Basic Algorithms

- We define a directed spanning free of a directed graph G = (v, E) to be a rooted tree that consists entirely of directed edges in E, all edges directed from parents to children in the tree, and that contains every vertex of G.
- □ A directed spanning tree of G with root node p_r is breadth-first provided that each node at distance d from p_r in G appears at depth d in the tree (that is at distance d from p_r in the tree).
- Every strongly connected digraph has a breadth-first directed spanning tree.
- Given that the G is a strongly connected directed graph and given that we have a distinguished node p_r, how can we design a synchronous algorithm that computes the directed BFS tree?
- > How can a process learn which nodes are its children?
- > What is the communication complexity of the algorithm in this case?
- > What is the time complexity of the algorithm in this case?
- > How can pr learn that the construction of the spanning tree has

terminated?

code for processor $p_i, 0 \le i \le n-1$.		Constructing a Depth-First Search Spanning Tree for a
Initially parent = \bot , children = \emptyset , unexplored = all neighbors of p_i		
		Specified Root: The DFS-ST
1: upon receiving no message:		Algorithm
2: if $p_i = p_r$ and $parent = \bot$ then	// root wakes up	
$parent := p_i$		
4: explore()		
: upon receiving $\langle M \rangle$ from p_i :		
	on pot reasoned (M) hafave	
B: $parent := p_i$	as not received (M) before	
p_{i} remove p_{i} from <i>unexplored</i>		
10: explore()		
1: else		
12: send (already) to p_i	// already in tree	
remove p_i from <i>unexplored</i>	in uneualy in tree	
4: upon receiving (already) from p_i :		
15: explore()		
6: upon receiving (parent) from p_i :		
7: add p_j to <i>children</i>		
8: explore()		
9: procedure explore():		
20: if <i>unexplored</i> $\neq \emptyset$ then		
1: let p_k be a processor in <i>unexplored</i>		
2: remove p_k from <i>unexplored</i>		
3: send $\langle M \rangle$ to p_k		
4: else		
5: if <i>parent</i> \neq p_i then send (parent) to <i>parent</i>		
6: terminate // DFS subtree re	boted at p_i has been built	

Initially parent = \perp , leader = -1 , c	pn: code for processor p_i , $0 \le i \le n - 1$. hildren = \emptyset , unexplored = all neighbors of p_i	Constructing
1: upon receiving no message: 2: if $parent = \bot$ then		a DFS
2: if $parent = \bot$ then 3: $leader := id$	// wake up spontaneously	
4: $parent := p_i$		Spanning
5: p_i explore()		Spanning
: upon receiving (leader, new-id)	rom u.	Tree without
if leader < new-id then	// switch to new tree	TIEC WITHOUT
: leader := new-id	" switch to new tree	
$parent := p_i$		a Specified
: $children := \emptyset$		aopeentiea
1: unexplored := all neight	ors of p_i except p_j	Root
2: explore()		K001
3: else if <i>leader</i> = <i>new-id</i> then		
I: send (already, leader) to // otherwise, lead	p_j // already in same tree er > new-id and the DFS for new-id is stalled	
5: upon receiving (already, new-id)		
5: if $new-id = leader$ then explored	pre()	
7: upon receiving (parent, new-id)	rom p_j :	
3: if <i>new-id</i> = <i>leader</i> then	// otherwise ignore message	
9: add p_j to children		
: explore()		
1: procedure explore():		
2: if <i>unexplored</i> $\neq \emptyset$ then		
3: let p_k be a processor in u		
24: remove p_k from <i>unexplot</i>		
 send (leader, leader) to p else 		
	novemb land and to manual	
27: if <i>parent</i> \neq p_i then send 28: else terminate as root of s		
.o. erse terminate as root of s	panning ucc	

An Algorithm with Communication Complexity O(nlogn) - Main Ideas

The k-neighborhood of a process p_i in the ring is the set of processes that are at distance at most k from p_i in the ring (either to the left or to the right).

Main Ideas

- The algorithm works in phases:
 - kth phase, k ≥ 0: a process tries to become a winner for the phase; a process becomes a winner if it has the largest id in its 2^k-neighborhood.
 - Only processes that are winners in the kth phase continue to compete in the (k+1)st phase.

- The algorithm builds the components in levels.
- For each k, the components of level k constitute a spanning forest, where:
 - Each level k component consists of a tree that is a subgraph of the MST.
 - Each level k component has at least 2^k nodes.
- Every component, at every level, has a distinguished leader node.
- The processes allow a fixed number of rounds, which is O(n), to complete each level.
- The n components of level 0 consist of one node each and no edges.
- Assume inductively that the level k components have been determined (along with their leaders), k ≥ 0. Suppose that each process knows the id of the leader of its component. This id is used as an identifier of the entire component.
- Each process also knows which of its incident edges are in the component's tree.

Minimum SpanningTree

It can be proved that:

- For each group of level k components that get combined into a single level k+1 component, there is a unique edge e that is the common MWOE of two of the level k components in the group.
- We let the new leader be the endpoint of e having the larger pid.
- The pid of the new leader is propagated throughout the new component, using broadcast.

Termination

- After some number of levels, the spanning forest consists of only a single component containing all the nodes in the network.
- Then, a new attempt to find a MWOE will fail, because no process will find an outgoing edge.
- When the leader learns this, it broadcasts a message saying that the algorithm is completed.

Breadth-First Search Tree 1st Solution: The LayeredBFS Algorithm The BFS spanning tree is constructed in layers.

- Each layer k consists of the nodes at depth k in the tree.
- The layers are constructed in a series of phases, one for each layer, all coordinated by process pr.

1st Phase

- Process pr sends (search) messages to all of its neighbors and waits to receive acknowledgements.
- A process that receives a search message at phase 1 sends a positive ack.
- This enables all processes at depth 1 to determine their parent, namely p_r , and of course, p_r knows its children.
- Inductively, we assume that k phases have been completed and that the first k layers have been constructed: each process at depth at most k knows its parent and each process at depth at most k-1 knows its children; p, knows that phase k has been completed.

