
Introduction to
Concurrent Programming Using

Processes and Pthreads

Professor: Panagiota Fatourou
TA: Eleftherios Kosmas

CSD - March 2012

Process

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 2

A process is an instance of a program that is being executed
It consists of, or it owns: (PCB - Process Control Block)

an executable machine code
memory (some private address space)

input and output data
call stack: keeps track of active subroutines

function parameters, return addresses, and local variables
heap: dynamically allocated memory
static data: global variables
file descriptors, socket descriptors, etc.
processor state (or context),

e.g., content of CPU registers
(Program Counter - PC, Stack Pointer - SP, numeric)

Allows program to act as if it owns the machine
Multitasking using timesharing

context switch, scheduling

Stack

Code
Static Data

Heap

PC

SP

Process
0

2N

Process - Call Stack

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 3

It is composed of stack frames
or activation records

Each stack frame
corresponds to an active
subroutine
is machine dependent

Multitasking

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 4

Parent processes create children processes by calling fork()

pid_t fork()
spawns a new child process

with separate address space
it has an exact copy of all the memory segments of the parent process
it has a new pid

returns
0 to child
the pid of the newly created child to parent

pid_t wait(int *status)
suspends execution of the calling process until one of its children
terminates
status indicates reason for termination

Multitasking

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 5

pid_t waitpid (pid_t pid, int *status, int
options)

pid=-1: any child process
pid>0: specific child process
pid=0: any child process with some process group id
options can be used to wait or to check and procced

int exit (int *status)
executed by a child process when it wants to terminate
makes status available to parent

1. #include <stdio.h> /* printf, stderr, fprintf */
2. #include <sys/types.h> /* pid_t */
3. #include <unistd.h> /* _exit, fork */
4. #include <stdlib.h> /* exit */
5. #include <errno.h> /* errno */
6.

7. int main(void)
8. {
9. pid_t pid;
10. int i;
11.

12. for (i=0; i<10; i++) {
13. /* Output from both the child and the parent process will be written to the standard output, as they both run at the same

time. */
14. pid = fork();
15. if (pid == -1) {
16. /* Error: When fork() returns -1, an error happened (for example, number of processes reached the limit). */
17. fprintf (stderr, "can't fork, error %d\n", errno);
18. exit (EXIT_FAILURE);
19. }
20. else if (pid = 0) break; /* When fork() returns 0, we are in the child process. */
21. }
22.

23. if (pid == 0) { /* When fork() returns 0, we are in the child process. */
24. ...
25. exit(0);
26. }
27. else { ... /* When fork() returns a positive number, we are in the parent process */

Multitasking - Example

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 6

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 7

1. #include <stdio.h> /* printf, stderr, fprintf */
2. #include <sys/types.h> /* pid_t */
3. #include <unistd.h> /* _exit, fork */
4. #include <stdlib.h> /* exit */
5. #include <errno.h> /* errno */
6.

7. int main(void)
8. {
9. pid_t pid;
10. for (i=0; i<10; i++) {
11. pid = fork();
12. …
13. else if (pid = 0) break; /* When fork() returns 0, we are in the child process. */
14. }

15. if (pid == 0) { /* Child process: When fork() returns 0, we are in the child process. */
16. ...
17. exit(0);
18. }
19. else { /* When fork() returns a positive number, we are in the parent process */
20. for(i=0; i<10; i++) {
21. pid_t child = wait(0);
22. printf (“Child with pid [%d] terminated\n", child);
23. }
24. }
25. return 0;
26. }

Multitasking - Example

Multitasking - Process States

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 8

Finished

Created

Multiprocessing

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 9

When applying multitasking to a multicore (multiprocessor) machine
we get multiprocessing

CPU

process 1 process 2 process 3

CPU

process 1 process 2 process 3

CPUCPU

Multitasking

Multiprocessing

Inter Process Communication (IPC)

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 10

processes do not share anything implicitly
explicit actions are required to achieve IPC

Shared
memory

segments,
pipes, open

files or
mmap’d

files

Shared
memory

segments,
pipes, open

files or
mmap’d

filesDATADATA

STACK

CODECODE

DATADATA

STACK

CODECODE

processesprocesses
Shared Memory

maintained by kernel
Shared Memory

maintained by kernel processesprocesses

Shared Memory IPC

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 11

One process will create a memory portion which other processes (if
permitted) can access

shmget(): is used to create a shared memory segment
a shared memory segment is described by a control structure (in
<sys/shm.h>)with a unique ID that points to an area of physical
memory

shmctl():
used by the original owner of a shared memory segment can assign (or
revoke) ownership to another user
used by processes with permission to perform various control functions

shmat(): attach a shared segment to a process address space
Once attached, the process can read or write to the segment

shmdt(): detach

Shared Memory IPC

1. #include <sys/types.h>
2. #include <sys/ipc.h>
3. #include <sys/shm.h>
4. ...
5. key_t key; int shmflg; int shmid; int size;
6. ...
7. key = ...; size = ...; shmflg = ...;
8. if ((shmid = shmget (key, size, shmflg)) == -1) {
9. perror("shmget: shmget failed"); exit(1);
10. }
11. else {
12. fprintf(stderr, "shmget: shmget returned %d\n", shmid); exit(0);
13. }
14. ...

int shmget(key_t key, size_t size, int shmflg):
returns the identifier of shared memory segment associated with the value
of the argument key
it is also used to get the identifier of an existing shared segment
size: the size in bytes of the requested shared memory
shmflg: specifies the initial access permissions and creation control flags

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 12

Shared Memory IPC

1. #include <sys/types.h>
2. #include <sys/ipc.h>
3. #include <sys/shm.h>
4. ...
5. int cmd; int shmid; struct shmid_ds shmid_ds;
6. ...
7. shmid = ...; cmd = ...;
8. if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == -1) {
9. perror("shmctl: shmctl failed");
10. exit(1);
11. }
12. ...

int shmctl(int shmid, int cmd, struct shmid_ds *buf):
is used to alter the permissions and other characteristics of a shared
memory segment
cmd: SHM_LOCK, SHM_UNLOCK, IPC_STAT, IPC_SET, IPC_RMID
buf: shared memory data structure to hold results

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 13

Shared Memory IPC

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 14

void *shmat(int shmid, const void *shmaddr, int shmflg):
returns a pointer, shmaddr, to the head of the shared segment associated
with a valid shmid
shmflag: flags used on attach

int shmdt(const void *shmaddr):
detaches the shared memory segment located at the address indicated by
shmaddr

1. #include <sys/types.h>
2. #include <sys/ipc.h>
3. #include <sys/shm.h>

4. static struct state {
5. int shmid; char *shmaddr; int shmflg;
6. } ap[MAXnap]; /* State of current attached segments. */
7. int nap; /* Number of currently attached segments. */
8. ...
9. char *addr; /* address work variable */
10. register int i; /* work area */
11. register struct state *p; /* ptr to current state entry */
12. ...
13. p = &ap[nap++];
14. p->shmid = ...; p->shmaddr = ...; p->shmflg = ...

Shared Memory IPC

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 15

void *shmat(int shmid, const void *shmaddr, int shmflg):
int shmdt(const void *shmaddr):

1. p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
2. if(p->shmaddr == (char *)-1) {
3. perror("shmop: shmat failed");
4. nap--;
5. }
6. else fprintf(stderr, "shmop: shmat returned %#8.8x\n", p->shmaddr);
7. ...
8. i = shmdt(addr);
9. if(i == -1) {
10. perror("shmop: shmdt failed");
11. }
12. else {
13. fprintf(stderr, "shmop: shmdt returned %d\n", i);
14. for (p = ap, i = nap; i--; p++)
15. if (p->shmaddr == addr) *p = ap[--nap];
16. }
17. ...

Shared Memory IPC - Example - Server

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 16

1. #include <sys/types.h>
2. #include <sys/ipc.h>
3. #include <sys/shm.h>
4. #include <stdio.h>

5. #define SHMSZ 27

6. main()
7. {
8. char c, *shm, *s; int shmid; key_t key;
9.

10. key = 1234;
11. shmid = shmget(key, SHMSZ, IPC_CREAT | 0666);
12. shm = shmat(shmid, NULL, 0);

13. s = shm;
14. for (c = 'a'; c <= 'z'; c++)
15. *s++ = c;
16. *s = NULL;

17. while (*shm != '*')
18. sleep(1);

19. shmctl(shmid, IPC_RMID, 0)
20. exit(0);
21. }

Shared Memory IPC - Example - Client

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 17

1. #include <sys/types.h>
2. #include <sys/ipc.h>
3. #include <sys/shm.h>
4. #include <stdio.h>

5. #define SHMSZ 27

6. main()
7. {
8. int shmid; key_t key; char *shm, *s;

9. key = 1234;
10. shmid = shmget(key, SHMSZ, 0666);
11. shm = shmat(shmid, NULL, 0);

12. for (s = shm; *s != NULL; s++)
13. putchar(*s);
14. putchar('\n');

15. *shm = '*';

16. exit(0);
17. }

Threads

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 18

A process is the heaviest unit of kernel scheduling
creating a new process is costly

data structures needed to be allocated and initialized
expensive context switch
communication among processes is costly, since it goes through the OS

IPC
overhead of system calls and copying data

A process consists of:
i. a collection of resources

the code & address space, open files, etc.
ii. a thread of execution

the current state that operates on these resources

The idea is to let multiple threads share a common address space

Threads

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 19

Threads share the same memory (global variables, heap, file descriptors, etc.)
Threads own a stack (including thread- local storage) and a copy of the
registers (including PC and SP)
Threads are executed in parallel

using time slices, in a single core machine
or really in parallel, in a multicore machine

http://upload.wikimedia.org/wikipedia/commons/a/a5/Multithreaded_process.svg

Single vs. Multi threaded

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 20

Multithreading
A way for program to split itself into multiple running tasks

CPU

process 1 process 2 process 3

CPU

process 1 process 2 process 3

CPUCPU

Multitasking

Multiprocessing

CPU

process

CPUCPU

Multithreading

Threads vs. Processes

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 22

Threads
easier to create and destroy
inter-thread communication is cheaper

can use process memory and may not need (for user-level threads) to context
switch

provide faster context switch
not secure: a thread can write the memory used by another thread

Processes
secure: one process cannot corrupt another process
inter-process communication is expensive: need to context switch

Threads

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 23

A kernel thread is the lightest unit of kernel scheduling
Each process contains at least one kernel thread

The kernel
may (on may not) assign one thread to each logical core, resulting to
different models:

1:1, Kernel-level threading
N:1, User-level threading
M:N, Hybrid threading

can swap out threads that get blocked
kernel threads take much longer than user threads to be swapped

Threads

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 24

User threads are managed and scheduled in userspace
may run on top of several kernel threads to benefit from multi-processors
fast to create and manage
can not take full advantage of multithreading

they get blocked when all of their associated kernel threads are blocked, even if there are
some user threads that are ready to run

POSIX Threads or Pthreads API

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 25

Thread management: The first class of functions
work directly on threads - creating, terminating,
joining, etc.
Mutexes: provide for creating, destroying, locking
and unlocking mutexes.
Condition variables: include functions to create,
destroy, wait and signal based upon specified
variable values.
Barriers

Pthreads - Thread Management

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 26

int pthread_create(pthread_t *thread, pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg):

thread: the actual thread object that contains pthread id
attr: attributes to apply to this thread
start_routine: the function this thread executes
arg: arguments to pass to thread function above

void pthread_exit(void *value_ptr):
terminates the thread and provides value_ptr available to any
pthread_join() call

int pthread_join(pthread_t thread, void **value_ptr):
suspends the calling thread to wait for successful termination of thread
value_ptr: data passed from the terminating thread's call to
pthread_exit()

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 27

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <pthread.h>
4.

5. #define NUM_THREADS 2

/*create thread argument struct for thr_func() */
6. typedef struct _thread_data_t {
7. int tid;
8. double stuff;
9. } thread_data_t;

10. void *thr_func(void *arg) { /* thread function */
11. thread_data_t *data = (thread_data_t *)arg;

12. printf("hello from thr_func, thread id: %d\n", data->tid);

13. pthread_exit(NULL);
14. }

Pthreads - Thread Management - Example

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 28

1. int main(int argc, char **argv) {
2. pthread_t thr[NUM_THREADS];
3. int i, rc;

/* create a thread_data_t argument array */
4. thread_data_t thr_data[NUM_THREADS];
5. for (i = 0; i < NUM_THREADS; ++i) { /* create threads */
6. thr_data[i].tid = i;
7. if ((rc = pthread_create(&thr[i], NULL, thr_func, &thr_data[i]))) {
8. fprintf(stderr, "error: pthread_create, rc: %d\n", rc);
9. return EXIT_FAILURE;
10. }
11. }

12. for (i = 0; i < NUM_THREADS; ++i) /* block until all threads complete */
13. pthread_join(thr[i], NULL);
14.

15. return EXIT_SUCCESS;
16. }

Pthreads - Thread Management - Example

Pthreads - Thread Management

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 29

int pthread_create(pthread_t *thread, pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg):

attr: attributes to apply to this thread

Attributes can be specified using the following functions:

int pthread_attr_init(pthread_attr_t *attr)

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)
int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize)
int pthread_attr_setinheritsched(pthread_attr_t *attr, int inheritsched)
int pthread_attr_setschedparam(pthread_attr_t *attr, const struct sched_param
*param)
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy)
int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope)
int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr)
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize)

Attributes can be retrieved via corresponding get functions

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 30

int pthread_mutex_init (pthread_mutex_t *mutex, const
pthread_mutexattr_t *mutexattr):

initializes mutex
attributes for the mutex can be given through mutexattr

use NULL, to specify default attributes

int pthread_mutex_lock(pthread_mutex_t *mutex)
blocks until mutex lock is acquired

int pthread_mutex_trylock(pthread_mutex_t *mutex)
non-blocking, may return without acquiring the mutex lock

int pthread_mutex_unlock(pthread_mutex_t *mutex)

Pthreads - Mutexes

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 31

1. ...
2. typedef struct _thread_data_t {
6. int tid;
7. double stuff;
8. } thread_data_t;

9. double shared_x; /* shared data between threads */
10. pthread_mutex_t lock_x; /* shared data between threads */

11. void *thr_func(void *arg) { /* thread function */
12. thread_data_t *data = (thread_data_t *)arg;

13. printf("hello from thr_func, thread id: %d\n", data->tid);

14. /* get mutex before modifying and printing shared_x */
15. pthread_mutex_lock(&lock_x);
16. shared_x += data->stuff;
17. printf("x = %f\n", shared_x);
18. pthread_mutex_unlock(&lock_x);

19. pthread_exit(NULL);
20. }

Pthreads - Mutexes - Example

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 32

1. int main(int argc, char **argv) {
2. pthread_t thr[NUM_THREADS]; int i, rc;
3. thread_data_t thr_data[NUM_THREADS];

4. shared_x = 0; /* initialize shared data */
/* initialize pthread mutex protecting "shared_x" */

5. pthread_mutex_init(&lock_x, NULL);
6.

4. for (i = 0; i < NUM_THREADS; ++i) { /* create threads */
5. thr_data[i].tid = i;
6. thr_data[i].stuff = (i + 1) * NUM_THREADS;
7. if ((rc = pthread_create(&thr[i], NULL, thr_func, &thr_data[i]))) {
8. fprintf(stderr, "error: pthread_create, rc: %d\n", rc);
9. return EXIT_FAILURE;
10. }
11. }

12. for (i = 0; i < NUM_THREADS; ++i) /* block until all threads complete */
13. pthread_join(thr[i], NULL);
14.

15. return EXIT_SUCCESS;
16. }

Pthreads - Mutexes - Example

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 33

int pthread_cond_init(pthread_cond_t *cond,
pthread_condattr_t *cond_attr):

initialized condition variable cond
attributes for cond can be given through cond_attr

use NULL, to specify default attributes

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t
*mutex)

puts the current thread to sleep, waiting on cond for mutex to be released

int pthread_cond_signal(pthread_cond_t *cond)
signals one thread out of the possibly many sleeping threads waiting on cond to
wakeup

int pthread_cond_broadcast(pthread_cond_t *cond)
signals all threads waiting on cond to wakeup

Pthreads - Condition Variables

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 34

1. void *thr_func1(void *arg) {
2. pthread_mutex_lock(&count_lock); /*thread code blocks here until MAX_COUNT is reached*/
3. while (count < MAX_COUNT)
4. pthread_cond_wait(&count_cond, &count_lock);
5. pthread_mutex_unlock(&count_lock);
6. ...
7. pthread_exit(NULL);
8. }
9.

10. /*some other thread code that signals a waiting thread that MAX_COUNT has been reached*/
11. void *thr_func2(void *arg) {
12. pthread_mutex_lock(&count_lock);
13.

14. /* some code here that does interesting stuff and modifies count */
15.

16. if (count == MAX_COUNT) {
17. pthread_mutex_unlock(&count_lock);
18. pthread_cond_signal(&count_cond);
19. }
20. else pthread_mutex_unlock(&count_lock);
21.

22. pthread_exit(NULL);
23. }

Pthreads - Condition Variables - Example

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 35

int pthread_barrier_init(pthread_barrier_t *barrier,
pthread_barrierattr_t *barrier_attr, unsigned int count)

initialized barrier
attributes for barrier can be given through barrier_attr

use NULL, to specify default attributes
count: defines the number threads that must join the barrier for the barrier to reach
completion and unblock all threads waiting at the barrier

int pthread_barrier_wait(pthread_barrier_t *barrier)

Pthreads - Barrier

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 36

pthread_kill(), can be used to deliver signals to specific threads.

pthread_self(), returns a handle on the calling thread.

pthread_equal(), compares for equality between two pthread ids

pthread_once(), can be used to ensure that an initializing function
within a thread is only run once.

Pthreads - Additional Useful Functions

Pthreads - How to compile

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 37

C : gcc -lpthread multithreaded_app.c

C++ : g++ -lpthread multithreaded_app.cxx

Other platforms and compilers may require -pthread flag instead

	Introduction to �Concurrent Programming Using �Processes and Pthreads
	Process
	Process - Call Stack
	Multitasking
	Multitasking
	Multitasking - Example
	Multitasking - Example
	Multitasking - Process States
	Multiprocessing
	Inter Process Communication (IPC)
	Shared Memory IPC
	Shared Memory IPC
	Shared Memory IPC
	Shared Memory IPC
	Shared Memory IPC
	Shared Memory IPC - Example - Server
	Shared Memory IPC - Example - Client
	Threads
	Threads
	Single vs. Multi threaded
	Multithreading
	Threads vs. Processes
	Threads
	Threads
	POSIX Threads or Pthreads API
	Pthreads - Thread Management
	Pthreads - Thread Management - Example
	Pthreads - Thread Management - Example
	Pthreads - Thread Management
	Pthreads - Mutexes
	Pthreads - Mutexes - Example
	Pthreads - Mutexes - Example
	Pthreads - Condition Variables
	Pthreads - Condition Variables - Example
	Pthreads - Barrier
	Pthreads - Additional Useful Functions
	Pthreads - How to compile

