
Introduction to MPI
Parallel Programming with the

Message Passing Interface

Professor: Panagiota Fatourou
TA: Eleftherios Kosmas

CSD - March 2012

Message Passing Model

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 2

process: a program counter and an address space
may have multiple threads (program counters and associated stacks)
sharing a single address space

MPI: communication among processes, which have separate address
spaces
Interprocess communication consists of

Synchronization
Movement of data from one process’s address space to another’s

Types of Parallel Computer Models

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 3

Data Parallel - the same instructions are
carried out simultaneously on multiple data
items (SIMD)

Task Parallel - different instructions on
different data (MIMD)

SPMD (single program/process, multiple data)
execute the same program at independent points,
not in the lockstep that SIMD imposes on
different data

Message Passing (and MPI) is for MIMD/SPDM parallelism

Cooperative Operations for
Communication

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 4

The message-passing approach makes the exchange of data
cooperative

Data is explicitly sent by one process and received by another
any change in the receiving process’s memory is made with the
receiver’s explicit participation

communication and synchronization are combined

Process 0 Process 1

Send(data)

Receive(data)

One-Sided Operations for
Communication

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 5

One-sided operations between processes include remote memory
reads and writes

Only one process needs to explicitly participate
communication and synchronization are decoupled

One-sided operations are part of MPI-2

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)

What is MPI?

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 6

A message-passing library specification
extended message-passing model
not a language or compiler specification
not a specific implementation or product

For parallel computers, clusters, and heterogeneous networks

Designed to provide access to advanced parallel hardware for
end users
library writers
tool developers

Why use MPI?

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 7

MPI provides a powerful, efficient, and portable way to express
parallel programs
MPI was explicitly designed to enable libraries…
… which may eliminate the need for many users to learn (much of)
MPI

How to use MPI?

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 8

The MPI-1 Standard does not specify how to run an MPI program
it is dependent on the implementation of MPI you are using
might require various scripts, program arguments, and/or environment
variables

So, MPI-1 does not provide mechanisms to manipulate processes
Note: related functions have been added to MPI-2, e.g.,
MPI_Comm_Spawn()

most implementations use some external application, e.g., mpirun
in order to create 10 processes that execute the same program myprog,
we execute:

mpirun -np 10 myprog

A Minimal MPI Program (C)
#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);
printf("Hello, world!\n");
MPI_Finalize();
return 0;

}

All process must use
MPI_Init, to initialize the MPI execution environment
MPI_Finalize, to finalize it

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 9

MPI Basic Send/Receive

We need to fill in the details in

Things that need specifying:
How will “data” be described?
How will processes be identified?
How will the receiver recognize/screen messages?
What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 10

What is message passing?

Data transfer plus synchronization

• Requires cooperation of sender and receiver
• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 11

Some Basic Concepts
Processes can be collected into groups
Each message is sent in a context, and must be received in the
same context
A group and context together form a communicator

There is a default communicator whose group contains all initial
processes, called MPI_COMM_WORLD

A process is identified by its rank in the group associated with a
communicator

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 12

Finding Out About the Environment
Two important questions that arise early in a parallel program are:

How many processes are participating in this computation?
Which one am I?

MPI provides functions to answer these questions
If we create n processes, then in each of them will be assigned a
unique identifier from 0,1,…,n-1
MPI_Comm_size (comm, &size)

reports the number of processes
comm, MPI_COMM

MPI_Comm_rank (comm, &rank)

reports the rank, a number between 0 and size-1, identifying the
calling process

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 13

Better Hello (C)
#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);

MPI_Finalize();
return 0;

}

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 14

MPI Datatypes
The data in a message to sent or received is described by a triple
(address, count, datatype), where
An MPI datatype is recursively defined as:

predefined, corresponding to a data type from the language (e.g.,
MPI_INT, MPI_DOUBLE_PRECISION)
a contiguous array of MPI datatypes
a strided block of datatypes
an indexed array of blocks of datatypes
an arbitrary structure of datatypes

There are MPI functions to construct custom datatypes, e.g.,
an array of (int, float) pairs, or
a row of a matrix stored columnwise

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 15

MPI Tags

Messages are sent with an accompanying user-defined integer tag
assist the receiving process in identifying the message

Messages
can be screened at the receiving end by specifying a specific tag,
or not screened by specifying MPI_ANY_TAG as the tag in a receive

Note:
Some non-MPI message-passing systems have called tags “message
types”
MPI calls them tags to avoid confusion with datatypes.

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 16

MPI Basic (Blocking) Send

MPI_SEND (&buf, count, datatype, dest, tag, comm)

the message buffer is described by (buf, count, datatype)
the target process is specified by dest, which is the rank of the
target process in the communicator specified by comm
blocks until

the data has been delivered to the system and the buffer can be
reused

when it returns,
the message may not have been received by the target process

datatype, MPI_Datatype

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 17

MPI Basic (Blocking) Receive
MPI_RECV (&buf, count, datatype, source, tag, comm,

status)

Blocks until
a matching (on source and tag) message is received from the system, and
the buffer can be used

source is rank in communicator specified by comm, or
MPI_ANY_SOURCE.
status contains further information
Receiving fewer than count occurrences of datatype is OK,

but receiving more is an error

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 18

Retrieving Further Information

status is a data structure allocated in the user’s program

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ...,

&status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 19

Example

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 20

#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
dest = 1;
source = 1;
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD,

&Stat);
} ...

Example

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 21

...
else if (rank == 1) {

dest = 0;
source = 0;
rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag,

MPI_COMM_WORLD, &Stat);
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag,

MPI_COMM_WORLD);
}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);
printf("Task %d: Received %d char(s) from task %d with tag %d \n",

rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

MPI_Finalize();
}

Why Datatypes?
all data are labeled by type
an MPI implementation can support heterogeneous
communication, between processes on machines with

different memory representations
e.g., Little-Endian, Big-Endian

lengths of elementary datatypes
Specifying application-oriented layout of data in memory

reduces memory-to-memory copies in the implementation
allows the use of special hardware (scatter/gather) when
available

the process of gathering data from, or scattering data into, a given
set of buffers

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 22

Tags and Contexts
Separation of messages used to be accomplished by use of tags, but

this requires libraries to be aware of tags used by other
libraries.
this can be defeated by use of “wild card” tags

Contexts are different from tags
no wild cards allowed
allocated dynamically by the system when a library sets up a
communicator for its own use

User-defined tags still provided in MPI for user convenience in
organizing application
MPI_Comm_split creates new communicators

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 23

MPI is Simple
Many parallel programs can be written using just these six
functions, only two of which are non-trivial:

MPI_INIT

MPI_FINALIZE

MPI_COMM_SIZE

MPI_COMM_RANK

MPI_SEND

MPI_RECV

Point-to-point (send/recv) isn’t the only way...

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 24

Collective Operations in MPI
Collective operations are called by all processes in a
communicator
MPI_BCAST (&buf, count, datatype, root, tag, comm)

distributes data from one process (root) to all others in the
communicator comm

MPI_REDUCE (&sendBuf, &recvBuf, count, datatype,
op, root, comm)

combines data from all processes in communicator (comm) and
returns it to one process (root)
applies operation op (MPI_Op)

e.g., MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD, MPI_MAXLOC

In many numerical algorithms, SEND/RECEIVE can be replaced
by BCAST/REDUCE, improving both simplicity and efficiency.

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 25

Example - PI

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 26

#include <mpi.h>
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[]) {
int n, myid, numprocs, i;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (1) {

if (myid == 0) {
printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
...

Example - PI

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 27

...
if (n == 0) break;
else {

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));

}
}
MPI_Finalize();
return 0;

}

Collective Operations in MPI
MPI_Allreduce (&sendBuf, &recvBuf, count, datatype,
op, comm)

combines data from all processes in communicator (comm) and send
the to all processes

MPI_Op_create (&function, commute, &op)
creates a user-defined combination function handle
function, MPI_User_Function
commute, integer, equals 1 if operation is commutative

where the operation is: b[i] = a[i] op b[i], for i=0,...,len-1

MPI_Op_free (&op)
frees a user-defined combination function handle

typedef void (MPI_User_function) (void *a,

void *b, int *len, MPI_Datatype *);

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 28

Send a large message from process 0 to process 1
If there is insufficient storage at the destination, the send
must wait for the user to provide the memory space
(through a receive)

What happens with

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This is called “unsafe” because it depends on the
availability of system buffers

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 29

Some Solutions to the “unsafe” Problem
Order the operations more carefully:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Use non-blocking operations:

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 30

MPI Non-Blocking Send/Recv

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 31

MPI_Isend (&buf, count, datatype, dest, tag, comm,
&request)

MPI_Irecv (&buf, count, datatype, source, tag, comm,
&request)

change: status of MPI_Recv is missing
request, MPI_Request, is used in order to examine if operation is
completed

MPI_Test(&request, &flag, &status)

non-blocking
flag, integer, equals 1 if operation is completed

MPI_Wait(&request, &status)

blocking

MPI Non-Blocking Send/Recv

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 32

MPI_Testany (count, &array_of_requests, &index,
&flag, &status)

tests for completion of any previously initiated communication
non-blocking
count, list length
index, index of operation completed, or MPI_UNDEFINED if none
completed
flag, equals 1 if one of the operation is completed

MPI_Waitany (count, &array_of_requests, &index,
&status)

blocking

Useful MPI Functions

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 33

MPI_Barrier (comm)
blocks the caller until all group members have called it
it returns at any process only after all group members have entered the
call

MPI_Get_processor_name (&name, &len)
a process can get the name of the processor
name, must be an array of size at least MPI_MAX_PROCESSOR_NAME
len, length of the name

MPI_Wtime()
Time in seconds since an arbitrary time in the past

MPI_Wtick()
returns the resolution of MPI_Wtime() in seconds

Error Handling
By default, an error causes all processes to abort

a default error handler is called that aborts the MPI job
The user can cause routines to return (with an error code) instead
A user can also write and install custom error handlers

MPI_Errhandler_set

The reduction function (e.g., MPI_MAX) do not return an error
value. Upon an error,

either call MPI_Abort, or
silently skip the problem

Libraries might want to handle errors differently from
applications

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 34

Extending the Message-Passing Interface

Dynamic Process Management
Dynamic process startup

e.g., MPI_Comm_spawn(), MPI_Comm_get_parent()
Dynamic establishment of connections

e.g., MPI_Comm_connect(), MPI_Comm_accept(), MPI_Open_port(),
MPI_Close_port(), MPI_Publish_name(), MPI_Unpublish_name(),
MPI_Lookup_name()

Similar to TCP/IP sockets / DNS lookups
MPI_Comm_join()
MPi_Comm_disconnect()

One-sided communication
MPI_Put() / MPI_Get()
MPI_Win_create(), MPI_Win_fence(), Mpi_Win_free()

Parallel I/O
e.g., MPI_File_open(), MPI_File_read_at(),
MPI_File_write_at(), MPI_File_set_atomicity()

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 35

Compiling and Executing

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 36

Create a file hosts including the names of host machines

milo:~/CS556/mpi> mpicc pi.c -o pi
milo:~/CS556/mpi> cat hosts
milo
fraoula
milo:~/CS556/mpi> mpirun -np 10 -hostfile hosts pi
Enter the number of intervals: (0 quits) 100000
pi is approximately 3.1415926535981269, Error is

0.0000000000083338
Enter the number of intervals: (0 quits) 0

Configuring

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 37

First time setup your ssh public keys, to login to the nodes without
password
i. ssh-keygen -t dsa

ii. into .ssh directory make: cat id_dsa.pub >
authorized_keys

Also it is recommended to login once to each node that you will use
with mpi

More information?

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 38

http://www.mcs.anl.gov/research/projects/mpi/

The End - Questions

CS556 - Distributed Systems MPI Tutorial by Eleftherios Kosmas 39

	Introduction to MPI�Parallel Programming with the �Message Passing Interface
	Message Passing Model
	Types of Parallel Computer Models
	Cooperative Operations for Communication
	One-Sided Operations for Communication
	What is MPI?
	Why use MPI?
	How to use MPI?
	A Minimal MPI Program (C)
	MPI Basic Send/Receive
	What is message passing?
	Some Basic Concepts
	Finding Out About the Environment
	Better Hello (C)
	MPI Datatypes
	MPI Tags
	MPI Basic (Blocking) Send
	MPI Basic (Blocking) Receive
	Retrieving Further Information
	Example
	Example
	Why Datatypes?
	Tags and Contexts
	MPI is Simple
	Collective Operations in MPI
	Example - PI
	Example - PI
	Collective Operations in MPI
	Sources of Deadlocks
	Some Solutions to the “unsafe” Problem
	MPI Non-Blocking Send/Recv
	MPI Non-Blocking Send/Recv
	Useful MPI Functions
	Error Handling
	Extending the Message-Passing Interface
	Compiling and Executing
	Configuring
	More information?
	The End - Questions

