
1

CS556 - Panagiota Fatourou 1

Fault-Tolerant Consensus

CS556 - Panagiota Fatourou 2

Consensus
Assumptions

� Denote by f the maximum number of processes that may fail. We call the
system f-resilient

Description of the Problem

� Each process starts with an individual input from a particular value set V.
Processes may fail by crashing.

�All non-faulty processes are required to produce outputs from the value set
V, subject to simple agreement and validity.

Correcteness Conditions
Agreement: No two processes decide on different values.
Validity: If all processes start with the same initial value
v ∈ V, then v is the only decision value.
Termination: All non-faulty processes eventually decide.

Motivation
� Processes in a database system may need to agree whether a

transaction should commit or abort.
� Processes in a communication system may need to agree on whether

or not a message has been received.
� Processes in a control system may need to agree on whether or not

a particular other process is faulty.

2

CS556 - Panagiota Fatourou 3

Synchronous Shared Memory System

• Is there an algorithm that solves consensus in
a synchronous shared-memory system?

Assumptions

• The maximum number of processes that can
fail is f, where f is some positive integer. We
call the system f-resilient.

• The communication graph is a clique of n nodes.

• The communication channels are reliable; all
messages sent are delivered.

CS556 - Panagiota Fatourou 4

A Simple Algorithm for Synchronous
Message-Passing Systems

� Each process maintains a set of the values it knows to exist in the
system; initially, this set contains only its own input.

� At the first round, each process broadcasts its own input to all
processes.

� For the subsequent f rounds, each process takes the following actions:
� updates its set by joining it with the sets received from other

processes, and
� broadcasts any new additions to the set to all processes.

� After f+1 rounds, the process decides on the smallest value in its set.

3

CS556 - Panagiota Fatourou 5

A Simple Algorithm for Synchronous
Message-Passing Systems

f = 3, n = 5

CS556 - Panagiota Fatourou 6

A Simple Algorithm for Synchronous
Message-Passing Systems

Termination?

Validity?

Intuition for Agreement:
• Assume that a process pi decides on a value x smaller

than that decided by some other process pj.
• Then, x has remained “hidden” from pj for (f+1)

rounds.
• We have at most f faulty processes. A contradiction!!!

Number of processes? n > f

Round complexity? (f+1) rounds

Message Complexity?
• n2 * |V| messages, where V is the set of input values.

4

CS556 - Panagiota Fatourou 7

Exponential Information Gathering Algorithms

Main Idea

� Processes send and relay initial values for several rounds,
recording the values they receive along various communication
paths in a data structure called an EIG Tree.

� At the end, they use a commonly agreed-upon decision rule
based on the values recorded in their trees.

Data Structure

• Each process maintains an EIG Tree (Τ = Τn,f), each node of
which is labeled by a string of process indices.

• Each path in the tree from the root represents a chain of
processes along which initial values are propagated.

• The tree T has f+2 levels, 0, ..., f+1.

• Each node of level k has exactly n-k children, where 0 ≤ k ≤ f.

CS556 - Panagiota Fatourou 8

Exponential Information Gathering
Algorithms

Node Labeling

The root is labeled by the empty string λ.

Each node with label i1...ik has exactly n-k children with labels i1...ikj,
where j ∈ {1, ..., n} – {i1, ..., ik}.

5

CS556 - Panagiota Fatourou 9

Exponential Information Gathering
Algorithms

� The computation proceeds for exactly f+1 rounds.

� In the course of the computation, the processes decorate the nodes of
their trees with values in V or null, decorating all those at level k, at the
end of round k.

Decoration of the EIG Tree of process pi

� The root of process pi tree gets decorated with pi’s input value.

� At each round, if the node labeled by the string i1...ik, 1 ≤ k ≤ f+1, is
decorated by a value v ∈ V ⇒ ik has told i at round k that ik-1 has told ik
at round k-1 that ... that i1 has told i2 at round 1 that i1‘s initial value is
v.

� If the node labeled by the string i1...ik is decorated with null ⇒ the
chain of communication i1, ..., ik,i has been broken by a failure.

Assumption

� Each process is able to send messages to itself in addition to the other
processes.

CS556 - Panagiota Fatourou 10

EIGStop Algorithm
� For every string x that occurs as a label of a node of T, pi has a variable

val(x).

� val(x) holds the value with which the process decorates the node labeled x.

� Initially, val(λ) = initial value of pi.

Round 1: Process pi broadcasts val(λ) to all processes, including i itself.

� Then, pi records the incoming information:

� If a message with value v arrives at pi from pj ⇒ val(j) = v.

� If no message arrives at pi from pj ⇒ val(j) = null.

Round k, 2 ≤≤≤≤ k ≤≤≤≤ f+1: Process pi broadcasts all pairs (x,val(x)), where x is
a level k-1 label in T that does not contain index i.

� Then, pi records the incoming information:

� If xj is a level k node label in T, where x is a string of process indices and j
is a single index, and a message saying that val(x) = v arrives at pi from pj,
then pi sets val(xj) to v.

� If xj is a level k node label in T, and no message with a value in V for val(x)
arrives at pi from pj, then pi sets val(xj) to null.

� At the end of f+1 rounds, process pi applies a decision rule:

� Let Wi be the set of non-null values that decorate nodes of pi’s tree. Process
pi decides its output to be the smallest element of Wi.

6

CS556 - Panagiota Fatourou 11

EIGStop Algorithm - Example

• n=3

• f = 1

• 2 rounds

•3 tree levels

• initial values
of p1, p2, p3:
0, 0, and 1,
respectively.

CS556 - Panagiota Fatourou 12

EIGStop Algorithm - Correctness

Lemma 1: After f+1 rounds of the EIGStop Algorithm, the following hold:

1. val(λ)i is the input value of pi

2. If xj is a node label and val(xj)i = v, then val(x)j = v.

3. If xj is a node label and val(xj)i = null, then either val(x)j = null or else pj
fails to send a message to pi at round |x|+1.

Lemma 2: After f+1 rounds of the EIGStop Algorithm, the following hold:

1. If y is a node label, val(y)i = v and xj is a prefix of y, then val(x)j = v.

2. If v appears in the set of vals at any process, then v = val(λ)i, for some i.
3. If v appears in the set of vals of process pi, then there is some label y that

does not contain i s.t. v = val(y)i.
Proof: Part 1 follows from repeated use of Lemma 1 (part 2).

Part 2: Suppose v = val(y)i. If y = λ we are done. Otherwise, let j be the
first index in y. Part 1 then implies the claim.

For part 3, suppose to the contrary that v only appears as the val for
labels containing i. Let y be a shortest label s.t. v = val(y)i. Then y has a
prefix of the form xi. But then part 1 ⇒ val(x)i = v, which contradicts
the choice of y.

7

CS556 - Panagiota Fatourou 13

EIGStop Algorithm - Correctness

Lemma 3: If processes pi and pj are both non-faulty, then Wi = Wj.

Proof: We may assume that i ≠ j. We show that Wi ⊆ Wj and
Wj ⊆ Wi.

1. Wi ⊆ Wj
Suppose v ∈ Wi. Then, Lemma 2 implies that v = val(x)i, for some
label x that does not contain i.

i. |x| < f+1 ⇒ |xi| ≤ f+1. Since string x does not contain i, (non-faulty)
process pi relays value v to process pj at round |xi| ⇒ val(xi)j = v
⇒ v ∈ Wj.

ii. |x| = f+1. Because there are at most f faulty processes and all indices
in x are distinct, there must be some non-faulty process pl whose
index appears in x
⇒ x has a prefix of the form yl. Lemma 2 implies that val(y)l = v.
Since process pl is non-faulty, it relays v to pj at round |yl|
⇒ val(yl)j = v ⇒ v ∈ Wj.

3 Wj ⊆ Wi. Symmetric to the previous case.

CS556 - Panagiota Fatourou 14

EIGStop Algorithm – Correctness & Complexity

Theorem

• EIGStop solves the consensus problem for stopping failures.

Proof

� Termination is obvious by the decision rule.

Validity

� Assume that all the initial values are equal to v. Then, each Wi
must be exactly equal to {v}. Thus, all processes output v.

Agreement

� Let pi and pj be any two processes that decide ⇒ pi, pj are non-
faulty. Lemma 3 implies that Wi = Wj. Thus, pi, pj decide the
same output value.

Complexities

• Round complexity?

• Communication Complexity?

8

CS556 - Panagiota Fatourou 15

Algorithms for Byzantine Failures

Algorithm EIGByz – Code for process pi

� The processes (we assume that n > 3f) propagate
values for f+1 rounds in the same way as in EIGStop
with the following exceptions:

� If pi receives a message from pj that is not of the
specified form, then pi ignores the message.

� At the end of f+1 rounds, pi works from the leaves up
in its decorated tree, decorating each node with an
additional newval, as follows:
� For each leaf labeled x, newval(x) = val(x).

� For each non-leaf node labeled x, newval(x) is defined to be
the newval held by a strict majority of the children of node x

o It takes the value v, s.t. newval(xj) = v for a majority of the
nodes with label of the form xj, provided that such a majority
exists).

o If no such majority exists, newval(x) = null.

� The output value of pi is newval(λ).

CS556 - Panagiota Fatourou 16

Algorithm EIGByz - Correctness

Lemma 1: After f+1 rounds of the EIGByz algorithm, the following
holds. If pi, pj and pk are non-faulty processes, with i ≠ j, then
val(x)i = val(x)j = val(y)k for each label x ending in k.

Proof: Since k is non-faulty, it sends the same message val(y)k to pi
and pj at round |x|.

Lemma 2: After f+1 rounds of the EIGByz algorithm, the following
holds. Suppose that x = yk is a label such that pk is a non-faulty
process. Then, newval(x)i = val(x)i = val(y)k for all non-faulty
processes i.

Proof: By induction on the tree labels, working from the leaves up.

� Induction Base: Suppose x is the label of a leaf node (|x| = f+1).
– Due to the way that values are assigned to the newval variables of

leaf nodes ⇒ newval(x)i = val(x)i

– By Lemma 1 ⇒ for all non-faulty processes pi, it holds that val(x)i =
val(y)k.

9

CS556 - Panagiota Fatourou 17

Algorithm EIGByz - Correctness

� Inductive Hypothesis: Fix any r, 1 ≤ r ≤ f and assume that the claim
holds for all labels x’ = y’k’ s.t. |x’| = r+1 (where pk’ is a non-faulty
process).

� Inductive Step: We prove that the claim holds for all labels x = yk with
|x|=r (where pk is a non-faulty process).

– Lemma 1 ⇒ all non-faulty-processes pi have val(x)i = val(y)k = v ⇒

– Every non-faulty process pj sends the same value v for x to all processes at
round r+1 ⇒ val(xj)i = v for all non-faulty processes pi and pj.

– By inductive hypothesis ⇒ newval(xj)i = val(xj)i = v, for all non-faulty
processes pi and pj.

– The majority of labels of children of node x end in non-faulty process
indices:

– # of children of x = n-r ≥ n-f > 3f –f = 2f ⇒ since at most f of the children
have labels ending in indices of faulty processes, we have the needed
majority.

⇒ For any non-faulty process pi, newval(xj)i = v for a majority of children xj
of node x.

⇒ newval(x)i = v.

CS556 - Panagiota Fatourou 18

Algorithm EIGByz - Correctness

Lemma 3: If all non-faulty processes begin with the same initial value v,
then v is the only possible decision value for a non-faulty process.

Proof: All non-faulty processes broadcast v at the 1st round ⇒ val(j)i = v
for all non-faulty processes pi and pj.

� Lemma 2 ⇒ newval(j)i = val(j)i = v.

� By the majority rule: newval(λ)i = v.

Definitions

1. We say that a subset C of the nodes of a rooted tree is a path
covering provided that every path from the root to a leaf contains at
least one node in C.

2. A tree node x is said to be common in a provided that at the end of
f+1 rounds in a, all the non-faulty processes pi have the same
newval(x)i.

3. A set of tree nodes is said to be common in a if all the nodes in the
set are common in a.

10

CS556 - Panagiota Fatourou 19

Algorithm EIGByz - Correctness

Lemma 4: After f+1 rounds of the EIGByz algorithm, the following holds.
Let x be any node label in the EIG tree. If there is a common path
covering of the subtree rooted at x, then x is common.

Proof: By induction on tree labels working from the leaves up.

• Base Case: Suppose that x is a leaf. If there is a common path covering
of the subtree rooted at x, then it contains only x. Thus, x is common.

• Inductive Hypothesis: Fix any r, 1 ≤ r ≤ f and assume that the claim
holds for each node with label x’ s.t. |x’| = r+1.

• Inductive Step: We prove that the claim holds for each node with label
x s.t. |x|=r.

– Suppose that there is a common path covering C of x’s subtree. If x itself is
in C, then it is common. So assume that x is not in C.

– Consider any child xl of x. Since x ∉C, C induces a common path covering for
the subtree rooted at xl.

– By the inductive hypothesis ⇒ xl is common. Since xl was chosen to be an
arbitrary child of x, all the children of x are common.

– Then by the definition of newval(x), x is common.

CS556 - Panagiota Fatourou 20

Algorithm EIGByz - Correctness

Lemma 5: After f+1 rounds of any execution of the EIGByz
algorithm, there exists a path covering that is common in a.

Proof: Let C be the set of nodes with labels of the form xi where i
is the index of a non-faulty process.

• All nodes in C are common.

• Consider any path from the root to a leaf. It contains exactly
f+1 non-root nodes, and the label of each such node ends with a
distinct process index.

• Since there are f faulty processes, there is some node of the
path whose label ends in a non-faulty process index.

• This node must be in C.

Corollary: After f+1 rounds of the EIGByz algorithm, the root node
λ of the tree of each non-faulty process is common.

Theorem: EIGByz solves the Byzantine agreement problem for n
processes with f failures, if n > 3f.

11

CS556 - Panagiota Fatourou 21

Number of Rounds with Stopping Failures –
Special Case where f = 1

Theorem

• Suppose that n ≥ 3. Then there is no n-process stopping
agreement algorithm that tolerates one fault, in which all non-
faulty processes always decide by the end of round 1.

Proof: By contradiction. Let Α be any such algorithm.

• We construct a chain of executions of A, each with at most one
faulty process:
o the first execution in the chain contains 0 as its unique decision

value,

o the last execution in the chain contains 1 as its unique decision value
o any two consecutive executions in the chain are indistinguishable to

some process that is non-faulty in both.

• ⇒ Every execution in the chain must have the same unique
decision value. A contradiction!!!!

CS556 - Panagiota Fatourou 22

Number of Rounds with Stopping Failures –
Special Case where f = 1

Example n = 3

12

CS556 - Panagiota Fatourou 23

Number of Rounds with Stopping Failures –
Special Case where f = 2

Theorem

• Suppose that n ≥ 4. Then there is no n-process stopping
agreement algorithm that tolerates two faults, in which all non-
faulty processes always decide by the end of round 2.

• Proof: By contradiction. Let Α be any such algorithm.

• We follow similar arguments as that for case f=1. However:

• Now we have two rounds!!! What problem may result from this?

• How can we remove a message from p0 to p1?

o we will remove one-by-one the messages sent by p1 during the 2nd

round

o then we will remove the 1st round message from p0 to p1
o we will recover one-by-one the messages 2nd round messages sent

by p1

CS556 - Panagiota Fatourou 24

Number of Rounds with Stopping Failures –
Special Case where f = 2

At this point only process p0 is faulty.

13

CS556 - Panagiota Fatourou 25

Number of Rounds with Stopping Failures –
Special Case where f = 2

• I repeat this process with p2 playing the role
of p1, in order to remove the message from
p0 to p2. I do the same for all other
processes.

• Then:

o I change the input value of p0 to 1.

o I apply the reverse procedure to recover the 1st

round messages of p0

• I repeat the above procedure with each
process pj, other than p0, playing the role of
p0!

CS556 - Panagiota Fatourou 26

Number of Rounds with Stopping Failures –
General Case

Theorem

• Suppose that n ≥ f+2. Then there is no n-process
stopping agreement algorithm that tolerates f faults,
in which all non-faulty processes always decide by the
end of round f.

Sketch of Proof

• The main ideas have already been presented!

• The chain of execution that is created is much longer
and in order to make it we have to kill f processes.

14

CS556 - Panagiota Fatourou 27

Impossibility of Consensus in
Asynchronous Shared-Memory

Systems

Theorem 1:. For n ≥ 2, there is no algorithm
in the read/write shared memory model
that solves the agreement problem and
guarantees wait-free termination.

CS556 - Panagiota Fatourou 28

Useful Definitions
• The valence of

a configuration C
is the set of
all values decided
upon in any
configuration
reachable from C.

• C is univalent if this set contains one value; it is 0-
valent if this value is 0 and 1-valent if this value
is 1.

• If the set contains two values then C is bivalent.
• If C is bivalent and the configuration resulting by

letting some process p take a step is univalent, we say
that p is critical in C.

• Recall that: Two configurations C1 and C2 are similar to
a process p, denoted C1 ~p C2, if the values of all shared
variables and the state of p are the same in C1 and C2.

15

CS556 - Panagiota Fatourou 29

Impossibility of Consensus - Proof

Assume, by the way of contradiction, that A
is a wait-free consensus algorithm.

Main Ideas of the Proof

• We construct an infinite execution in which:
– every process takes an infinite number of steps,

– yet every configuration is bivalent,

– and thus no process can decide.

• This contradicts the fact that the
algorithm is wait-free.

CS556 - Panagiota Fatourou 30

Impossibility of Consensus

Lemma 2: Let C1 and C2 be two univalent configurations.
If C1 ∼

p C2, for some process p, then C1 is v-valent, if
C2 is also v-valent, where v ∈ {0,1}.

Proof: Suppose C1 is v-valent.
• Consider an infinite execution α from C1 in which only

p takes steps.
• Since the algorithm is supposed to be wait-free ⇒ a

is admissible and eventually p must decide in α.
• Since C1 is v-valent ⇒ p must decide v in α.
• The schedule of a can be applied from C2

• Since C1 ∼
p C2 and only p takes steps, it follows that p

decides v in this execution as well.
• Thus, C2 is v-valent, as needed.

16

CS556 - Panagiota Fatourou 31

Impossibility of Consensus

Lemma 3: There exists a bivalent initial configuration.

Proof: By contradiction.

• Let Ι0 be the initial configuration in which all processes
start with 0 ⇒ Ι0 is 0-valent.

• Let Ι1 be initial configuration in which all processes
start with 1 ⇒ Ι1 is 1-valent.

• Let Ι01 be the initial configuration in which p0 starts
with 0 and the remaining processes start with 1.

• Ι01 ∼
p0 Ι0 ⇒ (by Lemma 2) Ι01 is 0-valent

• Ι01 ∼
p1 Ι1 ⇒ (by Lemma 2) Ι01 cannot be 0-valent.

This is a contradiction!

CS556 - Panagiota Fatourou 32

Impossibility of Consensus

Lemma 4: If C is a bivalent
configuration, then at least
one processor is not critical
in C.

• Proof: By the way of
contradiction. Assume that
all processes are critical in C.

• Since C is bivalent and all processes are
critical in C ⇒ there exists two process pj and
pk such that:
– if pj takes a step from C, then the resulting

configuration C’ is 0-valent, and
– if pk takes a step from C the resulting

configuration C’’ is 1-valent.

17

CS556 - Panagiota Fatourou 33

Impossibility of Consensus
Proof of Lemma 4 (continued)

Consider the following cases.

1. The first step of process pj

from C is a read.

The case where the
first step of pk from C
is a read is symmetric.

CS556 - Panagiota Fatourou 34

Impossibility of Consensus
Proof of Lemma 4 (continued)

2. The first steps of pj and pk from C are both writes
and they are to different variables.

18

CS556 - Panagiota Fatourou 35

Impossibility of Consensus
Proof of Lemma 4 (continued)

2. The first steps of pj and pk

from C are both writes
and they are to the same
variable.

CS556 - Panagiota Fatourou 36

Impossibility of Consensus

Proof of Theorem 1
� We inductively create an admissible execution C0 i1 C1 i2

… in which the configurations remain bivalent forever.
– By Lemma 3, there is an initial bivalent configuration; let it be

C0.
– Suppose the execution has been created up to bivalent

configuration Ck.
– By Lemma 4, some process is not critical in Ck; denote this

process by pik.
– Then, pik can take a step without resulting in a univalent

configuration.
– We apply the event ik to Ck to obtain Ck+1 which is also bivalent.

� If we repeat this procedure forever, we will construct
an execution in which all the configurations are
bivalent. Thus, no process ever decides, contradicting
the termination property of the algorithm and implying
Theorem 1.

