
Processes



Memory Organization for an 
Executed Program
� When a program is loaded into memory, it is organized into 

three areas of memory, called segments: 
� text segment, 
� stack segment, and 
� heap segment

� The text segment (or code segment) is where the compiled 
code of the program itself resides.

� The stack is where memory is allocated for automatic 
variables within functions. 

� The heap segment provides more stable storage of data for a 
program since memory allocated in the heap remains in 
existence for the duration of a program. 



Stack
� local variables (variables declared inside a 

function) are put on the stack - unless 
they are declared as 'static' or 'register‘

� function parameters are allocated on the 
stack

� local variables that are stored in the stack 
are not automatically initialized by the 
system

� variables on the stack disappear when the 
function exits



Heap
� Global, static, register variables are stored on 

the heap before program execution begins

� they exist the entire life of the program (even if
scope prevents access to them - they still exist) 

� they are initialized to zero
� global variables are on the heap

� static local variables are on the heap (this is how they 
keep their value between function calls)

� memory allocated by new, malloc, calloc, etc., are 
on the heap



Processes
� A process is a program that is executed.
� Each time a process is created, the OS must 

create a complete independent address space 
(i.e., processes do not share their heap or stack 
data)

� The OS maintains a process table to keep track 
of the active processes in the system. 
Information maintained for each process:
� Program id, user id, group id
� Program status word
� CPU register values
� Memory maps
� Stack pointer
� Open files
� Accounting information, etc.



The FORK() System Call
Processes in UNIX are created with the fork() system call.

#include <sys/types.h>
#include <unistd.h>

void main(void)
{

int pid;
pid = fork();
if (pid == -1) {

printf(“error in process creation\n”);
exit(1);

}
else if (pid == 0) child_code();
else parent_code();

}



The FORK() System Call
#include <sys/types.h>
#include <unistd.h>

#define PROCESS 10

void main(void)
{

int pid, j;

for (j=0; j < PROCCESS; j++) {
pid = fork();
if (pid == -1) {

printf(“error in creation of process %d\n”, j);
exit(1);

}
else if (pid == 0)  child_code(j);

}
for (j = 0; j < PROCESS; j++) wait(0);

}

void child_code(int id)
{

pid_t myid, pid;
myid = getpid();
pid = getppid();

printf("My pid is %d and my parent’s id is %d",
myid, pid);

printf(“My virtual id is %d\n”, id);
exit(0);

}

If we are interested to wait for a particular 
child, we can use instead of wait(), waitpid() 
(see man pages for more information).



Variables shared to different processes

� Before the creation of the child-processes, the parent 
process should dynamically allocate some shared memory 
space. This shared space is assigned in the memory space of 
the parent process. 

� Each child process inherents the shared memory allocated by 
the parent process. 

#include <sys/types.h> 
#include <sys/ipc.h>
#include <sys/shm.h>

� shmget(): allocation of a segment of shared memory
(int shmget(key_t key, size_t size, int shmflag;)

int memid = shmget(IPC_PRIVATE, size, 0600|IPC_CREAT);
� Size: number of shared bytes to be allocated
� memid: the id of the allocated shared memory



Variables shared to different processes

� shmat(): attaches the shared memory segment associated 
with memid to the data segment of the calling process; 
returns a pointer to the first of the allocated shared bytes
(void *shmat(int shmid, const void *shmaddr, int shmflg);)

void *p = shmat(memid, 0, 0);
Example: struct whatever { 

int i, j; 
float k; 

} *myvars;
myvars = (struct whatever *) shmat(memid, 0, 0); 

Then, we can use myvars->k, myvars->j, myvars->i in the 
standard way.

� shmctl(): called by the parent process to de-allocate the 
shared memory allocated with shmget

� (shmctl(memid, IPC_RMID, 0);) 
(shmctl(int shmid, int cmd, struct shmid_ds *buf);)



Semaphores
� A semaphore is a protected variable or abstract 

data type that constitutes a classic method of 
controlling access by several processes to a common 
resource in a parallel programming environment. 

� The state of the semaphore can be updated by 
executing any of the following two atomic 
operations:
� up() -> increases the value of the semaphore by one.

� down(): blocks if the value of the semaphore is 0 until its 
value becomes >0; It decreases the semaphore’s value by 1.

� A binary semaphore takes only the values 0 and 1.



Semaphores
#include <sys/types.h> 
#include <sys/ipc.h>
#include <sys/sem.h>

� semget(): creation of semaphores
(int semget(key_t key, int nsems, int semflg))
int semid = semget(IPC_PRIVATE, Ν, 0600|IPC_CREAT);
N: number of semaphores to be created
The initialization of the ith semaphore to the value 

k is done as follows:
union semun {

int val; struct semid_ds *buf; ushort_t *array; 
} arg; 
arg.val = k; 
semctl(semid, i, SETVAL, arg);



Semaphores

� semctl(): de-allocation of semaphores   (int semctl(int
semid,int semnum,int cmd);)

semctl(semid, 0, IPC_RMID); 

� int semop(int semid, struct sembuf *sops, unisgned nsops);
struct sembuf operation; 
semop(semid, &operation, 1);

� Fields of struct sembuf: sem_num (which of the N 
semaphores we refer to), sem_op (-1 for down and +1 for up), 
sem_flg (usually 0). 

struct sembuf operation; 
operation.sem_flg = 0; 
operation.sem_num = i; 
operation.sem_op = -1; 
semop(semid, &operation, 1); /* Down */



An Example: The Producer – Consumer Problem

#define N 100
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(struct buf
*pbuf) {

int item;
while (TRUE) {

produce_item(&item);
down(empty);
down(mutex);
enter_item(pbuf, item);
up(mutex);
up(full);

}
}

void consumer(struct buf
*pbuf) {

int item;
while (TRUE) {

down(full);
down(mutex);
item = remove_item(pbuf);
up(mutex);
up(empty);

}
}



Producer-Consumer

#include <sys/types.h>
#include <unistd.h>
#define N 100

void main(void)
{

int pid;

pid = fork();
if (pid == 0) consumer(buf);
else producer(buf);
wait(0);
semctl(semid_full, 0, IPC_RMID); 
semctl(semid_empty, 0, IPC_RMID); 
semctl(semid_mutex, 0, IPC_RMID);
shmctl(memid, IPC_RMID, 0);

}

int semid_full, semid_empty, semid_mutex;
union semun {

int val;
struct semid_ds *buf;
ushort_t *array; 

} arg; 

semid_full = semget(IPC_PRIVATE, 1, 0600|IPC_CREAT);
arg.val = N; 
semctl(semid_empty, 0, SETVAL, arg);

semid_empty = semget(IPC_PRIVATE, 1, 
0600|IPC_CREAT);

arg.val = 0; 
semctl(semid_full, 0, SETVAL, arg);

semid_mutex = semget(IPC_PRIVATE, 1, 
0600|IPC_CREAT);

arg.val = 1; 
semctl(semid_empty, 0, SETVAL, arg);

int *buf;

int memid = shmget(IPC_PRIVATE, sizeof(int) * N, 0600|IPC_CREAT);
buf = (int *) shmat(memid, 0, 0);



Producer-Consumer
void consumer(void) {
int item = 0;
while (item < 100) {

down(semid_full);
down(semid_mutex);
printf(“Item consumed: %d\n”,

*(buf+item));
up(semid_mutex);
up(semid_empty);
item++;

}
}

void up(int semid) {
struct sembuf operation; 
operation.sem_flg = 0;
operation.sem_num = 0;
operation.sem_op = +1; 
semop(semid, &operation, 1);
}

void producer(void) {

int item = 0;

while (item < 100) {

down(semid_empty);

down(semid_mutex);

*(buf+item) = item;

up(semid_mutex);

up(semid_full);

item++;

}

}

void down(int semid) {

struct sembuf operation; 

operation.sem_flg = 0;

operation.sem_num = 0;

operation.sem_op = -1; 

semop(semid, &operation, 1);

}



Threads
� Threads exist within the resources of their 

parent processes 
� yet are able to be scheduled by the operating 

system and run as independent entities 
� they duplicate only the bare essential resources that 

enable them to exist as executable code. 

� A thread maintains its own: 
� Thread ID
� Stack pointer 
� Set of registers
� Signal masks
� Scheduling properties (such as policy or priority) 
� stack for local variables, return addresses 



Threads
Threads in the same process share: 

� Process instructions 

� Heap data 

� open files (descriptors) 

� current working directory 

� User and group id

� signals and signal handlers 

Because of this sharing of resources: 

� Changes made by one thread to shared system resources (such as 
closing a file) will be seen by all other threads. 

� Two pointers having the same value point to the same data. 

� Reading and writing to the same memory locations is possible, and 
therefore requires explicit synchronization by the programmer. 



Why using threads?
� To realize potential program performance gains. 

� a thread can be created with much less operating system 
overhead than a process

� managing threads requires fewer system resources than 
managing processes

� Inter-thread communication is more efficient and in many 
cases, easier to use than inter-process communication. 

� Threaded applications offer potential performance gains and 
practical advantages over non-threaded applications in 
several other ways: 
� Overlapping CPU work with I/O
� Efficient interleaving of tasks which service events of 

indeterminate frequency and duration 
� a web server can both transfer data from previous requests and 

manage the arrival of new requests. 



Designing Threaded Programs
� Programs having the following 

characteristics may be well suited for 
threads: 
� Work that can be executed, or data that can 

be operated on by multiple tasks simultaneously 

� Block for potentially long I/O waits 

� Use many CPU cycles in some places but not in 
others

� Must respond to asynchronous events 

� Some work is more important than other work 
(priority interrupts) 



POSIX Threads
The subroutines of Pthreads API can be grouped as follows: 
� Thread management: Routines that work directly on threads 

- creating, detaching, joining, etc. They also include functions 
to set/query thread attributes (joinable, scheduling, etc.) 

� Mutexes: Routines that deal with synchronization, called a 
"mutex", which is an abbreviation for "mutual exclusion". 
Mutex functions provide for creating, destroying, locking and 
unlocking mutexes. These are supplemented by mutex
attribute functions that set or modify attributes associated 
with mutexes. 

� Condition variables: Routines that address communication
between threads that share a mutex. Based upon programmer 
specified conditions. This group includes functions to create, 
destroy, wait and signal based upon specified variable values. 
Functions to set/query condition variable attributes are also 
included. 

� Synchronization: Routines that manage read/write locks and 
barriers. 



The PThreads API

Thread-specific data keys pthread_key_ 

Condition attributes objects pthread_condattr_

Condition variables pthread_cond_ 

Mutex attributes objects. pthread_mutexattr_ 

Mutexespthread_mutex_ 

Thread attributes objects 
(stack management)

pthread_attr_ 

Threads themselves and 
miscellaneous subroutines 

pthread_ 

Functional GroupRoutine Prefix 



A Simple Example
#include <pthread.h> 
#include <stdio.h> 
#define NUM_THREADS 5 
long *taskids[NUM_THREADS]; 
int main (int argc, char *argv[]) { 

pthread_t threads[NUM_THREADS]; 
int rc; 
long t; 
for(t=0; t<NUM_THREADS; t++) { 

printf("In main: creating thread %ld\n", t); 
taskids[t] = (long *) malloc(sizeof(long)); 
*taskids[t] = t; 
printf("Creating thread %ld\n", t); 
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)&taskids[t]); 
if (rc) { 

printf("ERROR; return code from pthread_create() is %d\n", rc); 
exit(-1); 

} 
} 
pthread_exit(NULL); 

} 

void *PrintHello(void *threadid) { 
long tid; 
tid = *((long *)threadid); 

printf("Hello World! It's me, thread #%ld!\n",
tid);

pthread_exit(NULL); 
} 



UNIX Signals
� Signals are various notifications sent to a process in order to 

notify it of various "important" events. 
� They interrupt whatever the process is doing, and force it to 

handle them immediately. 
� When a process receives a signal of some type, it can either 

take the default response, ignore the signal, or catch the 
signal. 

� If the signal is caught, the system will call a handler function 
(called signal handler) when the signal is delivered. 

� When a signal handler returns, the process continues 
execution from wherever it happened to be before the signal 
was received.

� Sending signals using the Keyboard
� Ctrl-C, Ctrl-Z, fg, bg

� Sending signals from the command line
� kill 



Catchable and Non-Catchable Signals

� Some signals processes cannot catch
� KILL
� STOP (sometimes used for de-bugging)

� Other signals are catch-able
� SEGV, BUS
� It is possible to catch these signals in order to do some 

cleanup

� signal(): sets a signal handler for a type of signal.
� Pre-defined signal handlers

� SIG_IGN (ignore the specified signal)
� SIG_DFL (set the default signal handler for the given 

signal)



Example
#include <stdio.h> /* standard I/O functions */ 
#include <unistd.h> /* standard unix functions, like getpid() */
#include <sys/types.h> /* various type definitions, like pid_t */
#include <signal.h> /* signal name macros, and the signal() prototype */ 

/* first, here is the signal handler */ 
void catch_int(int sig_num) { 

/* re-set the signal handler again to catch_int, for next time */ 
signal(SIGINT, catch_int); 

/* and print the message */ 
printf("Don't do that\n"); 
fflush(stdout); 

} 

int main(void) {
/* and somewhere later in the code.... */ . . 
/* set the INT (Ctrl-C) signal handler to 'catch_int' */ 
signal(SIGINT, catch_int); 

/* get into an infinite loop of doing nothing. */ 
for ( ;; ) pause(); 

}



Masking Signals
� A second signal may occur while a signal handler is executed. 

� Masking signals in a global context

� sigprocmask(int how, const sigset_t *set, sigset_t *oldset)

� Specify a set of signals to block and returns the list 
of signals that were blocked

� Functions to handle sigset_t mask_set:
� sigemptyset(&mask_set)

� sigaddset(&mask_Set, SIGINT)

� sigdelset(&mask_Set, SIGINT)

� sigismember(&mask_set, SIGINT)

� sigfillset(&mask_Set)



int ctrl_c_count = 0; 
#define CTRL_C_THRESHOLD 5

void catch_int(int sig_num) { 
sigset_t mask_set; /* used to set a signal masking set. */ 
sigset_t old_set; /* used to store the old mask set. */ 

/* re-set the signal handler again to catch_int, for next time */ 
signal(SIGINT, catch_int); 
/* mask any further signals while we're inside the handler. */ 
sigfillset(&mask_set); 
sigprocmask(SIG_SETMASK, &mask_set, &old_set); 

ctrl_c_count++; 
if (ctrl_c_count >= CTRL_C_THRESHOLD) { 

char answer[30]; /* prompt the user to tell us if to really exit or not */ 
printf("\nRealy Exit? [y/N]: "); 
fflush(stdout); 
gets(answer); 
if (answer[0] == 'y' || answer[0] == 'Y') { 

printf("\nExiting...\n"); 
fflush(stdout); exit(0); 

} 
else { 

printf("\nContinuing\n"); fflush(stdout); /* reset Ctrl-C counter */ 
ctrl_c_count = 0;

}
} 
/* no need to restore the old signal mask - this is done automatically, */
/* by the operating system, when a signal handler returns.*/

}



void catch_suspend(int sig_num) { 
sigset_t mask_set; /* used to set a signal masking set. */ 
sigset_t old_set; /* used to store the old mask set. */ 

/* re-set the signal handler again to catch_suspend, for next time */ 
signal(SIGTSTP, catch_suspend); 

/* mask any further signals while we're inside the handler. */
sigfillset(&mask_set); 
sigprocmask(SIG_SETMASK, &mask_set, &old_set); 

/* print the current Ctrl-C counter */ 
printf("\n\nSo far, '%d' Ctrl-C presses were counted\n\n", ctrl_c_count); 
fflush(stdout); 
/* no need to restore the old signal mask - this is done automatically, */ /* 
by the operating system, when a signal handler returns. */

} 

int main(void) {
signal(SIGINT, catch_int); 
signal(SIGTSTP, catch_suspend); 
for ( ;; ) pause(); 

}



Threads and Signals
� If the disposition for a signal type is 

� termination
� Such signals will terminate all threads, and the 

process will terminate. 

� ignore 
� Such signals will be ignored by all threads. 

� catch 
� Any thread responding to such signals will enter the 

same handler function. 

� signal masks are maintained per thread. 



Non-reentrant functions and errno

� Reentrancy: possibility of a process to attempt to re-enter a function
� Examples of non-reentrant functions with respect to threads:

� rand() (returns the next pseudo-random in a sequence determined by an initial 
seed value; as a side effect it updates the seed value enabling the sequence to 
progress). Different threads executing in parallel may see the same result.

� Functions that operate on character streams (getc(), getchar(), putc(), putchar())
� Reentrant versions are currently provided (rand_r())
� There is often a trade-off between achieving reentrancy and performance 

(so sometimes non-reentrant versions are also provided and the user can 
choose)

Appropriate Compilation
� Solaris: -D_REENTRANT
� AIX: -D_THREAD_SAFE

System Global Variables
� POSIX.1c functions avoid using errno; instead, they return the error 

number directly as the function return value, with a return value of zero 
indicating that no error was detected. 

� Each reference to errno can be made thread-specific by making errno a 
macro that expands to a function call. 



Threads, Signals and non-
Reentrant Procedures
� More on UNIX signals:

http://users.actcom.co.il/~choo/lupg/tutorials/si
gnals/signals-programming.html

� More on non-reentrant procedures:
http://www.unix.org/whitepapers/reentrant.html



Thread Usage in one machine
� Whenever a blocking system call is 

executed by a process, the process is 
blocked.

� This is not always desirable
� Excel spreadsheet

� Exploit parallelism when executing on a 
multiprocessor system

� Many applications are easier to structure 
as a collection of cooperating threads.
� Word processor: handling user input, spelling 

and grammar checking, document layout, index 
generation, etc.



Thread Usage in Nondistributed 
Systems

� Some applications are developed as a collection of 
cooperating programs, each to be executed by a 
separate process.

� Context switching as the result of IPC



Multithreaded Clients

� distributed systems operating on wide-area networks may 
need to conceal long inter-process message propagation times
� Initiate communication and immediately proceed with 

something else
Example: Web Browsers
� Some browsers start displaying data while they are still 

coming in
� As soon as the main html file has been fetched, different 

threads can be activated to take care of fetching the other 
parts.

� Achieve load balancing and increase performance
� Connections from browsers may be set up to different server 

replicas
� Allows data to be transferred in parallel
� Display the full document much faster



Servers 

� Iterative Server
� handles each request and returns a response

� Concurrent Server
� passes the request to a separate thread or process and 

immediately waits for the next incoming request

Parallelism, blocking system callsThreads

No parallelism, blocking system callsSingle-threaded process

CharacteristicsModel



Multithreaded Servers

� A multithreaded server organized in a dispatcher/worker 
model.



Multithreaded Clients
� User Interfaces

� X Window System, Compound Documents
� Client-Side Software for Distribution Transparency

� distribution transparency
� the client is not aware that it is communicating with remote 

processes
� Distribution is less transparent to servers for reasons of 

performance and correctness (e.g., replicated servers may have 
to communicate, etc.)

� access transparency  ->  client stub
� location-related transparency

� use a convenient name system
� When a client is bound to a server, it can be informed about any change 

to the location of the server
� Hide server current location
� Rebind if necessary replication transparency

� failure transparency
� client middleware can be configured to repeatedly attempt to 

connect to a server, or perhaps try another server after 
several attempts.



Client-Side Software for Distribution Transparency

� A possible approach to transparent replication of 
a remote object using a client-side solution.



Servers - How do clients know the port of a 
service? 

3.7

� Globally assign end-points for 
well-known services (FTP port = 
21, web port = 80)
� Run a special daemon on each 
machine to keep track of the 
current endpoint of each service. 

� The daemon listens to a 
well-known endpoint
� Clients first contact the 
daemon and then the server

� Superservers (inetd) -> uses 
memory more efficiently, since the 
specific servers run only when 
needed 



How a server can be interrupted?

� Out-of-band data
� Data that is to be processed by the server with 

higher priority than any other data from that 
client.

� Server listens to a separate control endpoint to 
which the client sends out-of-band data.

� With a lower priority the server listens to the 
endpoint through which the normal data passes



Stateless - Statefull Servers
� Stateless Server

� Does not keep information on the state of its clients
� Example: Web servers

� Statefull Server
� Maintain information on its client

� Example: file server that allows a client to keep a local copy of a 
file (even for performing updates)

� If a crash occurs, it needs to recover its entire state as it 
was just after the crash -> enabling recovery can introduce 
considerable complexity

� The choice for a stateless or stateful design should not 
affect the services provided by the server
� stateless file servers

� A server may sometimes want to keep a record on a client’s 
behavior so that it can more effectively respond to its 
requests
� cookies



Object Servers
� An object server is a server tailored to 

support distributed objects. It acts as a 
place where objects live.
� it provides only the means to invoke local 

objects based on requests from (probably 
remote) clients

� services are implemented by the objects 
residing in it



Alternatives for Invoking Objects
� To invoke an object, the server needs to know:

� which code to execute
� on which data it should operate
� whether it should start a separate thread to take care of the 

invocation, etc
� Different Policies

� Transient objects
� Create a transient object at the first invocation request, and to 

destroy it as soon as no clients are bound to it anymore.
� Create all transient objects at the time the server is initiated

� What are the advantages and disadvantages of these two policies?

� Should objects share code or state?
� place each object in a memory segment of its own
� let objects at least share code

� Threading
� implement server as a simple thread of control, or
� have several threads, one for each object



Object Adapters

Organization of an object server supporting different activation policies.

Decisions on how to invoke an 
object are referred to as 
activation policies.

A mechanism to group objects 
per policy is needed. This 
mechanism is called object 
adapter.

An object adapter is software 
implementing a specific policy.

Object adapters come as 
generic components to assist 
developers of distributed 
objects, and which need only 
to be configured for a specific 
policy.



Object Adapters - Example

� The adapter manages a number of objects.

� Implemented Policy: Have a single thread 
of control for each of its objects.

� It expects that each skeleton supports 
the operation:

invoke(unsigned in_size, char in_args[], 
unsigned *out_size, char * out_args[])



Object Adapter

The header.h file used by the adapter and any program that calls an 
adapter.

/* Definitions needed by caller of adapter and adapter */
#define TRUE
#define MAX_DATA 65536

/* Definition of general message format */
struct message {

long  source /* senders identity */
long  object_id; /* identifier for the requested object */
long  method_id; /* identifier for the requested method  */
unsigned  size; /* total bytes in list of parameters */
char  **data; /* parameters as sequence of bytes */

};

/* General definition of operation to be called at skeleton of object */
typedef void (*METHOD_CALL)(unsigned, char*, unsigned*, char**);

long register_object (METHOD_CALL call); /* register an object  */
void unrigester_object (long object)id); /* unrigester an object */
void invoke_adapter (message *request); /* call the adapter */



Object Adapter

� The thread.h file used by the adapter for using threads.

typedef struct thread THREAD; /* hidden definition of a thread 
*/

thread *CREATE_THREAD (void (*body)(long tid), long thread_id);
/* Create a thread by giving a pointer to a function that defines the actual  */
/* behavior of the thread, along with a thread identifier  */

void get_msg (unsigned *size, char **data);
void put_msg(THREAD *receiver, unsigned size, char **data);
/* Calling get_msg blocks the thread until a message has been put into its  */
/* associated buffer.  Putting a message in a thread's buffer is a nonblocking */
/* operation. */



Object Adapter

� The main part of an 
adapter that 
implements a thread-
per-object policy.

The implementation 
of the adapter is 
independent of the 
objects for which it 
handles invocations



Code Migration
Reasons for Migrating Code
� Load balancing

� move processes from heavily-loaded to lightly-loaded 
machines

� Load-balancing algorithms play an important role in 
compute-intensive systems

� Minimizing Communication
� process date close to where those data reside

� e.g., a server that manages a huge database -> migrate part 
of the client to server

� migrate parts of the server to client

� Exploiting parallelism 
� searching for information on the web



Reasons for Migrating Code
Flexibility
� The principle of dynamically configuring a client to communicate to a 

server.  The client first fetches the necessary software, and then 
invokes the server.



Models for Code Migration
A process consists of three parts:
� code part
� resource part: contains references to external resources 

(files, printers, devices, etc.)
� execution part: stores the current execution state of a 

process (private data, stack, program counter)
Weak Mobility
� Transfer only the code segment + some initialization data
� Example: JAVA applets
Strong Mobility
� transfer the execution part of the process as well
Sender-Initiated
� Examples: upload programs to a compute server, send a search 

program to a Web server to perform the queries there
Receiver-Initiated
� JAVA applets



Models for Code Migration

Alternatives for code migration.



Migration and Local Resources

Binding by an identifier
� the process requires precisely the referenced 

resource
� Example: use of URLs
Binding by value
� only the value of a resource is needed
� Example: use of standard libraries (C or JAVA)
Binding by type
� a process indicates that it needs only a resource 

of a specific type
� Example: references to local devices 



Migration and Local Resources

Resource-to-machine Bindings

� Unattached resources
� can be easily moved between different machines (e.g., 

data files)

� Fastened resources
� moving or copying may be possible but only at relatively 

high costs 

� Examples: local databases, complete web sites

� Fixed resources
� are intimately bound to a specific machine or 

environment and cannot be moved.

� Examples: local devices



Migration and Local Resources

GR Establish a global system-wide reference
MV Move the resource
CP Copy the value of the resource
RB Rebind process to locally available resource

Actions to be taken with respect to the references to local 
resources when migrating code to another machine.

GR

GR

RB (or GR)

GR (or MV)

GR (or CP)

RB (or GR, CP)

MV (or GR)

CP ( or MV, GR)

RB (or GR, CP)

By identifier

By value

By type

FixedFastenedUnattached

Resource-to-machine binding

Process-to-
resource 
binding



Migration in Heterogeneous Systems
� It should be possible:

� to execute the code segment on each platform
� appropriately represent the execution segment at each 

platform (in case of strong mobility)

� To migrate the execution segment, the target 
machine should be of the same architecture and 
run the same operating system.

Solutions
� have the compiler support a migration stack and 

generate labels allowing the return from a 
subroutine to be implemented as a (machine-
indepenendent) jump.

� Rely on a virtual machine



Migration in Heterogeneous Systems

The principle of maintaining a migration stack to support migration of an execution 
segment in a heterogeneous environment



Software Agents in Distributed Systems

� A software agent is an autonomous process capable of 
reacting to, and initiating changes in its environment, possibly
in collaboration with users and other agents.

System properties of agents
� A collaborative agent is an agent that forms part of a multi-

agent system, in which agents seek to achieve some common 
goal through collaboration.

� A mobile agent has the capability of moving between 
different machines.

Classes based on functionality
� Interface agents

� assist an end user in the use of one or more applications
� It has learning capabilities

� Information agents
� manage information from many different sources



Software Agents in Distributed 
Systems

� Some important properties by which different types of 
agents can be distinguished.

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other 
agents

YesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

Description
Common to 
all agents?

Property



Agent Technology

� Foundation for Intelligent Physical Agents 
(FIPA)
� developed a general model for software agents

� An agent platform provides the basic 
services needed for any multiagent system
� creating and deleting agents

� facilities to locate agents

� facilities for inter-agent communication



Agent Technology

The general model of an agent platform

ACC is responsible for reliable and ordered 
point-to-point communication with other platforms



Agent Communication Languages (ACL)

� The sending and receiving agent have at least the 
same understanding of the purpose of a message.

� This purpose often determines the reaction of 
the receiver

� ACL messages consists of a header and the actual 
content.
� An ACL message header may contain a field to identify 

the language or encoding scheme for the content.

� An additional field may sometimes be included to 
identify a standardized mapping, called ontology, of 
symbols to their meaning.



Agent Communication Languages 

Reference to 
source

Subscribe to an information sourceSUBSCRIBE

Action 
specification

Request that an action be performedREQUEST

Proposal IDTell that a given proposal is rejectedREJECT-PROPOSAL

Proposal IDTell that a given proposal is acceptedACCEPT-PROPOSAL

ProposalProvide a proposalPROPOSE

Proposal specificsAsk for a proposalCFP

ExpressionQuery for a give objectQUERY-REF

PropositionQuery whether a given proposition is trueQUERY-IF

PropositionInform that a given proposition is trueINFORM

Message ContentDescriptionMessage purpose

Examples of different message types in the FIPA ACL, giving the purpose of a message, 
along with the description of the actual message content.



Agent Communication Languages

A simple example of a FIPA ACL message sent between two agents 
using Prolog to express genealogy information.

female(beatrix),parent(beatrix,juliana,bernhard)Content

genealogyOntology

PrologLanguage

elke@iiop://royalty-watcher.uk:5623Receiver

max@http://fanclub-beatrix.royalty-spotters.nl:7239Sender

INFORMPurpose

ValueField


