
Communication

Layered Protocols
� Layers, interfaces, and protocols in the OSI model.

2-1

Layered Protocols
� International Standards Organization (ISO)

� Developed a reference model that clearly identifies the
various levels involved, gives them standard names, and
points out which level should do which job.

� Open systems Interconnection Reference Model
� Protocols: rules determining how an open system

can communicate with another open system.
� Connection-oriented protocols: Before exchanging

data the sender and receiver first explicitly
establish a connection, and possibly negotiate the
protocol they will use

� Connectionless protocols: No setup in advance is
needed.
� Dropping a letter in a mailbox

Layered Protocols

� A typical message as it appears on the network.

2-2

Layered Protocols
Physical Layer
� Undertakes the actual transmission of the message.

� How many volts to use for 0 and 1?
� How many bits per second can be sent?
� Can transmission take place in both directions simultaneously?
� Size and shape of the network connector
� Number of pins and meanings of each

Data Link Layer
� Provide mechanisms to detect and correct errors during the

bit transmission
� Bits are grouped into units called frames.
� A special bit pattern is placed at the beginning and at the end

of each frame to mark it.
� A checksum is computed by adding up all the bytes in the

frame in a certain way.
� Frames are assigned sequence numbers

Data Link Layer

� Discussion between a receiver and a sender in the data link layer.

2-3

Layered Protocols
Network Layer
� The choosing of the best path from the sender to the

receiver is called routing.
� Routing is the major task of the network layer.
� Example of Connectionless protocol: IP

� No connection setup.
� Each IP packet is routed to its destination independently of

all others.
� No internal path is selected and remembered.

� Example of Connection-oriented protocol – ATM Virtual
Channels
� A unidirectional connection from the source to the

destination is established.
� A collection of virtual channels between two hosts comprise a

virtual path.

Transport Protocols

� Delivers messages without loss.
� Each message is broken into pieces called
packets

� A sequence number is assigned to each
packet

� Transport Layer Header
� Which packets have been sent
� Which have been received
� How many more the receiver has room to

accept
� Which should be retransmitted

TCP & Client-Server TCP (TCP for
Transactions, T/TCP)

a) Normal operation of TCP.
b) Transactional TCP.

2-4

Higher Level Protocols

Session Layer
� Provides dialog control, to keep track of which party is

currently talking
� Provides synchronization facilities

� Insert checkpoints into long transfers, so that in the event
of a crash, it is necessary to go back only to the last
checkpoint

Presentation Layer
� Is concerned with the meaning of the bits

� It is possible to define records such a name, address, amount
of money, and other valuable info that might be contained in a
message, and have the sender notify the receiver that a
message contains a particular record in a certain format.

� Makes communication easier between machines with different
internal representations

Application Protocols

� Contains a collection of standard network
applications, like e-mail, file transfer,
terminal emulation, etc.

� FTP
� FTP protocol versus ftp program

� HTTP (HyperText Transfer Protocol)
� Remotely manage and handle the transfer of

Web pages
� Web browsers and web servers
� JAVA RMI

Remote Procedure Call - RPC
� Explicit message exchange using send and
receive does not conceal communication.

Main Idea behind RPCs

� Allow programs to call procedures located
on other machines

� Subtle problems exist, since the calling
and called procedures:
� run on different machines

� execute on different address spaces

� failures may occur

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before
the call to read

b) The stack while the called procedure is active

C call

count = read(fd,buf,nbytes)

• Call by value

• Call by reference

• Call by copy/restore

RPC versus Calling a System Call - Read data from a file

Remote file

� The programmer calls read

� the read routine is extracted
from the library by the linker (it
is now called client stub)

� it packs the parameters into
a message and requests that
message to be sent to the
server

� When the message arrives at
the server, the OS passes it up
to a server stub.

�The server stub unpacks the
parameters and calls the server
procedure in the usual way.

Local file

�The programmer calls read

� The read routine is extracted
from the library by the linker

� It is a short procedure that
calls a system call

� The read procedure is a kind
of interface between the user
code and the local OS.

Client and Server Stubs

� Principle of RPC between a client and server program.

Client and Server Stubs
� Client’s side:

� read is called placing appropriate arguments in the stack
(in the conventional way)

� the read library routine does a call to the OS (as
happens in the conventional call)

� Unlike the original one, it does not ask the OS to
perform a system call but to send a message to the
server

� Server’s side:
� the server procedure is called in the usual way; the

parameters and the return address are all on the stack
and nothing seems unusual.

� The transparency achieved is the main beauty of
the scheme!

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Passing Value Parameters (1)

� Steps involved in doing remote computation through RPC

2-8

Packing parameters into a message is called parameter marshalling.

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in boxes

indicate the address of each byte

• Each machine has its own representation for numbers, characters,
and other data items. IBM mainframes use the EBCDIC character
code, whereas IBM PCs use ASCII

• Intel Pentium machines number their bytes from right to left
(little endian), Sun SPARC number them the other way (big endian).

Passing Reference Parameters
� How are pointers or in general references passed?

� With the greatest of difficulty, if at all �

� Possible Solutions
1. Forbid pointers
2. Copy the object pointed to by the pointer into the message

and send it to the server.
� The server copies it at some place in its memory space, and calls

the routine passing a pointer to it.
� When the routine ends, the server copies back the object’s value

into one parameter of the message and sends the message to the
client.

� If the stubs know whether the object is an input or output
parameter to the server, one of the two copies can be avoided.

� The above approach does not work with complex objects (i.e,
dynamic arbitrary data structures).

Parameter Specification and Stub Generation
a) A procedure
b) The corresponding message:

• A character is placed in the rightmost
byte of a word

• A float is transmitted as a whole word
• An array as a group of words

equal to the array length, preceded
by a word giving the length.

Parameter Specification and Stub Generation

The caller and the callee agree on:
� The format of the messages
� The representation of simple data structures

� integers are represented in two’s complement, characters
in 16-bit Unicode, floats in IEEE standard #754 format,
etc.

� The actual exchange of the message
� TCP/IP?
� UDP?

� Stubs for the same RPC protocol but different procedures generally
differ only in their interface to the applications.

� An interface consists of a collection of procedures that can be
called by a client, and which are implemented by a server.

� Interfaces are often specified by means of an Interface Definition
Language (IDL),

� then compiled into a client stub and a server stub, along
with the appropriate compile-time or run-time interfaces.

Asynchronous RPC

Examples where blocking is not necessary
� Transferring money from one account to
another

� Adding entries into a database
� Starting remote services
� Batch processing
Asynchronous RPCs
� A client immediately continues after
issuing the RPC request.

Asynchronous RPC (1)

a) The interconnection between client and server in a traditional
RPC

b) The interaction using asynchronous RPC

2-12

Asynchronous RPC (2)

� A client and server interacting through two asynchronous RPCs

� Combining two asynchronous RPCs is referred as a deferred
synchronous RPC.

� Completely Asynchronous RPCs

2-13

Deferred Synchronous RPCs

• A client may want to pre-fetch the network addresses of a set of
hosts that it expects to contact soon.

Distributed Objects

� The key feature of an object is that it encapsulates data,
called state, and the operations on those data, called
methods.

� Methods are made available through an interface.
� When a client binds to a distributed object, an

implementation of the object’s interface, called proxy, is
loaded into the client’s address space.
� It marshals method invocations into messages and unmarshals

reply messages to return the result to the client
� Proxy = client stub
� Skeleton = server stub

� Simple remote object: its state is not distributed, but its
interface might be.

� Persistent Objects: continues to exist even if it is currently
not contained in the address space of a server process

� Transient Objects: exists only as long as the server that
manages it is active.

Distributed Objects

� Common organization of a remote object with client-side
proxy.

2-16

Binding a Client to an Object
� Object references are supported by RMI

systems
� When a process holds an object reference, it

must first bind to the reference’s object before
invoking any of its methods.
� Binding results in a proxy being installed in the process’s

address space.

� Implicit Binding: binding is done automatically
� The client is offered a mechanism that allows it to

directly invoke methods using only a reference to the
object.

� Explicit Binding: more transparent to the client
� The client first calls a special function to bind to the

object and then invokes any method.

Implementation of Object References
� An object reference should provide the following

information:
� The network address of the machine where the state of the

object resides
� An endpoint (port) identifying the server that manages the

object
� An id identifying which object in this server.

� If a server crashes and recovers, a new endpoint might be
assigned to it
� All object references become invalid
� Have a local daemon per machine listening to a well-known

endpoint, and keep track of the server-to-endpoint
assignments in an endpoint table.

� Replace the endpoint with an id in the object reference

Implementation of Object References

� Encoding the network address of the server
within the object’s reference is also not a
good idea

� Location servers

� Assumption of using the same protocol
stack can be dropped
� Add more information in the object reference

� identification of the protocol

� proxy implementation handle

Static versus Dynamic Remote Memory Invocations

� Static Invocation
� Use predefined inteface definitions

� make use of an object-based language (e.g., JAVA) that
will handle stub generation automatically.

� Example: fobject.append(int);

� Dynamic Invocation
� compose a method invocation at run time
� Example: invoke(fobject,id(append), int);

� Usefulness of Dynamic Invocations
� browser that is used to examine sets of objects and

supports remote object invocations
� dynamic invocations in a batch processing service where

invocations can be handled along with a time determining
when the invocation should be done

Parameter Passing

� Object references can be used as
parameters to method invocations

� References are passed by value
� They are copied from one machine to another

� References to local objects are treated
differently for efficiency
� The referenced local object may be copied as

a whole and passed along with the invocation

Parameter Passing

� The situation when passing an object by reference or by
value.

2-18

JAVA RMI Architecture

The definition of behavior and the implementation of that behavior
are separate concepts:

� The definition of a remote service is coded using a Java interface.

� The implementation of the remote service is coded in a class.

� RMI supports two classes that implement the same interface.

o The first class is the implementation of the behavior, and it
runs on the server.

o The second class acts as a proxy for the remote service and
it runs on the client.

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

RMI Architecture Layers

• The Stubs and Skeleton layer intercepts method calls made by the
client to the interface reference variable and redirects these calls to a
remote RMI service. Implements the stub and skeletons needed.

• The Remote Reference layer connects clients to remote service objects
that are running and exported on a server. Defines and supports the
invocation semantics of the RMI connection.

• The transport layer is based on TCP/IP connections between machines
in a network. A client is connected to a a remote service implementation
by establishing a unicast point-to-point connection.

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Naming Remote Objects
� How does a client find an RMI remote service?

� A naming or directory service is run on a well-known
host and port number.

� How does a client obtains a reference to a
service object?
� RMI includes a simple service called the RMI registry,

which runs on each machine that hosts remote service
objects and accepts queries for services by default on
port 1099.

� Each object should be exported and registered.

� The registry provides a remote reference to a service
object (a URL is used to describe the service object).

Using RMI - Example
� Parts composing a working RMI

� Interface definitions for the remote services

� Implementations of the remote services

� Stub and Skeleton files

� A server to host the remote services

� An RMI Naming service that allows clients to
find the remote services

� A class file provider (an HTTP or FTP
server)

� A client program that needs the remote
services

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Using RMI - Example

� Steps to build a system:
1. Write and compile Java code for interfaces
2. Write and compile Java code for

implementation classes
3. Generate Stub and Skeleton class files from

the implementation classes
4. Write Java code for a remote service host

program
5. Develop Java code for RMI client program
6. Install and run RMI system

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Example -Interface

public interface Calculator
extends java.rmi.Remote {

public long add(long a, long b)
throws java.rmi.RemoteException;

public long sub(long a, long b)
throws java.rmi.RemoteException;

public long mul(long a, long b)
throws java.rmi.RemoteException;

public long div(long a, long b)
throws java.rmi.RemoteException;

}

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Example - Implementation
public class CalculatorImpl

extends java.rmi.server.UnicastRemoteObject implements Calculator {
// Implementations must have an explicit constructor in order to declare the
// RemoteException exception

public CalculatorImpl() throws java.rmi.RemoteException
{
super();
}
public long add(long a, long b) throws java.rmi.RemoteException {

return a + b;
}
public long sub(long a, long b) throws java.rmi.RemoteException {

return a - b;
}
public long mul(long a, long b) throws java.rmi.RemoteException {

return a * b;
}
public long div(long a, long b) throws java.rmi.RemoteException {

return a / b;
}

}

When the constructor calls
super(), it activates code
that performs the RMI
linking and remote object
initialization.

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Example – Stubs and Skeletons & Host Server

� The stub and skeleton files are created using the RMI compiler, rmic (rmic
CalculatorImpl)

� This generates the Calculator_Stub.class and Calculator_Skel.class

Host Server
public class CalculatorServer {

public CalculatorServer() {
try {

Calculator c = new CalculatorImpl();
Naming.rebind("rmi://localhost:1099/CalculatorService", c);

} catch (Exception e) {
System.out.println("Trouble: " + e);

}
}
public static void main(String args[]) {

new CalculatorServer();
}

}

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Example - Client
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.net.MalformedURLException;
import java.rmi.NotBoundException;
public class CalculatorClient {

public static void main(String[] args) {
try {

Calculator c = (Calculator) Naming.lookup("rmi://localhost/CalculatorService");
System.out.println(c.sub(4, 3));
System.out.println(c.add(4, 5));
System.out.println(c.mul(3, 6));
System.out.println(c.div(9, 3));

} catch (MalformedURLException murle) {
System.out.println(); System.out.println("MalformedURLException");
System.out.println(murle);

} catch (RemoteException re) {
System.out.println(); System.out.println("RemoteException");
System.out.println(re);

} catch (NotBoundException nbe) {
System.out.println(); System.out.println("NotBoundException");
System.out.println(nbe);

} catch (java.lang.ArithmeticException ae) {
System.out.println(); System.out.println("java.lang.ArithmeticException");
System.out.println(ae);

}
}

}

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Parameter-Passing in RMI
� When a local object is passed to a remote method, the object

itself is passed by value, not the reference to the object.
� When a remote method returns an object, a copy of the

whole object is returned to the calling program.
� A Java object can be simple and self-contained, or it could

refer to other Java objects in complex graph-like structure.
� Because different JVMs do not share heap memory, RMI

must send the referenced object and all objects it
references.

� RMI uses a technology called serialization to transform an
object into a linear format that can then be sent over the
network wire.

� Object serialization essentially flattens an object and any
objects it references.

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Parameter-Passing in RMI

� A client program can obtain a reference to
a remote object:
� through the RMI Registry program, or
� as the return value from a method call

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Distributing and Installing RMI Software
� To run an RMI application, the supporting class files must be

placed in locations that can be found by the server and the
clients.

� For the server, the following classes must be available to its
class loader:
� Remote service interface definitions
� Remote service implementations
� Skeletons for the implementation classes
� Stubs for the implementation classes
� All other server classes

� For the client, the following classes must be available to its
class loader:
� Remote service interface definitions
� Stubs for the remote service implementation classes
� Server classes for objects used by the client (such as return

values)
� All other client classes

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Distributing and Installing RMI Software

� The RMI supports loading of classes from FTP and
HTTP servers (class RMIClassLoader).
� classes can be deployed in one, or only a few places,
� all nodes in a RMI system will be able to get the

proper class files to operate.
� If the remote JVM needs to load a class file for an

object, it looks for the embedded URL and
contacts the server at that location for the file.

� When the property
java.rmi.server.useCodebaseOnly is set to true,
then the JVM will load classes from either a
location specified by the CLASSPATH environment
variable or the URL specified in this property.

Material taken from http://java.sun.com/developer/onlineTraining/rmi/RMI.html

Message-Oriented Communication

� Applications are executed on hosts
� The hosts are connected through a network of communication

servers
� Each host is connected to some communication server
� Example: Electronic Mail System

� Each host runs an application by which a user can compose,
send, receive and read messages.

� Each host is connected to a mail server
� Each message is first stored in one of the output buffers of

the local mail server.
� The server removes messages from its buffers and sends

them to their destination.
� The target mail server stores the message in an input buffer

for the designated receiver (in the receiver’s mailbox).
� The interface at the receiving host offers a service to the

receiver’s user agent by which the latter can regularly check
for incoming mail.

Persistence and Synchronicity in Communication

� General organization of a communication system in which
hosts are connected through a network

2-20

Persistence and Synchronicity in Communication

� Persistent communication
� a message that has been submitted for transmission is stored by

the communication system as long as it takes to deliver it to the
receiver.

� Transient communication
� a message is stored by the communication system only as long as

the sending and receiving application are executing.
� If a communication server cannot deliver a message to the next

communication server or the receiver, the message will be discarded

� It works like a traditional store-and-forward router

� Asynchronous Communication
� A sender continues its execution immediately after it has

submitted its message for transmission

� Synchronous Communication
� The sender is blocked until its message is stored in a local buffer

at the receiving host, or actually delivered to the receiver.

Persistence and Synchronicity in Communication
� Persistent Asynchronous Communication

� Each message is either persistently stored in a buffer at the
local host or at the first communication server.
� A e-mail system is an example

� Persistent Synchronous Communication
� Messages can be persistently stored at the receiving host

and a sender is blocked until this happens
� Transient Asynchronous Communication

� The message is temporarily stored at a local buffer at the
sending host, after which the sender immediately continues

� UDP is an example
� Transient Synchronous Communication

� The sender is blocked until the message is stored in a local
buffer at the receiving host, or

� until the message is delivered to the receiver for further
processing, or

� until it receives a reply message from the other side
(RPCs,RMIs)

Persistence and Synchronicity in
Communication

a) Persistent asynchronous communication
b) Persistent synchronous communication

Persistence and Synchronicity in
Communication

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

2-22.2

Persistence and Synchronicity in
Communication

e) Delivery-based transient synchronous communication at
message delivery

f) Response-based transient synchronous communication

Berkeley Sockets

� A socket is a communication endpoint to which an application can write
data that are to be sent out over the underlying network, and from
which incoming data can be read.

� Socket primitives for TCP/IP.

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

Berkeley Sockets

� Connection-oriented communication pattern using sockets.

Sockets #include <sys/types.h>
#include <sys/socket.h>
#define BUF_LEN 256
#define ADDRESS "mysocket"

int main(void) {
int sd,ns, len, fromlen;
char buf[BUF_LEN];
struct sockaddr_un sockaddr, clientsockaddr;

sd = socket(AF_UNIX,SOCK_STREAM,0);

sockaddr.sun_family = AF_UNIX;
strcpy(sockaddr.sun_path, ADDRESS);
len = sizeof(sockaddr.sun_family) +
strlen(sockaddr.sun_path);

bind(sd, (struct sockaddr *)&sockaddr, len);
listen(sd,1);

while (1) {
ns = accept(sd,&clientsockaddr,&fromlen);
if (fork() == 0) { // child code

close(sd);
read(ns,buf,sizeof(buf));
printf("server read ‘%s’\n", buf);
exit(0);

}
close(ns);
sleep(3);

}
} A server process in the UNIX System Domain

The BSD UNIX supports:
� The “UNIX system domain”
for processes communicating on
one machine
� The “Internat domain” for
processes communicating over
the Internet (using the DARPA
[Defense Advanced Research
Project] communications
protocols)

Each socket has a type:
� Stream (default: TCP)
� Datagram (default: UDP)

bind(sd, <sockname>,length):
associates the name <sockname>
with the socket sd.

listen(sd,qlength): specifies the
maximum length of the queue
which stores incoming requests
for connections to the socket

Sockets
#include <sys/types.h>
#include <sys/socket.h>
#define BUF_LEN 256
#define ADDRESS "mysocket"

int main(void) {
int sd, len;
struct sockaddr_un sockaddr;

sd = socket(AF_UNIX,SOCK_STREAM,0);

sockaddr.sun_family = AF_UNIX;
strcpy(sockaddr.sun_path, ADDRESS);

len = sizeof(sockaddr.sun_family) + strlen(sockaddr.sun_path);

if (connect(sd,&sockaddr, len) == -1)
exit(1);

write(sd,"hi guy",6);
close(sd);

}

A client process in the UNIX System Domain

The Message-Passing Interface (MPI)

� Some of the most intuitive message-passing primitives of MPI.

Check if there is an incoming message, but do not blockMPI_irecv

Receive a message; block if there are noneMPI_recv

Send a message and wait for replyMPI_sendrecv

Send a message and wait until receipt startsMPI_ssend

Send a message and wait until copied to remote bufferMPI_send

Append outgoing message to a local send bufferMPI_bsend

MeaningPrimitive

MPI – A Simple Example

/*The Parallel Hello World Program*/
#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv) {

int node;
char buf[64];
FILE *fp;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &node);
sprintf(buf,”file%d”,node);
fp = fopen(buf,”r”);
fprintf(fp, "Hello World from Node %d\n",node);
fclose(fp);
MPI_Finalize();

}

MPI – Basic Concepts

� A communicator is a collection of
processes that can send messages to each
other.

� There is a default communicator whose
group contains all initial processes, called
MPI_COMM_WORLD.

� A process is identified by its rank in the
group associated with a communicator.

MPI – A simple example with send-receive
int main(int argc, char **argv) {

int rank, size;
double x[10];
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
for (int i=0; i<10 ; i++) x[i] = 0.1*i;
MPI_Send(x, 10, MPI_DOUBLE, 1, 666, MPI_COMM_WORLD);

}
else if (rank == 1) {

MPI_Recv(x, 10, MPI_DOUBLE, 0, 666, MPI_COMM_WORLD, &status);
}
MPI_Finalize();

}
Send an array from process 0 to 1

- int MPI_Send(void 8message, int count, MPI_Datatype datatype, int dest, int tag)

- int MPI_recv(void *message, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

MPI Tags

� Messages are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the
message.

� Messages can be screened at the receiving
end by specifying a specific tag, or not
screened by specifying MPI_ANY_TAG as
the tag in a receive.

Another Simple Example
include <stdio.h>
#include “mpi.h”

int main(int argc, char **argv) {
int my_rank; /* rank of process */
int p; /* number of processes */
int source; /* rank of sender */
int dest; /* rand of receiver */
int tag = 50; /* tag for message */
char message[100]; /* storage for message */
MPI_Status status; /* return status for receive */

MPI_INIT(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD,&p);
if (my_rank != 0) {

sprinf(message, “Greetings from process %d!”, my_rank);
dest =0;
MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

else {
for (source = 1; source < p; sopurce++) {

MPI_Recv(message,100, MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

printf(“%s\n”, message);
}

}
}

Introduction to Collective Operations in MPI

� Collective operations are called by all processes in
a communicator.

� MPI_BCAST distributes data from one process
(the root) to all others in a communicator.

� MPI_REDUCE combines data from all processes in
communicator and returns it to one process.

� In many numerical algorithms, SEND/RECEIVE can
be replaced by BCAST/REDUCE, improving both
simplicity and efficiency.

MPI – Further Information
� Online examples available at

http://www.mcs.anl.gov/mpi/tutorials/perf

� The Standard itself:
� at http://www.mpi-forum.org
� All MPI official releases, in both postscript and HTML

� Books:
� Using MPI: Portable Parallel Programming with the Message-Passing

Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.
� MPI: The Complete Reference, by Snir, Otto, Huss-Lederman, Walker,

and Dongarra, MIT Press, 1996.
� Designing and Building Parallel Programs, by Ian Foster, Addison-Wesley,

1995.
� Parallel Programming with MPI, by Peter Pacheco, Morgan-Kaufmann,

1997.
� MPI: The Complete Reference Vol 1 and 2,MIT Press, 1998(Fall).

