of the input graphs. In
most of these graphs there is a small number of nodes with
very high degrees. However, rarely any two of these high-
degree nodes share exactly the same degree. In fact, we
often observe big differences among them. On the contrary,
in most graphs there is a large number of nodes with the
same small degrees (close to 1). Given such a graph, the DP

(or Greedy) algorithm will be forced to increase the degrees
of some of the large-degree nodes a lot, while leaving the de-
grees of small-degree nodes untouched. In the anonymized
sequence thus constructed, a small number of high-degree
nodes will need a large number of nodes to connect their
newly added edges. However, since the degrees of small-
degree nodes does not changed in the anonymized sequence,
the demand of edge end-points imposed by the high-degree
nodes cannot be facilitated. Therefore, by slightly increas-
ing the degrees of small-degree nodes in d we force the DP

(or Greedy) algorithm to assign them higher degrees in the

anonymized sequence d̂. In that way, there are more addi-
tional free edges end-points to connect with the anonymized
high-degree nodes.

From our experiments on a large spectrum of synthetic
and real-world data, we observe that, in most cases, the
extra edge-additions incurred by the Probing procedure are
negligible. That is, the degree sequences produced by the
DP (or Greedy) are almost realizable, and more importantly,
realizable with respect to the input graph G. Therefore, the
Probing is rarely invoked, and even if it is invoked, only a
very small number of repetitions are needed. We further
discuss this in the experimental section of the paper.

6. RELAXED GRAPH CONSTRUCTION
The Supergraph algorithm presented in the previous sec-

tion extends the input graph G(V, E) by adding additional

edges. It guarantees that the output graph Ĝ(V, Ê) be

k-degree anonymous and E ⊆ Ê. However, the require-

ment that E ⊆ Ê may be too strict to satisfy. In many
cases, we are content with a degree-anonymous graph where

Ê ∩E ≈ E, which means that most of the edges of the orig-
inal graph appear in the degree-anonymous graph as well,
but not necessarily all of them. We call this version of the
problem the Relaxed Graph Construction problem.

6.1 The Greedy_Swap algorithm
Let d̂ be a k-anonymous degree sequence output by DP

(or Greedy) algorithm. Let us additionally assume for now,

that d̂ is realizable so that the ConstructGraph algorithm

with input d̂, outputs a simple graph Ĝ0(V, Ê0) with degree

sequence exactly d̂. Although Ĝ0 is k-degree anonymous,
its structure may be quite different from the original graph
G(V, E). The Greedy_Swap algorithm is a greedy heuristic

that given Ĝ0 and G, it transforms Ĝ0 into Ĝ(V, Ê) with

degree sequence dĜ = d̂ = dĜ0
and E ∩ Ê ≈ E.

At every step i, the graph Ĝi−1(V, Êi−1) is transformed

into the graph Ĝi(V, Ei) such that d̂Ĝ0
= d̂Ĝi−1

= d̂Ĝi
= d̂

and |Êi∩E| > |Êi−1∩E|. The transformation is made using
valid swap operations defined as follows:

Definition 5. Consider a graph Ĝi(V, Êi). A valid swap

operation is defined by four vertices i, j, k and l of Ĝi(V, Êi)

such that (i, k) ∈ Êi and (j, l) ∈ Êi and (i, j) /∈ Êi and

(k, l) /∈ Êi, or, (i, l) /∈ Êi and (j, k) /∈ Êi. A valid swap

operation transforms Ĝi to Ĝi+1 by updating the edges as
follows

Êi+1 ← Êi \ {(i, k), (j, l)} ∪ {(i, j), (k, l)} , or

Êi+1 ← Êi \ {(i, k), (j, l)} ∪ {(i, l), (j, k)} .

A visual illustration of the swap operation is shown in
Figure 2. It is clear that performing valid swaps on a graph
leaves the degree sequence of the graph intact. The pseu-
docode for the Greedy_Swap algorithm is given in Algorithm 3.
At each iteration of the algorithm, the swappable pair of
edges e1 and e2 is picked to be swapped to edges e′1 and
e′2. The selection among the possible valid swaps is made so
that the pair with the maximum (c) increase in the edge in-
tersection is picked. The Greedy_Swap algorithm halts when
there are no more valid swaps that can increase the size of
the edge intersection.

Algorithm 4 gives the pseudocode of the whole process of
solving the Relaxed Graph Construction problem when

OR

ki

j l

ki

j lki

j l

Figure 2: The swap transformation.

Algorithm 3 The Greedy_Swap algorithm.

Input: An initial graph Ĝ0(V, Ê0) and the input graph
G(V, E).

Output: Graph Ĝ(V, Ê) with the same degree sequence

as Ĝ0, such that Ê ∩ E ≈ E.

1: Ĝ(V, Ê) ← Ĝ0(V, Ê0)

2: (c, (e1, e2, e
′
1, e

′
2)) = Find_Max_Swap(Ĝ)

3: while c > 0 do
4: Ê = Ê \ {e1, e2} ∪ {e′1, e′2}
5: (c, (e1, e2, e

′
1, e

′
2)) = Find_Max_Swap

6: return Ĝ

the degree sequence d̂ is realizable. The first step involves
a call to the ConstructGraph algorithm, which we have de-
scribed in Section 5.1, Algorithm 1. The ConstructGraph

algorithm will return a graph Ĝ0 with degree distribution d̂.
The Greedy_Swap algorithm is then invoked with input the

constructed graph Ĝ0. The final output of the process is a

k-degree anonymous graph that has degree sequence d̂ and
large overlap in its set of edges with the original graph.

A naive implementation of the algorithm would require

time O(I|Ê0|2), where I is the number of iterations of the

greedy step and |Ê0| the number of edges in the input graph

graph. Given that |Ê0| = O(n2), the running time of the
Greedy_Swap algorithm could be O(n4), which is daunting
for large graphs. However, we employ a simple sampling
procedure that considerably improves the running time. In-
stead of doing the greedy search over the set of all pos-
sible edges, we uniformly at random pick a subset of size

O(log|Ê0|) = O(log n) of the edges and run the algorithm
on those. This reduces the running time of the greedy algo-
rithm to O(I log2 n), which makes it efficient even for very
large graphs. As we show in our experimental evaluation,
the Greedy_Swap algorithm performs very well in practice,

even in cases where it starts with graph Ĝ0 that shares small
number of edges with G.
The Probing Scheme for Greedy_Swap: As in the case
of the Supergraph algorithm, it is possible that the Con-

structGraph algorithm outputs a “No” or “Unknown”. In
this case we invoke a Probing procedure identical to the one
we have described in Section 5.3.

6.2 The Priority algorithm
We additionally show a simple modification of the Con-

structGraph algorithm that allows the construction of de-
gree anonymous graphs with similar high edge intersection
with the original graph directly, without using Greedy_Swap.
We call this algorithm the Priority algorithm because dur-
ing the graph-construction phase, it gives priority to already
existing edges in the input graph G(V, E). The intersec-

Algorithm 4 An overall algorithm for solving the Relaxed
Graph Construction problem; the realizable case.

Input: A realizable degree sequence d̂ of length n.

Output: A graph Ĝ(V, E′) with degree sequence d̂ and
E ∩ E′ ≈ E.

1: Ĝ0 = ConstructGraph(d̂)

2: Ĝ = Greedy_Swap(Ĝ0)

tions we obtain using the Priority algorithm are compara-
ble, if not better, to the intersections we obtain using the
Greedy_Swap algorithm. However, the Priority algorithm
is less computationally demanding than the naive implemen-
tation of the Greedy_Swap procedure.

The Priority algorithm is similar to the ConstructGraph.
Recall that the ConstructGraph algorithm at every step

picks a node v with residual degree d̂(v) and connects it

to d̂(v) nodes with the highest residual degree. Priority

works in a similar manner with the only difference that it

makes two passes over the sorted degree sequence d̂ of the
remaining nodes. In the first pass, it considers only nodes

v′ such that d̂(v′) > 0 and edge (v, v′) ∈ E. If there are

less that d̂(v) such nodes it makes a second pass consider-

ing nodes v′ such that d̂(v′) > 0 and edge (v, v′) /∈ E. In
that way Priority tries to connect node v to as many of
his neighbors in the input graph G. The graphs thus con-
structed share lots of edges with the input graph. In terms
of running time, the Priority algorithm is the same as Con-
structGraph.

In the case where Priority fails to construct a graph
by reaching a dead-end in the edge-allocation process, the
Probing scheme is employed; and random noise addition is
enforced until the Priority algorithm outputs a valid graph.

7. EXPERIMENTS
In this section we evaluate the performance of the pro-

posed graph-anonymization algorithms.

7.1 Datasets
We use both synthetic and real-world datasets. For the

experiments with synthetic datasets, we generate random,
small-world and scale-free graphs.

Random graphs: Random graphs are graphs with nodes
randomly connected to each other with probability p. Given
the number of nodes n and the parameter p, a random graph
is generated by creating an edge between each pair of nodes
u and v with probability p. We use GR to denote the family
of graphs generated by this data-generation model and GR

to denote a member of the family.
Small-world graphs: A small-world graph is a type of

graph in which most nodes are not neighbors of one an-
other, but most nodes can be reached from every other by
a small number of hops. This kind of graphs have large
clustering coefficient (CC) that is significantly higher than
expected by random chance, and small average path length
(APL) that is close to that of an equivalent random graph.
The average path length is defined as the average length of
the shortest path between all pairs of reachable nodes. The
clustering coefficient is defined as the average fraction of
pairs of neighbors of a node that are also connected to each
other. These two indices, along with the degree distribu-

tion, are considered as standard measures in graph-analysis
studies. We generate small-world graphs using the model
proposed in [16]. We denote by GW the family of graphs gen-
erated by this model and GW the members of this family.
The data-generation process is controlled by a parameter
α that determines the extent to which the graph exhibits
community structure. Values of α in the range [5, 7] gen-
erate small-world graphs. We have additionally conducted
experiments with small-world graphs generated using the al-
ternative model proposed in [17]. However, since the results
we obtained are very similar to the results obtained by us-
ing graphs in GW , we do not report them here due to space
limitations.

Scale-free graphs: The scale-free graphs correspond to
graphs with power-law degree distribution. In a power-law
graph the probability that a node has degree d is propor-
tional to d−γ . The power-law distribution is determined by
the exponent γ. The value of γ may vary, taking values be-
tween 2 and 3 for most real networks. We use the model
proposed by Barabási and Albert [3] to generate scale-free
graphs. The graph-generation process proceeds by inserting
nodes sequentially. Each new node is initially connected to `
already existing nodes with probability proportional to their
degree. We use GBS to denote the family of graphs generated
by this model and GBS to denote members of the family.

The structures of the graphs in GW and GBS are different:
graphs in GW do not exhibit power-law degree distributions
while graphs in GBS have small clustering coefficient.

For the real-world data, we use the prefuse, the enron,
the powergrid and the co-authors graphs.

Prefuse graph: This graph is used as an example of
small social network in the Prefuse project. The graph is
available at the project’s web page: http://prefuse.org/

and it consists of 129 nodes.
Enron graph: The Enron email graph (available at http:

//www.cs.cmu.edu/enron/) is derived from a corpus of emails
sent to and from managers at Enron Corporation. This data
was originally made public by the Federal Energy Regula-
tory Commission. The dataset contains 151 users. An edge
between two users is added if they have corresponded at
least five times.

Powergrid graph: In this graph, the nodes represent
generators, transformers and substations in a powergrid net-
work; the edges represent high-voltage transmission lines be-
tween them. The dataset is available at http://www.cs.

helsinki.fi/u/tsaparas/MACN2006/.
Co-authors graph: The co-authors dataset consists of

7955 authors of papers in database and theory conferences
and it is available at the collection of Computer Science Bib-
liographies at http://liinwww.ira.uka.de/bibliography/.
The co-authors graph is constructed by creating undirected
edges between authors that have co-authored paper.

Table 1 summarizes the properties of the graphs we used
for our experiments. All the graphs are simple, unweighted
and undirected.

7.2 Evaluating Degree Anonymization algorithms
The goal of our first experiment is to compare the qualita-

tive performance of the Greedy and DP algorithms in solving
the Degree Anonymization problem. We report the re-
sults in terms of the performance ratio R which is the ratio
of the cost of the solution obtained by the Greedy algorithm
to the optimal cost obtained by the DP algorithm. That is,

#Nodes #Edges APL CC
GW (α = 6) 1000 5000 9.15 0.77
GR 1000 5000 3.27 0.01
GBS (γ = 3) 1000 2995 3.57 0.02
prefuse 129 161 3.17 0.44
enron 151 502 3.32 0.46
powergrid 4941 6594 9.12 0.10
co-authors 7955 10055 6.00 0.64

Table 1: Structural properties of the graphs used
for the experiments.

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k

R
 (

pe
rf

or
m

an
ce

 r
at

io
)

prefuse
enron
G

W
G

R
G

BS

Figure 3: Performance ratio (R) of the Greedy al-
gorithm with respect to the optimal DP for solv-
ing the Degree Anonymization problem; values of
k ∈ {2, 4, 6, . . . , 20}. The ratio is computed for (a)real
datasets enron and prefuse and (b) synthetic in-
stances of graphs GW ∈ GW , GBS ∈ GBS and GR ∈ GR.

R =
L1(d̂greedy−d)

L1(d̂dp−d)
, where d is the input degree sequence;

d̂greedy and d̂dp are the k-anonymous degree sequences out-
put by the Greedy and the DP algorithms respectively. Val-
ues of R close to 1 imply that the two algorithms achieve
exactly the same cost, in which case Greedy performs opti-
mally. The closer R is to 1, the better the performance of
the Greedy algorithm.

Figure 3 shows the values of R obtained for different values
of k = {2, 4, 6, . . . , 20}. We observe that in most cases, R
is very close to 1, while the largest (worst) value is no more
than 1.5. That is, the Greedy algorithm is mostly equivalent
to the DP.

7.3 Evaluating Graph Construction algorithms
In this section we evaluate the performance of Super-

graph, Priority and Greedy_Swap algorithms. The algo-
rithms for Graph Construction and its relaxed version
are evaluated together mostly because our expectations from
these algorithms are the same; we want them to output a
graph that is k-degree anonymous and it is as similar as pos-
sible to the original input graph. The k-degree anonymity
is guaranteed by construction. For evaluating the structural
similarity between the input and output graphs we use a set
of evaluation measures that we list below. We report our
results for different synthetic and real-world graphs.

Anonymization cost L1(dA − d): This is the L1 norm of
the vector of differences between the k-anonymous degree
sequence obtained using algorithm Algo with Algo ∈ { Su-

pergraph, Priority, Greedy_Swap} and the degree sequence
of the original graph. The smaller the value of L1(dA − d)
the better the qualitative performance of the algorithm. Fig-
ures 4(a), 5(a), 6(a) and 7(a) summarize the anonymiza-
tion cost of the different algorithms as a function of k =
{5, 10, 15, 20, 25, 50, 100} for synthetic datasets GW ∈ GW

with α = 6, GBS ∈ GBS, and powergrid and co-authors
data. In the plots we also report the Baseline cost, which
refers to the L1 difference between the degree sequence of
the original graph and the degree sequence obtained as a
solution to the Degree Anonymization problem. The
Baseline cost is a lower bound of the difference L1(dA − d)
for A ∈ { Supergraph, Priority, Greedy_Swap}. From the
plots we can observe that in most of the datasets the final
anonymization cost is very close to the Baseline cost, for all
three algorithms. This observation implies that in the ma-
jority of the cases, the degree sequences that are solutions
to the Degree Anonymization problem are also realizable
and, more importantly, realizable with respect to the input
graph G. Therefore, the Probing scheme seems to be rarely
invoked, or even if it is invoked, only a small number of
repetitions are required.

We note that only in the case of GBS graphs, L1(dSupergraph−
d) cost is relatively high for all values of k (see Figure 5(a)).
This is due to two reasons: 1) The degrees of graphs in
GBS have a power-law distribution. This causes large dif-
ferences among the degrees of high-degree nodes, meaning
that the degrees of high-degree nodes have to be changed
significantly in order to meet the degree-anonymous require-
ment. 2) The Supergraph algorithm constructs the degree-
anonymous graph by extending the input graph, and it is the
only of our proposed algorithms that tries to comply with all
the edge constraints imposed by the input graph. Therefore,
it can potentially add more noise than other algorithms that
build the graph from scratch.
Clustering Coefficient (CC): We additionally compare
the clustering coefficients of the anonymized graphs with the
clustering coefficients of the original graphs. Figures 4(b),
5(b), 6(b) and 7(b) summarize our findings. In all plots,
there is a constant line appearing, this corresponds to the
value of the clustering coefficient of the original graph, which
is unaffected by the value of k. Note that all the plots show
that the values of the clustering coefficient, though differ-
ent in the degree-anonymous graphs, they never deviate too
much from their original values; the largest difference in the
CC values from the original values is observed for the co-
author dataset, where the difference is 0.24 for the degree-
anonymous graph produced by the Greedy_Swap algorithm
when k = 100. But even in this case, the other two algo-
rithms output graphs with CC almost equal to that of the
original graph.

Note that there is no clear trend on how the CC changes
when the graph becomes degree anonymous. Both incre-
ments and decrements are observed, however the changes
are generally negligible.
Average Path Length (APL): Finally in Figures 4(c),
5(c), 6(c) and 7(c) we report the values of the average path
length of the degree-anonymous graphs, anonymized by our
three algorithms, for GW ∈ GW , GBS ∈ GBS, powergrid and
co-authors data and values of k = 5, 10, 15, 20, 25, 50, 100.

Supergraph Priority Greedy_Swap

GW (α = 6) 1 0.99 0.99 (0.01)
GR 1 0.99 0.99 (0.01)
GBS (γ = 3) 1 0.92 0.93 (0.04)
prefuse 1 0.87 0.83 (0.36)
enron 1 0.95 0.95 (0.16)
powergrid 1 0.99 0.97 (0.01)
co-authors 1 0.99 0.91 (0.01)

Table 2: Mean of the edge-intersection (EI) val-
ues obtained for different algorithms and differ-
ent datasets. The means for prefuse and enron
are computed over a set of different values of k =
2, 4, 6, . . . , 20. The means for other data sets are over
k = 5, 10, 15, 20, 25, 50, 100. Values in the parenthesis
are the EI when Greedy_Swap starts.

The APL of the original graph is also reported in all plots.
As expected, the anonymization process decreases the aver-
age path length of the output graph since new connections
are added.

Very similar results have been obtained for other datasets
generated using the random-graph model as well as the en-
ron and prefuse datasets. However, we omit the corre-
sponding plots due to space constraints.
Edge Intersection (EI): With the term edge intersection
we refer to the percentage of edges in the degree-anonymous
graphs that are also in the original graph. That is, given

original graph G(V, E) and degree-anonymous graph Ĝ(V, Ê)

we define the edge intersection to be EI(E, Ê) = |Ê∩E|
|E| .

This measure is used for the evaluation of the Priority and
Greedy_Swap algorithms that solve the relaxed version of the
Graph Construction problem. The value of edge intersec-
tion for the Supergraph algorithm is by construction always
1. Table 2 summarizes the values of EI for different datasets
and different algorithms. The reported values are averages
of the edge-intersection value over different values of k. The
variance of the observations is always very small; less than
10−4. It is easy to observe that both the Greedy_Swap and
Priority algorithms achieve very high-values of EI, succeed-
ing in constructing graphs that are “almost” supergraphs of
the original graph. We also list in the parenthesis the EI val-
ues of the graphs used as starting points for the Greedy_Swap
algorithm. It can be seen that the Greedy_Swap algorithm
performs extremely well even though it usually starts with
graphs with low EI values.

7.3.1 Exploring the Whole Spectrum of GW Graphs
Previous experiments demonstrate that the clustering co-

efficient and average path length are reasonably preserved
after anonymization. In Figure 8 we demonstrate this fact
even further by showing the values of CC and APL for
graphs in GW for the different values of the parameter α
that guides the data-generation process. More specifically,
the two plots in Figure 8 provide evidence that for the
whole spectrum of the values of α, the values of CC in
the anonymized graph match almost perfectly the original
graph. Similar results for APL can be observed when α ≥ 5.
One could claim that these are also the most interesting val-
ues of α since they correspond to graphs that either have
the small-world property (α ∈ [5, 7]) or are random graphs
(α > 10). Thus, for most of the interesting cases, the

5 10 15 20 25 50 100
0

200

400

600

800

1000

1200

1400

k

L 1(d
A
−

d)

Baseline
SuperGraph
Priority
Greedy_Swap

(a) L1(dA − d) as a function of k

5 10 15 20 25 50 100
0.66

0.68

0.7

0.72

0.74

0.76

0.78

k

cl
us

te
rin

g
co

ef
fic

ie
nt

Original
SuperGraph
Priority
Greedy_Swap

(b) CC as a function of k

5 10 15 20 25 50 100
3

4

5

6

7

8

9

10

k

av
er

ag
e

pa
th

 le
ng

th

Original
SuperGraph
Priority
Greedy_Swap

(c) APL as a function of k

Figure 4: Synthetic datasets: small-world graphs GW ∈ GW , with α = 6.

5 10 15 20 25 50 100
0

1000

2000

3000

4000

5000

6000

7000

8000

k

L 1(d
A
−

d)

Baseline
SuperGraph
Priority
Greedy_Swap

(a) L1(dA − d) as a function of k

5 10 15 20 25 50 100
0

0.05

0.1

0.15

0.2

0.25

k

cl
us

te
rin

g
co

ef
fic

ie
nt

Original
SuperGraph
Priority
Greedy_Swap

(b) CC as a function of k

5 10 15 20 25 50 100
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

k

av
er

ag
e

pa
th

 le
ng

th

Original
SuperGraph
Priority
Greedy_Swap

(c) APL as a function of k

Figure 5: Synthetic datasets: scale-free graphs GBS ∈ GBS.

5 10 15 20 25 50 100
0

200

400

600

800

1000

1200

k

L 1(d
A
−

d)

Baseline
SuperGraph
Priority
Greedy_Swap

(a) L1(dA − d) as a function of k

5 10 15 20 25 50 100
0.096

0.098

0.1

0.102

0.104

0.106

0.108

k

cl
us

te
rin

g
co

ef
fic

ie
nt

Original
SuperGraph
Priority
Greedy_Swap

(b) CC as a function of k

5 10 15 20 25 50 100
5

6

7

8

9

10

k

av
er

ag
e

pa
th

 le
ng

th

Original
SuperGraph
Priority
Greedy_Swap

(c) APL as a function of k

Figure 6: Real datasets datasets: powergrid data.

5 10 15 20 25 50 100
0

500

1000

1500

2000

2500

3000

3500

4000

k

L 1(d
A
−

d)

Baseline
SuperGraph
Priority
Greedy_Swap

(a) L1(dA − d) as a function of k

5 10 15 20 25 50 100
0.4

0.45

0.5

0.55

0.6

0.65

k

cl
us

te
rin

g
co

ef
fic

ie
nt

Original
SuperGraph
Priority
Greedy_Swap

(b) CC as a function of k

5 10 15 20 25 50 100
4

4.5

5

5.5

6

k

av
er

ag
e

pa
th

 le
ng

th

Original
SuperGraph
Priority
Greedy_Swap

(c) APL as a function of k

Figure 7: Real datasets datasets: co-authors data.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

α

cl
us

te
rin

g
co

ef
fic

ie
nt Original

SuperGraph
Priority
Greedy_Swap

2 4 6 8 10 12 14
0

5

10

15

20

25

30

α

av
er

ag
e

pa
th

 le
ng

th

Original
SuperGraph
Priority
Greedy_Swap

Figure 8: Clustering coefficient and average path
length for the whole spectrum of GW graphs (k = 10,
#Nodes = 1000).

anonymization process does not spoil the properties of the
input graph, and studying of the anonymized versions of the
networks is expected to give valid results.

For small values of α (α < 5), the input graph tends to
have a overwhelmingly large number of small, isolated, and
densely connected components. Most of the nodes can only
be reached by nodes outside their community via delegates
of the connected components, which we call the “hub”. In
other words, most shortest paths between nodes are through
the hubs. Since these hubs usually have high degrees, the
anonymization process tries to anonymize them by adding
edges from the them to nodes in other connected compo-
nents. In that way, the degree-anonymous graph obtained
have much smaller values of APL when compared to the
input graph.

The results shown in Figure 8 correspond to k = 10, how-
ever the trends are similar for other values of k as well.

7.3.2 Exploring the Scale-free Graphs
Previous work on the analysis of complex networks has

shown that many of the real-world graphs are scale free,
i.e., their node degrees follow a power-law distribution. In
this section we demonstrate that our anonymization frame-
work does not destroy the power-law property of the origi-
nal graph if k is not too big. That is, if the input graph
has a power-law degree distribution, so does the degree-
anonymous version of it.

In Table 3, we report the values of the estimated exponent
(γ) of the power-law distribution of the original co-authors
data and its degree-anonymous counterpart. The new γ val-
ues exhibit high degree of similarity to the original one for
k < 15. For large values of k, a great amount of the nodes
in the anonymized graph will have the same degree, and the
power-law distribution will change. We claim that this is a
natural result for any degree-anonymization algorithm.

8. EXTENSIONS: SIMULTANEOUS EDGE
ADDITIONS AND DELETIONS

So far we have restricted ourselves to edge-additions (or
deletions) only. In this section, we show how to extend our
framework to allow simultaneous edge additions and dele-
tions. Note that our intention is not to provide a compre-
hensive algorithmic solution for this extended version of the
problem. Our goal is just to show that the framework we
developed in the previous sections can be used to solve this
generalized problem.

Similar to what we have discussed before, given an in-
put graph G(V, E) with degree sequence d, we proceed as

γ
Supergraph Priority Greedy_Swap

original 2.07 2.07 2.07
k = 10 2.26 2.26 2.26
k = 15 2.13 2.13 2.13
k = 20 1.97 1.97 1.97
k = 25 1.83 1.83 1.83
k = 50 1.57 1.57 1.57
k = 100 1.22 1.22 1.22

Table 3: Real dataset: co-authors graph. Value of
the exponent (γ) of the power-law distribution of
the original and the k-degree anonymous graph ob-
tained using Supergraph, Priority and Greedy_Swap al-
gorithms, for k = 10, 15, 20, 25, 50, 100.

follows:

1. First produce a k-degree anonymous sequence d̂ from

d, such that L1(d̂− d) is minimized.

2. Then construct graph Ĝ(V, Ê) with degree sequence d̂

such that E ∩ Ê is as large as possible.

Step 1 is different from before since the degrees of the

nodes in d̂ can either increase or decrease when compared
to their original values in d. Despite this complication, it is
easy to show that a dynamic-programming algorithm similar
to the one developed in Section 4 can be used to find such

a d̂ that minimizes L1(d̂− d).
The only difference is in the evaluation of I (d[i, j]) that

corresponds to the L1 cost of putting all nodes i, i+1, . . . , j
in the same anonymized group. Note that the indices cor-
respond to the ordering of the nodes in decreasing order of
their degree in d. In this case,

I (d [i, j]) =

j∑

`=i

|d∗ − d(`)| , (7)

where d∗ is the degree d such that

d∗ = arg min
d

j∑

`=i

|d− d(`)|.

From [11] we know that d∗ is the median of the values
{d(i), . . .d(j)}, and therefore given i and j, computing the
cost I (d[i, j]) can be done optimally in linear time (see [5]
for details).

As before, the dynamic-programming algorithm requires
the evaluation of Recursion (4), where I((d[i, j])) is com-
puted as shown in Equation (7). If the values of I (d[i, j]) are
precomputed, then the computation of the recursion takes
time O(nk).

Note that again, I (d[i, j]) need not be computed for all
pairs of indices i, j; for every i it is enough to consider the j’s
for which k ≤ j−i+1 ≤ 2k−1. Therefore, the preprocessing
step also takes O(nk). Thus, step 1 requires total O(nk)
time to be solved optimally using dynamic programming.

As in Section 4, a greedy (non-optimal) algorithm can be
used for solving step 1. This greedy algorithm is very similar
to the one described in Section 4, an its detailed description
is omitted. We only note here, that its running time is also
O(nk). At every greedy step the cost of adding a new point

to the last group needs to be evaluated. The addition of
such a new point makes the group size be either even or odd
number. However, it is easy to show that in the first case
the median of the points shifts one position to the right,
but the only update to the cost is due to the lastly added
point. In the second case, the median remains the same
and again the only update in the cost is due to the lastly
added point. Therefore, the computation of the merging
cost requires constant time. For reasons we have discussed
in the previous paragraph the cost of starting a new segment
is also done in constant time (given a preprocessing step).
Therefore, the total running time of the greedy algorithm is
also O(nk).

For Step 2 we consider the Greedy_Swap algorithm of Sec-
tion 6.1. Recall that Greedy_Swap constructs an initial graph

Ĝ0(V, Ê0) from a given degree sequence d̂. Then it trans-

forms Ĝ0 into Ĝ(V, Ê) with degree sequence dĜ = d̂ = dĜ0

and Ê ∩ E ≈ E. This algorithm implicitly allows for both
edge-additions and edge-deletions. Thus, we adopt this al-
gorithm for solving Step 2. For simplicity, we call the combi-
nation of the new dynamic programming and Greedy_Swap

the Simultaneous_Swap algorithm.
We performed the same set of experiments as what we

have done in the previous section. Due to space constraints,
we cannot report all the results. We only compare the qual-
ity of the graphs produced by the old Greedy_Swap and the
new Simultaneous_Swap. Tables 4 and 5 briefly summarize
these results. From Table 4 we can observe that, for all
values of k = 10, 15, 20, 25, 50, 100, the exponent (γ) of the
power-law distribution of the k-degree anonymous graph ob-
tained by Simultaneous_Swap is much closer to that from
the original graph than the one obtained by the Greedy_Swap
algorithm. This tells us that the new algorithm better pre-
serves the power-law properties of the co-authors graph.
In Table 5, it can be seen that the L1 cost incurred by the
new algorithm is only about 1/3 of the cost by the old al-
gorithm for all the four datasets and all values of k. In the
meantime, the clustering coefficient (CC) and average path
length (APL) of the new anonymized graph are much closer
to the original ones. These results show that, by allowing
simultaneous edge additions and deletions, we can produce a
k-degree anonymous graph with much lower cost and much
higher quality.

γ
Greedy_Swap Simultaneous_Swap

original 2.07 2.07
k = 10 2.26 2.45
k = 15 2.13 2.33
k = 20 1.97 2.28
k = 25 1.83 2.25
k = 50 1.57 2.05
k = 100 1.22 1.92

Table 4: Real dataset: co-authors graph. Value of
the exponent (γ) of the power-law distribution of the
original and the k-degree anonymous graph obtained
using Greedy_Swap and Simultaneous_Swap algorithms,
for k = 10, 15, 20, 25, 50, 100.

L̃1 C̃C ÃPL
GW (α = 6) 0.22 (0.0049) 0.62 (0.0247) 0.43 (0.0162)
GBS (γ = 3) 0.28 (0.0216) 0.09 (0.0008) 0.34 (0.0318)
powergrid 0.36 (0.0755) 0.69 (0.0744) 0.74 (0.0242)
co-authors 0.27 (0.0047) 0.94 (0.0063) 0.34 (0.0351)

Table 5: Graph-quality improvement obtained by
the Simultaneous_Swap algorithm in terms of the L1

cost, clustering coefficient and average path length.

L̃1 is defined as the average of
L1(dSimultaneous Swap−d)

L1(dGreedy Swap−d)
over

k = 5, 10, 15, 20, 25, 50. C̃C is defined as the average

of
|CCSimultaneous Swap−CCoriginal|
|CCGreedy Swap−CCoriginal| over k. ÃPL is defined as

the average of
|APLSimultaneous Swap−APLoriginal|
|APLGreedy Swap−APLoriginal| over k. The

closer these values are to 0, the better the perfor-
mance of the Simultaneous_Swap. Values in the paren-
thesis are the variance.

9. CONCLUSIONS
The degree of a node in a graph, among other structural

characteristics, can to a large extent distinguish the node
from other nodes. In this paper, we studied a specific graph-
anonymity notion that prevents the re-identification of indi-
viduals by an attacker with certain prior knowledge of the
degrees. We formally defined the Graph Anonymization
problem that, given an input graph asks for the minimum
number of edge additions (or deletions) that allow the trans-
formation of the input to a degree-anonymous graph; i.e.,
a graph in which every node shares the same degree with
k − 1 other nodes. We decomposed this problem into two
subproblems and proposed simple and efficient algorithms
for solving them. We applied our algorithms to a set of
synthetic and real-world graph data and demonstrated the
utility of the degree-anonymous graphs as well as the effi-
ciency of our methods. Finally, we extended our algorithms
to allow simultaneous edge additions and deletions.

Before concluding this paper, we would like to note that,
compared with existing data anonymization and perturba-
tion techniques for tabular data, dealing with graphs is a
much more challenging task. In tabular data, each tuple
can be viewed as an independent sample from some distri-
bution. However, in a graph, all the nodes and edges are
correlated; a single change of an edge and/or a node can
spread across the whole network. Moreover, in graphs it is
difficult to model the capability of an attacker. Any topolog-
ical structure of the graph can be potentially used to derive
private information. Finally, it is difficult to measure the
utility of a graph. We are not aware of any effective metrics
to quantify the information loss incurred by the changes of
its nodes and edges.

In this paper, we tried to address some of these issues
using simple and intuitive notions. Lots of additional work
needs to be done in order to develop theoretically and prac-
tically sound privacy models for graphs.

Acknowledgments
We would like to thank Ken Clarkson for pointing out a
faster O(n) time dynamic-programming algorithm for eval-
uating Recursion (4).

10. REFERENCES
[1] Aggarwal, C. C., and Yu, P. S. Privacy-Preserving

Data Mining: Models and Algorithms, vol. 34 of
Advances in Database Systems. Springer, 2008.

[2] Backstrom, L., Dwork, C., and Kleinberg, J. M.
Wherefore art thou R3579X?: Anonymized social
networks, hidden patterns, and structural
steganography. In Proceedings of the 16th
International Conference on World Wide Web
(WWW’07) (Alberta, Canada, May 2007),
pp. 181–190.

[3] Barabási, A.-L., and Albert, R. Emergence of
scaling in random networks. Science 286, 5439
(October 1999), 509–512.

[4] Bayardo, R. J., and Agrawal, R. Data privacy
through optimal k-anonymization. In Proceedings of
the 21st International Conference on Data Engineering
(ICDE’05) (Tokyo, Japan, April 2005), pp. 217–228.

[5] Cormen, T., Leiserson, C., and Rivest, R.
Introduction to Algorithms. MIT Press, 1990.

[6] Erdös, P., and Gallai, T. Graphs with prescribed
degrees of vertices. Mat. Lapok (1960).

[7] Frikken, K. B., and Golle, P. Private social
network analysis: How to assemble pieces of a graph
privately. In Proceedings of the 5th ACM Workshop on
Privacy in Electronic Society (WPES’06) (Alexandria,
VA, 2006), pp. 89–98.

[8] Getoor, L., and Diehl, C. P. Link mining: a
survey. ACM SIGKDD Explorations Newsletter 7, 2
(2005), 3–12.

[9] Hakimi, S. L. On realizability of a set of integers as
degrees of the vertices of a linear graph. Journal of the
Society for Industrial and Applied Mathematics 10, 3
(1962), 496–506.

[10] Hay, M., Miklau, G., Jensen, D., Weis, P., and
Srivastava, S. Anonymizing social networks.
Technical report, University of Massachusetts
Amherst, 2007.

[11] Lee, Y.-S. Graphical demonstration of an optimality
property of the median. The American Statistician 49,
4 (November 1995), 369–372.

[12] Machanavajjhala, A., Gehrke, J., Kifer, D.,
and Venkitasubramaniam, M. l-diversity: Privacy
beyond k-anonymity. In Proceedings of the 22nd
International Conference on Data Engineering
(ICDE’06) (Atlanta, GA, April 2006), p. 24.

[13] Meyerson, A., and Williams, R. On the
complexity of optimal k-anonymity. In Proceedings of
the Twenty-third ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems
(PODS’04) (Paris, France, 2004), pp. 223–228.

[14] Pei, J., and Zhou, B. Preserving privacy in social
networks against neighborhood attacks. In Proceedings
of the 24th International Conference on Data
Engineering (ICDE’08) (Cancun, Mexico, April 2008).

[15] Samarati, P., and Sweeney, L. Generalizing data
to provide anonymity when disclosing information. In
Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’98) (Seattle, WA, 1998),
p. 188.

[16] Watts, D. J. Networks, dynamics, and the
small-world phenomenon. American Journal of
Sociology 105, 2 (September 1999), 493–527.

[17] Watts, D. J., and Strogatz, S. H. Collective
dynamics of small-world networks. Nature 393, 6684
(June 1998), 409–410.

[18] Ying, X., and Wu, X. Randomizing social networks:
a spectrum preserving approach. In Proceedings of
SIAM International Conference on Data Mining
(SDM’08) (Atlanta, GA, April 2008).

[19] Zheleva, E., and Getoor, L. Preserving the
privacy of sensitive relationships in graph data. In
Proceedings of the International Workshop on Privacy,
Security, and Trust in KDD (PinKDD’07) (San Jose,
CA, August 2007).

