Fault-Tolerant Consensus

Consensus

Assumptions

Denote by f the maximum number of processes that may fail. We call the system f-resilient
Description of the Problem
\checkmark Each process starts with an individual input from a particular value set V.
Processes may fail by crashing.
\checkmark All non-faulty processes are required to produce outputs from the value set V, subject to simple agreement and validity.
Correcteness Conditions
Agreement: No two processes decide on different values.
Validity: If all processes start with the same initial value
$v \in V$, then v is the only decision value.
Termination: All non-faulty processes eventually decide.
Motivation

- Processes in a database system may need to agree whether a transaction should commit or abort.
\square Processes in a communication system may need to agree on whether or not a message has been received.
- Processes in a control system may need to agree on whether or not a particular other processcis5fgulfynagiota Fatourou

Synchronous Shared Memory System

- Is there an algorithm that solves consensus in a synchronous shared-memory system?

Assumptions

- The maximum number of processes that can fail is f, where f is some positive integer. We call the system f-resilient.
- The communication graph is a clique of n nodes.
- The communication channels are reliable; all messages sent are delivered.

A Simple Algorithm for Synchronous Message-Passing Systems

code for processor $p_{i}, 0 \leqq i \leqq n-1$.	
Initially $V=\{x\}$	$/ / V$ contains p_{i} 's input

round $k, 1 \leq k \leq f+1$:
1: send $\left\{\bar{v} \in \bar{V}: p_{i}\right.$ has not already sent $\left.v\right\}$ to all processors
2: receive S_{j} from $p_{j}, 0 \leq j \leq n-1, j \neq i$
3: $V:=V \cup \bigcup_{j=0}^{n-1} S_{j}$
4: if $k=f+1$ then $y: \equiv \min (V) \quad / /$ decide

- Each process maintains a set of the values it knows to exist in the system; initially, this set contains only its own input.
At the first round, each process broadcasts its own input to all processes.
For the subsequent f rounds, each process takes the following actions:
- updates its set by joining it with the sets received from other processes, and
- broadcasts any new additions to the set to all processes.
- After $f+1$ rounds, the process decides on the smallest value in its set.

A Simple Algorithm for Synchronous Message-Passing Systems

round 1
round 3
round 2 round 4
$f=3, n=5$

A Simple Algorithm for Synchronous Message-Passing Systems

Termination?
Validity?
Intuition for Agreement:

- Assume that a process p_{i} decides on a value \times smaller than that decided by some other process p_{j}
- Then, x has remained "hidden" from p_{j} for $(f+1)$ rounds.
- We have at most f faulty processes. A contradiction!!!

Number of processes?

$$
n>f
$$

Round complexity? $(f+1)$ rounds
Message Complexity?

- n^{2} * $|V|$ messages, where V is the set of input values.

Exponential Information Gathering Algorithms

Main Idea

- Processes send and relay initial values for several rounds, recording the values they receive along various communication paths in a data structure called an EIG Tree.
- At the end, they use a commonly agreed-upon decision rule based on the values recorded in their trees.

Data Structure

- Each process maintains an EIG Tree ($T=T_{n, f}$), each node of which is labeled by a string of process indices.
- Each path in the tree from the root represents a chain of processes along which initial values are propagated.
- The tree T has $f+2$ levels, $0, \ldots, f+1$.
- Each node of level k has exactly $n-k$ children, where $0 \leq k \leq f$.

Exponential Information Gathering Algorithms

The root is labeled by the empty string Λ.
Each node with label $i_{1} \ldots i_{k}$ has exactly $n-k$ children with labels $i_{1} \ldots i_{k} j$, where $j \in\{1, \ldots, n\}-\left\{i_{1}, \ldots, i_{k}\right\}$.

Exponential Information Gathering Algorithms

- The computation proceeds for exactly $f+1$ rounds.
- In the course of the computation, the processes decorate the nodes of their trees with values in V or null, decorating all those at level k, at the end of round k.

Decoration of the EIG Tree of process p_{i}

\square The root of process p_{i} tree gets decorated with p_{i} 's input value.

- At each round, if the node labeled by the string $i_{1} \ldots i_{k}, 1 \leq k \leq f+1$, is decorated by a value $v \in V \Rightarrow i_{k}$ has told i at round k that i_{k-1} has told i_{k} at round $k-1$ that ... that i_{1} has told i_{2} at round 1 that i_{1} 's initial value is v.
- If the node labeled by the string $i_{1} \ldots i_{k}$ is decorated with null \Rightarrow the chain of communication $\mathrm{i}_{1}, \ldots, i_{k}$, has been broken by a failure.

Assumption

Each process is able to send messages to itself in addition to the other processes.

EIGStop Algorithm

- For every string x that occurs as a label of a node of T, p_{i} has a variable val (x).
- $\operatorname{val}(x)$ holds the value with which the process decorates the node labeled x.
- Initially, val $(\lambda)=$ initial value of p_{i}.

Round 1: Process p_{i} broadcasts val(λ) to all processes, including i itself.
Then, p_{i} records the incoming information:

- If a message with value v arrives at p_{i} from $p_{j} \Rightarrow \operatorname{val}(j)=v$.
- If no message arrives at p_{i} from $p_{j} \Rightarrow \operatorname{val}(j)=$ null.

Round $k, 2 \leq k \leq f+1$: Process p_{i} broadcasts all pairs ($x, \operatorname{val}(x)$), where x is a level $k-1$ label in T that does not contain index i.

- Then, p_{i} records the incoming information:
- If $x j$ is a level k node label in T, where x is a string of process indices and j is a single index, and a message saying that val $(x)=v$ arrives at p_{i} from p_{j}, then p_{i} sets val $\left(x_{j}\right)$ to v.
- If $x j$ is a level k node label in T, and no message with a value in V for $\operatorname{val}(x)$ arrives at p_{i} from p_{j}, then p_{i} sets $\operatorname{val}(x j)$ to null.
- At the end of $f+1$ rounds, process p_{i} applies a decision rule:
- Let W_{i} be the set of non-null values that decorate nodes of p_{i} 's tree. Process p_{i} decides its output to be the smallest element of W_{i}.

EIGStop Algorithm - Correctness

Lemma 1: After $\mathrm{f}+1$ rounds of the EIGStop Algorithm, the following hold:

1. $\operatorname{val}\left(\Lambda_{i}\right.$ is the input value of p_{i}
2. If $x j$ is a node label and $\operatorname{val}\left(x_{j}\right)_{i}=v$, then $\operatorname{val}(x)_{j}=v$.
3. If $x j$ is a node label and $\operatorname{val}\left(x_{j}\right)_{i}=$ null, then either $\operatorname{val}(x)_{j}=$ null or else p_{j} fails to send a message to p_{i} at round $|x|+1$.

Lemma 2: After $\mathrm{f}+1$ rounds of the EIGStop Algorithm, the following hold:

1. If y is a node label, val $(y)_{i}=v$ and $x j$ is a prefix of y, then $v a l(x)_{j}=v$.
2. If v appears in the set of vals at any process, then $v=\operatorname{val}(\Lambda)_{i}$, for some i.
3. If v appears in the set of vals of process p_{i}, then there is some label y that does not contain i s.t. $v=$ val(y) i. $_{\text {. }}$
Proof: Part 1 follows from repeated use of Lemma 1 (part 2).
Part 2: Suppose $v=\operatorname{val}(y)_{i}$. If $y=\lambda$ we are done. Otherwise, let j be the first index in y. Part 1 then implies the claim.
For part 3, suppose to the contrary that v only appears as the val for labels containing i. Let y be a shortest label s.t. $v=\operatorname{val}(y)_{i}$. Then y has a prefix of the form xi. But then part $1 \Rightarrow \operatorname{val}(x)_{i}=v$, which contradicts the choice of y.

EIGStop Algorithm - Correctness

Lemma 3: If processes p_{i} and p_{j} are both non-faulty, then $W_{i}=W_{j}$. Proof: We may assume that $i \neq j$. We show that $W_{i} \subseteq W_{j}$ and $\mathrm{W}_{\mathrm{j}} \subseteq \mathrm{W}_{\mathrm{i}}$.

1. $W_{i} \subseteq W_{j}$

Suppose $v \in W_{i}$. Then, Lemma 2 implies that $v=\operatorname{val}(x)_{i}$, for some label x that does not contain i.
i. $\quad|x|<f+1 \Rightarrow|x i| \leq f+1$. Since string x does not contain i, (non-faulty) process p_{i} relays value v to process p_{j} at round $|x i| \Rightarrow \operatorname{val}(x i)_{j}=v$ $\stackrel{\text { process }}{\Rightarrow} \mathrm{v} \in \mathrm{W}_{\mathrm{j}}$.
ii. $\quad|x|=f+1$. Because there are at most f faulty processes and all indices in x are distinct, there must be some non-faulty process p_{1} whose index appears in x
$\Rightarrow x$ has a prefix of the form $y l$. Lemma 2 implies that $v a l(y)_{1}=v$. Since process p_{1} is non-faulty, it relays v to p_{j} at round |y|| $\Rightarrow \operatorname{val}(\mathrm{y})_{\mathrm{j}}=\mathrm{v} \Rightarrow \mathrm{v} \in \mathrm{W}_{\mathrm{j}}$.
$3 \quad \mathrm{~W}_{\mathrm{j}} \subseteq \mathrm{W}_{\mathrm{i}}$. Symmetric to the previous case.

EIGStop Algorithm - Correctness \& Complexity

Theorem

- EIGStop solves the consensus problem for stopping failures.

Proof
Termination is obvious by the decision rule.
Validity

- Assume that all the initial values are equal to v. Then, each W_{i} must be exactly equal to $\{v\}$. Thus, all processes output v.

Agreement

\square Let p_{i} and p_{j} be any two processes that decide $\Rightarrow p_{i}, p_{j}$ are nonfaulty. Lemma 3 implies that $W_{i}=W_{j}$. Thus, p_{i}, p_{j} decide the same output value.

Complexities

- Round complexity?
- Communication Complexity?

Algorithms for Byzantine Failures

Algorithm EIGByz - Code for process p_{i}

\square The processes (we assume that $n>3 f$) propagate values for $f+1$ rounds in the same way as in EIGStop with the following exceptions:
\square If p_{i} receives a message from p_{j} that is not of the specified form, then p_{i} ignores the message.
\square At the end of $f+1$ rounds, p_{i} works from the leaves up in its decorated tree, decorating each node with an additional newval, as follows:

- For each leaf labeled x, newval $(x)=\operatorname{val}(x)$.
- For each non-leaf node labeled x, newval (x) is defined to be the newval held by a strict majority of the children of node x - It takes the value v, s.t. newval $(x j)=v$ for a majority of the nodes with label of the form $x j$, provided that such a majority exists).
- If no such majority exists, newval(x) = null.
\square The output value of p_{i} is newval((λ).

Algorithm EIGByz - Correctness

Lemma 1: After $\mathrm{f}+1$ rounds of the EIGByz algorithm, the following holds. If p_{i}, p_{j} and p_{k} are non-faulty processes, with $i \neq j$, then $\operatorname{val}(x)_{i}=\operatorname{val}(x)_{j}^{j}=\operatorname{val}(y)_{k}$ for each label x ending in k.
Proof: Since k is non-faulty, it sends the same message $\operatorname{val}(y)_{k}$ to p_{i} and p_{j} at round $|x|$.

Lemma 2: After $\mathrm{f}+1$ rounds of the EIGByz algorithm, the following holds. Suppose that $x=y k$ is a label such that p_{k} is a non-faulty process. Then, newval $(x)_{i}=\operatorname{val}(x)_{i}=\operatorname{val}(y)_{k}$ for all non-faulty processes i.
Proof: By induction on the tree labels, working from the leaves up.
Induction Base: Suppose x is the label of a leaf node $(|x|=f+1)$.

- Due to the way that values are assigned to the newval variables of leaf nodes \Rightarrow newval $(x)_{i}=\operatorname{val}(x)_{i}$
- By Lemma $1 \Rightarrow$ for all non-faulty processes p_{i}, it holds that $\operatorname{val}(x)_{i}=$ $\operatorname{val}(y)_{k}$.

Algorithm EIGByz - Correctness

- Inductive Hypothesis: Fix any $r, 1 \leq r \leq f$ and assume that the claim holds for all labels $x^{\prime}=y^{\prime} k^{\prime}$ s.t. $\left|x^{\prime}\right|=r+1$ (where $p_{k^{\prime}}$ is a non-faulty process).
- Inductive Step: We prove that the claim holds for all labels $x=y k$ with $|x|=r$ (where p_{k} is a non-faulty process).
- Lemma $1 \Rightarrow$ all non-faulty-processes p_{i} have $\operatorname{val}(x)_{i}=\operatorname{val}(y)_{k}=v \Rightarrow$
- Every non-faulty process p_{j} sends the same value v for x to all processes at round $r+1 \Rightarrow$ val $\left(x_{j}\right)_{i}=v$ for all non-faulty processes p_{i} and p_{j}.
- By inductive hypothesis \Rightarrow newval $(x \mathrm{j})_{\mathrm{i}}=\operatorname{val}\left(\mathrm{xj}_{\mathrm{j}}\right)_{\mathrm{i}}=\mathrm{v}$, for all non-faulty processes p_{i} and p_{j}.
- The majority of labels of children of node x end in non-faulty process indices:
- \# of children of $x=n-r \geq n-f>3 f-f=2 f \Rightarrow$ since at most f of the children have labels ending in indices of faulty processes, we have the needed majority.
\Rightarrow For any non-faulty process p_{i}, newval $\left(x j_{i}=v\right.$ for a majority of children $\times j$ of node x.
$\Rightarrow \operatorname{newval}(\mathrm{x})_{\mathrm{i}}=\mathrm{v}$.

Algorithm EIGByz - Correctness

Lemma 3: If all non-faulty processes begin with the same initial value v, then v is the only possible decision value for a non-faulty process.
Proof: All non-faulty processes broadcast v at the $1^{\text {st }}$ round $\Rightarrow \operatorname{val}(j)_{i}=v$ for all non-faulty processes p_{i} and p_{j}.

- Lemma $2 \Rightarrow \operatorname{newval}(j)_{i}=\operatorname{val}(j)_{i}=v$.
- By the majority rule: newval $\left(\Lambda_{i}=v\right.$.

Definitions

1. We say that a subset C of the nodes of a rooted tree is a path covering provided that every path from the root to a leaf contains at least one node in C.
2. A tree node x is said to be common in a provided that at the end of $f+1$ rounds in a, all the non-faulty processes p_{i} have the same newval $(x)_{i}$.
3. A set of tree nodes is said to be common in a if all the nodes in the set are common in a.

Algorithm EIGByz - Correctness

Lemma 4: After $f+1$ rounds of the EIGByz algorithm, the following holds. Let x be any node label in the EIG tree. If there is a common path covering of the subtree rooted at x, then x is common.
Proof: By induction on tree labels working from the leaves up.

- Base Case: Suppose that x is a leaf. If there is a common path covering of the subtree rooted at x, then it contains only x. Thus, x is common.
- Inductive Hypothesis: Fix any $r, 1 \leq r \leq f$ and assume that the claim holds for each node with label x^{\prime} s.t. $\left|x^{\prime}\right|=r+1$.
- Inductive Step: We prove that the claim holds for each node with label x s.t. $|x|=r$.
- Suppose that there is a common path covering C of x 's subtree. If x itself is in C, then it is common. So assume that x is not in C.
- Consider any child $x \mid$ of x. Since $x \notin C, C$ induces a common path covering for the subtree rooted at x.
- By the inductive hypothesis $\Rightarrow x \mid$ is common. Since $x \mid$ was chosen to be an arbitrary child of x, all the children of x are common.
- Then by the definition of newval $(x), x$ is common.

Algorithm EIGByz - Correctness

Lemma 5: After $f+1$ rounds of any execution of the EIGByz algorithm, there exists a path covering that is common in a.
Proof: Let C be the set of nodes with labels of the form xi where i is the index of a non-faulty process.

- All nodes in C are common.
- Consider any path from the root to a leaf. It contains exactly $\mathrm{f}+1$ non-root nodes, and the label of each such node ends with a distinct process index.
- Since there are f faulty processes, there is some node of the path whose label ends in a non-faulty process index.
- This node must be in C.

Corollary: After $f+1$ rounds of the EIGByz algorithm, the root node Λ of the tree of each non-faulty process is common.

Theorem: EIGByz solves the Byzantine agreement problem for n processes with f failures, if $n>3 f$.

Number of Rounds with Stopping Failures Special Case where $f=1$

Theorem

- Suppose that $n \geq 3$. Then there is no n-process stopping agreement algorithm that tolerates one fault, in which all nonfaulty processes always decide by the end of round 1.

Proof: By contradiction. Let A be any such algorithm.

- We construct a chain of executions of A, each with at most one faulty process:
- the first execution in the chain contains 0 as its unique decision value,
- the last execution in the chain contains 1 as its unique decision value
- any two consecutive executions in the chain are indistinguishable to some process that is non-faulty in both.
- Every execution in the chain must have the same unique decision value. A contradiction!!!!

Number of Rounds with Stopping Failures Special Case where $f=1$

Example $n=3$

Number of Rounds with Stopping Failures Special Case where $f=2$

Theorem

- Suppose that $n \geq 4$. Then there is no n-process stopping agreement algorithm that tolerates two faults, in which all nonfaulty processes always decide by the end of round 2.
- Proof: By contradiction. Let A be any such algorithm.
- We follow similar arguments as that for case $f=1$. However:
- Now we have two rounds!!! What problem may result from this?
- How can we remove a message from p_{0} to p_{1} ?
- we will remove one-by-one the messages sent by p_{1} during the $2^{\text {nd }}$ round
- then we will remove the $1^{\text {st }}$ round message from p_{0} to p_{1}
- we will recover one-by-one the messages $2^{\text {nd }}$ round messages sent by p_{1}

Number of Rounds with Stopping Failures -

 Special Case where $f=2$- I repeat this process with p_{2} playing the role of p_{1}, in order to remove the message from p_{0} to p_{2}. I do the same for all other processes.
- Then:
- I change the input value of p_{o} to 1 .
- I apply the reverse procedure to recover the $1^{\text {st }}$ round messages of p_{0}
- I repeat the above procedure with each process p_{j}, other than p_{0}, playing the role of pO!

Number of Rounds with Stopping Failures General Case

Theorem

- Suppose that $n \geq f+2$. Then there is no n-process stopping agreement algorithm that tolerates f faults, in which all non-faulty processes always decide by the end of round f.

Sketch of Proof

- The main ideas have already been presented!
- The chain of execution that is created is much longer and in order to make it we have to kill f processes.

Impossibility of Consensus in Asynchronous Shared-Memory Systems

Theorem 1:. For $n \geq 2$, there is no algorithm in the read/write shared memory model that solves the agreement problem and guarantees wait-free termination.

Useful Definitions

- The valence of a configuration C is the set of all values decided upon in any
 configuration reachable from C.
- C is univalent if this set contains one value; it is 0 valent if this value is 0 and 1 -valent if this value is 1 .
- If the set contains two values then C is bivalent.
- If C is bivalent and the configuration resulting by letting some process p take a step is univalent, we say that p is critical in C.
- Recall that: Two configurations C_{1} and C_{2} are similar to a process p, denoted $C_{1} \sim p C_{2}$, if the values of all shared variables and the state of p are the same in C_{1} and C_{2}.

Impossibility of Consensus - Proof

Assume, by the way of contradiction, that A is a wait-free consensus algorithm.

Main Ideas of the Proof

- We construct an infinite execution in which:
- every process takes an infinite number of steps,
- yet every configuration is bivalent,
- and thus no process can decide.
- This contradicts the fact that the algorithm is wait-free.

Impossibility of Consensus

Lemma 2: Let C_{1} and C_{2} be two univalent configurations. If $C_{1} \sim^{p} C_{2}$, for some process p, then C_{1} is v-valent, if C_{2} is also v-valent, where $v \in\{0,1\}$.

Proof: Suppose C_{1} is v-valent.

- Consider an infinite execution a from C_{1} in which only p takes steps.
- Since the algorithm is supposed to be wait-free \Rightarrow a is admissible and eventually p must decide in a.
- Since C_{1} is v-valent $\Rightarrow \mathrm{p}$ must decide v in a.
- The schedule of a can be applied from C_{2}
- Since $C_{1} \sim \mathrm{p} C_{2}$ and only p takes steps, it follows that p decides v in this execution as well.
- Thus, C_{2} is v-valent, as needed.

Impossibility of Consensus

Lemma 3: There exists a bivalent initial configuration.
Proof: By contradiction.

- Let I_{0} be the initial configuration in which all processes start with $0 \Rightarrow I_{0}$ is 0 -valent.
- Let I_{1} be initial configuration in which all processes start with $1 \Rightarrow I_{1}$ is 1 -valent.
- Let I_{10} be the initial configuration in which p_{0} starts with 0 and the remaining processes start with 1.
- $I_{01} \sim^{p 0} I_{0} \Rightarrow$ (by Lemma 2) I_{01} is 0 -valent
- $I_{01} \sim^{11} I_{1} \Rightarrow$ (by Lemma 2) I_{01} cannot be 0-valent.

This is a contradiction!

Impossibility of Consensus

Lemma 4: If C is a bivalent

- Proof: By the way of contradiction. Assume that

- Since C is bivalent and all processes are critical in $C \Rightarrow$ there exists two process p_{j} and p_{k} such that:
- if p_{j} takes a step from C, then the resulting configuration C^{\prime} is 0 -valent, and
- if p_{k} takes a step from C the resulting configuration $C^{\prime \prime}$ is 1 -valent.

Impossibility of Consensus

Proof of Lemma 4 (continued)
Consider the following cases.

1. The first step of process p_{j} from C is a read.

The case where the first step of p_{k} from C is a read is symmetric.
 is a read is symetric.

A contradiction!

Impossibility of Consensus

Proof of Lemma 4 (continued)
2. The first steps of p_{j} and p_{k} from C are both writes and they are to different variables.

A contradiction?

Impossibility of Consensus

Proof of Lemma 4 (continued)
2. The first steps of p_{j} and p_{k} from C are both writes and they are to the same j, write x variable.

Impossibility of Consensus

Proof of Theorem 1
\Rightarrow We inductively create an admissible execution $C_{0} i_{1} C_{1} i_{2}$... in which the configurations remain bivalent forever.

- By Lemma 3, there is an initial bivalent configuration; let it be C
- Suppose the execution has been created up to bivalent configuration C_{k}.
- By Lemma 4, some process is not critical in C_{k}; denote this process by $\mathrm{p}_{\mathrm{i} k}$.
- Then, p_{ik} can take a step without resulting in a univalent configuration.
- We apply the event i_{k} to C_{k} to obtain C_{k+1} which is also bivalent.
$>$ If we repeat this procedure forever, we will construct an execution in which all the configurations are bivalent. Thus, no process ever decides, contradicting the termination property of the algorithm and implying Theorem 1.

