

| Consensus                                                                                                                                                                                                                                                                                                                                                                                        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Assumptions                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Denote by f the maximum number of processes that may fail. We call system f-resilient                                                                                                                                                                                                                                                                                                            | the    |
| Description of the Problem                                                                                                                                                                                                                                                                                                                                                                       |        |
| <ul> <li>✓ Each process starts with an individual input from a particular value set<br/>Processes may fail by crashing.</li> </ul>                                                                                                                                                                                                                                                               | t V.   |
| $\checkmark$ All non-faulty processes are required to produce outputs from the valu V, subject to simple agreement and validity.                                                                                                                                                                                                                                                                 | ie set |
| <b>Correcteness Conditions</b><br><b>Agreement:</b> No two processes decide on different values.<br><b>Validity:</b> If all processes start with the same initial value<br>$v \in V$ , then v is the only decision value.<br><b>Termination:</b> All non-faulty processes eventually decide.                                                                                                     |        |
| <ul> <li>Motivation</li> <li>Processes in a database system may need to agree whether a transaction should commit or abort.</li> <li>Processes in a communication system may need to agree on whether or not a message has been received.</li> <li>Processes in a control system may need to agree on whether or not a particular other process<sub>cistingultymagiota Fatourou</sub></li> </ul> | 2      |













# Exponential Information Gathering Algorithms

- □ The computation proceeds for exactly f+1 rounds.
- In the course of the computation, the processes decorate the nodes of their trees with values in V or null, decorating all those at level k, at the end of round k.

### Decoration of the EIG Tree of process p<sub>i</sub>

- The root of process p<sub>i</sub> tree gets decorated with p<sub>i</sub>'s input value.
- □ At each round, if the node labeled by the string  $i_1...i_k$ ,  $1 \le k \le f+1$ , is decorated by a value  $v \in V \Rightarrow i_k$  has told i at round k that  $i_{k-1}$  has told  $i_k$  at round k-1 that ... that  $i_1$  has told  $i_2$  at round 1 that  $i_1$ 's initial value is v.
- $\square$  If the node labeled by the string  $i_{1\dots i_k}$  is decorated with null  $\Rightarrow$  the chain of communication  $i_1,\dots,i_k,i$  has been broken by a failure.

#### Assumption

Each process is able to send messages to itself in addition to the other processes.

CS556 - Panagiota Fatourou

9

EIGStop Algorithm Given For every string x that occurs as a label of a node of T, p, has a variable val(x). val(x) holds the value with which the process decorates the node labeled x. Initially, val(λ) = initial value of p<sub>i</sub>. **Round 1:** Process  $p_i$  broadcasts val( $\Lambda$ ) to all processes, including i itself. □ Then, p<sub>i</sub> records the incoming information: • If a message with value v arrives at  $p_i$  from  $p_i \Rightarrow val(j) = v$ . If no message arrives at p<sub>i</sub> from p<sub>i</sub> ⇒ val(j) = null. **Round k**,  $2 \le k \le f+1$ : Process p<sub>i</sub> broadcasts all pairs (x,val(x)), where x is a level k-1 label in T that does not contain index i. Then, pi records the incoming information: If xj is a level k node label in T, where x is a string of process indices and j is a single index, and a message saying that val(x) = v arrives at  $p_i$  from  $p_{j,i}$  then  $p_i$  sets val(xj) to v. If xj is a level k node label in T, and no message with a value in V for val(x) arrives at p<sub>i</sub> from p<sub>j</sub>, then p<sub>i</sub> sets val(xj) to null. □ At the end of f+1 rounds, process p, applies a decision rule: Let W<sub>i</sub> be the set of non-null values that decorate nodes of p<sub>i</sub>'s tree. Process p<sub>i</sub> decides its output to be the smallest element of W<sub>i</sub>. CS556 - Panagiota Fatourou 10





















# Number of Rounds with Stopping Failures -Special Case where f = 1

## Theorem

•

• Suppose that  $n \ge 3$ . Then there is no n-process stopping agreement algorithm that tolerates one fault, in which all non-faulty processes always decide by the end of round 1.

**Proof:** By contradiction. Let A be any such algorithm.

- We construct a chain of executions of A, each with at most one faulty process:
  - $\circ\,$  the first execution in the chain contains 0 as its unique decision value,
  - o the last execution in the chain contains 1 as its unique decision value
  - any two consecutive executions in the chain are indistinguishable to some process that is non-faulty in both.
- ⇒ Every execution in the chain must have the same unique decision value. A contradiction!!!!

CS556 - Panagiota Fatourou

21













Theorem 1:. For n ≥ 2, there is no algorithm in the read/write shared memory model that solves the agreement problem and guarantees wait-free termination.

CS556 - Panagiota Fatourou



















