Introduction to
Concurrent Programming Using
Processes and Pthreads

Professor: Panagiota Fatourou
TA: Eleftherios Kosmas
CSD - March 2012

Process

= A process is an instance of a program that is being executed

= It consists of, or it owns: (PCB - Process Control Block)
0 an executable machine code

0 memory (some private address space)

v

Stack

= input and output data SP

m call stack: keeps track of active subroutines
0 function parameters, return addresses, and local variables

s heap: dynamically allocated memory

Heap

= static data: global variables

Static Data

= file descriptors, socket descriptors, etc. PC ,
m processor state (or context),

Code

0 e.g., content of CPU registers
(Program Counter - PC, Stack Pointer - SP, numeric)

= Allows program to act as if it owns the machine
= Multitasking using timesharing
o context switch, scheduling

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas

Process

2N

Process - Call Stack

or activation records

It is composed of stack frames

Stack Pointer

L 3

top of stack

\
Locals of
" EaCh StaCk frame DrawLine stack frame
0 corresponds to an active ., for
subroutine Return Address DrawLine
Frame Pointer > subroutine
0 is machine dependent Parameters for
DrawLine
i Locals of
stack frame DrawSquare
for 4 Retrn Address
Draw3quare
subroutine Parameters for
Drawiquare
CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 3

Multitasking

= Parent processes create children processes by calling fork()

= pid_t forkQ)
o spawns a new child process
= with separate address space

= it has an exact copy of all the memory segments of the parent process
= it has a new pid

a returns
= 0to child
= the pid of the newly created child to parent

= pid_t wairt(int *status)

o suspends execution of the calling process until one of its children
terminates

o status indicates reason for termination

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas

Multitasking

= pid_t waitpid (pid_t pid, int *status, iInt
options)

pid=-1: any child process

pid>0: specific child process

pid=0: any child process with some process group id

o O O 0O

options can be used to wait or to check and procced

= INt exit (Int *status)
0 executed by a child process when it wants to terminate

0 makes status available to parent

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas

O 0 N Uk W N =

_
e

_
N

13.

Multitasking - Example

#include <stdio.h> /* printf, stderr, fprintf */

#include <sys/types.h> /* pid_t */
#include <unistd.h> /* _exit, fork */
#include <stdlib.h> /* exit */
#include <errno.h> /* errno */

int main(void)

{
pid_t pid;

int i;

for (i=0; i<10; i++) {

/* Output from both the child and the parent process will be written to the standard output, as they both run at the same

time. */
pid = fork();
if (pid == -1) {

/* Error: When fork() returns -1, an error happened (for example, number of processes reached the limit). */

fprintf (stderr, "can't fork, error %d\n", errno);

exit (EXIT_FAILURE);
}

else if (pid = 0) break; /* When fork() returns 0, we are in the child process. */

}

if (pid == 0) { /* When fork() returns 0, we are in the child process. */

;;(it(O);
}

else{ ... /* When fork() returns a positive number, we are in the parent process */

CS556 - Distributed Systems

Tutorial 1 by Eleftherios Kosmas

o 0 N o s W N e

e e
Lo A

16.
17.
18.

20.
21.
22.
23.
24.
25.
26.

Multitasking - Example

#include <stdio.h> /* printf, stderr, fprintf */

#include <sys/types.h> /* pid_t */
#include <unistd.h> /* _exit, fork */
#include <stdlib.h> /* exit */
#include <errno.h> /* errno */

int main(void)
{
pid_t pid;
for (i=0; i<10; i++) {
pid = fork();

else if (pid = 0) break; /* When fork() returns 0, we are in the child process. */

}

if (pid == 0) { /* Child process: When fork() returns 0, we are in the child process. */

exit(0);

}

else { /* When fork() returns a positive number, we are in the parent process */

for(i=0; i<10; i++) {
pid_t child = wait(0);

printf (“Child with pid [%d] terminated\n", child);

}
}

return 0;

}

CS556 - Distributed Systems

Tutorial 1 by Eleftherios Kosmas

Multitasking - Process States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas

Multiprocessing

= When applying multitasking to a multicore (multiprocessor) machine
we get multiprocessing

\ / Multitasking

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 9

Multiprocessing

‘ Inter Process Communication (IPC)

= processes do not share anything implicitly
= explicit actions are required to achieve IPC

Shared
memory
segments,
pipes, open
files or
mmap’d
files

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 10

Shared Memory IPC

One process will create a memory portion which other processes (if
permitted) can access

shmget(): is used to create a shared memory segment

0 ashared memory segment is described by a control structure (in
<sys/shm.h>)with a unique ID that points to an area of physical
memory

shmctl ():

0 used by the original owner of a shared memory segment can assign (or
revoke) ownership to another user

0 used by processes with permission to perform various control functions
shmat(): attach a shared segment to a process address space
0 Once attached, the process can read or write to the segment

shmdt(): detach

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 11

© 0 N o o A~ W N P

N I
AN W N P O

Shared Memory IPC

int shmget(key t key, size t , Int shmflg):

o returns the identifier of shared memory segment associated with the value
of the argument key

0 it is also used to get the identifier of an existing shared segment
Q : the size in bytes of the requested shared memory
o shmflg: specifies the initial access permissions and creation control flags

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm_h>

key t key; int shmflg; int shmid; int

key = ...; = ...; shmflg = ...;
1T ((shmid = shmget (key, , shmflg)) == -1) {
perror(*'shmget: shmget failed); exit(l);
by
else {
fprintf(stderr, "shmget: shmget returned %d\n', shmid); exit(0);

}

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 12

Shared Memory IPC

= Int shmctl(int shmid, 1nt cmd, struct shmid _ds *buf):

0 isused to alter the permissions and other characteristics of a shared
memory segment

o cmd: SHM_LOCK, SHM_UNLOCK, IPC_STAT, IPC_SET, IPC_RMID
Q : shared memory data structure to hold results

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm._h>

int cmd; int shmid; struct shmid_ds

shmid = ...; cmd = ...;
it ((rtrn = shmctl(shmid, cmd,)) == -1) {
perror(*'shmctl: shmctl failed);
exit(l);
ks

© 0 N o o A~ W N P

e
N RO

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 13

Shared Memory IPC

= void *shmat(int shmid, const void * , Int shmflg):

O returns a pointer, , to the head of the shared segment associated
with a valid shmid

o shmflag: flags used on attach

= int shmdt(const void *):
0 detaches the shared memory segment located at the address indicated by

1. #include <sys/types.h>
2. #include <sys/ipc.h>
#include <sys/shm._h>

w

4. static struct state {

5. int shmid; char * ; int shmflg;

6. } ap[MAXnap]; /* State of current attached segments. */
7. int nap; /* Number of currently attached segments. */

8. - .-

9. char *addr; /* address work variable */

10. register int i; /* work area */

11. register struct state *p; /* ptr to current state entry */
12. - .-

13. p = &ap[nap++];

14. p->shmid = ...; p-> = ...; p->shmflg = ...

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 14

Shared Memory IPC

= void *shmat(int shmid, const void *shmaddr, Int shmflg):

= Int shmdt(const void *shmaddr):

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
i1T(p—>shmaddr == (char *)-1) {
perror(*'shmop: shmat failed™);
nap--;
ke
else fprintf(stderr, "shmop: shmat returned %#8.8x\n", p->shmaddr);

1 = shmdt(addr);

if(i == -1) {
perror(*'shmop: shmdt failed™);

© 0 N o 0o b~ W N PP

B
[N

}

else {
fprintf(stderr, "shmop: shmdt returned %d\n', 1);
14, for (p = ap, i = nap; i--; p++)
15. it (p->shmaddr == addr) *p = ap[--nap];
6. }

17.

[
w N

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 15

N W N P

© 00 N O

11.
12.

13.
14.
15.
16.

17.
18.

19.
20.
21.

Shared Memory IPC - Example - Server

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm._h>
#include <stdio.h>

#define SHMSZ 27

main()

{

char c, *shm, *s; iInt shmid; key_t key;

key = 1234;

s = shm;

for (c = "a"; c <= "z7;
*s++ = C;

*s = NULL;

whille (*shm 1= **¥%)
sleep(l);

shmctl (shmid, IPC _RMID,
exit(0);
}

shmid = shmget(key, SHMSZ, IPC _CREAT | 0666);
shm = shmat(shmid, NULL, 0);

ct+)

0)

CS556 - Distributed Systems

Tutorial 1 by Eleftherios Kosmas

16

Shared M@HlOI‘y IPC - Example - Client

1. #include <sys/types.h>
2. #include <sys/ipc.h>
3. #include <sys/shm._h>
4. #include <stdio.h>

5. #define SHMSZ 27

6. main()

. {

8. int shmid; key_ t key; char *shm, *s;
9. key = 1234;

10. shmid = shmget(key, SHMSZ, 0666);
11. shm = shmat(shmid, NULL, 0O);

12. for (s = shm; *s I= NULL; s++)

13. putchar(*s);

14. putchar(*\n*");

15. *shm = **%;

16. exit(0);

7. }

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas

Threads

= A process is the heaviest unit of kernel scheduling

0 creating a new process is costly
m data structures needed to be allocated and initialized
expensive context switch

communication among processes is costly, since it goes through the OS
= IPC

s overhead of system calls and copying data

= A process consists of:

i. a collection of resources
= the code & address space, open files, etc.
ii. a thread of execution

m the current state that operates on these resources

" The idea is to let multiple threads share a common address space

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 18

Threads

Threads share the same memory (global variables, heap, file descriptors, etc.)

Threads own a stack (including thread- local storage) and a copy of the
registers (including PC and SP)

Threads are executed in parallel

0 using time slices, in a single core machine

0 orreally in parallel, in a multicore machine gp (1)

Process SP(T2)
read #1 Thread #2
o Heap
ﬁ Static Data
g e PC(T1)—»
PC (T2)—| Lot
v Process

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 19

http://upload.wikimedia.org/wikipedia/commons/a/a5/Multithreaded_process.svg

Single vs. Mult1 threaded

Process

Process State: PC,

registers, SP, etc...

Code Segment
Data Segment

Heap

Stack

I‘ .IIII

Multithreaded Process

Process State: PC, Thread
registers, SP, etc... Elate
e __________

Thread
LState

Thread
State

Code Segment

if)

U
o O
e b

J

Threads contain only necessary information, such as a stack (for local variables, function
arguments, return values), a copy of the registers, program counter and any thread-specific
data to allow them to be scheduled individually., Other data is shared within the process

between allthreads.

© Alfred Park, http://randu.org/tutorials/threads

L

CS556 - Distributed Systems

Tutorial 1 by Eleftherios Kosmas

20

Multithreading

= A way for program to split itself into multiple running tasks

N ~

Multitasking

Multiprocessing

~

\ Multithreading

Threads vs. Processes

m Threads

v’ easier to create and destroy
v inter-thread communication is cheaper

= can use process memory and may not need (for user-level threads) to context
switch

v’ provide faster context switch
% not secure: a thread can write the memory used by another thread

m Processes

v’ secure: one process cannot corrupt another process
¥ inter-process communication is expensive: need to context switch

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 22

Threads

= A is the lightest unit of kernel scheduling
= FEach process contains at least one kernel thread

m The kernel

0 may (on may not) assign one thread to each logical core, resulting to
different models:

= 1:1, Kernel-level threading
= N:1, User-level threading
= M:N, Hybrid threading
0 can swap out threads that get blocked
% kernel threads take much longer than user threads to be swapped

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 23

Threads

m User threads are managed and scheduled in userspace

0 may run on top of several kernel threads to benefit from multi-processors
v’ fast to create and manage
% can not take full advantage of multithreading

% they get blocked when all of their associated kernel threads are blocked, even if there are
some user threads that are ready to run

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 24

POSIX Threads or Pthreads API

Thread management: The first class of functions
work directly on threads - creating, terminating,
joining, etc.

Mutexes: provide for creating, destroying, locking
and unlocking mutexes.

Condition variables: include functions to create,
destroy, wait and signal based upon specified
variable values.

Barriers

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 25

Pthreads - Thread Management

= Int pthread create(pthread t *thread, pthread attr_ t *attr,
void *(*start routine)(void *), void *arg):

0 thread: the actual thread object that contains pthread id
0 attr: attributes to apply to this thread

0 start _routine: the function this thread executes

Q : arguments to pass to thread function above

= void pthread exit(void *value ptr):
0 terminates the thread and provides value_ptr available to any

pthread join() call

= Int pthread join(pthread t thread, void **value ptr):
o suspends the calling thread to wait for successful termination of thread

o value_ptr: data passed from the terminating thread's call to
pthread exit()

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 26

a A W N P

© 00 N O

10.
11.

12.

13.
14.

Pthreads - Thread Management - Example

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define NUM_THREADS 2

/*create thread argument struct for thr_func() */
typedef struct thread data t {
int tid;
double stuff;
} thread data_t;

void *thr_func(void *arg) { /* thread function */
thread data t *data = (thread _data_t *)arg;

printf(""hello from thr_func, thread i1d: %d\n', data->tid);

pthread_exit(NULL);
}

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 27

Pthreads - Thread Management - Example

1. int main(int argc, char **argv) {
2. pthread_t thr[NUM_THREADS];
3. int 1, rc;
/* create a thread data_t argument array */
4. thread data t thr_data[NUM_THREADS];
5. for (1 = 0; 1 < NUM_THREADS; ++1) { /* create threads */
6. thr_data[i1]-tid = 1;
7. iIT ((rc = pthread create(&thr[i1], NULL, thr_func, &thr _data[i]))) {
8. fprintf(stderr, "error: pthread create, rc: %d\n", rc);
9. return EXIT_FAILURE;
10. }
11. }
12. for (i = 0O; 1 < NUM_THREADS; ++1) /* block until all threads complete */
13. pthread join(thr[i], NULL);
14.
15. return EXIT_SUCCESS;
16. }

CS556 - Distributed Systems

Tutorial 1 by Eleftherios Kosmas

28

Pthreads - Thread Management

= iInt pthread create(pthread t *thread, pthread attr_t *attr,
void *(C*start routine)(void *), void *arg):

0 attr: attributes to apply to this thread

=" Attributes can be specified using the following functions:
= iInt pthread attr_init(pthread attr_t *attr)

= Int pthread _attr_setdetachstate(pthread attr_t *attr, iInt detachstate)
= Int pthread_attr_setguardsize(pthread attr_t *attr, size_ t guardsize)
= Int pthread attr_setinheritsched(pthread attr_t *attr, iInt inheritsched)

= Int pthread attr_setschedparam(pthread attr_t *attr, const struct sched param
*
param)

= Int pthread _attr_setschedpolicy(pthread attr_t *attr, int policy)

= Int pthread _attr_setscope(pthread attr_t *attr, int contentionscope)
= Int pthread attr_setstackaddr(pthread attr_t *attr, void *stackaddr)
= Int pthread attr_setstacksize(pthread attr _t *attr, size_t stacksize)

¥ Attributes can be retrieved via corresponding get functions

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 29

Pthreads - Mutexes

const

int pthread mutex init (pthread mutex t *
pthread mutexattr_t *mutexattr):

0 initializes
0 attributes for the mutex can be given through mutexattr
= use NULL, to specify default attributes

int pthread mutex lock(pthread mutex t *

o blocks until mutex lock is acquired

Int pthread mutex_trylock(pthread mutex t *
0 non-blocking, may return without acquiring the mutex lock

int pthread mutex _unlock(pthread mutex t *

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Pthr 62.(18 - Mutexes - Example

typedef struct _thread data t {
int tid;
double stuff;

} thread data t;

double shared x; /* shared data between threads */
pthread _mutex_t lock Xx; /* shared data between threads */

void *thr_func(void *arg) { /* thread function */
thread data t *data = (thread data t *)arg;

printf("*hello from thr_func, thread i1d: %d\n", data->tid);

pthread_mutex_lock(&lock_x);
shared x += data->stuff;
printf("'x = %f\n", shared x);
pthread mutex_unlock(&lock x);

pthread_exit(NULL);
}

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas

/* get mutex before modifying and printing shared_x */

31

=

10.

11.

12.

13.

Pthf 63(218 - Mutexes - Example

int main(int argc, char **argv) {
pthread t thr[NUM_THREADS]; iInt i, rc;
thread data t thr_data[NUM_THREADS];

shared x = 0; /* initialize shared data */
/* initialize pthread mutex protecting ''shared x' */
pthread_mutex_init(&lock_x, NULL);

for (1 = 0; 1 < NUM_THREADS; ++i1) { /* create threads */
thr_data[i1]-tid = 1;
thr_data[i].stuff = (i + 1) * NUM_THREADS;
iIfT ((rc = pthread _create(&thr[i], NULL, thr_func, &thr_data[i]))) {
fprintf(stderr, "error: pthread create, rc: %d\n", rc);
return EXIT_FAILURE;

¥
}

for (1 = 0; 1 < NUM_THREADS; ++i1i) /* block until all threads complete */
pthread join(thr[i], NULL);

14.

15.

16.

return EXIT_SUCCESS;
+

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 32

Pthreads - Condition Variables

int pthread cond init(pthread cond t * ,
pthread condattr_t *cond attr):

0 1initialized condition variable
o attributes for can be given through cond_attr

= use NULL, to specify default attributes

int pthread cond wait(pthread cond t * , pthread mutex t

*mutex)
0 puts the current thread to sleep, waiting on for mutex to be released

int pthread cond _signal(pthread cond t *)

0 signals one thread out of the possibly many sleeping threads waiting on to

wakeup

)

int pthread cond broadcast(pthread cond t *

|
o signals all threads waiting on to wakeup
33

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas

10.

11.

12.

Pthreads - Condition Variables - Example

void *thr_funcl(void *arg) {
pthread_mutex_lock(&count_lock); /*thread code blocks here until MAX_COUNT i1s reached*/
while (count < MAX_COUNT)
pthread cond_ wait(&count_cond, &count_lock);
pthread mutex_unlock(&count_lock);
pthread_exit(NULL);
+

/*some other thread code that signals a waiting thread that MAX_COUNT has been reached*/
void *thr_func2(void *arg) {
pthread _mutex_lock(&count_lock);

13.

14.

/* some code here that does interesting stuff and modifies count */

15.

16.

17.

18.

19.

20.

1T (count == MAX_COUNT) {
pthread_mutex_unlock(&count_lock);
pthread_cond_signal (&count_cond);

}

else pthread _mutex_unlock(&count_lock);

21.

22.

23.

pthread_exit(NULL);

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 34

Pthl’ €21dS - Barrier

= Int pthread barrier_init(pthread barrier_t *
pthread barrierattr_t *barrier attr, unsigned int count)

0 initialized
o attributes for can be given through barrier_attr

= use NULL, to specify default attributes
count: defines the number threads that must join the barrier for the barrier to reach
completion and unblock all threads waiting at the barrier

= iInt pthread barrier wait(pthread barrier_t *)

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 35

Pthreads - Additional Useful Functions

pthread_kill(), can be used to deliver signals to specific threads.
pthread_self(), returns a handle on the calling thread.
pthread_equal (), compares for equality between two pthread ids

pthread_once(), can be used to ensure that an initializing function
within a thread is only run once.

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 36

Pthreads - How to compile

m C:gcc -Ipthread multithreaded app.c

m C++:g++ -Ipthread multithreaded app.cxx

= Other platforms and compilers may require -pthread flag instead

CS556 - Distributed Systems Tutorial 1 by Eleftherios Kosmas 37

	Introduction to �Concurrent Programming Using �Processes and Pthreads
	Process
	Process - Call Stack
	Multitasking
	Multitasking
	Multitasking - Example
	Multitasking - Example
	Multitasking - Process States
	Multiprocessing
	Inter Process Communication (IPC)
	Shared Memory IPC
	Shared Memory IPC
	Shared Memory IPC
	Shared Memory IPC
	Shared Memory IPC
	Shared Memory IPC - Example - Server
	Shared Memory IPC - Example - Client
	Threads
	Threads
	Single vs. Multi threaded
	Multithreading
	Threads vs. Processes
	Threads
	Threads
	POSIX Threads or Pthreads API
	Pthreads - Thread Management
	Pthreads - Thread Management - Example
	Pthreads - Thread Management - Example
	Pthreads - Thread Management
	Pthreads - Mutexes
	Pthreads - Mutexes - Example
	Pthreads - Mutexes - Example
	Pthreads - Condition Variables
	Pthreads - Condition Variables - Example
	Pthreads - Barrier
	Pthreads - Additional Useful Functions
	Pthreads - How to compile

