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Fault-Tolerant Consensus 

CS556 - Panagiota Fatourou 2

Consensus
Assumptions

� Denote by f the maximum number of processes that may fail. We call the 
system f-resilient

Description of the Problem

� Each process starts with an individual input from a particular value set V. 
Processes may fail by crashing.

�All non-faulty processes are required to produce outputs from the value set 
V, subject to simple agreement and validity.

Correcteness Conditions
Agreement: No two processes decide on different values.
Validity: If all processes start with the same initial value 
v ∈ V, then v is the only decision value.
Termination: All non-faulty processes eventually decide.

Motivation
� Processes in a database system may need to agree whether a 

transaction should commit or abort.
� Processes in a communication system may need to agree on whether 

or not a message has been received.
� Processes in a control system may need to agree on whether or not 

a particular other process is faulty.
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Synchronous Shared Memory System

• Is there an algorithm that solves consensus in 
a synchronous shared-memory system?

Assumptions

• The maximum number of processes that can 
fail is f, where f is some positive integer. We 
call the system f-resilient.

• The communication graph is a clique of n nodes.

• The communication channels are reliable; all 
messages sent are delivered.
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A Simple Algorithm for Synchronous 
Message-Passing Systems

� Each process maintains a set of the values it knows to exist in the 
system; initially, this set contains only its own input.

� At the first round, each process broadcasts its own input to all 
processes.

� For the subsequent f rounds, each process takes the following actions:
� updates its set by joining it with the sets received from other 

processes, and
� broadcasts any new additions to the set to all processes.

� After f+1 rounds, the process decides on the smallest value in its set.
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A Simple Algorithm for Synchronous 
Message-Passing Systems

f = 3, n = 5
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A Simple Algorithm for Synchronous 
Message-Passing Systems

Termination?

Validity?

Intuition for Agreement:
• Assume that a process pi decides on a value x smaller 

than that decided by some other process pj.
• Then, x has remained “hidden” from pj for (f+1) 

rounds.
• We have at most f faulty processes. A contradiction!!!

Number of processes? n > f

Round complexity? (f+1) rounds

Message Complexity?
• n2 * |V| messages, where V is the set of input values.
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Exponential Information Gathering Algorithms

Main Idea

� Processes send and relay initial values for several rounds, 
recording the values they receive along various communication 
paths in a data structure called an EIG Tree.

� At the end, they use a commonly agreed-upon decision rule 
based on the values recorded in their trees. 

Data Structure

• Each process maintains  an EIG Tree (Τ = Τn,f), each node of 
which is labeled by a string of process indices. 

• Each path in the tree from the root represents a chain of 
processes along which initial values are propagated. 

• The tree T has f+2 levels, 0, ..., f+1.

• Each node of level k has exactly n-k children, where 0 ≤ k ≤ f.
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Exponential Information Gathering 
Algorithms

Node Labeling

The root is labeled by the empty string λ. 

Each node with label i1...ik has exactly n-k children with labels i1...ikj, 
where j ∈ {1, ..., n} – {i1, ..., ik}.
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Exponential Information Gathering 
Algorithms

� The computation proceeds for exactly f+1 rounds. 

� In the course of the computation, the processes decorate the nodes of 
their trees with values in V or null, decorating all those at level k, at the 
end of round k.

Decoration of the EIG Tree of process pi

� The root of process pi tree gets decorated with pi’s input value.

� At each round, if the node labeled by the string i1...ik, 1 ≤ k ≤ f+1, is 
decorated by a value v ∈ V ⇒ ik has told i at round k that ik-1 has told ik
at round k-1 that ... that i1 has told i2 at round 1 that i1‘s initial value is
v. 

� If the node labeled by the string i1...ik is decorated with null ⇒ the 
chain of communication i1, ..., ik,i has been broken by a failure.

Assumption

� Each process is able to send messages to itself in addition to the other 
processes. 

CS556 - Panagiota Fatourou 10

EIGStop Algorithm
� For every string x that occurs as a label of a node of T, pi has a variable 

val(x).

� val(x) holds the value with which the process decorates the node labeled x. 

� Initially, val(λ) = initial value of pi.

Round 1: Process pi broadcasts val(λ) to all processes, including i itself.

� Then, pi records the incoming information:

� If a message with value v arrives at pi from pj ⇒ val(j) = v.

� If no message arrives at pi from pj ⇒ val(j) = null.

Round k, 2 ≤≤≤≤ k ≤≤≤≤ f+1: Process pi broadcasts all pairs (x,val(x)), where x is 
a level k-1 label in T that does not contain index i.

� Then, pi records the incoming information:

� If xj is a level k node label in T, where x is a string of process indices and j 
is a single index, and a message saying that val(x) = v arrives at pi from pj, 
then pi sets val(xj) to v. 

� If xj is a level k node label in T, and no message with a value in V for val(x) 
arrives at pi from pj, then pi sets val(xj) to null.

� At the end of f+1 rounds, process pi applies a decision rule:

� Let Wi be the set of non-null values that decorate nodes of pi’s tree. Process 
pi decides its output to be the smallest element of Wi.
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EIGStop Algorithm - Example

• n=3 

• f = 1

• 2 rounds

•3 tree levels

• initial values 
of p1, p2, p3: 
0, 0, and 1, 
respectively.
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EIGStop Algorithm - Correctness

Lemma 1: After f+1 rounds of the EIGStop Algorithm, the following hold:

1. val(λ)i is the input value of pi

2. If xj is a node label and val(xj)i = v, then val(x)j = v.

3. If xj is a node label and val(xj)i = null, then either val(x)j = null or else pj
fails to send a message to pi at round |x|+1.

Lemma 2: After f+1 rounds of the EIGStop Algorithm, the following hold: 

1. If y is a node label, val(y)i = v and xj is a prefix of y, then val(x)j = v.

2. If v appears in the set of vals at any process, then v = val(λ)i, for some i.
3. If v appears in the set of vals of process pi, then there is some label y that 

does not contain i s.t. v = val(y)i.
Proof: Part 1 follows from repeated use of Lemma 1 (part 2). 

Part 2: Suppose v = val(y)i. If y = λ we are done. Otherwise, let j be the 
first index in y. Part 1 then implies the claim.

For part 3, suppose to the contrary that v only appears as the val for 
labels containing i. Let y be a shortest label s.t. v = val(y)i. Then y has a 
prefix of the form xi. But then part 1 ⇒ val(x)i = v, which contradicts 
the choice of y.
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EIGStop Algorithm - Correctness

Lemma 3: If processes pi and pj are both non-faulty, then Wi = Wj.

Proof: We may assume that i ≠ j. We show that Wi ⊆ Wj and
Wj ⊆ Wi.

1. Wi ⊆ Wj
Suppose v ∈ Wi. Then, Lemma 2 implies that v = val(x)i, for some 
label x that does not contain i. 

i. |x| < f+1 ⇒ |xi| ≤ f+1. Since string x does not contain i, (non-faulty)
process pi relays value v to process pj at round |xi| ⇒ val(xi)j = v
⇒ v ∈ Wj.

ii. |x| = f+1. Because there are at most f faulty processes and all indices 
in x are distinct, there must be some non-faulty process pl whose 
index appears in x
⇒ x has a prefix of the form yl. Lemma 2 implies that val(y)l = v. 
Since process pl is non-faulty, it relays v to pj at round |yl| 
⇒ val(yl)j = v ⇒ v ∈ Wj.

3 Wj ⊆ Wi. Symmetric to the previous case.
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EIGStop Algorithm – Correctness & Complexity

Theorem

• EIGStop solves the consensus problem for stopping failures. 

Proof

� Termination is obvious by the decision rule. 

Validity

� Assume that all the initial values are equal to v. Then, each Wi
must be exactly equal to {v}. Thus, all processes output v.

Agreement

� Let pi and pj be any two processes that decide ⇒ pi, pj are non-
faulty. Lemma 3 implies that Wi = Wj. Thus, pi, pj decide the 
same output value.

Complexities

• Round complexity?

• Communication Complexity?



8

CS556 - Panagiota Fatourou 15

Algorithms for Byzantine Failures

Algorithm EIGByz – Code for process pi

� The processes (we assume that n > 3f) propagate 
values for f+1 rounds in the same way as in EIGStop
with the following exceptions:

� If pi receives a message from pj that is not of the 
specified form, then pi ignores the message. 

� At the end of f+1 rounds, pi works from the leaves up 
in its decorated tree, decorating each node with an 
additional newval, as follows:
� For each leaf labeled x, newval(x) = val(x).

� For each non-leaf node labeled x, newval(x) is defined to be 
the newval held by a strict majority of the children of node x

o It takes the value v, s.t. newval(xj) = v for a majority of the 
nodes with label of the form xj, provided that such a majority 
exists). 

o If no such majority exists, newval(x) = null.

� The output value of pi is newval(λ).
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Algorithm EIGByz - Correctness

Lemma 1: After f+1 rounds of the EIGByz algorithm, the following 
holds. If pi, pj and pk are non-faulty processes, with i ≠ j, then
val(x)i = val(x)j = val(y)k for each label x ending in k.

Proof: Since k is non-faulty, it sends the same message val(y)k to pi
and pj at round |x|.

Lemma 2: After f+1 rounds of the EIGByz algorithm, the following 
holds. Suppose that x = yk is a label such that pk is a non-faulty 
process. Then, newval(x)i = val(x)i = val(y)k for all non-faulty 
processes i.

Proof: By induction on the tree labels, working from the leaves up. 

� Induction Base: Suppose x is the label of a leaf node (|x| = f+1). 
– Due to the way that values are assigned to the newval variables of 

leaf nodes ⇒ newval(x)i = val(x)i

– By Lemma 1 ⇒ for all non-faulty processes pi, it holds that val(x)i = 
val(y)k. 
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Algorithm EIGByz - Correctness

� Inductive Hypothesis: Fix any r, 1 ≤ r ≤ f and assume that the claim 
holds for all labels x’ = y’k’ s.t. |x’| = r+1 (where pk’ is a non-faulty 
process).

� Inductive Step: We prove that the claim holds for all labels x = yk with
|x|=r (where pk is a non-faulty process). 

– Lemma 1 ⇒ all non-faulty-processes pi have val(x)i = val(y)k = v ⇒

– Every non-faulty process pj sends the same value v for x to all processes at 
round r+1 ⇒ val(xj)i = v for all non-faulty processes pi and pj.

– By inductive hypothesis ⇒ newval(xj)i = val(xj)i = v, for all non-faulty 
processes pi and pj.

– The majority of labels of children of node x end in non-faulty process 
indices:

– # of children of x = n-r ≥ n-f > 3f –f = 2f ⇒ since at most f of the children 
have labels ending in indices of faulty processes, we have the needed 
majority. 

⇒ For any non-faulty process pi, newval(xj)i = v for a majority of children xj
of node x.

⇒ newval(x)i = v.
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Algorithm EIGByz - Correctness

Lemma 3: If all non-faulty processes begin with the same initial value v, 
then v is the only possible decision value for a non-faulty process.

Proof: All non-faulty processes broadcast v at the 1st round ⇒ val(j)i = v
for all non-faulty processes pi and pj.

� Lemma 2 ⇒ newval(j)i = val(j)i = v.

� By the majority rule: newval(λ)i = v. 

Definitions

1. We say that a subset C of the nodes of a rooted tree is a path 
covering provided that every path from the root to a leaf contains at 
least one node in C.

2. A tree node x is said to be common in a provided that at the end of 
f+1 rounds in a, all the non-faulty processes pi have the same
newval(x)i.

3. A set of tree nodes is said to be common in a if all the nodes in the 
set are common in a. 
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Algorithm EIGByz - Correctness

Lemma 4: After f+1 rounds of the EIGByz algorithm, the following holds. 
Let x be any node label in the EIG tree. If there is a common path 
covering of the subtree rooted at x, then x is common. 

Proof: By induction on tree labels working from the leaves up.

• Base Case: Suppose that x is a leaf. If there is a common path covering 
of the subtree rooted at x, then it contains only x. Thus, x is common.

• Inductive Hypothesis: Fix any r, 1 ≤ r ≤ f and assume that the claim 
holds for each node with label x’ s.t. |x’| = r+1.

• Inductive Step: We prove that the claim holds for each node with label 
x s.t. |x|=r.

– Suppose that there is a common path covering C of x’s subtree. If x itself is 
in C, then it is common. So assume that x is not in C.

– Consider any child xl of x. Since x ∉C, C induces a common path covering for 
the subtree rooted at xl. 

– By the inductive hypothesis ⇒ xl is common. Since xl was chosen to be an 
arbitrary child of x, all the children of x are common. 

– Then by the definition of newval(x), x is common.
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Algorithm EIGByz - Correctness

Lemma 5: After f+1 rounds of any execution of the EIGByz
algorithm, there exists a path covering that is common in a.

Proof: Let C be the set of nodes with labels of the form xi where i 
is the index of a non-faulty process.

• All nodes in C are common. 

• Consider any path from the root to a leaf. It contains exactly 
f+1 non-root nodes, and the label of each such node ends with a 
distinct process index. 

• Since there are f faulty processes, there is some node of the 
path whose label ends in a non-faulty process index. 

• This node must be in C.

Corollary: After f+1 rounds of the EIGByz algorithm, the root node 
λ of the tree of each non-faulty process is common.

Theorem: EIGByz solves the Byzantine agreement problem for n
processes with f failures, if n > 3f.
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Number of Rounds with Stopping Failures –
Special Case where f = 1

Theorem

• Suppose that n ≥ 3. Then there is no n-process stopping 
agreement algorithm that tolerates one fault, in which all non-
faulty processes always decide by the end of round 1.

Proof: By contradiction. Let Α be any such algorithm.

• We construct a chain of executions of A, each with at most one 
faulty process:
o the first execution in the chain contains 0 as its unique decision 

value,

o the last execution in the chain contains 1 as its unique decision value
o any two consecutive executions in the chain are indistinguishable to 

some process that is non-faulty in both.

• ⇒ Every execution in the chain must have the same unique 
decision value. A contradiction!!!!
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Number of Rounds with Stopping Failures –
Special Case where f = 1

Example n = 3
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Number of Rounds with Stopping Failures –
Special Case where f = 2

Theorem

• Suppose that n ≥ 4. Then there is no n-process stopping 
agreement algorithm that tolerates two faults, in which all non-
faulty processes always decide by the end of round 2.

• Proof: By contradiction. Let Α be any such algorithm.

• We follow similar arguments as that for case f=1. However:

• Now we have two rounds!!! What problem may result from this?

• How can we remove a message from p0 to p1?

o we will remove one-by-one the messages sent by p1 during the 2nd

round

o then we will remove the 1st round message from p0 to p1
o we will recover one-by-one the messages 2nd round messages sent 

by p1
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Number of Rounds with Stopping Failures –
Special Case where f = 2

At this point only process p0 is faulty.
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Number of Rounds with Stopping Failures –
Special Case where f = 2

• I repeat this process with p2 playing the role 
of p1, in order to remove the message from 
p0 to p2. I do the same for all other 
processes.

• Then:

o I change the input value of p0 to 1.

o I apply the reverse procedure to recover the 1st

round messages of p0

• I repeat the above procedure with each 
process pj, other than p0, playing the role of
p0!
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Number of Rounds with Stopping Failures –
General Case

Theorem

• Suppose that n ≥ f+2. Then there is no n-process 
stopping agreement algorithm that tolerates f faults, 
in which all non-faulty processes always decide by the 
end of round f.

Sketch of Proof

• The main ideas have already been presented!

• The chain of execution that is created is much longer 
and in order to make it we have to kill f processes.
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Impossibility of Consensus in 
Asynchronous Shared-Memory 

Systems

Theorem 1:. For n ≥ 2, there is no algorithm 
in the read/write shared memory model 
that solves the agreement problem and 
guarantees wait-free termination.
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Useful Definitions
• The valence of 

a configuration C 
is the set of 
all values decided 
upon in any 
configuration 
reachable from C. 

• C is univalent if this set contains one value; it is 0-
valent if this value is 0 and 1-valent if this value 
is 1. 

• If the set contains two values then C is bivalent.
• If C is bivalent and the configuration resulting by 

letting some process p take a step is univalent, we say 
that p is critical in C.

• Recall that: Two configurations C1 and C2 are similar to 
a process p, denoted C1 ~p C2, if the values of all shared 
variables and the state of p are the same in C1 and C2.
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Impossibility of Consensus - Proof

Assume, by the way of contradiction, that A 
is a wait-free consensus algorithm. 

Main Ideas of the Proof

• We construct an infinite execution in which:
– every process takes an infinite number of steps,

– yet every configuration is bivalent,

– and thus no process can decide.

• This contradicts the fact that the 
algorithm is wait-free.
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Impossibility of Consensus

Lemma 2: Let C1 and C2 be two univalent configurations. 
If C1 ∼

p C2, for some process p, then C1 is v-valent, if 
C2 is also v-valent, where v ∈ {0,1}. 

Proof: Suppose C1 is v-valent. 
• Consider an infinite execution α from C1 in which only 

p takes steps. 
• Since the algorithm is supposed to be wait-free ⇒ a 

is admissible and eventually p must decide in α.
• Since C1 is v-valent ⇒ p must decide v in α.
• The schedule of a can be applied from C2

• Since C1 ∼
p C2 and only p takes steps, it follows that p 

decides v in this execution as well.
• Thus, C2 is v-valent, as needed.
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Impossibility of Consensus

Lemma 3: There exists a bivalent initial configuration.

Proof: By contradiction.

• Let Ι0 be the initial configuration in which all processes 
start with 0 ⇒ Ι0 is 0-valent.

• Let Ι1 be initial configuration in which all processes 
start with 1 ⇒ Ι1 is 1-valent.

• Let Ι01 be the initial configuration in which p0 starts 
with 0 and the remaining processes start with 1. 

• Ι01 ∼
p0 Ι0 ⇒ (by Lemma 2) Ι01 is 0-valent

• Ι01 ∼
p1 Ι1 ⇒ (by Lemma 2) Ι01 cannot be 0-valent. 

This is a contradiction!
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Impossibility of Consensus

Lemma 4: If C is a bivalent 
configuration, then at least 
one processor is not critical 
in C.

• Proof: By the way of 
contradiction. Assume that 
all processes are critical in C.

• Since C is bivalent and all processes are 
critical in C ⇒ there exists two process pj and 
pk such that:
– if pj takes a step from C, then the resulting 

configuration C’ is 0-valent, and 
– if pk takes a step from C the resulting 

configuration C’’ is 1-valent.
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Impossibility of Consensus
Proof of Lemma 4 (continued)

Consider the following cases.

1. The first step of process pj

from C is a read.

The case where the 
first step of pk from C 
is a read is symmetric.
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Impossibility of Consensus
Proof of Lemma 4 (continued)

2. The first steps of pj and pk from C are both writes 
and they are to different variables.
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Impossibility of Consensus
Proof of Lemma 4 (continued)

2. The first steps of pj and pk

from C are both writes 
and they are to the same
variable.
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Impossibility of Consensus

Proof of Theorem 1
� We inductively create an admissible execution C0 i1 C1 i2 

… in which the configurations remain bivalent forever. 
– By Lemma 3, there is an initial bivalent configuration; let it be 

C0.
– Suppose the execution has been created up to bivalent 

configuration Ck.
– By Lemma 4, some process is not critical in Ck; denote this 

process by pik.
– Then, pik can take a step without resulting in a univalent 

configuration. 
– We apply the event ik to Ck to obtain Ck+1 which is also bivalent.

� If we repeat this procedure forever, we will construct 
an execution in which all the configurations are 
bivalent. Thus, no process ever decides, contradicting 
the termination property of the algorithm and implying 
Theorem 1.


