
Naming

Naming Entities

� A name is a string of bits or characters that is
used to refer to an entity.
� hosts, printers, disks, files, processes, users, mailboxes,

newsgroups, web pages, graphical windows, messages,
network connections, etc.

� Entities can be operated on. To operate on an
entity, it is necessary to have an access point.

� The name of an access point is called an address.
� Combination of an IP address and port number.

� An entity can offer more than one access points.
� An entity may change its access points in the
course of time.

Naming Entities

Disadvantages of treating addresses as a special type of name
� an entity may access point or an access point may be re-

assigned to a different entity
� for entities that offer more than one access points, it is not

clear which address to use as a reference.
Location-Independent names
� a name that is independent from its addresses
� A true identifier is a name that has the following properties:

1. An identifier refers to at most one entity
2. each entity is referred to by at most one identifier
3. an identifier always refers to the same entity (i.e., it is never

re-used).

Human-friendly names
� names tailored to be used by humans -> generally represented

as a character string

Name space

• name space, leaf nodes, directory nodes, paths: absolute path
name - relative path name, trees, DAGs
• Global name: is always interpreted with respect to the same
directory node.
• Local name: relative name whose directory in which it is contained
is implicitly known.

Name Spaces

The general organization of the UNIX file system
implementation on a logical disk of contiguous disk
blocks.

Name Resolution
� Given a path name, it should be possible to
look up any information stored in the node
referred to by that name.
� N: <label-1, label-2, … , label-n>

� In UNIX, a node identifier is implemented
as the index number of an inode.

Closure Mechanism

� Knowing how and where to start name
resolution is generally referred to as a
closure mechanism.

Linking and Mounting
� Alias: another name for the same entity
� Hard links: allow multiple absolute path names to
refer to the same node in a anaming graph.

� Symbolic links: represent an entity by a leaf node
but store an absolute path name in this node.

� Mounted file system: let a directory store the
identifier of a directory node from a different
name space.

� Mount point: the directory node storing the
identifier.

� Mounting point: the directory node in the foreign
name space.

Linking and Mounting

The concept of a symbolic link explained in a naming graph

Linking and Mounting

� To mount a foreign name space in a
distributed system requires at least the
following information:
� the name of an access protocol

� the name of the server

� the name of the mounting point in the foreign
name space

� Example
� nfs://flits.cs.vu.nl//home/steen

Linking and Mounting

Mounting remote name spaces through a specific process protocol.

The user is spared the details of the actual access to the remote
server.

Linking and Mounting

Another approach to mounting (Global Name
Service, GNS)

� Add a new root node and make the
existing root nodes its children.

� names in GNS always (implicitly) include
the identifier of the node from where
resolution should normally start.

� When adding a new root node, the node
stores a table mapping the identifier of
the root node to the name under which
that root is known in the new name space.

Linking and Mounting

Organization of the DEC Global Name Service

Expansion is generally
hidden from the user!

A node identifier is
assumed to be
universally unique.

Name Space Distribution

� Name-spaces for a large-scale, worldwide
distributed system are usually organized
hierarchically.

� The name space is partitioned into logical layers.
� global layer: root and directory nodes close to the root
� administrational layer: directory nodes that are

managed within a single organization
� managerial layer: nodes that may typically change

regularly

� The name space is also divided into non-
overlapping parts, called zones in DNS.
� A zone is a part of the name space that is implemented

by a separate name server.

Name Space Distribution

An example partitioning of the DNS name space, including Internet-
accessible files, into three layers.

Name Space Distribution – Availability and Performance

� Global Layer
� High availability is extremely critical
� The results of lookup operations can be effectively cached.
� Throughput is more important than worst-case response time

per lookup request.
� Techniques employed: (1) replication of servers, (2) client-side

caching
� Administrational Layer

� Availability is important for clients in the organization as the
name server and less important for external clients.

� Lookups should respond within a few milliseconds.
� Updates shold be processed quicker than those of the global

layer.
� Techniques: (1) use high-performance machines to run name

servers, (2) client-side caching combined with replication.
� Managerial Layer

� Availability requirements are less demanding.
� Performance is crucial.

Name Space Distribution

SometimesYesYesIs client-side caching applied?

NoneNone or fewManyNumber of replicas

ImmediateImmediateLazyUpdate propagation

ImmediateMillisecondsSecondsResponsiveness to lookups

Vast numbersManyFewTotal number of nodes

DepartmentOrganizationWorldwideGeographical scale of network

ManagerialAdministrationalGlobalItem

Implementation of Name Resolution

� Assumptions:
� name servers are not replicated

� no client-side caches are used.

� Each client has access to a local name
resolver, which is responsible for ensuring
that the name resolution process is carried
out.

� Example:
� Resolve the name:

root:<nl, vu, cs, ftp, pub, globe, index.txt>

Implementation of Name Resolution

� The principle of iterative name resolution.

Iterative Name Resolution

Implementation of Name Resolution

Recursive name resolution

Implementation of Name Resolution

Recursive name resolution of <nl, vu, cs, ftp>. Name servers
cache intermediate results for subsequent lookups.

#<vu>
#<vu,cs>
#<vu,cs,ftp>

#<cs>
#<cs,ftp>

#<ftp>

--

Receives
and caches

#<nl>
#<nl,vu>
#<nl,vu,cs>
#<nl,vu,cs,ftp>

<vu,cs,ftp>#<nl><ni,vu,cs,ftp>root

#<vu>
#<vu,cs>
#<vu,cs,ftp>

<cs,ftp>#<vu><vu,cs,ftp>ni

#<cs>
#<cs, ftp>

<ftp>#<cs><cs,ftp>vu

#<ftp>--#<ftp><ftp>cs

Returns to
requester

Passes to
child

Looks up
Should
resolve

Server for
node

Implementation of Name Resolution

The comparison between recursive and iterative name
resolution with respect to communication costs.

